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ABSTRACT:  

State of the art solar cells often require a combination of TCO and metallic grid to efficiently transport the generated 

current to an external circuit. Optimization of these complex contacts based on several materials with different con-

ductivities and geometries is often still based on a traditional approach consisting of simple analytical formulas and 

empirical knowledge in spite of the complexity. An evolutionary algorithm combined with an electrical 2D+1D FEM 

model is used to optimize the shape of the metallic contact considering the material conductivities, the geometry and 

shadowing. 

The performance of two automatically designed contacts is compared with experimental results of CIGS solar cells 

prepared with two different TCO thicknesses. 
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1 INTRODUCTION 

 

Cu(In, Ga)Se2 (CIGS) thin film solar cells are prom-

ising for large scale efficient PV applications.[1] Collect-

ing and transporting the current generated in CIGS solar 

cells is a key factor for performance optimization in rec-

ord devices as well as a critical issue in scaling to large 

area. Especially CIGS modules, characterized by a com-

paratively low cell Voc and comparatively high Jsc are af-

fected by strong ohmic losses. Therefore minimizing 

ohmic losses is of paramount importance. Usually the 

current is transported through a window TCO layer and 

in recent times a metallic mesh is added for improving 

the overall conductivity and reducing ohmic losses. 

Modelling a solar cell based only on single TCO lay-

ers as contacts can be easily achieved by using equivalent 

circuits in SPICE [2] however adding a highly conductive 

metallic mesh on top of the TCO makes a simulation by 

equivalent circuits more complex because a two dimen-

sional spatial discretization is required and the direction 

of current flow cannot be accurately described [3]. As an 

alternative it is possible to use the finite element method 

(FEM) to describe the potential distribution and the cur-

rent flow in an extended device comprising both TCO 

and a metallic grid. [4–6]  

A common approach to optimize contacting grids and 

module interconnection layouts is based on analytical 

models [7,8] relying on several approximations that may 

hold for simple geometries only. More advanced ap-

proaches based on FEM have been used only since re-

cently.[5,9] 

 

 

2 SIMULATION AND OPTIMIZATION 

 

Simulations using the finite elements method are per-

formed using the Multiphysics FEM package nm-seses 

developed at ZHAW.[4,10] In the present study the solar 

cell is decomposed into three 2D domains: a bottom Mo 

electrode, a top TCO electrode and a metallic grid as 

shown in Fig. 1. The solar cell is modelled using a one 

diode model implemented as a one dimensional coupling 

between Mo and the top TCO, e.g. each mesh point node 

between top TCO and Mo is connected through a one 

diode model. The metallic contact grid is modelled as a 

square mesh where each element can either be metal or 

void, and the top metal electrode is in perfect contact 

with the top TCO layer. The presence of a metal mesh 

element induces a shadowing into the solar cell model, 

e.g. the photocurrent is locally set to zero. Dirichlet 

boundary conditions (BC) with voltage = 0V are applied 

to the bottom Mo electrode, and similarly Dirichlet BC 

with a voltage corresponding to the external voltage are 

applied to the edges of a contact pad on the metallic 

mesh. All other boundaries are defined as insulating. Ex-

isting (e.g. experimental) metallic contact grids can be 

imported as bitmapped images to allow calculating the 

cell performance. 

 

 

Figure 1 Schematic representation of the model geome-

try, dimensionality and couplings. 

 

The parameters of the one diode model used for the simu-

lations are obtained by fitting an experimentally meas-

ured IV curve. In a first pass the parameters are fitted us-

ing a simple one diode model, and then these initial val-
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ues are used for accurate fitting based on a full FEM 

model to accurately take into account the potential distri-

bution across a device. The measured resistivity of Al 

doped Zinc oxide (AZO, 1.1∙10-3 Ωcm) and Mo (1.2∙10-5 

Ωcm) together with tabulated data for Al (2.7∙10-6 Ωcm) 

are used for all calculations. Parasitic losses in the TCO 

layer were estimated by extracting the absorption coeffi-

cient of AZO from measured transmission and reflection 

spectra. 

In principle it is possible to automatically optimize 

the topology and the shape of metallic contacting grids by 

using topology optimization algorithms used e.g. in civil 

engineering but adapted to the problem of efficiently col-

lecting current from a surface minimizing shadowing. An 

intuitive optimization method is the “Bidirectional Evolu-

tionary Structural Optimization” (BESO) method [11] 

which can be easily adapted to optimize electrical con-

tacts. The optimization algorithm iteratively adds metal 

mesh elements to the top electrode at points where the 

ohmic losses in the top TCO layer are highest. This ap-

proach is repeated until gains in current collection are 

compensated by losses due to shadowing and the effi-

ciency of the cell cannot be increased any more. As a 

successive step, the metallic contacts are iteratively 

thinned to minimize shadowing losses taking care of not 

impairing current collection. As this optimization method 

finds only local minima, it is necessary to repeat the op-

timization several times and slightly modify the number 

of metal mesh elements added at each iteration. 

The contacts presented in this study were obtained 

starting from a 0.5x1 cm2 simulation domain using a res-

olution of 40 µm defined by the equipment used to pro-

duce the shadow masks. Minor modifications allow to 

apply the optimization method to large area modules.  

 

 
Figure 2: Summary of the improvements in the apparent 

serial resistance (Rser) and short circuit current (Jsc) ob-

tained in about 50 optimization runs for solar cells of 

0.5 cm2 surface. The two contacts (A, B) marked by red 

dots were realized experimentally. 

 

 

3 EXPERIMENTS AND RESULTS 

 

CIGS solar cells were prepared at Empa using the proce-

dure described elsewhere.[1,12] Metallic contacts were 

prepared by evaporation of 4 µm Al through a shadow 

mask. Shadow masks were prepared by laser-cutting a 

100 µm Mo foil according to two grid designs computed 

by the optimization tool, the nominal dimensions of the 

experimentally realized cells were 0.54x1.07 cm2 and are 

slightly larger than the computed designs. The computed 

designs were stretched to match the target dimensions 

and a future optimization series will take into account the 

new dimensions.  

About 50 optimization runs were done using slightly 

different thresholds for metal addition and different loca-

tions of the contact pad to explore the possibilities of-

fered by this method. A standard metallic contact grid 

was used as benchmark: the results are summarized in 

Fig. 2 indicating the relative changes in short circuit cur-

rent (Jsc) and in apparent series resistance (Rser) which 

could be achieved in each run. Ideally, an optimized con-

tact geometry allows reducing the serial resistance and 

increasing the short circuit current. However, most of the 

contact shapes lead to an improvement of Jsc at cost of a 

slight increase of Rser. 

 

 
 

Figure 3: Picture of three solar cells metallic contacts 

realized by shadow masks. REF: Reference contact, A, B 

contacts obtained by automatic contact optimization.  

 

Two contacts were selected for being realized exper-

imentally, these are marked with red dots and letters in 

Fig. 2. The shape of these two contacts together with the 

reference contact is shown in Fig. 3. Each contact geome-

try was prepared 6 times on each substrate totaling to 18 

cells on each substrate. Two substrates were fabricated: 

one with a TCO thickness of 200 nm and the second with 

a TCO thickness of 100 nm thus leading to four different 

combinations of contact shape and TCO.  

 

Table I: Summary of the absolute efficiency losses cal-

culated for the contact types being studied. 

 

  Ohmic Shadow Total 

  losses losses losses 

REF 0.2 % 1.0 % 1.2 % 

A  0.4 % 0.5 % 0.9 % 

B  0.2 % 0.7 % 0.9 % 

 

The absolute loss of efficiency due to ohmic losses and 

shadowing losses expected for each type of contact can 

be easily calculated by the FEM tool and a summary is 

shown in Table I. Additionally, the distribution of the 

electric potential on the cell surface when the cell is op-

erating at the maximum power point (MPP) is an indica-

tion of ohmic losses. In the ideal case of a perfectly con-

ducting TCO and metal grid, the potential on  
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Figure 4: Potential difference distributions on the top TCO for the three contact types being studied. The maximum potential 

difference from VMPP is 24 mV for the reference contact, 29 mV for the contact A and 15 mV for the contact B. 

 

 

the whole cell surface corresponds to the voltage at MPP 

(VMPP). In the presence of ohmic losses the cell surface 

will have an higher potential than the external contact at 

VMPP. As an example, the potential differences distribu-

tions above VMPP in the three contact types being studied 

are shown in Fig. 4.    

 

The comparison of predicted and measured changes in 

Rser and Jsc are shown in Fig. 5. The prediction of Rser 

agrees well with the experimental results thus confirming 

the validity of this approach to optimize contact geome-

tries. 

 
Figure 5: Comparison of calculated relative Rser and 

measured relative Rser for the different contact types be-

ing studied. 

 

Similarly, the relative Jsc predicted by simulations and the 

experimentally measured relative Jsc are shown in Fig. 6. 

The agreement is again good except the first case of con-

tact A combined with 200 nm TCO. The disagreement in 

the first case is not yet well understood, but it seems to be 

independent of the contact geometry as the second set of 

cells produced with the same shadow mask does not  

 

show such a large deviation. 

 

 
Figure 6: Comparison of calculated relative Jsc and 

measured relative Jsc for the different contact types being 

studied. 

 

Finally the absolute gain in efficiency which can be 

achieved using the optimized contacts is shown in Fig. 7.  

The cells with 200 nm TCO show a good agreement be-

tween simulated gain and experimental gain. However, 

all cells with thin TCO including the references are af-

fected by a drop of performance which is not fully under-

stood; therefore the agreement is poor in this case. 

The simulated improvements indicate an advantage 

of contacts achieving an improvement of Rser: such con-

tacts can be combined with a thinner TCO to reduce par-

asitic losses but still obtain a net increase of efficiency. 

Combining detailed FEM simulations with contact opti-

mization and optical simulations allows to quickly find 

an optimum combination of TCO thickness and contact 

shape. 
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Figure 7: Comparison of calculated absolute increase in 

efficiency with measured absolute increase of efficiency 

for the different contact types being studied. 

 

 

4 CONCLUSIONS 

Automatic optimization of metallic contacts has been 

shown to be able to improve the cell performance com-

pared to reference contacts and the predictions by 2D + 

1D FEM simulations can be reliably used to design con-

tacts and optimize solar cells. The method can be used to 

optimize larger area solar cells and solar modules. Addi-

tionally, it can be applied to other PV technologies. 
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