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ABSTRACT: The ability to finely tune the amphiphilic balance
of Janus nanoparticles (JNPs) could represent a step forward
toward creating the next generation of solid-state amphiphiles
with significant potential for applications. The inherent
amphiphilicity of JNPs stemming from an intrinsic polarity
contrast between two surface regions is well-acknowledged, but
remained difficult to demonstrate experimentally in the absence
of surfactants and stabilizers. We have designed two
homologous series of surfactant-f ree polymeric JNPs starting
from polystyrene (PS) seed nanoparticles (NPs) on which we
grew Janus lobes of different sizes via seed polymerization and
phase separation of the 3-(triethoxysilyl)propyl-methacrylate (3-
TSPM) monomer. The two series differ only by the radical
initiator used in the seed polymerization: polar ionic ammonium
persulfate (APS) vs nonpolar oil-soluble 2,2′-azobis(2-methylpropionitrile) (AIBN). To compare the two series, we employed
them in the emulsification of water with heptane or molten paraffin wax. A polarity reversal of the JNPs within AIBN-JNP series
could be observed from the catastrophic and transitional emulsion phase inversions and occurred when the more polar lobe was
larger than the nonpolar seed PS lobe. Furthermore, the AIBN-JNPs appeared to be amphiphilic and adopt preferred orientation
within the monolayer at the oil/water interface. We therefore demonstrated that in the absence of surfactants the amphiphilicity
of the JNPs depends not only on the relative size of the lobes, but also on the surface polarity contrast, which can be tuned by
changing the nature of radical initiator.

■ INTRODUCTION

The amphiphilic Janus nanoparticles (JNPs) resemble molec-
ular surfactants in that they exhibit a polar/nonpolar duality.
These nanoparticles, initially conceptualized by Casagrande1

followed by de Gennes,2 were named after the two-faced roman
god Janus. For the last two decades, this new concept
represented a meeting ground for chemists and material
scientists to conjure up imaginative, nonstandard synthetic
methods, resulting in an assortment of JNPs, spanning
hybridized-like orbitals,3 snowman,4 mushroom shaped,5

raspberry-like,6 disk-shape,7 and so forth. Unlike the molecular
surfactants, JNPs are able to carry bulklike properties, such as
magnetic and optic,8,9 can exhibit fascinating stimuli-responsive
properties,10−13 and self-assemble into new reconfigurable
materials.14,15

The interfacial activity of JNPs arising from an intrinsic
polarity contrast between two surface regions has been
discussed theoretically in seminal publications.16,17 Unfortu-
nately, the true interfacial activity of JNPs remained elusive
experimentally in the absence of molecular surfactants, which

are almost always used as stabilizing agents during synthesis and
are very difficult to completely remove by time-consuming
serum replacement methods, such as centrifugation, dialysis, or
electrodialysis.18−20 Thereby, interference from the remnant
surfactants or even quenching of the JNPs’ intrinsic
amphiphilicity is likely.21 The synthesis of sufficient quantities
of surfactant-f ree JNPs is necessary for understanding and
harnessing the fundamental behavior of this class of materials,
which forms the goal of the current effort.
To provide proof of the actual amphiphilicity of JNPs, we

present the synthesis of several grams of surfactant-free
poly(styrene-co-3-(triethoxysilyl)propyl-methacrylate) (PS-
P(3-TSPM)) polymeric JNPs by using seed polymerization
and phase separation. Furthermore, analogous to surfactants,
we have created homologous series of JNPs, by using
polystyrene (PS) seed nanoparticles (NPs) on which we grew
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the poly(3-(triethoxysilyl)propyl-methacrylate) P(3-TSPM)
lobes of varying sizes as shown in Figure 1.22−24 The polarity

contrast between the Janus lobes was termed Janus balance,17

which is in principle a quantifiable parameter comparable to the
hydrophilic-lyophilic balance (HLB) used for surfactants. JNPs
have been successfully used to produce Pickering emulsions.
The way the JNPs can assemble at the oil/water interfaces can
be affected by their aspect ratio, i.e., the geometrical packing
parameter and by the polarity contrast, which is, analogous to
molecular surfactants, the “degree of hydrophilicity” or “degree
of hydrophobicity”25 between the opposing surface regions. In
this work, we also show that, in the absence of surfactant
stabilizers, for a given JNP aspect ratio, the radical initiator used
in the seeding-polymerization step provides means to change
the surface polarity of the polymer and thus tune the native
Janus balance of the JNPs. To investigate this, two homologous
JNP series based on the same PS seed NPs were created in
exactly the same synthetic conditions, but one with a nonionic
oil-soluble radical initiator, namely, 2,2′-azobis(2-methylpro-
pionitrile) (AIBN) and the other with an ionic water-soluble
radical initiator, namely, ammonium persulfate (APS). Five
JNPs of different lobe sizes were generated for each series by
increasing the amount of the 3-TSPM monomer relative to 1 g
of seed PS particles, as illustrated in Figure 1.

■ RESULTS AND DISCUSSION
Surfactant-Free PS Seed NPs. These were synthesized

using varying amounts of divinylbenzene (DVB) via a similar
procedure with the one reported by Chonde and Krieger.26

Representative scanning electron microscope (SEM) images
are presented in Figure S1. The diameter of the obtained seed
NPs decreased from 214 ± 13 to 77 ± 10 nm as the amount of
DVB increased from 0 to 6.75 mL (Table S1). The zeta
potentials for all four NP batches were within the range of −49
± 6 to −58 ± 8 mV in ultrapure water (UPW) (Table S1), all
of which exceeded the colloidal stability threshold of < −30
mV. For the ensuing sections, the PS seed NP used was PS2,
which had a characteristic diameter of 180 ± 10 nm (Table S1,
in the Supporting Information).
The use of copolymerizable sodium 4-vinylbenzenesulfonate

(NaVBS) surfactant monomer is essential to stabilize the
monomer nanodroplets during the polymerization reaction.18

Notably, we ascertained that NaVBS was totally consumed in
the copolymerization reaction, such that it was absent in the
resulting solution. The surface tension of the 0.25 mg/mL PS
seed NPs in UPW was 73.8 ± 0.3 mN/m at 25 °C (Figure S2),
which is close to that of pure water, indicating that the obtained
PS seed NPs were surfactant-free. Furthermore, the surface
tension was stable for as long as 10 min (Figure S2), which

indicate that there was no further interfacial reorganization by
surfactant detachment from the particles or “aging” effects. In
addition, FTIR characterization of the seed nanoparticles
showed transmittance peaks at positions 697 and 2927 cm−1

(Figure S3A), which correspond to the out-of plane bending
and C−H stretching vibration, respectively, of the phenyl rings.
The appearance of a peak at 1180 cm−1 corresponding to the
asymmetric vibration of the SO3

− group demonstrates the
presence of these groups in the seed NPs.

Design and Synthesis of JNPs. The second critical step in
the synthesis of surfactant-free JNPs is the growth of a second
lobe in the absence of surfactants by seeding polymerization
from the PS seed NPs generated in step 1. For this we have
used the 3-TSPM monomer, previously reported by Guignard
and Lattuada,24 Sun et al.,4 and Park et al.27 to be suitable for
generating JNPs from a variety of seed particles via phase
separation, albeit in the presence of surfactant stabilizers. The
mechanisms and parameters leading to Janus particle formation
from phase separation in polymer blends28,29 and phase
separation by “extrusion” from seeded emulsion polymer-
ization30 have been previously discussed. In order to ensure
polarity contrast between the JNP lobes, no surfactant
copolymer was used in the second step to avoid introducing
the same type of functional groups, in this case, sulfonate
groups, already present in the seed NPs. Acoustic radiation was
used to produce a surfactant-free oil-in-water (o/w) emulsion
from the water-insoluble 3-TSPM monomer, which demon-
strated good stability over several hours (Figure S4). Acoustic
emulsification is a critical step to accelerate the seeding process
in the absence of emulsifiers; a large number of 3-TSPM
monomer droplets is needed to maximize the oil−water
interfacial area and enhance monomer availability in the
aqueous phase according to Kelvin−Laplace equation.18,31

Without acoustic emulsification, we were not able to obtain any
JNPs in surfactant-free conditions.

Two Homologous Series of Surfactant-Free JNPs.
Analogous to the homologous series of surfactants, such as
linear alkyl sulfonates, or alkyl carboxylates, we have proven the
possibility of creating a “homologous” series of surfactant-free
amphiphilic JNPs starting from the same PS seed NPs on which
we grew lobes of different sizes. Even in the absence of any
surfactant emulsifiers, which were used in the method reported
by Sun et al.,4 acoustic emulsification of the 3-TSPM monomer
allowed different sizes of these polar Janus lobes to be
generated by increasing the weight ratio of 3-TSPM to PS seed
NPs from 0.52 to 4.18, which corresponds to 0.5, 1, 2, 3, and 4
mL for 1 g of PS seed NPs (Figure 1). For the first homologous
JNP series, AIBN was used to initiate the polymerization
reaction for the growth of the Janus lobe, as described in the
experimental section. SEM images of the homologous series of
five AIBN-JNPs clearly show that the light-gray to white P(3-
TSPM) lobe becomes progressively larger from Figures 2A
through E, while the darker-gray PS seed NPs (PS2, Table S1
and Figure S1B) remained approximately the same size. For
ease of interpretation when referring to a particular lobe size
JNPs, we adopt herein the notation “(volume of 3-TSPM
monomer used) initiator type-JNPs”, e.g., (2 mL 3-TSPM)
AIBN-JNPs, see Figure 1, that corresponds to approximately a
1:1 lobe aspect ratio, see Figure 2.
Moreover, the EDX spectra in Figure 2F, which are

normalized with respect to the carbon peak at 0.28 keV (Kα)
of the PS seed NPs, further confirms that the bulk composition
of the JNPs changes in this homologous series. At this point we

Figure 1. Cartoon representing the two homologous series of JNPs
synthesized using APS and AIBN initiators from the same starting seed
PS NPs. The relative lobes size of each JNP was adjusted with the
amount of 3-TSPM monomer used in the reaction (namely, 0.5, 1, 2,
3, and 4 mL for 1 g of PS seed NPs).
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emphasize that this evolution brings important information
with respect to the bulk composition of the Janus lobes. The
EDX spectrum corresponding to the seed PS NPs, Figure 2F
“seed NP”-spectrum, shows the presence of carbon at 0.28 keV
(Kα) as expected from the monomers, styrene and DVB. With
the formation of JNPs by seeded polymerization and growth of
the P(3-TSPM) lobes, on the same seed PS NPs, the new
elements silicon at 1.745 keV (Kα) and oxygen 0.52 keV (Kα)
can be detected, seen in Figure 2F “0.5−4 mL TSPM” spectra;
furthermore, their relative concentration with respect to carbon
gradually increases with the increase in the P(3-TSPM) lobe
size. This elemental evolution correlates directly with the
increase in the light-gray to white Janus lobe, shown in the

SEM images in Figure 2A−E, which contain carbon, silicon and
oxygen, while the dark-gray PS Janus lobe contains mostly
carbon. The EDX spectroscopic data of the bulk JNPs is
supported by the EDX mapping of the carbon, silicon and
oxygen elements in individually resolved AIBN-JNPs. The EDX
maps are presented in Figures 2G and S5, and the results clearly
show that silicon and oxygen are concentrated in the P(3-
TSPM) lobe, while carbon has an even distribution between
both Janus lobes. As observed in Figure S5, the EDX elemental
distribution analysis was performed on larger JNPs to mitigate
the issues related to this type of analysis on the smaller scales,
such as lateral resolution.

Figure 2. SEM images of AIBN-JNPs with progressively enlarged P(3-TSPM) lobe (light-gray/white) from the same seed PS NPs (dark-gray). (A−
E) AIBN-JNPs with progressively larger lobes obtained for a volume of 3-TSPM monomer (A) 0.5 mL, (B) 1 mL, (C) 2 mL, (D) 3 mL, and (E) 4
mL added to 1 g of PS seed NPs. (F) EDX spectra, normalized with respect to the reference carbon peak of the PS seed NPs. (G) EDX mapping of
“2 mL-TSPM” JNPs obtained from larger seed PS NPs, ∼320 ± 5 nm diameter, showing asymmetric distribution of oxygen, silicon elements, namely
a higher concentration in the P(3-TSPM) lobe in contrast to a symmetric distribution of carbon in both Janus lobes.
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A second homologous series of JNPs was created in the same
surfactant-free condition, with the ionic water-soluble APS
initiator (Figure 3). Although the exact same reaction
conditions and weight ratios of 3-TSPM monomer to seed
NP were used, the morphology of the APS-JNPs (Figure 3)
appear different from that for AIBN-JNPs (Figure 2) in that the
AIBN-JNPs assumed the more conventional snowman shape.
The difference in the morphology of the AIBN-JNPs and APS-
JNPs is the most significant for the particles with the largest
P(3-TSPM) lobe size (Figure 2E versus 3E), which might
indicate that the phase separation was lesser for the latter.
Similarly with APS-JNPS series, the Si and O content also
increased with the increase in the P(3-TSPM) lobe size (Figure
3F). The EDX analysis performed for the APS-JNPs
homologous series in Figure 3F shows a similar evolution
with that of the AIBN-JNPs series with some differences: the
larger relative intensity of the Si and O elements to that of C for
the latter series indicates a more favorable growth of the P(3-
TSPM) lobe when the polar initiator APS was used.
Seeded emulsion polymerization is a well-known method

used to bypass the nucleation stage for obtaining a system with

a precisely known number of particles; the monomer emulsion
droplets act as reservoirs supplying monomers to the
polymerization loci.32 Surprisingly, the polymerization results
were similar, despite the use of radical initiator types of
different nature (oil-soluble AIBN vs water-soluble APS) in the
second step wherein the P(3-TSPM) lobes were formed,
suggesting the same polymerization loci and a similar
mechanism for both cases.30,32 In fact, surfactant-free emulsion
polymerization studies of styrene with either APS or AIBN
show that both types of initiators can drive the polymerization
reaction in the aqueous phase, albeit with different kinetics.32,33

Similarly, our investigation showed that when AIBN was used
to initiate the polymerization reaction, the growth of the P(3-
TSPM) lobe appeared to be much slower than in the case of
APS. Sampling of the mixtures 30 min from the initiation of the
reaction revealed that the P(3-TSPM) lobes could readily be
observed for the APS initiator, but not for the AIBN initiator
(Figure S6A and C). However, the final product obtained 24 h
after the initiation of the reaction appeared similar for both
initiators (Figures S6B and D). The FTIR spectra (Figure S3A)
show the appearance of at least two new peaks for the JNPs at

Figure 3. SEM images of APS-JNPs with progressively enlarged P(3-TSPM) lobe (lighter-gray/white) from the same seed PS NPs (dark-gray). (A−
E) APS-JNPs with progressively larger lobes obtained for a volume of 3-TSPM monomer (A) 0.5 mL, (B) 1 mL, (C) 2 mL, (D) 3 mL, and (E) 4 mL
added to 1 g of PS seed NPs. (F) EDX spectra, normalized with respect to the reference carbon peak of the PS seed NPs.
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wavenumbers of 1719 and 1107 cm−1, which correspond to
carbonyl groups and siloxane bridges (Si−O−Si), respec-
tively.22,23 Furthermore, the weak O−H vibration typical in
silanol groups at around 3462 cm−1 suggests the absence of a
large amount of Si−OH silanol groups. The zeta potential for
both the homologous series of AIBN- and APS-JNPs appears to
increase somewhat with the growth of the P(3-TSPM) lobe
from the starting value of the PS seed NPs (Figure S3B), but no
significant differences were observed between the two series.
Hydrophilic−Lyophilic Polarity Inversion in the

Homologous Series of JNPs. A variety of homogeneous
and asymmetric nanoparticles can be used for stabilizing
emulsions and forming Pickering emulsions. Depending on the
affinity to one phase or the other, oil-in-water (o/w) or water-
in-oil (w/o) emulsions can be obtained, according to Finkle et
al.34 and similar to the Bancroft rules35 for surfactants. For
example, carbon black particles are more likely to form w/o
emulsions than the silica particles, due to their higher affinity to
the nonpolar phase than to water.36 In order to gauge the

change in polarity within a homologous series of five JNPs with
different relative lobe sizes, the AIBN-JNPs and APS-JNPs were
tested for their emulsification ability for different volumetric
ratios of heptane/water mixtures, wherein heptane molecule
exhibits purely nonpolar interactions.25

Photographs of the emulsions obtained with AIBN-JNPs and
the corresponding fluorescence microscopy images are
presented in Figure 4, whereby the top row depicts the PS
seed NPs and the AIBN-JNPs with increasing lobe sizes, while
the subsequent three rows represent glass vials containing
emulsions obtained for three volumetric ratios of heptane:
water (4:5, 3:6, and 1:8), and the six columns represent the
emulsification extents conferred by each type of nanoparticle.
More emulsification results at different solvent ratios are
presented in Figure S7. Before testing the emulsification ability,
the surface tension of a colloidal solution of 0.25 mg/mL of
JNPs in water was determined to be 72.6 mN/m at 23 °C,
which is identical to that of water, suggesting that these
particles were clean of surfactants (Figure S8). The time-

Figure 4. Formulation−composition maps with photographs of emulsions in glass vials and their corresponding fluorescence microscopy images
(scale bar is 400 nm) obtained with AIBN-JNPs. Top row depicts seed NPs and five AIBN-JNPs with increasing P(3-TSPM) lobe sizes (scale bar is
200 nm), while the subsequent three rows represent a different volumetric ratio of heptane to water (namely, 4:5, 3:6, and 1:8), and the six columns
represents the emulsification extents conferred by each type of nanoparticle. Yellow line indicates the w/o and o/w emulsion phase boundary; the
vertical arrow indicates the catastrophic and the horizontal the “static” transitional phase inversion.
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dependent measurements were performed in order to monitor
the potential leaching of surfactants or surface active impurities
from the JNPs, but the constant value over a period of
approximately 10 min, Figure S8, clearly shows that no surface
reorganization due to leaching of surfactants nor any detaching
of surface adsorbed small species were detected. Although,
slightly larger value of the surface tension ∼73.2 mN/m was
recorded for the seed PS NPs, Figure S2, at the same
concentration as that of JNPs, it remains within the error for
this type of measurement. Here we note that a surface tension
value of the colloid identical to that of pure water indicates that
the JNPs do not adsorb at the air−water interface; this is
presumably due to a high activation energy of attachment37,38

or surface dehydration, in contrast if this was very low, as would
be the case for nonpolar particles, it would result in colloid
instability and sedimentation. From a different perspective, it is
noteworthy to mention the refractive index matching criterion
used by Garbin et al.39 to establish whether a nanoparticle can
spontaneously adsorb at interfaces, assuming that the dispersive
van der Waals interaction is likely the dominating interaction
between the particle and the air/water interface. In this context,
the interaction energy between the JNPs and the phase 2 (air)
through the intervening medium phase 1 (water) can be

expressed as25,39 = −W D A( ) R
D(NP)12 6
, where the A(NP)12 is the

corresponding Hamaker constant. Spontaneous adsorption of
the particle at the interface occurs only if the Hamaker constant
of the nanoparticle/water/air system remains positive, which in
turn can be related through the Lifshitz’s theory to the
dielectric permittivity εi (i = 1-water, 2-air, NP) and the
refractive indices of refraction of the interacting media ni, see eq
S1 in the Supporting Information. The Hamaker constant
remains positive A(NP)12 > 0, when n1 is either larger or smaller
than both indices of refraction n2 and nNP. In this particular
case, here seed PS NP or the JNP adsorption at the air/water
interface, we have n1(water) = 1.33 for water at room
temperature, n2(air) = 1 for air, and nNP(PS‑P(3‑TSPM)) = 1.4−1.6
a range based on the available literature data on P(3-TSPM)40

and PS41 polymers and we observe that neither of the above
conditions are fulfilled for a spontaneous adsorption of the NP
at the air/water interface. Therefore, it is not surprising that the
colloid containing the JNPs does not show a drop in surface
tension. Furthermore, if the air would be replaced with a liquid
of higher index of refraction medium than that of water, e.g.
heptane, n1(heptane) = 1.387, then the NP adsorption at the
liquid/liquid interface may become possible according to this
criterion and also explain the formation of Pickering emulsions.
Column 1 of Figure 4 shows that the seed PS seed NPs only

produced w/o emulsion regardless of the solvent ratio due to
their nonpolar nature, i.e. higher affinity to the heptane phase
than water phase. Notably, both transitional and catastrophic
phase inversions were observed for the homologous series of
AIBN-JNPs, indicated by the yellow line in Figure 4. For the
volumetric ratios of heptane: water of 4:5 and 3:6, a “standard”
transitional phase inversions36 occurred with the increase in the
size of the P(3-TSPM) lobe comparable to that of the PS lobe,
i.e., aspect ratio of approximately 1:1 (horizontal arrow, Figure
4); whereby w/o emulsions were obtained for the JNPs
possessing a P(3-TSPM) lobe smaller than the PS one and o/w
emulsions were obtained for the JNPs with a 3-TSPM lobe
equal or larger in size than the PS lobe. This transitional
emulsion phase inversion can only arise from the reversal in the
polarity of the particles, specifically an increase in the affinity of

the JNPs toward the water phase with the increase in the P(3-
TSPM) lobe.36

Noteworthy, that the P(3-TSPM) lobe is more polar than
the PS one can also be inferred from the emulsification data for
the smallest lobe size presented in column 2 of Figures 4 and
S7, for which a catastrophic phase inversion was observed, o/w
emulsion was obtained for heptane: water 1:8. In contrast for
the PS seed NPs only w/o emulsion could be observed for all
solvent mixtures, suggesting that these have high affinity toward
the oil phase and “bend” the oil−water interface toward water,
or exhibits a concave tendency toward water,36 for any of the
solvent mixtures tested, according to the Finkle and Bancroft
rules discussed above. It can only therefore be the P(3-TSPM)
lobe that increases the polarity of the JNPs from the initially
nonpolar PS seeds.
The synthesis of AIBN-JNPs and the corresponding

emulsification results presented in Figure 4 and S7 were
repeated three times and were consistently reproducible. The
fluorescence microscopy images of the emulsions in Figures 4
and S7 were taken within 2 days after their production; no
significant changes were observed after 8 weeks of observation.
This suggests a good stability of the AIBN-JNPs Pickering
emulsions in time. After approximately 5 months, the o/w
emulsions phase separated, while the w/o ones continue to
remain stable.
While a catastrophic phase inversion in emulsions has been

often reported for JNPs,4,22,36,42 there is no report on
transitional phase inversion based on changes in the Janus
balance across a homologous series of JNPs, which underscores
the significance of the observation here. Furthermore, Pickering
emulsions generated with JNPs36 have been studied function of
particle concentration,5 solvent ratio,4 oil polarity,5 or time,15

but it remained challenging to isolate and distinguish between
the contribution of the particles and that of the molecular
surfactants. We hypothesize that transitional emulsion inversion
in a homologous JNP series cannot be observed in the presence
of molecular surfactants, which may significantly interfere with
the polarity contrast or Janus balance in the JNPs and their
overall effect will likely dominate due to their higher adsorption
dynamics at interfaces.36

It is instructive to compare the emulsification results of the
AIBN-JNPs series to those in the seminal work of Tu and
Lee,12 whereby a “dynamic” transitional emulsion phase
inversion36 was observed for a toluene: water mixture stabilized
by pH stimuli-responsive JNPs. The increase in the pH value
affected the relative sizes of the Janus lobes, but also the
ionization degree of the −COOH groups and thus induced the
w/o to o/w transition; we also note that in this case the
poly(vinyl alcohol) and poly(vinylpyrrolidone) were used as
interfacial stabilizers during synthesis, but were reportedly
removed by multiple washing cycles. Similarly, the pH triphasic
polymeric Janus JNPs producing transitional “dynamic”
emulsion phase inversion of an initially water/dodecane to
dodecane/water upon increasing the pH from 3 to 10 was
reported by Lu and Urban;43 in this case, the dioctylsulfo-
succinate surfactant used in the synthesis of JNPs was removed
by dialyzing the colloid for 3 days. However, in neither of the
cases reported above, it was not explicitly shown that the
molecular surfactants and stabilizers were completely removed
from the colloid. On the other hand, Passas-Lagos and Schüth5

aimed specifically at obtaining a transitional phase inversion in a
homologous series of Fe2O3/DVB (hydrophobic)-SiO2 (hydro-
philic)-JNPs by increasing the SiO2 lobe size, but were
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unsuccessful in observing it for either toluene/water or
vegetable oil/water mixtures.
The emulsions obtained from the second homologous series

of APS-JNPs (Figures 5 and S9) show a different situation. In
this case, only o/w emulsions were obtained, regardless of
either the relative lobe sizes of the JNPs or the volumetric ratio
of the solvents. Notably, the qualitative difference is apparent
upon comparing the fluorescence images (Figures S7B and
S9B) of the o/w emulsions obtained with the AIBN-JNPs and
APS-JNPs, specifically that the latter gave larger and spherical
droplets while the former smaller but somewhat aspherical
shaped heptane droplets. The APS-JNP synthesis (Figure 3)
and the emulsification results (Figure S9) were repeated three
times and were reproducible.
The evidence suggests the greater affinity of the APS-JNPs

for the polar water phase than for the nonpolar heptane

throughout the homologous series with no qualitative changes
upon increasing of the more polar P(3-TSPM) lobe. Therefore,
the difference between the behaviors of the two series can be
attributed to the polarity contrast between the Janus lobes,
while the aspect ratio25 (given in Tables S2 and S3) seem
identical for the corresponding JNPs of each homologous
series, compare Figures 2 and 3. A slight difference in the aspect
ratios of JNPs between the two homologous series appears for
the larger P(3-TSPM) lobes, specifically a more pronounced
tendency to form core−shell structures for the last two
members of the APS-JNPs series. Mock et al.30 proposed that
an increased wettability of the seed particle by the second
polymer may lead to core−shell NPs rather than asymmetric
JNPs with well-defined lobes. In this work, the use of the APS
initiator for the seed polymerization may have also changed the
surface wettability and the polarity of the initially nonpolar PS

Figure 5. Formulation−composition maps with photographs of emulsions in glass vials and their corresponding fluorescence microscopy images
(scale bar is 400 nm) obtained with APS-JNPs. Top row depicts seed NPs and five APS-JNPs with increasing P(3-TSPM) lobe sizes (scale bar is 200
nm), while the subsequent three rows represent a different volumetric ratio of heptane to water (namely, 4:5, 3:6, and 1:8), and the six columns
represents the emulsification extents conferred by each type of nanoparticle.
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seed NPs, but this remains challenging to determine
quantitatively. On the other hand, the fact that the resulting
APS-JNPs are indeed more polar than the AIBN-JNPs can be
deduced from the emulsification data. Furthermore, the
emulsification data clearly show that the ionic nature of APS
led to obtaining particles with a polar surface with a higher
affinity for the water phase than for the oil even for the (0.5 mL
3-TSPM) APS-JNPs, column 2 of Figure 5. This is in contrast
with both the seed PS NPs whose affinity is clearly toward the
oil phase and even the (0.5 mL 3-TSPM) AIBN-JNPs whose
affinity is toward the oil phase. The fact that the synthetic
methods are identical except the radical initiator comes to show
its dramatic influence on the surface polarity and polarity
contrast of the produced JNPs. It is known that the APS radical

initiator introduces polar sulfate groups at the surface of
polymer NPs.18,33 Hence, despite the similarity in bulk
composition of the AIBN-JNPs (Figure 2F) and APS-JNPs
(Figure 3F), and similar aspect ratio, it is their surface polarity
leading to different emulsification capability depending on the
nature of initiator used.
We have thus far established that the APS-JNPs are more

polar than the AIBN-JNPs from their higher affinity toward
water. Moreover, the polarity reversal observed within the
AIBN-JNP homologous series implies that these are also
amphiphilic and this behavior resembles that of a homologous
series of molecular surfactants whose polarity reverses above
and below the midrange in the HLB scale. Indeed based on the
change in the relative area of the polar P(3-TSPM) lobe to the

Table 1. HLB Values and the Aspect Ratio of Janus Nanoparticles within the AIBN-JNP Series Function of the Amount of
TSPM Added Relative to 1 g of Seed PS NPsa

AIBN-JNPs volume of TSPM/mL area of PS-lobe (×1000/nm2)b area of P(3-TSPM)-lobe (×1000/nm2)b JNPs aspect ratio P(3-TSPM):PS HLB numberc

0.5 81.0 19.5 0.2 4
1.0 82.0 41.4 0.5 7
2.0 86.7 79.0 0.9 10
3.0 64.8 107.4 1.7 12
4.0 55.1 132.7 2.4 14

aWe have considered the PS-lobe the non-polar lobe while the P(3-TSPM) was taken as the polar lobe. bThe areas of the lobes were calculated from
the equation A = 2πRh, where h is the height of the Janus lobe and R is its radius, Figure S10C, and includes the average of ca. 7 particles from the
corresponding SEM images presented in Figure 2. cValue calculated with eq 1, and approximately at the same values would have arrived if the
volumes of the lobes were considered instead.

Figure 6. (A) Cross-sectional SEM image of the hollow structure resulted from cooling and solidification of the water/paraffin emulsion stabilized by
the (2 mL 3-TSPM) AIBN-JNPs and (B) magnified region showing the monolayer at the water/paraffin interface where the preferential orientation
of JNPs is such that PS lobe (darker) lies down toward paraffin. (C) SEM image of the paraffin colloidosome resulting from cooling and
solidification of the paraffin/water emulsion stabilized by the (4 mL 3-TSPM) AIBN-JNPs and (D) magnified region showing the monolayer at the
colloidosome surface, where the preferential orientation of JNPs is such that PS lobe (darker) lies down toward paraffin. Insets of (B) and (D) are
cartoons depicting the type of emulsion and the orientation of the JNPs, PS (black) lobe and P(3-TSPM) (white) lobe. Only (A) and (B) samples
were Au sputtered.
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less polar PS lobe within the AIBN-JNP series it is possible to
calculate the HLB numbers for all the Janus particles in this
homologous series. For this calculation, we used the following
equation, resembling the earlier work of Griffin,44 which was
thoroughly reviewed by Pasquali et al.:45

=
+

−

−

A F

A F A F
HLB 20 P(3 TSPM) 1

P(3 TSPM) 1 PS 2 (1)

where the AP(3−TSPM) is the area of the polar lobe, APS the area
of the nonpolar PS lobe and in addition we have introduced
Fi,(i=1,2)-weighing factors accounting for the “degree” of polarity
of the lobes. The original approach of Griffin for surfactants
does not account for the polarity of the surfactant moieties, but
only considers their relative molecular weights: 20 × Mw(polar)/
Mw(molecule). The eq 1 takes the value of 20 for F2 = 0 and 0 for
F1 = 0, which are two extreme situations: strongly polar and
nonpolar particles respectively, with no amphiphilicity. On the
other hand a value of F1 = 1 (hypothetical 100% polar surface)
and F2 = 1 (hypothetical 100% nonpolar surface) assumes an
“ideal” polarity contrast between the two surface regions, see
Figure S10A, and thus the HLB are decided by the geometry of
the lobes, i.e. their aspect ratio. The results obtained for F1 = 1
and F2 = 1 for the AIBN-JNPs are given in Table 1. From the
calculations presented in the Table 1 it can be clearly observed
that the HLB number increases when the P(3-TSPM) lobe
becomes larger, thus covering almost the entire range of the
HLB scale (Griffin’s classification46) with the extreme values
obtained at 4 and 14. The fact that the members of the AIBN-
JNPs homologous series have HLB numbers below and above
the midrange value ∼10 correlates well with the emulsion phase
inversion and polarity reversal observed within this series. A less
arbitrary value could be assigned for F, and this can be
calculated from the ratio between the polar and nonpolar
dispersive surface energy components for each of the Janus
lobes, according to the discussion in Figure S10B in the
Supporting Information:
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where the small Greek gammas are the surface energies and the
superscripts “p” and “d” indicate the polar and dispersive
surface energy components of the corresponding Janus lobe.
However, determining the surface energy of the each individual

Janus lobes is nontrivial and we are currently working in this
direction and the results will be presented in a future
publication.
A polarity reversal within the APS-JNP series was not

observed suggesting that they are likely weakly amphiphilic,
that is F1 ≫ F2, in which case the calculation of the HLB
number will not be meaningful for this homologous series. In
order to test the above hypotheses we have further investigating
the APS- and AIBN-JNPs’ orientation at the interface between
paraffin/water solid emulsions. The choice of paraffin (CnH2n+2,
n = 24−36, mp 53−57 °C) is justified by that fact that similarly
to heptane, it is a purely dispersive substance, meaning that the
dispersive van der Waals component of paraffin wax is the sole
contributor to the total surface energy (J/m2)47,48 and the
cohesive energy (J/m3),49 as expected, for the purely nonpolar
linear alkanes. The emulsification was performed with molten
paraffin wax at 85 °C in the presence JNPs, from both
homologous series, and the emulsion phases were similar to
those presented in Figures 4 and 5. The SEM images of the
solid structures obtained after the cooling of the water/paraffin
or paraffin/water emulsions stabilized by the AIBN-JNPs and
APS-JNPs are presented in Figure 6A,B, for the (2 mL 3-
TSPM) AIBN-JNPs (paraffin/water 4:5) and in Figure 6C,D,
for the (4 mL 3-TSPM) AIBN-JNPs (paraffin/water 2:7),
respectively. The SEM results clearly show that AIBN-JNPs are
oriented such that the nonpolar PS lobe is oriented toward the
nonpolar paraffin wax, while the more polar P(3-TSPM) lobe
remains always oriented toward water. Noteworthy, is the
hexagonal centered packing obtained in the interfacial
monolayer for the case of the (4 mL 3-TSPM) AIBN-JNPs
and this would not be possible for unless the JNPs were
vertically oriented on the interface, see Figures 6D and S11C,D.
On the other hand a slightly less compact and a more relaxed
orientation for the (2 mL 3-TSPM) AIBN-JNPs, see Figures 6B
and S11A,B can be observed; nonetheless, the diameter of the
particles observed from the top of the JNP monolayer does
correspond to the diameter of the P(3-TSPM) lobe. This
observed preferred orientation confirms that the AIBN-
homologous series do possess amphiphilicity and this can be
attributed to the polarity contrast between the lobes.
On the other hand, the SEM images presented in Figure 7 of

the paraffin colloidosomes obtained from using the (4 mL 3-
TSPM) APS-JNPs and paraffin/water 2:7, show that indeed
these nanoparticles also stabilize the emulsion by adsorbing at

Figure 7. (A) SEM image of the paraffin colloidosome resulting from cooling and solidification of the paraffin/water emulsion stabilized by the (4
mL 3-TSPM) APS-JNPs and (B) magnified region showing the monolayer of JNPs at the water/paraffin interface where no preferential orientation
of the JNPs can be observed instead they appear to lie flat at the interface. Inset of (B) is a cartoon depicting the type of emulsion and the APS-JNPs
lying flat at the interface, PS (black) lobe and P(3-TSPM) (white) lobe.
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the oil/water interface thus generating only o/w emulsions, as
expected from Figure 5. On close inspection the APS-JNPs
appear to have no preferential orientation in the monolayer.
Similar results were found for the paraffin/water 6:3 emulsified
with (4 mL TSPM) APS-JNPs; see Figure S12 in the
Supporting Information. The lack of orientation for the APS-
JNPs suggests poor amphiphilicity due to a low surface polarity
contrast between the two Janus lobes.
It would be instructive to compare the emulsification

behavior observed for the homologous series of AIBN-JNPs
to that of a homologous series of surfactants spanning the
entire HLB scale, where typically the polarity reversal is
observed at the midrange, from poor water-soluble, low HLB
numbers ≪ 10 (w/o emulsifiers), to higher HLB values ≫ 10
with good water solubility (o/w emulsifiers), as presented in
Table 1. Furthermore, following the assumption that the overall
free energy of dehydration (or solvation) is additively
composed of independent contributions from the constituent
functional groups (e.g., −CH3 group, −CH2− methylene
group, and polar −COOH group contribute with approx-
imately −3.6, −1.5, and +25.5 kJ/mol, respectively),50,51 one
could predict the length of a straight alkyl chain at which the
molecular polarity switches from hydrophilic to lyophilic across
a simple homologous series of surfactants. The principle of
“independent surface action” often used for hydration of
proteins52 can also be applied to the large Janus amphiphiles for
which presumably only the outer shell of surface functional
groups play a role in the overall polarity balance, but more
detailed experimental and theoretical investigations in this
directions are needed. Thus, it becomes obvious that analogous
to molecular surfactants, AIBN-JNP series of amphiphiles show
polarity reversal and qualitatively their polarity balance can span
values below and above the midrange values on the HLB scale.
In the same time the APS-JNPs homologous series appears to
be rather polar, placed at the top of the HLB scale, well above
the midrange, due to their poor amphiphilic contrast.

■ CONCLUSION
Homologous series of polymeric solid-state JNPs of varying
lobe sizes and aspect ratio were synthesized for the first time in
surfactant-f ree conditions by seed polymerization and phase
separation. The seed polymerization was carried with PS NPs
under the monomer-starvation condition and by adjusting the
volume of the 3-TSPM monomer used JNPs of varying lobe
sizes were obtained. Acoustic emulsification of the 3-TSPM
monomer appeared to be the critical toward eliminating the
molecular surfactants from this synthetic step. Second, when
similar synthetic conditions were used, but only the radical
initiator was changed from the nonionic oil soluble AIBN to the
ionic water-soluble APS, similar aspect ratio for both
homologous series are obtained. However, differences in the
emulsification of water and hexane or molten paraffin wax
mixtures were observed. Polarity reversal was observed within
the AIBN-JNP homologous series, while no polarity reversal
was observed within the APS-JNPs. The polarity reversal within
the former series was deduced from the transitional and
catastrophic emulsion phase inversion, which also implies
amphiphilic behavior.
The AIBN-JNPs formulation−composition maps in Figure 4

correlated with their orientation at the interface, Figure 6, such
that PS-lobe orients toward oil and the P(3-TSPM) lobe
toward water proved that the obtained AIBN-JNPs do possess
an inherent amphiphilicity arising from the polarity contrast

between the two surface regions. The JNPs polarity reversed
within the AIBN-JNPs homologous series depending on the
relative size of the lobes due to their change in affinity between
the water and heptane phases. By analogy with the molecular
surfactants, we have shown that qualitatively the amphiphilicity
of the AIBN-JNPs within the homologous series appear to vary
with the relative size of the Janus lobes, and their amphiphilic
balance can span values below and above the midrange values
on the HLB scale.
This represents a step forward toward creating the next

generation of amphiphiles and emulsifiers, with additional
potential use as carriers of bulklike properties or of small
actives, could exceed the capabilities of molecular surfactants in
new applications. Furthermore, we clearly observed amphiphilic
manifestation for JNPs as large as few hundred of nanometers,
thus demonstrating that the amphiphilicity can indeed be
extrapolated from single molecular entities, such as surfactants,
to surfactant-free solid-state JNPs.
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