Bachelorarbeit

Kraftverbesserung durch NMES nach Knie-TEP

Führt NMES zu einer effektiveren Kraftverbesserung der Mm. quadriceps femoris bei Patienten nach einer Knie-TEP als Hypertrophietraining?

Graf Meta
Schaffhauserstr. 41
8400 Winterthur
S07-164-684

Spielhofer Lara
Wartstr. 53
8400 Winterthur
S07-166-028

Departement: Gesundheit
Institut: Institut für Physiotherapie
Studienjahr: 2007
Eingereicht am: 21. Mai 2010
Betreuende Lehrperson: Arnoldus van Gestel
Inhaltsverzeichnis

1 Abstract .. 3

2 Einleitung ... 4
 2.1 Allgemeine Einführung in das Thema ... 4
 2.2 Motivation .. 5
 2.3 Problemstellung ... 5
 2.4 Fragestellung ... 7
 2.5 Hypothesen ... 7
 2.6 Methodik ... 7

3 Assessment und Intervention ... 11
 3.1 Kraftmessungen ... 11
 3.1.1 Isometrische Kraftmessung ... 11
 3.1.2 Funktionelle Kraftmessungen ... 12
 3.2 Theorie Elektrostimulation .. 15
 3.2.1 Muskelaufbau durch Elektrostimulation .. 16
 3.2.2 Indikationen und Einsatzbereich ... 18
 3.2.3 Kontraindikationen ... 19
 3.3 Formen der Elektrostimulation zur Kraftverbesserung 20
 3.3.1 Interferenzstrom .. 20
 3.3.2 Russische Stimulation ... 21
 3.3.3 TENS (transkutane elektrische Nervenstimulation) 21
 3.4 Vorteile der Elektrotherapie .. 22
 3.5 Nachteile der Elektrotherapie ... 23

4 Studienergebnisse ... 24
 4.1 Isometrische Kraftverbesserung .. 24
 4.2 Muskelaktivierung ... 26
4.3 Funktionelle Kraftverbesserung ... 27
4.4 Lebensqualität .. 28
4.5 Studienqualität .. 31
5 Diskussion ... 34
 5.1 Wichtigste Ergebnisse .. 34
 5.1.1 Muskelaktivierung .. 34
 5.1.2 Isometrische Kraft .. 35
 5.1.3 Funktionelle Kraft .. 37
 5.1.4 Weitere Effekte .. 38
 5.2 Theorie-Praxis-Transfer .. 41
 5.3 Probleme und Limitationen der Studien .. 42
 5.4 Zukunftsaussicht .. 44
 5.5 Schlussfolgerung .. 45
6 Zusammenfassung ... 46
7 Verzeichnisse ... 47
 7.1 Abkürzungsverzeichnis .. 47
 7.2 Literaturverzeichnis .. 48
 7.3 Abbildungsverzeichnis ... 56
 7.4 Tabellenverzeichnis .. 57
8 Danksagung ... 58
9 Eigenständigkeitserklärung .. 59
10 Anhang ... 60
1 Abstract

Hintergrund
Osteoarthritis wird erfolgreich mit Knietotalendoprothesen (Knie-TEP) behandelt, wobei Schmerz und Bewegungsausmass schnell verbessert werden, trotzdem bereiten Schwäche und verminderte Aktivierung der musculi quadriceps femoris (Mm.quadriceps femoris) dem Patienten meist noch lange Mühe. Neuere Studien beschreiben die Behandlung mit neuromuskulärer Elektrostimulation (NMES) als zusätzliche Therapie zur Kraftverbesserung. Das Ziel dieses Reviews ist es, die Wirk samkeit von NMES als Behandlungsmassnahme zur Kraftverbesserung der Mm.quadriceps femoris nach Knie-TEP zu untersuchen.

Methodik
In dem vorliegenden Review wurden acht Studien einer Hauptstudiensuche auf Pubmed zum Thema Kräftigung der Mm.quadriceps femoris mittels NMES nach einer Knie-TEP nach ihrer Qualität untersucht und miteinander verglichen.

Resultate
Aus diesem vorliegenden Review resultiert keine statistisch signifikante Aussage über die Wirksamkeit von NMES nach einer Knie-TEP in Bezug auf Muskelaktivierung und Kraft der Mm.quadriceps femoris. Trotzdem wird NMES bei Aktivierungsdefiziten empfohlen, da NMES bedeutend zur Rehabilitation beiträgt.

Diskussion
2 Einleitung

2.1 Allgemeine Einführung in das Thema

Hohes Alter und Osteoarthritis sind Ursachen für eine Atrophie und einen Muskelfaserabbau, von denen vor allem die Typ II Fasern betroffen sind (Roos, Rice & Vandervoort, 1997). Neuromuskuläre Elektrostimulation (NMES) führt zu einem

Diese Arbeit soll am Schluss aufzeigen, ob NMES auch nach einer Knie-TEP-Operation eine sinnvolle und signifikante Intervention ist, um die postoperative Kraftverbesserung der Mm.quadriceps femoris zu beschleunigen.

2.2 Motivation

2.3 Problemstellung

Um die Frage einzuzgrenzen, haben sich die Autoren entschlossen die Wirkung von NMES bei Patienten nach Knie-TEP zu untersuchen. Diese Behandlungsmethode zeigte bei jungen Patienten nach VKBP grossen Erfolg, somit entstand der Gedanke, dass diese Therapieform möglicherweise auch bei Patienten nach Knie-TEP mit Erfolg anwendbar ist. Diese Patientengruppe zeigt bis zu einem Jahr postoperativ noch immer bedeutend schlechtere Muskelkraftwerte auf als gesunde Gleichaltrige (Meier et al., 2008). Der Hauptgrund dafür ist alters- und krankheitsbedingte Muskelatrophie, welche vor der Operation durch einen verminderten Gebrauch bis zu einem Nichtgebrauch der Muskulatur aufgrund von Schmerzen beschleunigt wird. Nach der Operation wird diese durchschnittlich schlechte Ausgangslage der Patienten mit der Muskelaktivierungsschwäche, Schmerz, Schwellung und verminderten Belastungsfähigkeit als Folge der Operation kombiniert, somit wird die ganze Problematik der Muskelschwäche und des Kraftdefizits an Mm.quadriceps femoris verstärkt. Die Autoren sind der Meinung, dass es wichtiger ist die Wirkung von NMES bei Knie-TEP-Patienten zu evaluieren anstelle von jungen VKBP-Patienten, da die Ersteren grundsätzlich länger brauchen, um wieder eine gute Kraft der Mm.quadriceps femoris zu erreichen. Dagegen sind VKBP-Patienten tendenziell eher sportlich und erreichen schneller ihren Kraftwert, welchen sie vor dem Trauma besessen.

Die steigende Lebenserwartung der Bevölkerung ist ein weiterer Punkt, weshalb es wichtig ist diese Intervention bei Knie-TEP-Patienten zu betrachten, da die Häufigkeit eine Knie-TEP zu erhalten mit dem zunehmenden Alter steigt (Bundesamt

2.4 Fragestellung

Führt NMES zu einer effektiveren Kraftverbesserung der Mm.quadriceps femoris bei Patienten nach einer Knie-TEP als Hypertrophietraining?

2.5 Hypothesen

1) Mithilfe von postoperativer NMES-Therapie können die Mm.quadriceps femoris schneller gekräftigt werden als mit Hypertrophietraining.

2) NMES führt zu einer besseren Rekrutierung der Muskelfasern. Die Muskelaaktivierung wird somit optimiert, das heißt die Fähigkeit den ganzen Muskel aktiv zu kontrahieren nimmt zu.

2.6 Methodik

Die Einschlusskriterien für die Hauptstudien sind:

- Randomisierte kontrollierte Studie (RCT = randomised controlled trial)
- Elektrotherapie als Massnahme zur Kraftverbesserung
- Isometrische oder funktionelle Kraftmessungen als Verlaufszeichen

Da es wenige Studien gibt, welche die Einschlusskriterien erfüllen, haben sich die Autoren dazu entschlossen auch Fallstudien zu verwenden. Diese wurden zuerst ebenfalls ausgeschlossen, da diese keine Angaben über die Signifikanz beinhalten. Die Hauptstudien werden mit verschiedenen Studien verglichen, die Kraft nach Knie-TEP untersuchen ohne Elektrotherapie als Massnahme zur Kraftverbesserung anzuwenden. Hierzu muss die Vergleichsstudie die Kraftveränderung in Form der Muskelaktivierung, isometrischer oder funktioneller Kraftassessments angegeben haben.

Abbildung I: Hauptstudiensuche (Graf & Spielhofer, 2010)

Um die Lesbarkeit dieser Arbeit zu verbessern, wird ausschließlich die männliche Schreibweise verwendet. Obwohl auf die zusätzliche weibliche Formulierung verzichtet wird, beziehen sich die Angaben jeweils auf beide Geschlechter ausser es wird ausdrücklich über eine weibliche Person einer Fallsstudie geschrieben.

Tabelle I: Eingeschlossene Hauptstudien (Graf & Spielhofer, 2010)

<table>
<thead>
<tr>
<th>Autor (Jahr)</th>
<th>Studientitel</th>
<th>Zeitschrift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petterson et al. (2009)</td>
<td>Improved Function From Progressive Strengthening Interventions After Total Knee Arthroplasty: A Randomised Clinical Trial With an Imbedded Prospective Cohort.</td>
<td>Arthritis & Rheumatism</td>
</tr>
<tr>
<td>Haug & Wood (1988)</td>
<td>Efficacy of Neuromuscular Stimulation of the Quadriceps Femoris During Continuous Passive Motion Following Total Knee Arthroplasty.</td>
<td>Archives of Physical Medicine and Rehabilitation</td>
</tr>
</tbody>
</table>
3 Assessment und Intervention

3.1 Kraftmessungen

Es gibt verschiedene Möglichkeiten die Kraft der Mm.quadriceps femoris objektiv zu messen. Die verwendeten Kraftassessments werden in diesem Kapitel beschrieben. Diese werden grob in zwei Gruppen aufgeteilt: isometrische und funktionelle Kraftmessung.

3.1.1 Isometrische Kraftmessung

Die isometrische Kraftmessung erfasst die Kraft eines Muskels in einer bestimmten Ausgangsstellung ohne Bewegung, dabei gilt die Aufmerksamkeit des Patienten der Kontraktion des Muskels (Stoll, Huber, Seifert, Stucki & Michel, 2002).

Handgehaltener Dynamometer

Haug und Wood (1988) hat die Kraft der Mm.quadriceps femoris mithilfe eines Dynamometers in verschiedenen Ausgangsstellungen von Hand gemessen. In einem rechten Winkel ventral auf die distale Tibia wurde der Dynamometer positioniert und der Patient drückte für drei Sekunden dagegen. Der Reliabilitätskoeffizient beträgt 0.46-0.98 und die Validität stimmt bei den Knieextensoren signifikant mit dem KinCom Dynamometer überein (Oesch et al., 2007).

KinCom Dynamometer

In vielen Studien wurde die Kraft der Mm.quadriceps femoris auf dem KinCom Dynamometer gemessen. Die Ausgangsstellung ist dabei variabel wählbar. Oft wird 75° (Petterson, et al., 2009; Stevens et al., 2004; Zeni & Snyder-Mackler, 2010) oder 60° (Lewek et al., 2001; Mintken et al., 2007; Petterson & Snyder-Mackler, 2006) Kniegelenksflexion als Stellung ausgewählt. Es wird die isometrische Maximalkraft (MVIC = maximal volitional isometric contraction) des Patien-

Muskelaktivierung
Zusätzlich zum MVIC kann auch die Muskelaktivierung (CAR = central activation ratio) gemessen werden. Bei der MVIC-Messung wird zusätzlich mit einem Elektrogerät ein „Burst Superimposition Test“ durchgeführt. Das bedeutet, dass während einer Muskelkontraktion eine Burststimulation erfolgt, damit der Muskel maximal kontrahiert werden kann. Danach kann die CAR mit folgender Formel ausgerechnet werden: CAR = MVIC / (MVIC + Burst) (Pettersson & Snyder-Mackler, 2006). CAR wird von 0.0 bis 1.0 notiert, wobei 1.0 einer 100% Muskelaktivierung entspricht und alles kleiner als 1.0 repräsentiert eine inkomplette Aktivierung.

In der Abbildung III wird ein Beispiel einer CAR-Messung der Mm.quadriceps femoris abgebildet. In diesem Beispiel entspricht die MVIC 269 mit Burst 569 N, was einem CAR-Wert von 0.48 entspricht (Pettersson & Snyder-Mackler 2006).

Abbildung III: MVIC-Messung

3.1.2 Funktionelle Kraftmessungen
zustufen sind, spielt ein Kraftunterschied eine grosse Rolle im Bezug auf die Gehgeschwindigkeit.

„Timed up and go“-Test (TUG)
Oesch et al (2007) beschreiben den TUG als ein einfaches Testverfahren, um die Mobilität unter anderem bei geriatrischen Patienten zu testen. In der Studie von Samson et al. (zitiert nach Oesch et al., 2007) wird eine Korrelation mit der Leistung der Beinstreckung beschrieben (Korrelationskoeffizient -0.56 bei den Männern und -0.65 bei den Frauen).

der Rücken die Rückenlehne berühren und die Arme mit dem Hilfsmittel in der Hand auf der Armlehne parkiert sein. Die Geschwindigkeit soll der Patient so wählen, dass er sicher und komfortabel gehen kann.

6-Minuten-Gehetest (6MGT)

Dies ist wiederum ein einfacher schneller Leistungsfähigkeitstest für Patienten mit Leistungseinschränkungen aufgrund kardio-pulmonaler Probleme, bei geriatrischen Patienten oder nach Knie-TEP (Oesch et al., 2007). Nach Kennedy et al. (2005) beträgt die minimal erkennbare Veränderung 61.3 m bei Patienten nach Hüft- oder Knie-TEP. Der Intraklassen-Korrelationskoeffizient beträgt 0.94 (Kennedy et al.). Das Testprinzip ist beim 2- oder 3-Minuten-Gehetest das Gleiche. Diese sind dem 6MGT vorzuziehen, wenn die Gehgeschwindigkeit ohne die Leistungsfähigkeit ermittelt werden soll.

Vor Beginn muss eine mindestens 30 m lange ebene Strecke gekennzeichnet werden auf welcher ungehindertes Gehen möglich ist. Die Instruktion sollte etwa „Gehen Sie in den folgenden sechs Minuten so viele Meter, wie Sie können, Pausen sind erlaubt. Sie dürfen nicht rennen“ lautern (Oesch et al., 2007, S.214). Es ist darauf zu achten, dass der Patienten nicht angefeuert wird und wenn, dann nur mit festgelegten Worten. Der Patienten darf auf die übrig bleibende Zeit aufmerksam gemacht werden.

„**Stair-climbing task“ (SCT)**

Bei diesem Assessment wird der Patient aufgefordert zwölf Treppenstufen so schnell wie möglich sicher hinauf- und hinunterzugehen (Zeni & Snyder-Mackler, 2010). Der Patient darf ein Hilfsmittel oder den Handlauf bei Bedarf benützen. Notiert werden die benötigte Zeit in Sekunden und ein eventuelles Hilfsmittel. Beim „Stair Measure“, welcher mit neun anstelle von zwölf Stufen durchgeführt wird, beträgt der Reliabilitätskoeffizient 0.9 und die minimal erkennbare Veränderung 5.49 s (Kennedy et al., 2005).
3.2 Theorie Elektrostimulation

Cordes, Arnold und Zeibig (1989) beschreiben, dass keine standardisierten Trainingsprogramme zur Kraftverbesserung der Muskulatur durch NMES bekannt sind.

Robertson et al. (2006) erklären, dass Frequenzen über 10 kHZ nicht für die Kraftverbesserung verwendet werden, da sonst die Schwingung zu schnell ist, um eine deutliche Antwort der Nervenfaser in Form einer einheitlichen Muskelkontraktion zu erhalten. Sie beschreiben zwei spezielle Arten der Mittelfrequenzströme welche für die Kraftverbesserung geeignet sind: Die Russische Stimulation (2000 Hz, Burst 50 Hz, sinusförmig) und der Interferenzstrom (meistens zwei Wechselströme mit leicht unterschiedlicher Frequenz: Häufig 4000 und 4050 Hz). Auch die niederfrequente Stromform der TENS mit einer Intensität von mindestens 50 Hz kann zur Kraftverbesserung verwendet werden.

Polwechsels keine Kontraindikation, zweitens liegt das Wirkungsgebiet der Mittelfrequenzströme in den tieferen Gewebsschichten.

Für die NMES sind laut Fialka-Moser et al. (2005) niederfrequente und mittelfrequente Ströme verwendbar. Die Gemeinsamkeit dieser Stromformen ist, dass beide biphasisch sind. Folglich kann es durch die Ionenwanderung nicht zu einer Verätzung des Gewebes kommen, da sich die Ladungen gegenseitig im Wechsel aufheben. Fialka Moser et al. (2005) zählt vier Unterschiede zwischen der NMES und der aktiven Muskelkontraktion auf:

- Die Motoneuronen werden synchron aktiviert, da sie alle gleichzeitig depolarisiert werden.
- Es werden vorwiegend Typ II Muskelfasern aktiviert, da diese einen geringeren Widerstand aufweisen als die Typ I Muskelfasern.
- Während der Muskelkontraktion besteht gleichzeitig auch eine sensorische Stimulation unter den Elektroden.
- Die Stimulationsfrequenz ist reguliert und die Kontraktionsstärke nimmt mit der Stromstärke zu.

3.2.1 **Muskelaufbau durch Elektrostimulation**

Mintken et al. (2007) erklären den Mechanismus von NMES anhand folgender zwei Theorien:

Folgende Richtlinien für die korrekte Parameterwahl mit dem Ziel der Kraftverbesserung werden von Robertson et al. (2006) angegeben: Die Krafterzeugung im Muskel
und somit die Intensität sollen hoch sein (an gemessenem MVIC angepasst), geringe Repetitionsanzahl (zirka 10, 1- bis 3-mal täglich) und „on-off“ Zyklus 1:3 bis 1:5. Die Stimulationszeit („on“) sollte nicht länger als 5 s betragen, je höher die Intensität ist, desto kürzer sollte die Stimulationszeit sein. Der limitierende Faktor für die Intensität ist die Verträglichkeit. Wechselstrom verbessert die Kraft am besten, wenn dieser mit 1000 Hz Frequenz und 2 ms Burstdauer angewendet wird (Bosser et al., 2006; Robertson et al., 2006). Diese Dosierung ist jedoch sehr unangenehm, aus diesem Grund schlagen sie folgenden Kompromiss zwischen Kraftverbesserung und Verträglichkeit vor: 2.5 kHz Frequenz mit 2-4 ms Burstdauer, was einem Russischen Strom entsprechen würde.

von 0.15 ms bewirken. Auch Sinacore, Delitto, King und Rose (1990) zeigten, dass mittels Elektrotherapie vorwiegend Typ II Muskelfasern aktiviert werden, welche bei chronischen und degenerativen Muskelkrankungen am ehesten betroffen sind.

3.2.2 Indikationen und Einsatzbereich

NMES wird bereits nach Operationen oder Erkrankungen des Kniegelenkes, des Schultergelenkes, des Fusses oder der Achillesssehne eingesetzt (Fialka-Moser et al., 2005).

Patienten mit rheumatischer Arthritis, welche zusätzlich mit NMES behandelt wurden, zeigten in der Studie von Piva et al. (2007) eine Verbesserung der Kraft und der Funktion der Mm.quadriceps femoris.

NMES erhielten im Vergleich zu deren Kontrollgruppen (Fitzgerald, Piva & Irrang, 2003; Snyder-Mackler, Delitto, Stralka & Bailey, 1994).

3.2.3 Kontraindikationen

lenksrheumatismus, Arteriosklerose im Stadium III-IV, fieberhafte Erkrankungen, schwere neurologische Erkrankungen (wie Multiple Sklerose, Amyotrophe Lateralsklerose und spastische Spinalparese), Hämophilie, Tuberkulose und Tumore mit Metastasierungsgefahr.

3.3 Formen der Elektrostimulation zur Kraftverbesserung

3.3.1 Interferenzstrom

Robertson et al. (2006) beschreiben, dass Interferenzströme in der Frequenz von 4000-5000 Hz nicht die erfolgreichsten, um eine Kraftverbesserung zu erzielen, jedoch die Angenehmsten sind.

Bei Interferenzstrom handelt es sich, um eine Überlagerung zweier Ströme (zum Beispiel 4000 und 4050 Hz), welche bei der Mischung zweier ähnlicher oder gleicher Stromformen entsteht (Wenk, 2004). Wenn eine Frequenz
auf ihrem Höhepunkt ist, befindet sich die zweite auf ihrem Tiefpunkt und umgekehrt ist. Dies ist in Abbildung VII dargestellt.

3.3.2 Russische Stimulation

3.3.3 TENS (transkutane elektrische Nervenstimulation)

Wenk (2004) und Bossert et al. (2006) beschreiben TENS als Analgesiemassnahme zur Heimbehandlung. Wenk beschreibt TENS als Rechteckimpulsstrom mit Impulsdauer im Bereich von 0.03-0.4 ms. Die Pausen betragen 5-100 ms und die Frequenz ist zwischen 10-200 Hz.

Es gibt folgende drei Erklärungen weshalb NMES zu einem erfolgreicherem Ergebnis bezüglich der Kraftverbesserung führen könnte als gewöhnliches Krafttraining (Robertson et al., 2006).

- Veränderung der Rekrutierungsreihenfolge: Typ I und Typ II Muskelfasern werden simultan rekrutiert anstatt nacheinander, was zu einer höheren Maximalkontraktion führt. Des Weiteren wird laut Martin, Gunderson, Blevins und Couts (1991) vor allem Muskelfasertyp II aktiviert, welche für die Kraft zuständig ist.

- Die neuralen Mechanismen werden durch Elektrostimulation verändert. Nicht nur sichtbare Efferenzen, sondern auch Afferenzen werden gereizt, welche corticospinale Veränderungen mit sich bringen. Das veränderte Zusammen-spiel der Nervenfasern verändert also auch den Bewegungsablauf durch die Plastizität des Gehirns.

Abbildung VII: Stromformen (Graf & Spielhofer, 2010)
Elektrostimulation kann zu Muskelkontraktionen und eventuell gleichzeitig auch zu Schmerzlinderung führen. Aus diesem Grund wird die Kontraktion vom Patienten eher zugelassen. Dahingegen können willkürliche Kontraktionen aufgrund des Schmerzes, den sie auslösen, vom Patienten entweder gar nicht oder abgeschwächt durchgeführt werden, was weniger effizient ist in Bezug auf die Optimierung der Muskelkraft.

Fialka-Moser et al. (2005) zählen folgende Vorteile der Behandlung mittels NMES auf:

- Der gesamte kontraktile Apparat wird aktiviert.
- Die Dauer der Muskelanspannung ist länger.
- Ermüdungsprozesse des ZNS werden umgangen.
- Einzelne Muskeln und Muskelgruppen werden gezielt trainiert.
- Es entstehen zusätzliche reflextherapeutische Effekte.
- Erfolge werden ohne eine psychische Belastung erreicht.
- Training in der Immobilisationsphase wird möglich.
- Das kardiovaskuläre System erfährt eine geringe Belastung.

3.5 Nachteile der Elektrotherapie

Als Nachteile der NMES zählen Fialka-Moser et al. (2005) folgende Punkte:

- Das Rekrutierungsmuster ist nicht physiologisch.
- Muskelanteile werden erregt.
- Die sensible Belastung ist höher als bei einer physiologischen Kontraktion.
- Maximale Kontraktionskraft durch NMES ist geringer als die willentlich auslösbare MVIC.
- Exzentrische Muskelkontraktionen sind durch NMES nicht auslösbar.
4 Studienergebnisse

In diesem Kapitel werden die Hauptstudien mit ihren wichtigsten Ergebnissen vorgestellt. Diese werden im nächsten Kapitel miteinander verglichen, um die erstellten Hypothesen zu bestätigen oder zu verwerfen.

4.1 Isometrische Kraftverbesserung

In einer RCT mit 241 Knie-TEP-Patienten von Petterson et al. (2009) wurde die Effektivität von Elektrotherapie, die zwei bis drei mal wöchentlich über sechs Wochen angewendet wurde, untersucht. Die Interventionsgruppe wurde in eine NMES-Gruppe und eine Krafttrainingsgruppe mit je 100 Teilnehmern aufgeteilt. In dieser Studie wurde nur eine geringe Kraftverbesserung in der NMES-Gruppe gegenüber der Krafttrainingsgruppe festgestellt, welche jedoch nicht signifikant war (p > 0.08). Im Vergleich mit einer Kontrollgruppe, welche externe Physiotherapie erhielten, war die Kraftverbesserung signifikant (p = 0.007).

2004 führten Stevens et al. eine Fallserie-Studie mit acht Teilnehmern durch, um die Effektivität von NMES auf die Kraftverbesserung und Aktivierung nach bilateraler Knie-TEP-Operation zu evaluieren. Die Kraft der Mm.quadriceps femoris des schwächeren Beines nahm mit zusätzlicher NMES-Therapie um 221-451% zu im Gegensatz zu den Kontrollpatienten, bei welchen sich die Kraft um 41-148% verbesserte. Die Kraft der kontralateralen Mm.quadriceps femoris nahm prozentual bei Patienten mit NMES-Behandlung mehr zu als bei den Kontrollpatienten (50-152% im Vergleich
zu 30-71%). Von den fünf mit NMES therapierten, schwächeren Beinen überholten vier die Kraft ihres ursprünglich stärkeren Beines.

In der Fallstudie von Mintken et al. (2007) wurde der Verlauf einer Patientin mit unilateraler Knie-TEP rechts beschrieben. Diese Studie empfiehlt aufgrund guter Resultate den frühen Einsatz (innerhalb von 48 Stunden postoperativ) von NMES nach Knie-TEP zur Kraftverbesserung der Mm.quadriceps femoris. Die Kraft des operierten Beines der Patientin verbesserte sich mit zusätzlicher NMES-Therapie von zirka 65 bis fast 100 Nm. Im Gegensatz dazu verschlechterte sich die Kraft des nicht-operierten Beines um etwa 10 Nm, sowie die Kraft der ischiokruralen Muskulatur des operierten Beines, welches nicht mit NMES therapiert wurde.

2006 führten Petterson und Snyder-Mackler eine Fallstudie mit einem Patienten nach einer bilateralen Knie-TEP durch. Beim schwächeren linken Bein wurde nach einem Jahr postoperativ zusätzlich zu einem intensiven Krafttraining auch NMES für sechs Wochen angewendet, da der Patient mit dem bis dahin erreichten Resultat unzufrieden war. Am Schluss der NMES-Therapie war die Kraft der linken Mm.quadriceps femoris um 286 N oder 26% angestiegen und somit nur noch 4% und nicht mehr 25% schwächer als das rechte Bein wie vor diesen sechs Wochen. Präoperativ war das rechte Bein (997 N) wesentlich stärker als das Linke (793 N), nach einem Jahr postoperativ überholte die Kraft der linken Mm.quadriceps femoris (910 N) die der Rechten (853 N).

Interventionsgruppe erzielte 1.3 und 7.6 kg, die Kontrollgruppe hingegen nur 1.0 und 5.4 kg.

Lewek et al. (2001) untersuchten in ihrer Fallstudie die Kraft bei einem Patienten nach einer Knie-TEP, der ab der dritten postoperativen Woche zwei bis drei mal wöchentlich mit NMES über acht Wochen lang behandelt wurde. Der Patient verbesserte sich von der dritten postoperativen Woche mit 95 auf 176 Nm im vierten postoperativen Monat. Sein kontralaterales Bein erzeugte in derselben Zeitspanne eine Kraftverbesserung von 176 auf 217 Nm.

4.2 Muskelaktivierung

In der Studie von Petterson et al. (2009) wird keine signifikante Verbesserung des CAR zwischen der Interventionsgruppe, welche zusätzlich NMES erhielt, und der Krafttrainingsgruppe erzielt. Der Zuwachs in der NMES-Gruppe beträgt 0.11 (14%) im Gegensatz zu 0.07 (9%) der Krafttrainingsgruppe.

Stevens et al. (2004) fanden heraus, dass Patienten nach einer Knie-TEP-Operation, welche zusätzlich mit NMES behandelt wurden, sechs Monate postoperativ einen durchschnittlichen Zuwachs des CAR von etwas mehr als 50% zeigten. Der Wert der Kontrollteilnehmer nahm in dieser Zeitspanne von 0.89 auf 0.85 ab. Das kontralaterale Bein der NMES-Gruppe nahm durchschnittlich um den CAR-Wert von 0.08 zu, was auf das Übertragungsphänomen zurückzuführen ist.

Die Aktivierung der Mm.quadriceps femoris der Patientin aus der Studie von Mintken et al. (2007) erreichte einen CAR-Wert von 0.94 drei Monaten nach der Operation im Gegensatz zu den präoperativen 0.73. Die Aktivierung der kontralateralen Mm.quadriceps femoris steigerte sich von 0.98 bis 0.99.

In der Fallstudie von Petterson und Synder-Mackler (2006) nahm das kräftigere ope-rierte Bein im Verlauf von zwei Jahren um den Wert von 0.08 zu. Das schwächere Bein, welches NMES erhielt, hatte einen CAR-Wert von 0.83 vor der NMES-Therapie, nach zwei Jahren erreichte es wie das kontralaterale Bein eine Aktivierung von 1.0. Der CAR-Wert beider Beine nahm während den ersten neun postoperativen
Monaten vorerst ab, danach jedoch stetig zu bis beide eine volle Aktivierung nach zwei Jahren erreichten.

4.3 Funktionelle Kraftverbesserung

Signifikante Verbesserungen der funktionellen Kraft nach Gebrauch von NMES konnten in der Studie von Zieni und Snyder-Mackler (2010) aufgezeigt werden. Die Geschwindigkeit für den TUG-Test konnte von präoperativen zirka 12 auf 8 s zwei Jahre nach der Operation gesenkt werden \((p < 0.001)\). Die benötigte Zeit für den SCT wurde von etwa 27 auf 12 s verkürzt \((p < 0.001)\).

Mintken et al. (2007) hingegen konnten mit allen Messungen für die funktionelle Kraft nach der dritten postoperativen Woche eine Verschlechterung feststellen. Danach verbesserte sich der SCT-Wert der Patientin von 11.2 s in der dritten postoperativen Woche auf 7.9 s in der zwölften postoperativen Woche. Im SCT betrug die Verbesserung 30% von präoperativ 18 auf 13 s zwölf Wochen postoperativ. Im 6MGT steigerte sich die Patientin im gleichen Zeitraum um etwa 7%, beziehungsweise konnte 34.7 m weiter gehen.

Im zwölften postoperativen Monat zeigte sich in der Studie von Petterson et al. (2009) eine um 33% schnellere Zeit im TUG von präoperativ 12.1 auf 8.07 s. Die Verbesserung des SCT innerhalb zwölf Monaten betrug 50%, so verbesserten sich die Patienten durchschnittlich von 27.51 auf 13.62 s. Im 6MGT steigerten sich die Patienten um 36% von 401 auf 545 m. Die Krafttrainingsgruppe verbesserte sich bei diesen drei Assessments etwas mehr als die Interventionsgruppe mit NMES (TUG 36%, SCT 54%, 6MGT 38%).

Eine signifikante Steigerung der Gehgeschwindigkeit des 3MGT zeigte sich in der perspektiven RCT mit 30 Patienten von Avramidis et al. (2003). Die Patienten stei-
gerten sich von 135.5 auf 188.2 m (p < 0.0001) innerhalb eines Zeitraums von zwölf Wochen. Dies ist im Vergleich zur Kontrollgruppe (von 140.6 auf 155.9 m) ein signifikanter Unterschied.

4.4 Lebensqualität

Petterson et al. (2009) liessen ihre Patienten zwei Bereiche des SF-36 auswerten: Den Teil der Beurteilung der physischen, sowie der psychischen Komponente. Im Ersten war eine Optimierung von 30.76 [7.75] auf 46.05 Punkten bei der Interventionsgruppe, was einer Steigerung von 50% entspricht, und bei der Krafttrainingsgruppe von 29.59 [6.57] auf 46.74 Punkten ersichtlich, im zweiten Teil des SF-36 veränderte sich die Punkte in der Interventionsgruppe durchschnittlich von 51.43 [10.69] auf 56.63 Punkte und in der Krafttrainingsgruppe von 50.40 [11.98] auf 57.16 Punkte. Vom KOS wurden die Teiltests für ADL und Schmerz verwendet. Die Interventionsgruppe schätzten im zwölften postoperativen Monat ihren Schmerz 63% geringer ein (von 2.24 auf 0.82 Punkte von maximalen 5 Punkten) und verbesserten sich im Be-
reich für die ADL von 0.59 auf 0.85 (1.0 entspricht keiner Einschränkung), die Krafttrainingsgruppe verbesserte sich um 64% respektive von 0.57 auf 0.86.

In der Studie von Zeni und Snyder-Mackler (2010) wurde für die Selbsteinschätzung der KOS-ADL verwendet. Hier zeigten die Patienten eine signifikante Verbesserung ($p < 0.001$, von etwa 55 auf 85%) ein Jahr postoperativ. Die Patienten zeigten keine Veränderung im KOS vom ersten postoperativen Jahr auf das zweite postoperative Jahr.

Avramidis et al. (2003) notierten eine nicht signifikante Verbesserung von 26.6 Punkten des HSS Knee Score von 58.1 auf 84.7 Punkte im Gegensatz zur Kontrollgruppe, welche sich von 62.4 auf 81.2 Punkte steigerte.
<table>
<thead>
<tr>
<th>Autor (Jahr)</th>
<th>Design (Anzahl Teilnehmer)</th>
<th>Main Outcome</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeni & Snyder-Mackler (2010)</td>
<td>Vorher-Nachher-Studie (155)</td>
<td>• Die Kraft des nicht-operierten Beines und das Alter sind die Hauptvariablen, welche das Einjahres- und Zweijahresergebnis des TUG und SCT beeinflussen.
• BMI und Schwächen des Patienten sollten mitbehandelt werden, um bessere Resultate zu erzielen.</td>
<td>TUG: Ja (p < 0.001)
SCT: Ja (p < 0.001)
KOS: Ja (p < 0.001)</td>
</tr>
<tr>
<td>Petterson et al. (2009)</td>
<td>RCT (241)</td>
<td>• Es gibt keinen signifikanten Unterschied zwischen den Interventionsgruppen.
• Der Unterschied in Kraft, Funktion und Selbsteinschätzung im Vergleich zur Kontrollgruppe ist signifikant, darum ist Hypertrophietraining entscheidend für die Kraftverbesserung nach Knie-TEP.</td>
<td>Ja zur Kontrollgruppe:
Kraft(p < 0.007), TUG(p < 0.004), SCT(p < 0.001) 6MGT(p < 0.003)
Nein zwischen Interventionsgruppen (p > 0.08)</td>
</tr>
<tr>
<td>Mintken et al. (2007)</td>
<td>Fallstudie (1)</td>
<td>• Größere Fortschritte, als in vergleichbaren Studien beschrieben, wurden in Kraft und Aktivierung der Mm.quadriceps femoris wurden in den ersten drei Wochen postoperativ mit früher NMES-Therapie erreicht.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Petterson & Snyder-Mackler (2006)</td>
<td>Fallstudie (1)</td>
<td>• Auch eine Therapie ein Jahr postoperativ mit NMES und Krafttraining führte zu guten Ergebnissen (Kraft und Aktivierung), folglich wird es weiterempfohlen.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Stevens et al. (2004)</td>
<td>Fall-Serie-Studie (8)</td>
<td>• Die NMES-Therapie ermöglichte schnellere und größere Kraftverbesserung und bessere Aktivierung der Mm.quadriceps femoris als nur Krafttraining.
• NMES ist in den ersten drei Wochen zur Kraftverbesserung als Ergänzung zum Krafttraining empfehlenswert.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Avramidis et al. (2003)</td>
<td>Prospektive RCT (30)</td>
<td>• NMES ist eine effektive Behandlungsmethode nach Knie-TEP, um die Gehgeschwindigkeit zu steigern, welcher auch nach der Behandlungszeit anhält.
• Zusätzliche NMES-Therapie soll die Rehabilitationsszeit vor allem bei Patienten mit schwachen Mm.quadriceps femoris beschleunigen.</td>
<td>3MGT: Ja (p < 0.0001)</td>
</tr>
<tr>
<td>Lewek et al. (2001)</td>
<td>Fallstudie (1)</td>
<td>• Der Patient gewann mehr Kraft in weniger Zeit im Vergleich mit Resultaten aus bisherigen Studien.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Haug & Wood (1988)</td>
<td>RCT (unklar, zirka 26)</td>
<td>• Mit Elektrotherapie konnte das Extensionsdefizit nach Knie-TEP signifikant reduziert werden.
• Zusätzlich war die Spitalaufenthaltsdauer in der NMES-Gruppe geringer als in der Kontrollgruppe (10 anstelle von 12.5 Tage).</td>
<td>Extensionsdefizit: Ja (p = 0.01)
Kraft: Nein (p = 0.02)</td>
</tr>
</tbody>
</table>

n.a. = nicht anwendbar
4.5 Studienqualität

Petterson et al. (2009) haben eine randomisierte und prospektive Kohortenstudie durchgeführt. Das Studiendesign wurde dem Studienzweck angepasst, ebenfalls enthält die Studie eine grosse Stichprobengröße und die Verlaufszeichen sind valide und bezüglich der Signifikanz ausgewertet. In dieser Studie wurden die Patienten ausführlich beschrieben, sowie alle Therapieabbrüche gemeldet. Von diesen brachen allerdings die meisten wegen der unangenehmen NMES-Therapie ab. Ebenfalls ungünstig ist, dass die Kontrollgruppe nicht randomisiert wurde. Die Tatsache, dass die Kontrollgruppe signifikant mehr Therapiesitzungen (p < 0.001) als die Intervention- und Krafttrainingsgruppe hatte, verstärkt den Unterschiede der Resultate noch mehr.

der Patient ausserordentlich motiviert und aufgrund des Designs kann keine signifikannte Aussage abgeleitet werden.

5 Diskussion

5.1 Wichtigste Ergebnisse

5.1.1 Muskelaktivierung

Die Resultate aus Studien, welche die postoperative Entwicklung der Muskelaktivierung ohne die Behandlung von NMES untersuchen, weisen eine signifikante Verschlechterung auf (Mizner, Petterson & Snyder-Mackler, 2005: \(p = 0.002 \); Stevens et al., 2003: \(p < 0.001 \); Mizner, Petterson, Stevens et al., 2003: \(p < 0.001 \)). Diese signifikante postoperative Verschlechterung der Muskelaktivierung im Gegensatz zur Verbesserung der Patienten, die mit NMES behandelt wurden, spricht für die postoperative Anwendung von NMES zur Förderung der Muskelaktivierung. Mit einer besseren Muskelaktivierung kann der Muskel besser im Krafttraining eingesetzt und folglich schneller und effektiver gekräftigt werden.

5.1.2 Isometrische Kraft

Wie beim vorherigen Punkt der Muskelaktivierung, setzen Petterson et al. (2009) als einzige eine postoperative Behandlung von sechs Wochen mit Hypertrophietraining oder diese in Kombination mit NMES zur Verbesserung der Kraft gleich (\(p > 0.08 \)). Beide Interventionsgruppen erreichten einen signifikanten Unterschied in isometrischer und funktioneller Kraft (\(p < 0.001 \)). In drei von fünf Studien, welche die isometrische Kraft beider Beine des Patienten gemessen haben, hat die Kraft der betroffenen Seite in der letzten Messung diese der kontralateralen Seite überholt (Mintken et al., 2007; Petterson & Snyder-Mackler, 2006; Stevens et al., 2004). Es ist anzumerken, dass in der Studie von Zeni und Snyder-Mackler der Durchschnitt der operierten
Beine nur 0.4 N/BMI schwächer als dieser der Nicht-Operierten war. Am eindrücklichsten ist die Verbesserung in der Studie von Stevens et al., in welcher sich der Patient von der dritten postoperativen Woche bis zum sechsten postoperativen Monat, um mehr als ein Vierfaches verbessert hat (5.6 auf 23 N/BMI). Auch die Patientin in der Studie von Lewek et al. (2001) konnte ihre Kraft von der dritten bis zur zehnten postoperativen Woche fast verdoppeln (94.9 Nm, 176.3 Nm).

5.1.3 Funktionelle Kraft

In zwei RCTs wird der 6MGT respektive der 3MGT als Assessment verwendet (Petterson et al., 2009; Avramidis et al., 2003). In beiden ist ein signifikanter Unterschied vom präoperativen zum postoperativen Zustand festzustellen. Weiter ist dieser bei beiden im Vergleich zur Kontrollgruppe signifikant, jedoch ist bei Petterson et al. der Unterschied zur Krafttrainingsgruppe nicht bedeutsam.

Patienten nach einer VKBP, welche mit NMES behandelt wurden, zeigen im Gegensatz zu denen, welche mit Krafttraining therapiert wurden, eine relevante Verbesserung der Gehgeschwindigkeit und der Gehstrecke (jeweils p < 0.05, Snyder-Mackler et al., 1991). Auch Fitzgerald et al. (2003) konnten einen signifikanten Unterschied zwischen der NMES- und der Kontrollgruppe in der funktionellen Kraft nach vier Monaten nachweisen (p < 0.05).

5.1.4 Weitere Effekte

Aus der Literaturrecherche geht hervor, dass die Behandlung mit NMES auch auf andere Assessments positive Auswirkungen hat. Im Folgenden wird auf die Extensionsproblematik des Kniegelenks, die Hospitalisationsdauer sowie auf die Lebensqualität nach einer Knie-TEP näher eingegangen.

Extensionsdefizit des Kniegelenks

als die Kontrollgruppe, obwohl ausser der Elektrotherapie die gleichen Interventionen angewendet wurden. Das aktive Extensionsdefizit des Kniegelenks der Interventionsgruppe verringerte sich von praoperativ 7.48° [4.06] auf 5.67° [1.93] postoperativ und jenes der Kontrollgruppe vergrösserte sich durchschnittlich um 3° (p < 0.01). In der Studie von Haug und Wood wurde ebenfalls eine klinische Signifikanz zwischen den zwei Gruppen bezüglich des aktiven Extensionsdefizits des Kniegelenks erwähnt (p = 0.01), welches bei der Interventionsgruppe beim Austritt 5° weniger betrug als bei der Kontrollgruppe. In einer weiteren Studie mit NMES verbesserte sich das Extensionsdefizit des Kniegelenks von 6.3° auf 0.4° ein Jahr postoperativ, respektive 0.3° zwei Jahre nach der Operation (Zeni und Snyder-Mackler, 2010). Dies ist mehr als in einer Studie ohne NMES, in der sich dieses Defizit durchschnittlich von 3° auf 1° innerhalb der ersten sechs Monate postoperativ verkleinerte (Mizner, Petterson & Snyder-Mackler, 2005).

Hospitalisationsdauer

Lebensqualität
Fünf der verwendeten Hauptstudien erfassen auch die subjektive Veränderung der Lebensqualität mit verschiedenen Assessments in Form eines Fragebogens. Es resultierte kein signifikanter Unterschied im HSS Knee Score zwischen der Interventions- und der Kontrollgruppe in der Studie von Avramidis et al. (2003), dennoch verbesserte sich die Interventionsgruppe um 26.6 Punkte im Gegensatz zu 18.8 der

VKBP-Patienten in der Interventionsgruppe mit NMES erreichten statistisch relevante Verbesserungen im KOS-ADL 12 und 16 Wochen postoperativ (p < 0.05) im Vergleich zur Krafttrainingsgruppe (Fitzgerald et al., 2003).

Mizner, Petterson und Snyder-Mackler (2005) evaluierten den KOS-ADL sowie den SF-36 bei Patienten, die nach einer Knie-TEP nicht mit NMES behandelt wurden. Ausser im ersten postoperativen Monat, wo sich die Patienten im SF-36 verschlechterten (p < 0.001), gab es nach jedem monatlichen Assessment eine signifi- kante Verbesserung (p < 0.001, p = 0.002). Stevens et al. (2003) beschreiben eine relevante Verbesserung im KOS obwohl sich die Werte im KOS-ADL im ersten post- operativen Monat kaum veränderten (56 zu 59, p > 0.05). In der Studie von Mizner, Petterson, Stevens, et al. (2005) gab es keinen signifikanten Unterschied im KOS- ADL präoperativ zu einem Monat postoperativ (p = 0.33). Im Teil der physischen Komponente des SF-36 zeigte sich ebenfalls keine signifikante Veränderung (p = 0.42), wohingegen im psychischen Teil die Verschlechterung signifikant war (p = 0.03). Zusammenfassend kann gesagt werden, dass sich die subjektiv eingeschätzte Lebensqualität bei Patienten ohne NMES-Behandlung eher verschlechtert, wohinge- gen sich diese bei Patienten, welche mit NMES behandelt werden vorwiegend ver- bessert.
5.2 Theorie-Praxis-Transfer

Einsatz von NMES nach Knie-TEP. Aus diesen Gründen kann keine bestimmte Stromform für die postoperative Behandlung von Knie-TEP empfohlen werden.

Wichtig zu erwähnen ist auch, dass NMES, falls richtig appliziert, dem Patienten nicht schadet. Auch führt die kombinierte Behandlung mit NMES und Krafttraining nicht zu schlechteren Ergebnissen als alleiniges Krafttraining.

5.3 Probleme und Limitationen der Studien

Das Hauptproblem des vorliegenden Reviews ist vor allem, dass wenig qualitativ hochwertige Studien über Kraftverbesserung nach Knie-TEP mit NMES durchgeführt wurden. Eine solche Studie sollte optimal ein RCT Design haben und eine möglichst grosse Teilnehmeranzahl aufweisen. Es ist weiter von Vorteil, wenn die Interventionen inklusiv Dosierung genau beschrieben sind, um dem Leser den Transfer in die Praxis zu ermöglichen. Es ist zu erwähnen, dass es sinnvoll gewesen wäre mehr Vergleichsstudien über den postoperativen Verlauf nach Knie-TEP ohne NMES-Therapie sowie über die postoperative NMES-Behandlung nach anderen Operatio-
nen, wie Hüft-TEP oder VKBP. Dies hätte aber den Rahmen einer Bachelorarbeit gesprengt.

Als anfängliches Problem ergab sich die Frage ob Metall bei der Anwendung von NMES eine Kontraindikation darstellt, da es zu Verbrennungen der Muskulatur und des Gewebes führen kann, wenn das Metall durch den Strom stark erwärmt wird.

Empfehlenswert ist eine Elektrodenapplizierung wie in Abbildung VIII auf den distalen und proximalen Oberschenkel. Da in fast allen Hauptstudien die Platzierung so gewählt wurde ohne Verbrennungen zu melden. Dennoch bedeutet das für Physiotherapeuten, dass Schulungen für den Umgang von NMES notwendig sind, damit ein solcher Vorfall vermieden werden kann.

5.4 Zukunftsaussicht

Bevor jedoch eine definitive Aussage über die Signifikanz dieser Therapie gemacht werden kann, müssen weitere RCTs mit vielen Teilnehmern und guter Qualität durchgeführt werden, welche die Relevanz für NMES bestätigen oder widerlegen können. Es wäre weiter von Vorteil, wenn übliche Assessments wie (N)MVIC, CAR,

5.5 Schlussfolgerung

3) NMES-Therapie kann zu einer besseren Knieextension, einer kürzeren Hospitalisationsdauer und einer gesteigerten Lebensqualität als ohne Elektrotherapie führen.

4) Es gibt bis heute keine effektivste Stromform für die Kraftverbesserung der Mm.quadriceps femoris nach einer Knie-TEP-Operation. Eine hohe Intensität von mindestens 35% des MVIC durch die elektrisch induzierte Kontraktion sollte hingegen erreicht werden um einen Erfolg zu erzielen.
6 Zusammenfassung

In der Schweiz werden im Jahr über 17 Knie-TEP-Operationen pro 10'000 Einwohner durchgeführt mit einer steigenden Tendenz. In den USA sind es sogar über eine halbe Million Knie-TEP-Operationen pro Jahr. Trotz dieser stetigen Zunahme, meist als erfolgreiche Behandlungsmassnahme gegen Osteoarthritis bei älteren Menschen mit zusätzlicher Muskelatrophieproblematik eingesetzt, gibt es bis heute kein standardisiertes Rehabilitationsprogramm, um der zentralen meist lang andauernden Kraftproblematik und Aktivierungsdefizite der Mm. quadriceps femoris entgegenzuwirken. Dafür bietet sich NMES als zusätzliche Kräftigungsmassnahme für die Mm. quadriceps femoris an.

Folglich wurden zwei Hypothesen formuliert, um die Fragestellung „Führt NMES zu einer effektiveren Kraftverbesserung der Mm. quadriceps femoris bei Patienten nach einer Knie-TEP als Hypertrophietraining?“ zu beantworten: 1) Mithilfe von postoperativer NMES können die Mm. quadriceps femoris schneller gekräftigt werden als mit Krafttraining und 2) NMES unterstützt die Rekrutierung der Muskelfasern, welche auf diese Weise besser aktiviert werden können.

7 Verzeichnisse

7.1 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL</td>
<td>Activities of daily living (Aktivitäten des täglichen Lebens)</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CAR</td>
<td>Central Activation Ratio (Muskelaktivierung)</td>
</tr>
<tr>
<td>GRS</td>
<td>Global Knee Rating Score</td>
</tr>
<tr>
<td>HSS</td>
<td>Hospital for Special Surgery</td>
</tr>
<tr>
<td>Knie-TEP</td>
<td>Knietotalendoprothese</td>
</tr>
<tr>
<td>KOOS</td>
<td>Knee injury and Osteoarthritis Outcome Survey</td>
</tr>
<tr>
<td>KOS</td>
<td>Knee Outcome Survey</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>MVIC</td>
<td>Maximal Voluntary Isometric Contraction in N (maximale isometrische Kontraktionskraft)</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>Nm</td>
<td>Newtonmeter</td>
</tr>
<tr>
<td>n.a.</td>
<td>nicht anwendbar</td>
</tr>
<tr>
<td>n.b.</td>
<td>nicht beschrieben</td>
</tr>
<tr>
<td>NMES</td>
<td>Neuromuskuläre Elektrostimulation</td>
</tr>
<tr>
<td>NMVIC</td>
<td>Normalised Maximal Voluntary Isometric Contraction in N/BMI (normalisierte maximale isometrische Kontraktionskraft)</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized controlled trial (randomisierte kontrollierte Studie)</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SCT</td>
<td>„Stair Climbing Test“ (Treppensteigetest)</td>
</tr>
<tr>
<td>SF-36</td>
<td>Short Form 36</td>
</tr>
<tr>
<td>TENS</td>
<td>Transkutane elektrische Nervenstimulation</td>
</tr>
<tr>
<td>TUG</td>
<td>“Timed Up and Go”-Test (Messung des Aufstehens und Absitzens)</td>
</tr>
<tr>
<td>VKBP</td>
<td>vordere Kreuzbandplastik</td>
</tr>
<tr>
<td>6MGT / 3MGT</td>
<td>6 / 3 Minuten-Geh-Test</td>
</tr>
</tbody>
</table>
7.2 Literaturverzeichnis

http://www.bfs.admin.ch/bfs/portal/de/index/themen/14/04/01/data/01.Document.104367.xls (12.4.2010).

stimulation program on clinical parameters in the patients with knee osteoarthritis.

Clinical Rheumatology. 26, 674-678. doi: 10.1007/s10067006-0358-3

severely disabled patients with chronic obstructive pulmonary disease (COPD). *Thorax, 57,* 333-337.

7.3 Abbildungsverzeichnis

Abbildung I: Hauptstudiensuche
Seite 9

Abbildung II: KinCom Dynamometer
Seite 11

Abbildung III: MVIC-Messung
Seite 12

Abbildung IV: Abhängigkeit Kraft und Gehgeschwindigkeit Seite 13

Abbildung V: NMES-Gerät Seite 15

Abbildung VI: Mischung zweier Ströme Seite 20

Abbildung VII: Stromformen Seite 22

Abbildung VIII: Elektrodenplatzierung Seite 44

7.4 Tabellenverzeichnis

Tabelle I: Eingeschlossene Hauptstudien Seite 10

Tabelle II: Studienvergleich Seite 30

Tabelle III: Resultate NMVIC/MVIC und CAR Anhang

Tabelle IV: Resultate funktioneller Kraftmessungen Anhang
8 Danksagung

Für die fachliche kompetente Unterstützung beim Verfassen dieser Arbeit danken die Autoren herzlich ihrem Betreuer, Herr van Gestel.

Weiter bedanken sich die Autoren bei ihren Kollegen, Freunden und Beatrice Geiger für das Durchlesen, Korrigieren, Hilfeleistungen sowie das Motivieren bei Schreibblockaden oder Computerproblemen.
9 Eigenständigkeitserklärung

Eigenständigkeitserklärung:
„Wir erklären hiermit, dass wir die vorliegende Arbeit selbstständig, ohne Mithilfe Dritter und unter Benützung der angegebenen Quellen verfasst haben.“

Winterthur den 18.05.2010

___________________ ___________________
Meta Graf Lara Spielhofer
10 Anhang

Tabelle III: Resultate NMVIC/MVIC und CAR

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Referenz (Studien MIT NMES)</th>
<th>Zeitpunkt des Assessments</th>
<th>Betroffene Extremität</th>
<th>Extremität ohne NMES</th>
<th>Kontrollgruppe</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 Jahr postoperativ</td>
<td>20.7</td>
<td>22.7</td>
<td>17.35^</td>
<td>- Ja im Vergleich zur Kontrollgruppe (p=0.007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jahre postoperativ</td>
<td>20.6</td>
<td>21.0</td>
<td>20.60^</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petterson et al. (2009)</td>
<td>präoperativ</td>
<td>10.42</td>
<td>11.0*</td>
<td>10.0*</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Monate postoperativ</td>
<td>19.05</td>
<td>16.0*</td>
<td>11.5*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Jahr postoperativ</td>
<td>22.64</td>
<td>18.3*</td>
<td>12.5*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stevens et al. (2004)</td>
<td>präoperativ</td>
<td>5.6*</td>
<td>11.0*</td>
<td>10.0*</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Wochen postoperativ</td>
<td>15.5*</td>
<td>16.0*</td>
<td>11.5*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Wochen postoperativ</td>
<td>17.5*</td>
<td>18.3*</td>
<td>12.5*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Monate postoperativ</td>
<td>19*</td>
<td>20.6*</td>
<td>14.9*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Monate postoperativ</td>
<td>23*</td>
<td>22.4*</td>
<td>17.5*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petterson & Snyder-Mackler (2006)</td>
<td>präoperativ</td>
<td>34.3**</td>
<td>43.2**</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 Monate postoperativ</td>
<td>22.0**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Jahr postoperativ</td>
<td>27.0**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1½ Jahre postoperativ</td>
<td>39.5**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Jahre postoperativ</td>
<td>39.4**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVIC (in Nm)</td>
<td>Lewek et al. (2001)</td>
<td>3 Wochen postoperativ</td>
<td>94.9***</td>
<td>189.8***</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Wochen postoperativ</td>
<td>140.3***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 Wochen postoperativ</td>
<td>176.3***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mintken et al. (2007)</td>
<td>präoperativ</td>
<td>34.65</td>
<td></td>
<td></td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Wochen postoperativ</td>
<td>Zirka 65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Wochen postoperativ</td>
<td>Zirka 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Monate postoperativ</td>
<td>Zirka 81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zirka 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensiometrie (in kg)</td>
<td>Haug & Wood (1988)</td>
<td>1. postoperativer Tag: 35°</td>
<td>1.3</td>
<td>1.0</td>
<td>Nein (10 Tage mit 35° p=0.06, mit 0° p=0.02)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zirka 10. Tag: 35°</td>
<td>7.6</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zirka 10. Tag: 90°</td>
<td>8.0</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zirka 10. Tag: 0°</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR</td>
<td>Petterson et al. (2009)</td>
<td>präoperativ</td>
<td>0.78</td>
<td>0.75^</td>
<td>- Nein zwischen Interventionsgruppen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Monate postoperativ</td>
<td>0.82</td>
<td>0.78^</td>
<td>- Ja im Vergleich zur Kontrollgruppe (p<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 Monate postoperativ</td>
<td>0.89</td>
<td>0.82^</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Referenz (Studien OHNE NMES)</td>
<td>Zeitpunkt des Assessments</td>
<td>Betroffene Extremität</td>
<td>Nicht operierte Extremität</td>
<td>Kontrollgruppe (ohne Knie-TEP)</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>NMVIC</td>
<td>Mizner, Petterson, Stevens, et al. (2005)</td>
<td>präoperativ 1 Monat postoperativ</td>
<td>18.1 6.95</td>
<td>Ja negativ (p<0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stevens et al. (2003)</td>
<td>präoperativ 1 Monat postoperativ</td>
<td>20 8 25.6 25.4</td>
<td>Ja negativ (p<0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mizner et al. (2003)</td>
<td>1 Monat postoperativ</td>
<td>8.8 24.14 24.15</td>
<td>Ja negativ (p<0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR</td>
<td>Mizner, Petterson, Stevens, et al. (2005)</td>
<td>präoperativ 1 Monat postoperativ</td>
<td>0.87 0.72</td>
<td>Ja negativ (p=0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stevens et al. (2003)</td>
<td>präoperativ 1 Monat postoperativ</td>
<td>0.85 0.69 0.91 0.91</td>
<td>Ja negativ (p<0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mizner et al. (2003)</td>
<td>1 Monat postoperativ</td>
<td>0.74 0.93 0.943</td>
<td>Ja negativ (p<0.001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n.a. = nicht anwendbar

* Diese Werte entsprechen nicht den Werten der Kontrollgruppe, sondern denen der Krafttrainingsgruppe.
* Es wurde der Durchschnitt der einzelnen Werte auf eine Dezimalstelle gerundet eingefügt, in der Kontrollgruppe wurde dieser von allen 6 Beinen berechnet.
** Der NMVIC wurde mithilfe des BMI und der Formal N/BMI auf eine Dezimalstelle gerundet kalkuliert.
*** Der MVIC wurde mithilfe der Formel 1Nm = 1.35582 ft-lb ausgerechnet und auf eine Dezimalstelle gerundet (Laurenz Messtechnik GmbH, keine Angabe).
<table>
<thead>
<tr>
<th>Tabelle IV: Resultate funktioneller Kraftmessungen</th>
<th>Referenz (Studien MIT NMES)</th>
<th>Zeitpunkt des Assessments</th>
<th>NMES-Gruppe</th>
<th>Kontrollgruppe</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUG (in Sekunden)</td>
<td>Zeni & Snyder-Mackler (2010)</td>
<td>Präoperativ 3 Monate postoperativ 1 Jahr postoperativ 2 Jahre postoperativ</td>
<td>Zirka 12 8.23 Zirka 8 Zirka 8</td>
<td>Ja (1 und 2 Jahr p<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mintken et al. (2007)</td>
<td>präoperativ 3 Wochen postoperativ 6 Wochen postoperativ 3 Monate postoperativ</td>
<td>8.2 11.2 8.6 7.9</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petterson et al. (2009)</td>
<td>präoperativ 3 Monate postoperativ 1 Jahr postoperativ</td>
<td>12.1 8.29 8.07 12.04^ 8.02^ 7.68^</td>
<td>- Nein zwischen Interventionsgruppen - Ja im Vergleich zur Kontrollgruppe (p=0.004)</td>
<td></td>
</tr>
<tr>
<td>SCT (in Sekunden)</td>
<td>Zeni & Snyder-Mackler (2010)</td>
<td>Präoperativ 3 Monate postoperativ 1 Jahr postoperativ 2 Jahre postoperativ</td>
<td>Zirka 27 13.64 Zirka 12 Zirka 12</td>
<td>Ja (1 und 2 Jahr p<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mintken et al. (2007)</td>
<td>präoperativ 6 Wochen postoperativ 3 Monate postoperativ</td>
<td>18 * 18 13</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petterson et al. (2009)</td>
<td>präoperativ 3 Monate postoperativ 1 Jahr postoperativ</td>
<td>27.51 14.28 13.62 25.76^ 12.78^ 11.75^</td>
<td>- Nein zwischen Interventionsgruppen - Ja im Vergleich zur Kontrollgruppe (p<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petterson & Snyder-Mackler (2006)</td>
<td>präoperativ 9 Monate postoperativ 1 Jahr postoperativ ½ Jahre postoperativ 2 Jahre postoperativ</td>
<td>7.5 7.1 7.0 7.5 7.4</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>6MGT (in Meter)</td>
<td>Mintken et al.(2007)</td>
<td>präoperativ 3 Wochen postoperativ 6 Wochen postoperativ 3 Monate postoperativ</td>
<td>483.4 433.4 524.3 518.1</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Referenz (Studien OH-NE NMES)</td>
<td>Zeitpunkt des Assessments</td>
<td>NMES-Gruppe</td>
<td>Kontrollgruppe</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TUG</td>
<td>Mizner, Petterson & Snyder-Mackler (2005)</td>
<td>präoperativ</td>
<td>9.6</td>
<td>12</td>
<td>Ja (p<0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Monat postoperativ</td>
<td>12</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Monate postoperativ</td>
<td>7.9</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Monate postoperativ</td>
<td>7.6</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>SCT</td>
<td>Mizner, Petterson & Snyder-Mackler (2005)</td>
<td>präoperativ</td>
<td>20</td>
<td>26.3</td>
<td>Ja (p<0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Monat postoperativ</td>
<td>26.3</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Monate postoperativ</td>
<td>12.8</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Monate postoperativ</td>
<td>11.9</td>
<td>11.9</td>
<td></td>
</tr>
</tbody>
</table>

n.a. = nicht anwendbar

^ Diese Werte entsprechen nicht den Werten der Kontrollgruppe, sondern denen der Krafttrainingsgruppe.