

Rapid Development of ICT Business

Services by Business Engineers

Independent of Computer Scientists

Jürgen Spielberger1, Markus Baertschi-Rusch2, Marion Mürner3, Gerald Perellano4,

Raimond Wüst5

1 Zurich University of Applied Sciences (ZHAW), School of Engineering
2 Swiss Federal Institute of Technology in Zurich (ETHZ), BWI Center for Industrial Management

3 Posity AG, development division
4 Zurich University of Applied Sciences (ZHAW), School of Engineering
5 Zurich University of Applied Sciences (ZHAW), School of Engineering

Abstract

Current software development requires computer scientists to create and to adapt services to new or chang-

ing needs. In addition development and maintenance of software is time and cost intensive. Customizing

of standard software is laborious. Software engineering research approaches as Domain Engineering, Model

Driven Software Engineering and Product Line Engineering try to increase the abstraction level of the

specification of the models to reduce the required time and money to build applications and services but

they still demand the implementation by computer scientists.

In two projects supported by the CTI (Commission for Technology and Innovation of the Swiss Confeder-

ation) we analysed how to achieve a higher level of abstraction and how to specify database-centric business

services in a manner business engineers are able to create and to adapt services completely by themselves.

Besides the methodology to specify these services (data structure, business rules, etc.), methods and tech-

nologies to hide all technical aspects (infrastructure, software architecture, versioning etc.) entirely from

the business engineer had to be developed.

In this paper an according graphical notation to specify services or complete applications is discussed. The

methods and technologies to hide technical aspects are not part of this paper

The developed graphical notation consist of six different diagram types. They represent different aspects of

the services (process map, business rules, data structure, organisation chart, user interface and data queries).

To create executable services with these diagram types an IDE (Integrated Development Environment) was

developed. This IDE is called Posity Design Studio (PDS). All diagrams drawn with the Posity Design

Studio can directly be executed without any further coding. To increase the efficiency of creating new

services a business wizard to specify uses-cases and to generate the corresponding diagrams was integrated

into the Posity Design Studio.

Our main findings are:

› The graphical notation allows specifying executable services completely by diagrams. In that

way the usage of common programming languages is no longer necessary nor desired.

› Graphical domain-specific languages empower business engineers to build business applica-

tions and services with little effort and without the help of computer scientists.

› The graphical notation is platform independent. Therefore it’s possible to specify applications

and services that can be executed on several platforms at the same time.

› Skilful structuring of the notation (design of the levels of abstraction) allows even novice us-

ers to make limited adjustments to the applications or services.

› Additional abstraction levels increase the productivity and adaptability of applications and

services.

Keywords

Rapid Development, Business Service, Business Application, Model Driven Software Engineering, Do-

main Engineering, Domain-specific Language.

1 Introduction

Other industries have a natural transition from specification level to physical level. Speci-

fying a building with plans and constructing the building are obviously two different types

of activity. IT Industry has no such natural transition, there is no inherent modelling gap.

Today usually the requirements are described by the business engineers and translated

into program code by software engineers. The specification gets more detailed, but there

is no obvious leap or modelling gap. Therefore three questions arise:

(1) Does a modelling language (specification language) exist that can be handled

by non-computer scientists (without textual program code) and that can de-

scribe ICT business applications and services entirely. In this case the applica-

tion or service can be build based on this specification (model) without any

further program code, without software engineers and without modelling gap.

(2) Assuming this modelling language exists, is it possible to introduce different

abstraction levels within the modelling language so that business engineers

with different know-how can provide and change the specification without ex-

tensive knowledge of details (e.g. change a workflow / status flow).

(3) What are the possibilities to provide an assistance (hereinafter referred to as a

wizard) on a higher abstraction level than the modelling language to generate

specifications in the modelling language?

There are several attempts to build such a modelling language. A broadly known concept

is the Model Driven Architecture® (MDA®) of the Object Management Group® (2014).

These concepts separate the business model and the technology model in two parts. There-

fore at least for the technological model computer scientists are needed. In addition the

specification of the business model usually requires additional program code.

This paper shows a solution how a modelling language and the associated integrated de-

velopment environment (IDE) can fulfil the requirement to enable business engineers to

specify a business application or business service without the help of computer scientists.

In addition this paper tries to give a deeper insight into how to solve, respectively how to

answer the three questions mentioned above.

Within the next chapter we will introduce the six diagram types that build the modelling

language, followed by a short introduction to the mechanisms of the IDE that prevent a

technology model. The third chapter enlists the different levels of abstraction and the con-

sequences of this structuring. The subsequent chapter shows methods to extend the mod-

elling language with wizards. After the deeper introduction to modelling languages the

main results are summarized, followed by a discussion of the findings and the conclusions.

2 Modelling Language

Modern programming languages have to fulfil various requirements such as efficiency,

maintainability, portability, debugging support, etc. The considerations in this chapter ap-

ply only to the main problem mentioned in the first question: Does a modelling language

exist that can be handled by non-computer scientists (without program code) and that is

able to describe the IT solution entirely – hiding all technical details?

The analysis of existing approaches such as MDA (Model Driven Architecture), BPMN

(Business Process Model and Notation) (Großkopf, A., Decker, G., Weske, M., 2009),

ARIS (Architektur integrierter Informationssysteme) (Davis, R., Brabaender, E., 2007)

and many more revealed several severe problems:

› The modelling language requires additional program code or the elements of

the notation are representatives of program code – the notation is based on the

code world (in most cases on an object-oriented approach).

› The modelling language generates program code (e.g. Java) but has no hun-

dred per cent round-trip engineering functionality.

› The modelling language does not cover all necessary parts of the model for a

complete specification or some parts of model are defined multiple times.

› The modelling language requires computer scientist to participate in one or

more steps of the implementation process (e.g. setup of the infrastructure, de-

ployment of code).

In order to avoid these problems a new modelling language was elaborated. This modelling

language has the following characteristics:

› The modelling language is limited to specify all necessary parts of business

applications and services. Languages with focused, limited scope are called

domain-specific languages (DSL). Hereinafter we call the modelling language

Posity-DSL (PDSL). Languages with a limited scope have an increased

productivity, an improved quality and they have a better maintainability

(Reinhartz-Berger, I., Sturm, T. C., Cohen, S., Bettin, J., 2013), but are only

applicable in the predetermined domain.

› PDSL does not generate code or require any program code for specification.

› PDSL does not require computer scientist in any work process.

http://dict.leo.org/ende/index_de.html#/search=hundred&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=hundred&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=per&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=cent&searchLoc=0&resultOrder=basic&multiwordShowSingle=on

› PDSL consists of six diagram types. Each diagram type specifies a part of the

complete model. The diagram types of PDSL are based on existing diagram

types that are extended with necessary elements on one side and reduced by

not required elements on the other. This simplifies the usage of these diagram

types for business engineers familiar with diagrams used for the specification

of models.

The following sub chapters explain the diagram types of PDSL. The process and the mod-

ule diagram will be shown in more detail to give a better impression of the extensive po-

tential of the diagram types. The remaining diagram types are shown in less detail. They

will illustrate the functioning of PDSL as a whole.

2.1 Process Diagram

The process diagram (Fig. 1) is an adaption of the Business Process Model and Notation

(BPMN) (Großkopf, A., Decker, G., Weske, M., 2009). The process diagram is mainly

used to specify following information:

› Processes (blue arrows): There are different types of processes. Processes

without business logic (system processes without module or manually exe-

cuted processes) are used to organize and document the structure of the pro-

cess model – processes can be nested in one another. Processes that are con-

nected to modules (a hooked light blue square, containing the business logic)

are executable processes. In order to control the access of the users to the pro-

cesses it is possible to determine a role for each process.

› Workflow (blue lines): The workflow is used to define an automated pro-

cessing order of the activities of a user. Different types of gateways (green di-

amonds, automatic or by questioning) optionally allow to determine the next

process to execute.

› State flow (green lines) and status boxes (green rounded rectangle): While the

workflow defines the process sequence to be executed, the state flow defines

the sequence of states that data (optionally, defined per table) can traverse.

Process diagrams offer the possibility to specify valid states of input data to a

process as well as the states of resulting output data after processing has fin-

ished.

› Events (red bullets): Events provide asynchronous, timer based handling of

the workflow or the state flow (the diagram in Fig. 1 shows an event used

within a state flow).

Fig. 1: Example of process diagram

This diagram is the specification of the application, there is no generated program code.

Changing the diagram (e.g. changing the state flow) instantly changes the behaviour of

the application.

2.2 Data Model Diagram

The data model diagram (Fig. 2) is related to the crow foot notation (Barker, R., 1990). In

this extended version it holds all required information to completely define the data struc-

ture and has design elements (e.g. table references, connector joins, etc.) to work with very

large data models.

Fig. 2: Example of data model

2.3 Query Diagram

Reading and writing of data is specified in the query diagram (Fig. 3). The representation

of the query diagram is derived from the representation method of the data model diagram.

Fig. 3: Example of query diagram

2.4 Module Diagram

The module diagram (Fig. 4) is an extended data flow diagram (Yourdon, E., Constantine,

L.L., 1975) and defines the business logic. It contains:

› Components (rectangles): Components (function blocks, e.g. calculating the

square root of a number, show a message) have input ports (on the left) and

output ports (on the right) receiving and sending data.

› Data flow (lines, color depends on data type of data flow): The data flow rep-

resents the flow of data through the components. Therefore the lines connect-

ing the components define the execution sequence of the components.

› Control flow constructs (rectangular substructures, e.g. sequence, while loop,

case): Control flow constructs similar to Nassi-Shneiderman boxes (Nassi, I.,

Shneidermann, B., 1973) extend the module diagram and allow to define the

module logic consistent with the philosophy of structured programming (Fig.

4 shows a module with a case structure). Also recursive constructs, modules

calling modules, are possible.

› Module events (frames of module): Each module diagram consists of one or

more module events. In the diagram, a single module event is shown at once.

Due to scroll or select the individual module events can be viewed. The name

of the module event is below the name of the module (Fig. 4 shows a module

event named ‘Save’). Module events are triggered by the start of the corre-

sponding module, when a button is pressed on the user interface (e.g. a save

button), by the module itself, etc.

According to domain-specific languages all diagrams, especially the module diagram, sup-

port business driven functionalities. Common problems such as time zone (including day-

light-saving time), currency handling (including ledger currency), number ranges, multi-

lingual support, etc. are an integral part of the diagram types.

Fig. 4: Example of module diagram

2.5 User Interface Diagram

The user interface diagram (Fig. 5) defines the graphical presentation of data to the user.

Depending on the users role the data can be modified. The user interface diagram is aligned

to the query diagram.

Fig. 5: Example of graphical user interface

2.6 Organisational Diagram

The organisational diagram (Fig. 6) is used to define the structure of the company and the

associated roles. This roles can be assigned to users and define the access rights the user

has within the application.

Fig. 6: Example of organisational diagram

2.7 Integrated Development Environment (IDE)

Using this six diagram types of PDSL an entire application containing any number of ser-

vices can be constructed, no additional program code or specification in any form whatso-

ever is required. The integrated development environment used to draw these diagrams is

the Posity Design Studio (PDS). Similar to other development environments PDS supports

additional features such as debugging tools, regression testing, deployment, use of multi-

ple environments (e.g. test environment, training environment), etc. to facilitate the devel-

opment process.

To hide all technical aspects the infrastructure and architecture of the runtime environment

is predetermined. These technical aspects are invisible at all time. Some details are:

› Typically all data is stored in SQL servers in the cloud. This applies to the

data of the application as well as for the data of the diagrams (metadata).

› The infrastructure for rich client (deployed using ClickOnce mechanism) on

MS Windows systems and web apps (implemented with an application

browser) is automatically created.

› The general structure of the user interface (e.g. look-and-feel of user interface,

general items, etc.) is predefined.

3 Levels of Abstraction

At first glance, the diagrams appear to have the same level of abstraction. A closer look

reveals that this is not really true. The process diagram is based on the module diagram,

extended with workflow and state flow. The user interface diagram (GUI) is based on the

query diagram. The query diagram is based on the data model diagram and the module

diagram on the user interface diagram and the query diagram. The organisational diagram

is influencing several diagrams.

Process

Module

Table

Query

GUI

Organization
xxx

xxx

xxx

Fig. 7: Dependencies and levels of abstraction of the different diagram types

This hierarchy of information is not chosen or composed randomly. This levels of abstrac-

tion are chosen to give business engineers the maximum of flexibility with a minimum of

necessary prior knowledge. Two examples will show the effects:

(1) In the current state flow (Fig. 1) an invoice is printed (second process step)

after the order is completely processed (first process step), but now we want to

print the invoice before the order is completely processed. A simple change of

the state flow sequence in the process diagram will cause the system to be

adapted to the new situation (Fig. 8). No business logic has to be changed; the

logic of the state flow is represented in the process diagram. And of course one

can also implement both state flows in parallel. This is possible due to the fact

that the state flow is explicitly specified in the process diagram and not on the

‘lower’ abstraction level of the module diagram.

(2) During the live cycle of applications often additional information has to be

stored in the system (e.g. if we want to store the middle name of a person in

addition). In common systems the database and the programs have to be

changed to implement this additional requirement. PDSL avoids as far as pos-

sible to handle details of the information within the module diagram (for ex-

ample listing individual attributes). To add an additional information item (e.g.

an attribute) just the data model diagram, the concerned query diagrams and

user interface diagrams have to be extended (adding the attribute). With very

little work the information can be modified and stored, no module diagram has

to be changed.

Fig. 8: Adapted example of the process diagram of Fig. 1

4 Expansion Levels of Abstraction

The previous paragraphs gave a brief insight into the effectiveness of different abstraction

levels. This mechanism of abstraction can be used once more. In PDSL two areas for

higher abstraction levels can be distinguished. The first one concerns the specification of

complete use cases, the other one concerns the customization of an application for differ-

ent customers.

4.1 Patterns for Use Cases

The PDS (Posity Design Studio) offers different patterns for use cases. A pattern for a use

case represents a common way to work with information, e.g. editing a header record and

its sub items in a list (e.g. editing a sales order and the order items). After selecting the

pattern the basic work to do is to specify the selection of the affected data and how this

data will be merged. Subsequently extending this information with further details (e.g.

which events shall be generated, which data will be editable in the user interface, etc.) the

PDS wizard will generate the according query, module, process and user interface dia-

grams. If necessary, the generated diagrams can be manipulated such that they fit the re-

quired use case exactly.

Like other wizards, the PDS wizard has no round-trip engineering for changes done in the

diagrams. Changes of the diagram that do not fit into the pattern of the wizard cannot be

represented in the pattern. To get some flexibility and extendibility the use case patterns

themselves contain extension points to integrate functionality that is not part of the pattern.

The PDS wizard is very flexible and powerful. Therefore it’s possible to create complex

use cases and to cover a wide range of requirements.

4.2 Customizing Applications - Questionnaire

In practice applications are used more than once, implemented use cases are reused. But

different companies have different requirements and the reused use cases have to be mod-

ified. Customizing use cases is again time and cost intensive.

In PDS it’s possible to specify different variations within the diagrams and to combine

these variations with questions (e.g. a question about the type of company and the activa-

tion of processes). The application gets customized by answering the questionnaire.

The questions of the questionnaire are not independent from each other. E.g. if a process

gets deactivated by a previous question there is no need to ask another question that would

deactivate this process again. The questionnaire takes these dependencies into account

and only asks questions that still (after answering some questions) take influence on the

application.

It’s not necessary to answer all questions of the questionnaire at once. It’s possible to

answer only some questions (the questions can be prioritized), test the effect on the ap-

plication, and then to return to the questionnaire. Alike it is possible to answer questions

of a particular business department only (e.g. production), as the questions can be as-

signed to processes of the process diagram (not to confuse with a question about a pro-

cess).

5 Main Results

› The proposed graphical notation with six different diagram types allows to

specify executable ICT business applications or services completely by dia-

grams. The usage of common programming languages is no longer necessary

nor desired.

› Graphical domain-specific languages empower business engineers to build

business applications and services with little effort and without the help of

computer scientists.

› The graphical notation is platform independent. Therefore it’s possible to

specify applications and services that can be executed on several platforms at

the same time.

› Skilful structuring of the notation (design of the levels of abstraction) allows

even novice users to make limited adjustments to the applications or services.

› Additional abstraction levels (wizard and questionnaire) increase the produc-

tivity and adaptability of applications and services.

6 Discussion of Findings

It’s not surprising that it’s possible to specify applications and services with a graphical

domain-specific language, although only few solutions exist in practice (for the technical

field, e.g. LabVIEW). Two facts of the diagram language are noteworthy: (1) The pro-

posed language uses only six diagram types and (2) these diagram types are variations of

well know diagram types, some of them are even well known in business management.

The usage of the graphical domain-specific language (PDSL) enables business engineers

to implement applications all by their own. Therefore all technical details have to be hid-

den from the business engineer. This is only possible by predefining these technical de-

tails, for this reason the technical structure is more or less immutable.

Abstraction is a powerful instrument to achieve model languages that are simpler to use.

A carefully defined language allows specifications on different levels of abstraction, in

such a way also unexperienced business engineers can adapt some logic of the applica-

tion. Limiting the operational area of the modelling language to a specific domain (data-

base-centric business applications) made the language more efficient and more compre-

hensive, but of course the language is restricted to the domain.

Productivity has been increased considerably by introducing a wizard. Because the wizard

generates diagrams, it’s possible to adapt and to extend the generated diagrams with de-

tails that cannot be specified within the wizard. However, this leads to gaps within the

two abstraction levels, a complete round trip (from diagram to wizard) is no longer pos-

sible.

7 Conclusion

In the introduction three questions have been asked, they will be answered here:

(1) Yes it’s possible to create a domain specific-language without any textual pro-

gram code. PDS was applied in several projects in daily practice and has shown

the potential for efficient software development.

(2) Different abstraction levels simplify the use and the readability of the model.

Even users with limited knowledge are able to make basic adjustments to the

model.

(3) Tools with higher abstraction level accelerate the development of applications,

but at a certain point new abstraction levels (wizard, questionnaire) lead to an

information gap which disables round-trip engineering.

PDS shows that developing applications is possible without computer scientists and we

are convinced that development is cheaper and faster. Unfortunately we could not make

any surveys, which show whether and how much cheaper and faster the development of

applications with PDS is.

The use cases still have a great potential to increase efficiency. For further enhancements,

it would be important to investigate which additional use cases should be implemented,

how these use cases exactly should be implemented and how they can be designed and

extended to improve the effectiveness of round-trip engineering.

References

Barker, R.: (1990) CASE*Method: entity relationship modelling. University of Michigan: Addison-

Wesley

Davis, R., Brabaender, E.: (2007) ARIS Design Platform: Getting Started with BPM. London: Springer

Großkopf, A., Decker, G., Weske, M.: (2009) The Process: Business Process Modelling using BPMN.

Tampa: Meghan-Kiffer Press

Nassi, I., Shneidermann, B.: (1973) Flowchart techniques for structured programming. ACM SIGPLAN

Notices 8 (8), 12 -26 (www.nassi.com/nassi-shneiderman diagrams.pdf)

Object Management Group (2014) The List of References Illustrated [online] available from

http://www.omg.org/mda/presentations.htm [3 May 2014]

Reinhartz-Berger, I., Sturm, T. C., Cohen, S., Bettin, J. (2013) Domain Engineering: Product Lines,

Languages, and Conceptual Models. Berlin Heidelberg: Springer

Yourdon, E., Constantine, L.L. (1975) Structural Design: Fundamentals of a Discipline of Computer

Program and Systems Design. Upper Saddle River, NJ: Yourdon Press

