Bachelorarbeit

Bremsen mit Herz

Effekt von exzentrischem Ausdauertraining bei Herzpatienten

Heer Iris, Morgenhölzlistrasse 42, 8912 Obfelden, S09171364
Wagner Barbara, Ächerlistrasse 52, 6064 Kerns, S09170432

Departement: Gesundheit
Institut: Institut für Physiotherapie
Studienjahrgang: 2009
Eingereicht am: 18. Mai 2012
Betreuende Lehrperson: Schächtelein Sandra
Inhaltsverzeichnis

1 Abstract ... 6
 1.1 Ziel .. 6
 1.2 Methode .. 6
 1.3 Relevante Ergebnisse .. 6
 1.4 Schlussfolgerung ... 6
 1.5 Keywords ... 6

2 Einleitung .. 7
 2.1 Darstellung des Themas, Problemstellung und Abgrenzung 7
 2.2 Fragestellungen ... 8
 2.3 Zielsetzung .. 8
 2.4 Anmerkungen ... 8

3 Methode ... 9
 3.1 Recherche ... 9
 3.2 Einschlusskriterien ... 9
 3.3 Die Auswahl .. 10
 3.4 Bewertung der Studien .. 11
 3.5 Theoretischer Hintergrund .. 11
 3.6 Schreibprozess .. 11

4 Koronare Herzkrankheit .. 12
 4.1 Erkrankungen des Herzkreislaufsystems .. 12
 4.2 Definition .. 12
 4.2.1 Risikofaktoren ... 13
 4.2.2 Folgen ... 13

5 Muskelpathologie ... 14
 5.1 Muskelaufbau .. 14
 5.2 Vom elektrischen Signal zur Kontraktion ... 16

6 Kontraktionsformen des Muskels .. 17
 6.1 Konzentrische Muskelarbeit ... 18
 6.2 Exzentrische Muskelarbeit .. 18
 6.2.1 Definition ... 18
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2</td>
<td>Die exzentrische Bewegung</td>
<td>18</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Metabolismus</td>
<td>19</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Exzentrisch vs. Konzentrisch</td>
<td>20</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Konsequenzen für das Training</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Ausdauerleistung</td>
<td>21</td>
</tr>
<tr>
<td>7.1</td>
<td>Definition</td>
<td>21</td>
</tr>
<tr>
<td>7.2</td>
<td>Energiequellen</td>
<td>21</td>
</tr>
<tr>
<td>7.3</td>
<td>Aerobe und anaerobe Schwelle</td>
<td>22</td>
</tr>
<tr>
<td>7.4</td>
<td>Anpassung des Herzkreislaufsystems bei Ausdauerbelastung</td>
<td>22</td>
</tr>
<tr>
<td>7.5</td>
<td>Anpassung der Atmung</td>
<td>23</td>
</tr>
<tr>
<td>7.6</td>
<td>Längerfristige Anpassungen unter ausgeprägtem Ausdauertraining</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>Rehabilitation bei Herzpatienten</td>
<td>24</td>
</tr>
<tr>
<td>8.1</td>
<td>Ziele der Rehabilitation</td>
<td>24</td>
</tr>
<tr>
<td>8.2</td>
<td>Bewegungstherapie innerhalb der Rehabilitation</td>
<td>25</td>
</tr>
<tr>
<td>8.3</td>
<td>Effekte einer Ausdauerbelastung bei KHK-Patienten</td>
<td>25</td>
</tr>
<tr>
<td>8.4</td>
<td>Kontraindikationen</td>
<td>25</td>
</tr>
<tr>
<td>8.5</td>
<td>Abbruchkriterien während der Belastung</td>
<td>26</td>
</tr>
<tr>
<td>8.6</td>
<td>Leistungsdiagnostik</td>
<td>26</td>
</tr>
<tr>
<td>8.7</td>
<td>Ausdauertrainingsgestaltung bei KHK-Patienten</td>
<td>27</td>
</tr>
<tr>
<td>8.8</td>
<td>Dosierung</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Zusammenfassung der Studien</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>Ergebnisse aus wissenschaftlicher Literatur</td>
<td>43</td>
</tr>
<tr>
<td>10.1</td>
<td>Tretleistung</td>
<td>43</td>
</tr>
<tr>
<td>10.2</td>
<td>Sauerstoffaufnahme (VO₂)</td>
<td>44</td>
</tr>
<tr>
<td>10.3</td>
<td>Herzfrequenz (HF)</td>
<td>45</td>
</tr>
<tr>
<td>10.4</td>
<td>Subjektive Anstrengung</td>
<td>46</td>
</tr>
<tr>
<td>10.5</td>
<td>Muskelkater und muskuläre Beschwerden</td>
<td>47</td>
</tr>
<tr>
<td>10.6</td>
<td>Kraft-/Gehtests</td>
<td>47</td>
</tr>
<tr>
<td>10.7</td>
<td>Muskelfaserstruktur</td>
<td>48</td>
</tr>
<tr>
<td>10.8</td>
<td>Blutlaktatwerte</td>
<td>49</td>
</tr>
<tr>
<td>11</td>
<td>Diskussion</td>
<td>50</td>
</tr>
</tbody>
</table>
11.1 Studien mit Messungen während konzentrischer und exzentrischer Ausdauerbelastung ... 50
 11.1.1 Studienprotokoll .. 50
 11.1.2 Gegenüberstellung der Ergebnisse ... 51
 11.1.3 Einflussfaktoren auf die Ergebnisse .. 53
11.2 Studien zum Effekt von exzentrischem und konzentrischen Ausdauertraining 53
 11.2.1 Studienprotokoll .. 53
 11.2.2 Gegenüberstellung der Ergebnisse ... 56
12 Schlussfolgerung .. 60
13 Theorie-Praxis-Transfer .. 61
14 Bezug zu den Fragestellungen ... 62
15 Danksagung ... 63
16 Eigenständigkeitserklärung .. 63
17 Quellenverzeichnis .. 64
 17.1 Literaturverzeichnis ... 64
 17.2 Abbildungsverzeichnis .. 67
 17.3 Tabellenverzeichnis .. 67
18 Anhang .. 68
 18.1 Wortzahl: .. 68
 18.2 Beurteilungsformular ... 69
 18.3 Studienbeurteilungen .. 73
 18.4 Energiestoffwechsel .. 104
 18.4.1 Energiequellen .. 104
 18.4.2 Energieproduktion ... 104
 18.4.3 ATP-Quellen im Muskel .. 105
 18.4.4 Das Kreatinphosphatsystem .. 105
 18.4.5 Die Glykolyse ... 106
 18.4.6 Abbau von Fettsäuren .. 107
 18.5 Abkürzungsverzeichnis ... 108
 18.6 Glossar ... 109
 18.7 Literaturverzeichnis Glossar .. 121
1 Abstract

1.1 Ziel
Das Ziel dieser Bachelorarbeit ist, die kardiovaskulären Reaktionen und den Effekt auf die muskuläre Belastbarkeit der Beine einer exzentrischen Fahrradergometer-Ausdauerbelastung bei Herzpatienten und Gesunden zu untersuchen.

1.2 Methode

1.3 Relevante Ergebnisse
Herzpatienten und gesunde Probanden konnten in allen Studien während exzentrischer Ausdauerbelastung auf einem Fahrradergometer bei gleicher oder geringerer VO\textsubscript{2} eine größere Leistung erbringen als während konzentrischer Fahrradergometer-Ausdauerbelastung. Auch war die HF grundsätzlich während exzentrischer Muskelarbeit individuell sehr verschieden. Die konzentrische Muskelkraft der Knieextensoren verbesserte sich bei exzentrischem Ausdauertraining. Der größere Kraftzuwachs hatte jedoch keinen funktionellen Effekt.

1.4 Schlussfolgerung

1.5 Keywords
eccentric training, coronary heart disease, coronary, negative work, anabolic metabolism, concentric training.
2 Einleitung

2.1 Darstellung des Themas, Problemstellung und Abgrenzung

Die kardiovaskuläre Ereignisrate kann präventiv durch körperliche Aktivität um bis zu 40\% gesenkt werden (Mewis, Riessen & Spyridopoulos, 2006). In den Industrieländern betragen die Todesfälle durch Erkrankungen des Herzkreislaufsystems ca. 45\% der Gesamtsterblichkeitsrate (Pokan et al., 2009). Dabei sterben ca. 50-60\% der Erkrankten aufgrund der koronaren Herzkrankheit (KHK), beispielsweise durch einen Herzinfarkt (Hoffmann & Müller, 2008). Jedoch betonen Meyer und Foster. (2004) in ihrem Text: „Aufgrund des Fortschrittes der medizinischen Therapie leben Herzpatienten heute länger als noch vor einem Jahrzehnt und erreichen häufig eine normale Lebenserwartung.“ (S. 70)

Durch die verminderte kardiale Belastbarkeit der Herzpatienten erfolgt eine körperliche Inaktivierung (Pokan et al., 2009). Diese bewirkt wiederum eine Abnahme der Ausdauerfähigkeit, der Muskelkraft und Muskelmasse, welche die Patienten für die Bewältigung ihres Alltags brauchen (Meyer & Foster, 2004). Somit ist die Verbesserung der körperlichen Leistungsfähigkeit ein wichtiger Bestandteil der koronaren Rehabilitation (Hoffmann et al., 2008). Mittels körperlichem Training kann die Mobilität und Selbständigkei

Die exzentrische Muskelarbeit ist eine wesentliche Komponente unseres täglichen Lebens. Beim normalen Gehen, Berg ab gehen wie auch beim Runtersteigen der Treppe ist exzentrische Kraft erforderlich. (Steiner et al., 2003; Bubbico & Kravitz, 2010) Während
der exzentrischen Muskelarbeit kann viel Kraft bei geringer metabolischer Belastung generiert werden (Bubbico et al., 2010).

Aufgrund dieser Tatsachen ist es für die Physiotherapie interessant, den Effekt des exzentrischen Ausdauertrainings auf die Ausdauerfähigkeit und die Muskelkraft bei belastungsreduzierten Herzpatienten zu untersuchen.

2.2 Fragestellungen

Welche kardiovaskulären Reaktionen zeigen sich während exzentrischer Fahrradergometer-Ausdauerbelastung anhand der Sauerstoffaufnahme (VO$_2$) und der Herzfrequenz (HF)?

Was ist der Effekt von exzentrischem Fahrradergometer-Ausdauertraining bei Herzpatienten in Bezug auf das kardiovaskuläre System und die muskuläre Belastbarkeit der Beine? Dabei interessieren die Autorinnen Veränderungen bezüglich der Sauerstoffaufnahme (VO$_2$), der Herzfrequenz (HF), der subjektiven Anstrengung, der Tretleistung, des Muskelkaters, der Muskelkraft und der Muskelfaserstruktur.

2.3 Zielsetzung

Die Ziele dieser Bachelorarbeit sind:

- anhand von Studien die kardiovaskulären Reaktionen während exzentrischer Fahrradergometer-Ausdauerbelastung bei Herzpatienten und Gesunden darzustellen.

- den Effekt dieser Trainingsmethode auf die muskuläre Belastbarkeit der Beine und das kardiovaskuläre System bei Herzpatienten sowie Gesunden zu erläutern.

- die Umsetzbarkeit dieser Ausdauerbelastungsmethode in die Praxis aufzuzeigen.

2.4 Anmerkungen

Medizinische und wissenschaftliche Begriffe dieser Arbeit sind zum Verständnis im Glossar definiert. Das Glossar befindet sich im Anhang.
3 Methode

3.1 Recherche

Die daraufhin erneute Literaturrecherche erfolgte zwischen Januar und Februar 2012 systematisch in den Suchmaschinen AMED, binet.org, CINAHL, Crochane Library, Medline, PEDro, PubMed, SafteyLit und SAPHIR. Dabei wurden folgende Keywords verwendet:
„eccentric training“, „coronary heart disease“, „coronary“, ”negative work”, “anabolic metabolism” und “concentric training“.

In den Datenbanken PEDro, PubMed und Medline wurden passende Studien gefunden. Um die Suche noch einzudämmen, wurden die Keywords folgendermaßen verknüpft:
- eccentric training AND coronary heart disease
- eccentric training AND coronary
- eccentric training AND anabolic metabolism
- concentric training AND coronary heart disease
- negative work AND coronary heart

Unter genannten Schlagwörtern wurden in den Datenbanken PubMed 134, Medline 1 und PEDro 1 Artikel gefunden.

3.2 Einschlusskriterien
Folgende Einschlusskriterien wurden für die weitere Studienauswahl festgelegt:
- Studien mit exzentrischem Ausdauertraining mittels Fahrradergometer
- Studien bei KHK-Patienten und gesunden Probanden
- Studien, die mindestens Messungen und Vergleiche von HF und VO₂ aufzeigen.
3.3 Die Auswahl

Die Auswahl der Studien erfolgte im Februar 2012. Daraus ergaben sich sechs Studien, die sich aus drei randomisiert kontrollierten Studien (RCT), zwei Fallstudien und einem Review zusammensetzen.

RCTs:

- Does eccentric endurance training improve walking capacity in patients with coronary artery disease? A randomized controlled pilot study

- Eccentric endurance training in subjects with coronary artery disease: a novel exercise paradigm in cardiac rehabilitation?

- Eccentric Exercise in Coronary Patients: Central Hemodynamic and Metabolic Responses

Fallstudien:

- Eccentric cycle exercise: training application of specific circulatory adjustments

- Cardiopulmonary Responses of Middle-Aged Men Without Cardiopulmonary Disease to Steady-Rate Positive and Negative Work Performed on a Cycle Ergometer.
 Chung, F., Dean, E. & Ross, J. (1999)

Review:

- Eccentric Exercise in Patients with Chronic Health Conditions: A Systematic Review

- Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen
- Eccentric ergometry: increases in locomotor muscle size and strength at low training intensities

Somit werden in dieser Arbeit insgesamt sieben Studien behandelt.

3.4 Bewertung der Studien

3.5 Theoretischer Hintergrund

3.6 Schreibprozess
4 Koronare Herzkrankheit

In diesem Kapitel möchten die Autorinnen näher auf die koronare Herzkrankheit eingehen, da drei der ausgewählten Studien bei Patienten mit einer koronaren Herzkrankheit durchgeführt wurden. Die koronare Herzkrankheit gehört zu den Erkrankungen des Herzkreislaufsystems, auf welche nachfolgend kurz eingegangen wird. Anschliessend folgt die Definition der koronaren Herzkrankheit, deren Risikofaktoren und Folgen.

4.1 Erkrankungen des Herzkreislaufsystems

Todesfälle aufgrund von Erkrankungen des Herzkreislaufsystems betragen in den Industrieländern ca. 45% und in den Entwicklungsländern um die 25% der Gesamtsterblichkeitsrate (Pokan et al., 2009). Laut Pokan et al. (2009) werden nach der WHO (World Health Organization) 1992 folgende Diagnosegruppen dazu gezählt:

- Akutes rheumatisches Fieber
- Chronisch rheumatische Herzkrankheiten
- Hypertonie
- Ischämische Herzkrankheiten
- Pulmonale Herzkrankheit und Krankheiten des Lungenkreislaufs
- Zerebrovaskuläre Krankheiten
- Krankheiten der Arterien, Arteriolen und Kapillaren
- Krankheiten der Venen, der Lymphgefäße und der Lymphknoten
- Sonstige und nicht näher bezeichnete Krankheiten des Kreislaufsystems.

In den nächsten Jahren könnte die kardiovaskuläre Mortalität weiter steigen, da die Bevölkerung immer älter wird und somit eventuell mehr Menschen an Herzkreislaufkrankheiten leiden. Auch führt die steigende Häufigkeit der Erkrankungen in der Bevölkerung, die sogenannte Morbidität, zu schwerwiegenden physischen, psychischen und sozialen Beeinträchtigungen und daraus resultierender Lebensqualitätsminderung. (Pokan et al., 2009)

4.2 Definition

Durch einen manifesten Verlauf der Arteriosklerose in den Herzkranzarterien entwickelt sich dort eine Lumenverengung, eine sogenannte Stenose (Mewis et al., 2006). Dadurch entsteht ein Missverhältnis von Sauerstoffbedarf und Sauerstoffangebot im Herzmuskel (ischämische Herzkrankheit). Bei einer relevanten Stenose, welche sich durch eine
Lumenverengung von mindestens 70% definiert, können klinische Symptome auftreten. (Mewis et al., 2006; Pokan et al., 2009)

4.2.1 Risikofaktoren
Mewis et al. (2006) definieren folgende Risikofaktoren einer koronaren Herzkrankheit:
- Hyperlipoproteinämie (Fettstoffwechselstörung)
- Nikotinabusus
- Diabetes mellitus
- Arterielle Hypertonie
- Adipositas (Fettleibigkeit).

4.2.2 Folgen
Die koronare Herzkrankheit kann still verlaufen oder sich zu einer Angina pectoris, einem Myokardinfarkt, einer Herzinsuffizienz, Herzrhythmusstörungen oder einem plötzlichen Herztod entwickeln (Mewis et al., 2006; Pokan et al., 2009). Bei einem Myokardinfarkt stirbt Herzmuskelgewebe ab und es entsteht kontraktionsunfähiges Narbengewebe. Die Herzinsuffizienz hingegen geht mit einer Funktionsstörung des Herzens einher, wobei das Schlagvolumen reduziert ist. (Van Gestel, k.D.)

5 Muskelphysiologie
Um die exzentrische Muskelarbeit zu verstehen, werden in diesem Kapitel der Muskelaufbau anhand der Abbildung 1 und der Ablauf einer Muskelkontraktion genauer beschrieben.

5.1 Muskelaufbau

Ein Muskel besteht aus vielen Muskelfasern. Dies sind grosse lange Zellen, die mehrere Zellkerne besitzen. Eine Muskelfaser ist aus vielen Myofibrillen aufgebaut, welche sich wiederum aus aneinander gereihten Sarkomeren zusammensetzen. (Van Duijn, 2009)

Die Aktinfilamente sind mittels α-Aktin mit den Z-Linien verbunden und werden so in ihrer Position gehalten (Horn et al., 2005; Van den Berg et al., 2003). Wie in Abb. 3 ersichtlich, besitzt ein Aktinfilament Aktinproteine, Troponinkomplexe und Tropomyosin (Horn et al., 2005; Van den Berg et al., 2003; Van Duijn, 2009).

Abb. 4 zeigt ein Myosinfilament. Diese sind ebenfalls mittels Verbindungsstrukturen in ihrer Position gesichert (Horn et al., 2005). So stabilisiert zum Beispiel Titin die Myosinfilamente am α-Aktin (Van Duijn, 2009). Auch gibt der M-Streifen in der Mitte des Sarkomeres den Myosinfilamenten Halt. Ein Myosinfilament besteht aus
Myosinmolekülen, welche wiederum je aus sechs Polypeptidketten aufgebaut sind. (Horn et al., 2005) Zwei Ketten winden sich und bilden einen Schaft, einen beweglichen Halsteil und am Ende das sogenannte Myosinköpfchen. Der Kopf besitzt einerseits eine Andockstelle für ATP (Adenosintriphosphat) andererseits eine Aktinbindungsstelle. (Horn et al., 2005; Van Duijn, 2009)

5.2 Vom elektrischen Signal zur Kontraktion
Beim einer willentlichen Kontraktion eines Muskels wird ein Aktionspotential im motorischen Nerv zur motorischen Endplatte weitergeleitet. Dort wird die Erregung auf die Muskelfasern übertragen und Kalzium-Ionen (Ca$^{2+}$) strömen aus dem anliegenden sarkoplasmatischen Retikulum in das Zytoplasma der Muskelzelle (siehe Abb. 5). (Horn et al., 2005; Van den Berg et al., 2003) Diese Kalzium-Ionen binden sich an Troponin. Durch die Ca$^{2+}$-Bindung wird das Tropomyosinmolekül räumlich neu geordnet und die Bindungsstelle am Aktin wird für das Myosinköpfchen frei. (Horn et al., 2005; Van den Berg et al., 2003; Van Duijn, 2009)

Abb. 6: Abfolge des Querbrückenzyklus
Im Folgenden wird der Querbrückenzyklus anhand der Abb. 6 beschrieben. Das Myosinköpfchen dockt an das Aktin (Phase 3-4). Diese sogenannte Querbrücke bewirkt, dass sich die bereits gespaltenen Adenosintriphosphat (ATP)-Elemente, Adenosindiphosphat
(ADP) und Phosphat (P), vom Myosinköpfchen lösen (Van Duijn, 2009). Es wird Energie frei und der Kopf sowie der Halsteil des Myosins werden gebogen. Durch diese Bewegung wird das Aktinfilament über das Myosinfilament verschoben. (Horn et al., 2005; Van den Berg et al., 2003; Van Duijn, 2009) Diese Bewegung kann in zwei Kraftschläge unterteilt werden. Der erste Kraftschlag (Phase 5) erfolgt bei der Abspaltung des P und der zweite Kraftschlag (Phase 6) durch das Lösen des ADP vom Myosinköpfchen. (Van Duijn, 2009)

Sobald sich ein neues ATP an das Myosinköpfchen bindet, löst sich dieses vom Aktin (Phase 1). (Horn et al., 2005; Van den Berg et al., 2003; Van Duijn, 2009) Durch die Spaltung des ATPs in ADP und P klappt der Kopf- und Halsteil des Myosins wieder auf (Phase 2) und das Myosin bindet sich erneut an das Aktin (Van Duijn, 2009). Somit kann der Querbrückenzyklus wieder von neuem beginnen (Horn et al., 2005).

Ein Myosinfilament besitzt ca. 600 Myosinköpfchen. Dabei sind nicht alle Myosinköpfchen gleichzeitig an die Andockstelle des Aktinfilaments gebunden. (Van Duijn, 2009) Für einen Kraftschlag werden die Myosinköpfchen zeitlich versetzt aktiviert (Horn et al., 2005; Van den Berg et al., 2003). Somit müssen diese Kraftschläge gut koordiniert werden, um eine fliessende Bewegung zu erhalten (Van Duijn, 2009).

6 Kontraktionsformen des Muskels

Van Duijn (2009) nennt die verschiedenen Kontraktionsformen des Muskels, welche in der Grafik 1 ersichtlich sind.

Grafik 1 Kontraktionsformen

- dynamisch
- statisch / isometrisch
- konzentrisch
- exzentrisch
6.1 Konzentrische Muskelarbeit
Während der konzentrischen Muskelarbeit ist die aufgewendete Muskelkraft grösser als der Widerstand. Dabei verläuft die Bewegung der Kontraktion in die Richtung, in die sich der Muskel verkürzt. Das heisst Ursprung und Ansatz des Muskels nähern sich an. (Boeckh-Behrens & Buskies, 2004)
Der Kontraktionsmechanismus auf Sarkomer-Ebene bei der konzentrischen Muskelarbeit wurde im Kapitel 5.2. beschrieben. Deshalb wird an dieser Stelle nicht mehr darauf eingegangen.

6.2 Exzentrische Muskelarbeit
Da sich die ausgewählten Studien mit exzentrischer Muskelarbeit befassen, wird in diesem Kapitel der Vorgang dieser Arbeitsweise genauer beschrieben.

6.2.1 Definition
Der Begriff „exzentrisch“ entstand 1950 (Steiner, 2003). Die Bezeichnung exzentrisch kommt von excentric (ex = weg von, centric = bezieht sich auf ein Zentrum) und bedeutet „weg vom Zentrum bewegen“ (Bubbico et al., 2010). 50 Jahre vorher wurde für dieselbe Muskelarbeit von „negative work“ gesprochen (Steiner, 2003). Diese Bezeichnung gründet darin, dass der Muskel bei der Bewegung Energie absorbiert (Bubbico et al., 2010). Heute werden die beiden Begriffe als Synonyme verwendet (Steiner, 2003).

6.2.2 Die exzentrische Bewegung
„Als exzentrisch werden Bewegungen bezeichnet, bei denen sich der Gelenkswinkel auf der Agonistenseite öffnet.“ (Steiner, 2003) Der aktive, kontrahierte Muskel verlängert sich unter Spannung, ausgelöst durch eine einwirkende äussere Kraft. Im Alltag ist dies meist die Gravitationskraft. Der Muskel verrichtet so eine Auffang- oder Bremsarbeit. (Bubbico et al., 2010; Hegner, 2009; Steiner, 2003) Die exzentrische Muskelarbeit ist ein wichtiger Anteil der Alltagsaktivität. Die Muskeln arbeiten dabei als Stossdämpfer und absorbieren somit die Bewegungsgenergie. (Bubbico et al., 2010; Steiner, 2003) Ein Teil der aufgenommenen kinetischen Energie kann in der konzentrischen Phase wieder abgegeben werden. Die Muskelarbeit kann deshalb mit der dynamischen Funktion einer Feder verglichen werden. Der Körper kann so beträchtlich Energie sparen. (Meyer et al., 2004; Steiner, 2003) Ebenso ist die exzentrische Muskelarbeit durch die bremsende Wirkung und als Gegenkraft zur konzentrischen Arbeitsweise ein Schutz der Gelenkstrukturen vor Verletzungen (Bubbico et al., 2010). Die meisten Bewegungsabfolgen bestehen aus
exzentrischer und konzentrischer Muskelaktivität. Die exzentrische Bewegung erfordert eine präzisere Kontrolle, wie beispielsweise ein Glas abstellen. Aber auch Berg ab gehen oder Treppen runtersteigen sind Beispiele für exzentrische Muskelarbeit. (Hegner, 2009; Meyer et al., 2004; Steiner, 2003)

6.2.3 Metabolismus

6.2.4 Exzentrisch vs. Konzentrisch

Hegner (2009) vergleicht auf Seite 140 die konzentrische und exzentrische Muskelarbeit folgendermassen tabellarisch:

Tabelle 1 Gegenüberstellung konzentrisches vs. exzentrisches Training

<table>
<thead>
<tr>
<th></th>
<th>Dynamisch-konzentrisches Training</th>
<th>Dynamisch-exzentrisches Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsweise</td>
<td>Überwindend, positive Beschleunigung</td>
<td>Nachgebend, bremsend, negative Beschleunigung</td>
</tr>
<tr>
<td>Funktionsweise</td>
<td>Innere Widerstände der Muskel-Sehnen-Komplexe müssen überwunden werden.</td>
<td>Innere Widerstände der Muskel-Sehnen-Komplexe, die elastische Energie, wird für die Dämpf- und Bremsarbeit genutzt.</td>
</tr>
<tr>
<td>Trainingslast</td>
<td>Max. 100% der Maximalkraft</td>
<td>Bis zu 140% der (statischen) Maximalkraft</td>
</tr>
<tr>
<td>Muskelnkater</td>
<td>Geringes Risiko; die Muskeln können praktisch nicht überfordert werden.</td>
<td>Erhebliches Risiko; die Muskeln werden bei intensiver, ungewohnter Beanspruchung oft überfordert.</td>
</tr>
<tr>
<td>Belastung passiver Strukturen</td>
<td>Mit Voraussetzung, dass Rumpf und Gelenke ausreichend stabilisiert werden, besteht kaum Gefahr, dass diese überlastet werden.</td>
<td>Belastung des Bewegungs- und Stützsystems kann sehr gross sein. Die Kontrolle ist erschwert und die Gefahr, dass einzelne Strukturen überbelastet und geschädigt werden, ist vorhanden.</td>
</tr>
<tr>
<td>Energiebilanz</td>
<td>Der Energieaufwand und die Sauerstoffaufnahme sind relativ hoch, kardio-vasculäres System wird intensiv beansprucht und mittrainiert.</td>
<td>Die Sauerstoffaufnahme, die Beanspruchung des Energiestoffwechsels und die Belastung des kardio-respiratorischen Systems sind um 50-80% geringer als bei dynamisch-konzentrischem Training.</td>
</tr>
<tr>
<td>Anforderung</td>
<td>Mittelmässig hohe Anforderung an intramuskuläre Koordination.</td>
<td>hohe bis sehr hohe Anforderung an intramuskuläre Koordination.</td>
</tr>
<tr>
<td>Anwendung</td>
<td>Hypertrophietraining, Entwicklung einer hohen Belastungsverträglichkeit der Muskulatur und des Binde- und Stützgewebes.</td>
<td>Motorische Einheiten werden aktiviert, welche durch die willkürliche konzentrische Arbeit nicht rekrutiert werden können, Entwicklung der intramuskulären Koordination auf hohem und höchstem Niveau.</td>
</tr>
</tbody>
</table>
6.2.5 Konsequenzen für das Training
Grundsätzlich soll das Training je nach Beanspruchung gestaltet werden. Das heisst, wenn die exzentrische Leistungsfähigkeit verbessert werden soll, so erfordert dies ein exzentrisches Training. In der Rehabilitation wird exzentrisches Training bei Pathologien, welche ätiologisch eine exzentrische Komponente aufweisen (z.B. Tennisellbogen), empfohlen. (Steiner, 2003) Im Krafttraining ist das exzentrische Training eine sehr effiziente Methode, wenn man den Muskel zu weiteren Anpassungen provozieren will. Es ist jedoch wichtig, dass durch aufbauendes konzentrisches Krafttraining die nötige Belastungstoleranz bereits entwickelt ist. (Hegner, 2009)

7 Ausdauerleistung

7.1 Definition

7.2 Energiequellen
Während einer Ausdauerleistung werden die Energiespeicher geleert und müssen möglichst schnell durch Aufnahme von Glukose aus dem Blut wieder aufgefüllt werden (Speckmann et al., 2008).

Die aerobe Glykolyse ist die wichtigste Energiequelle im Muskel. Bei adäquater Durchblutung liefert sie stetig ATP. Während dynamischer Arbeit wird die Muskelzelle besser mit Blut und Sauerstoff versorgt. Somit kann die aerobe Energiegewinnung bei dynamischer Arbeit länger aufrechterhalten bleiben als bei isometrischer Arbeit. (Mewis et al., 2006; Speckmann et al., 2008)

Der aerobe Abbau von Glukose und Fettsäuren kann den maximalen ATP-Verbrauch in der phasischen Muskulatur nicht decken, da sie langsam abläuft. Die
anaerobe Glykolyse hingegen verläuft sehr schnell und kann somit den ATP-Verbrauch vorübergehend auch bei den phasischen Muskeln und unter ungenügender Sauerstoffversorgung decken. Jedoch ist der Energiegewinn gering und durch die Laktatbildung entsteht eine metabolische Azidose. Bei höherer Belastung wird zusätzlich das Kreatinsystem aktiv, um ATP zu synthetisieren. (Speckmann et al., 2008)

7.3 Aerobe und anaerobe Schwelle

7.4 Anpassung des Herzkreislaufsystems bei Ausdauerbelastung

Ein wichtiges Ziel des Organismus ist es, die Lebensfunktionen optimal aufrecht zu erhalten. Dabei müssen sich die Zellen und der Organismus an die veränderten Umweltbedingungen anpassen und regulieren bestimmte Funktionen herauf oder herunter. Ein längerdauernder Reiz führt zu einem strukturellen Umbau. (Speckmann et al., 2008)

Das Herzkreislaufsystem passt sich unter kontinuierlicher Belastung an. Das Herzminutenvolumen wird durch eine höhere HF und zunehmendes Schlagvolumen gesteigert. (Mewis et al., 2006; Speckmann et al., 2008) Diese Aufgabe fällt dem Sympathikus des autonomen Nervensystems zu (Van Gestel, k.D.) In den arbeitenden
Muskeln, im Herz und im Gehirn bewirkt die Ausdauerleistung eine Vasodilatation und in allen übrigen Organen eine Vasokonstriktion (Speckmann et al., 2008; Van Gestel, k.D.). Durch die lokale Vasodilatation im Muskel sinkt der periphere Gefäßwiderstand und würde zu einem Blutdruckabfall führen. Dies wird jedoch durch das sympathische Nervensystem verhindert. Auch begünstigt der Sympathikus den Blutrückstrom zur rechten Herzkammer. (Van Gestel, k.D.)

7.5 Anpassung der Atmung
Das Ziel der angepassten Atmung unter Belastung ist eine bessere Sauerstoffversorgung der Muskulatur. Das Atemzeitvolumen kann bis auf 140 l/min ansteigen. Das Atemäquivalent bleibt bis zur aeroben Schwelle konstant. Steigt die Ventilation stark an, steigt auch das Atemäquivalent. (Speckmann et al., 2008)

Während schwerer Belastung ist der Sauerstoffbedarf wie auch die Kohlendioxidproduktion grösser als die VO$_2$. Dies führt dazu, dass anaerob ATP gebildet werden muss und eine metabolische Azidose entsteht. Die Atmung kompensiert mit einem gesteigerten Antrieb und darauf folgender Hyperventilation. (Mewis et al., 2006; Speckmann et al., 2008) Am Ende einer starken Belastung ist die Sauerstoffschuld deutlich grösser als bei leichter Arbeit (Speckmann et al., 2008).

7.6 Längerfristige Anpassungen unter ausgeprägtem Ausdauertraining
Das Ziel des Ausdauertrainings ist die Dauerleistungsgrenze zu verschieben. Bei längerem aerobem Ausdauertraining werden die zellulären Energiespeicher entleert. Durch das wiederholte Auffüllen und Entleeren vermehren sich die Speicher und es kommt zu einer gesteigerten Leistungsfähigkeit. (Speckmann et al., 2008) Auch bewirkt der erhöhte ATP-Verbrauch eine Vergrösserung der Mitochondrienoberfläche, wodurch die aerobe Kapazität gesteigert wird (Pokan et al., 2009; Speckmann et al., 2008).

Ausdauertraining führt zu besserer Durchblutung der beanspruchten Muskulatur und einer grösseren Kapillardichte. Auch steigt sich das Blutvolumen, wodurch sich das gesamte Hämoglobin vermehrt. Dies führt wiederum zu einer höheren maximalen VO$_2$. (Speckmann et al., 2008) Zusätzlich beeinflusst die dynamische Belastung den Fettstoff-
wechsel positiv, wobei die Entstehung von Arteriosklerose verzögert werden kann (Mewis et al., 2006).

Der Mensch kann nach 7-10 Tagen Training die trainierten Bewegungen effizienter durchführen, wobei die Beanspruchung sinkt und die Leistung länger aufrechterhalten werden kann. Auch können die Muskelfasern besser rekrutiert werden. (Speckmann et al., 2008)

Das Herz kann sich unter ausgeprägtem Ausdauertraining folgendermassen anpassen: die Herzwände hypertrophieren, das Volumen der Herzohlen wird grösser und das Herzvolumen kann sich bis zu 100% vergrössern. Das Schlagvolumen in Ruhe kann sich bis zu 100% und das maximale Herzminutenvolumen bis zu 90% steigern. Dadurch sinkt der Puls in Ruhe und kann Werte unter 40 Schläge/min erreichen. Das Herzminutenvolumen bleibt unter Ruhebedingungen vor und nach dem Training unverändert, da das Schlagvolumen zwar zunimmt die HF jedoch abnimmt. (Mewis et al., 2006; Speckmann et al., 2008)

Ausdauertraining hat auch einen Einfluss auf hormonelle Organe, wie Hypophyse und Nebenniere. Dadurch wird die Steuerung des Stoffwechsels sensitiver für verschiedene Hormone und die Anpassung der Ausdauerleistung wird verbessert. (Speckmann et al., 2008)

8 Rehabilitation bei Herzpatienten

„Die umfassende kardiologische Rehabilitation ist die Summe von koordinierten Massnahmen, welche die Folgen von Herzerkrankungen vermindern, die Morbidität und Mortalität reduzieren und die gesundheitsbezogene Lebensqualität einschliesslich der psychosozialen Situation der Patienten verbessern sollen. Dabei ist die Bereitstellung strukturierter sekundärpräventiver Strategien besonders wichtig. Schwerpunkte dieser Massnahmen sind Trainingstherapie und Aktivitätsberatung sowie Ernährungstherapie und -beratung, Raucherentwöhnung, psychosoziale Intervention und Pharmakotherapie.“ (Pokan et al., 2009, S.17)

8.1 Ziele der Rehabilitation

Die Ziele einer individuell angepassten Bewegungstherapie sind: die Lebensqualität und funktionelle Kapazität wiederzuerlangen und zu verbessern sowie erneuten kardialen Ereignissen vorzubeugen und die Progression der Erkrankung zu verringern (Mewis et al., 2006). Auch soll die Motivation für mehr Bewegung im Alltag gefördert, der Umgang mit
Stress erlernt, die Rückkehr in den Arbeitsprozess ermöglicht und Ängste abgebaut werden. (Van Gestel, k. D.)

8.2 Bewegungstherapie innerhalb der Rehabilitation

8.3 Effekte einer Ausdauerbelastung bei KHK-Patienten
Ausdauertraining senkt den Cholesterinspiegel, womit eine Abschwächung der KHK-Progression erfolgt. Zudem wird die maximale VO2 (VO2 max) durch die Zunahme der arteriovenösen Sauerstoffdifferenz und des Schlagvolumens grösser. Durch das gesteigerte Schlagvolumen, verringert sich die HF auf gleicher Leistungsstufe und somit der myokardiale Sauerstoffbedarf. Bei einem Patienten mit schlechter Myokardfunktion vergrößert sich jedoch nur die arteriovenöse Sauerstoffdifferenz. (Mewis et al., 2006)
Herzpatienten nehmen verschiedene Medikamente ein, auf welche in dieser Arbeit nicht eingegangen wird. Es erscheint den Autorinnen aber wichtig zu erwähnen, dass bei der Rehabilitation von Herzpatienten die Medikation Einfluss haben kann, so z.B. Beta-blocker, welche den Puls senken. (ZHAW Institut für Physiotherapie, 2010)

8.4 Kontraindikationen
Mewis et al. (2006) definieren folgende Kontraindikationen für die kardiologische Bewegungstherapie:
- Frischer Myokardinfarkt
- Angina pectoris bei Belastung < 50 Watt
- Herzinsuffizienz NYHA IV
- Kardiale Dekompensation
- Unkontrollierbare ventrikuläre Arhythmien
- Neu aufgetretenes Vorhofflimmern
- Akute Myo- oder Perikarditis (Entzündung des Herzmuskels oder des Herzbeutels)
- Schwere Aortenstenose
- Wiederkehrendes oder kurz zurückliegendes embolisches Geschehen
- Schlecht eingestellte Hypertonie (Bluthochdruck)
- Akute Infektionskrankheiten oder Fieber.

8.5 Abbruchkriterien während der Belastung
Das ZHAW Institut für Physiotherapie (2010) nennt auf Seite 3 folgende Abbruchkriterien während einer Belastung:
- Plötzlich auftretende Herzhystermusstörungen
- Auftretende Angina pectoris
- Blässe
- Starke Transpiration (Schwitzen)
- Dyspnöe
- Absinken oder sehr schneller Anstieg der HF
- Neigung zu Synkopen (Ohnmachtsanfälle) mit Blutdruckabfall.

8.6 Leistungsdiagnostik
Vor einem Ausdauertraining in der kardiologischen Rehabilitation sollte eine genaue Leistungsdiagnostik unter aktueller Medikation durchgeführt werden, welche optimalerweise zur selben Tageszeit wie das Training erfolgt. Es wurde festgestellt, dass KHK-Patienten ab einer Belastung von 70% der Maximalleistung mit einer Reduktion des Auswurfvolumens reagieren. Dies geht mit einem überproportionalen Anstieg der HF einher. Diese Erkenntnis ist bei der Dosierung in der kardiologischen Rehabilitation zu berücksichtigen. (Pokan et al., 2009)

Die Ergometrie (Laufband- oder Fahrradergometrie) ist eine mögliche Methode, um die körperliche Leistung quantitativ zu messen. Wird dazu ein EKG oder eine Blutdruckmessung durchgeführt, kann die Belastungsabhängigkeit kardiologischer Symptome
geprüft werden. Damit die Leistungsmessung valide ist, müssen standardisierte Protokolle verwendet werden. (Mewis et al., 2006)

8.7 Ausdauertrainingsgestaltung bei KHK-Patienten

Die Sportart wird anhand des Schweregrades der Erkrankung und eines spezifischen Befundes ausgewählt. Dabei ist das belastungsassozierte Risiko (Myokardinfarkt oder plötzlicher Herztod) vom Schweregrad der Erkrankung und der Intensität der Belastung abhängig. (Mewis et al., 2006)

Da in den Studien das Ausdauertraining mittels eines Fahrradergometers stattgefunden hat, wird nachfolgend auf diese Ausdauertrainingsgestaltung eingegangen.

8.8 Dosierung
Um eine Leistungssteigerung zu erzielen, braucht es eine ausreichend hohe Belastung. Dadurch wird das innere Gleichgewicht ausgelenkt und der Organismus passt sich an. (Pokan et al., 2009; Van Duijn, 2009) Das heisst, es muss eine so grosse Belastung erfolgen, damit der Muskel ermüdet und anschliessend ein reaktives „stärker werden“ der Strukturen erreicht wird. (Van Duijn, 2009). Dafür ist eine ausreichende Erholung notwendig (Pokan et al., 2009; Van Duijn, 2009).
9 Zusammenfassung der Studien

In den folgenden Tabellen sind die sieben ausgewählten Studien zusammengefasst aufgeführt. Dabei sind sie nach Studiendesign geordnet. Die Studien führten das exzentrische Ausdauertraining auf einem speziell angefertigten motorisierten Fahrradergometer durch. Dabei mussten die Patienten die rückwärtsdrehenden Pedale bremsen, was exzentrische Muskelarbeit erfordert.

Tabelle 2 Zusammenfassung Studie Gremaux et al. (2009)

<table>
<thead>
<tr>
<th>Does eccentric endurance training improve walking capacity in patients with coronary artery disease? A randomized controlled pilot study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
</tr>
<tr>
<td>Ziel</td>
</tr>
<tr>
<td>Sample</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Intervention 2 Gruppen: konzentrische und exzentrische Trainingsgruppe
Trainingsperiode von 5 Wochen
1,5h Training 3x pro Woche
Trainungsgestaltung
- Warm-up
- 30 min Fahrradergometer
 - exzentrische Gruppe: auf exzentrischen Fahrradergometer
 - konzentrische Gruppe: auf normalem Fahrradergometer
- Intensität wurde je nach individueller anzustrebender HF und anhand der Schmerzen in den Beinen gesteigert. Im Eintrittstest wurde die Ventilationsschwelle und die zugehörige HF bestimmt und an diesem
<table>
<thead>
<tr>
<th>Wert die Trainingsherzfrequenz definiert.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 30 min Armvelo</td>
</tr>
<tr>
<td>- 20 min individuell angepasstes Kraftcircuit</td>
</tr>
<tr>
<td>- Cool-down</td>
</tr>
<tr>
<td>Sonstiges:</td>
</tr>
<tr>
<td>Alle Patienten waren medikamentös optimal eingestellt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die folgenden Outcomemessungen wurden vor und nach der Intervention durchgeführt:</td>
</tr>
<tr>
<td>- funktionelle Tests: Gehtests</td>
</tr>
<tr>
<td>- 6-min-Gehtest → Anzahl Meter</td>
</tr>
<tr>
<td>- 200m so schnell wie möglich Gehen → Zeit</td>
</tr>
<tr>
<td>- Allgemein wurde dabei gemessen: Blutdruck, HF, wahrgenommene Anstrengung sowohl des gesamten Körpers als auch der Beine und klinische Symptome wie Angina pectoris</td>
</tr>
<tr>
<td>- Maximalkraft Knieextensoren auf der Leg press: Messung während der Bewegung von 90° Flexion in maximale Extension</td>
</tr>
<tr>
<td>- Maximalkraft Plantarflexoren</td>
</tr>
<tr>
<td>- Kardiorespiratorischer Test auf einem sich automatisch steigernden konzentrischen Fahrradergometer, dabei wurde Folgendes gemessen: Blutdruck, HF, Herzrhythmus, Atemfrequenz, respiratorischer Quotient, VO₂, wahrgenommene Anstrengung sowohl des gesamten Körpers als auch der Beine, CO₂-Produktion, aerobe Ventilationsschwelle und maximale Tretleistung.</td>
</tr>
<tr>
<td>Während der Intervention wurde das Ausmass des Muskelkaters und der muskulären Beschwerden auf einer VAS (visual analogue scale) gemessen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Trainingsperiode von 5 Wochen war eher kurz. Auch limitierte das kleine Sample von 15 Patienten ohne Frauen die Aussage der Studie. Aufgrund der Ein- und Ausschlusskriterien wurden verhältnismässig gute Patienten ausgewählt.</td>
</tr>
<tr>
<td>Die Dosierung des Trainings wurde nicht begründet und die Trainingsherzfrequenz nicht in Zahlen erläutert. Dadurch lässt sich die Studie schlecht nachvollziehen und auch nicht in die Praxis umsetzen. Der Kraftcircuit wurde nicht genau erläutert. Es wurde für die Nachhaltigkeit der Trainingsmethode kein follow up gemacht.</td>
</tr>
</tbody>
</table>
Bremsen mit Herz

Tabelle 3 Zusammenfassung Studie LaStayo et al. (2000)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Design</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>RCT</td>
<td>10/18</td>
</tr>
</tbody>
</table>

Eccentric ergometry: increases in locomotor muscle size and strength at low training intensities
LaStayo, P.C., Pierotti, D.J., Pifer, J., Hoppeler, H. & Lindstedt, S.L.

Jahr: 2000
Design: RCT
Bewertung: 10/18

Ziel
In dieser Studie wollten die Autoren herausfinden, ob mit exzentrischem Ausdauertraining die Grösse und Kraft eines Muskels verbessert werden kann, wenn die Trainingsintensität anhand der VO₂ so tief gewählt wird, dass bei konzentrischem Training keine strukturellen und funktionellen Anpassungen geschehen würden.

Sample
n = 14
(19 – 38 Jahre) Männer;
ein Proband der konzentrischen Gruppe schied aus

Diagnose: Gesunde
Ausschlusskriterien: Probanden

Intervention
Die Probanden wurden in 2 Gruppen eingeteilt, wobei darauf geachtet wurde, dass die durchschnittliche maximale VO₂ in beiden Gruppen gleich war. Die beiden Gruppen wurden anschliessend entweder zum konzentrischen oder zum exzentrischen Training auf dem Fahrradergometer randomisiert.

Vor der Intervention wurde bei jedem Proband die maximale VO₂ auf einem konzentrischen Fahrradergometer gemessen und die HF während der maximalen VO₂ ermittelt und als maximale HF definiert.

Intervention
- Trainingsperiode: 8 Wochen
- Es wurde folgt trainiert:
 1. Woche: 2x wöchentlich, 15 min
 2. und 3. Woche: 3x wöchentlich, 25 bis 30 min
 4. Woche: 4x wöchentlich, 30 min
 5. und 6. Woche: 5x wöchentlich, 30 min
 7. und 8. Woche: 3x wöchentlich, 30 min (weil sich die exzentrische Gruppe über Ermüdung beklagte, musste die Trainingsfrequenz wieder reduziert werden)

Die Umdrehungszahl wurde in der Woche 5 von beginnenden 50 Umdrehungen pro min auf 70 Umdrehungen erhöht.

Trainingsgestaltung:
Die konzentrische Gruppe trainierte auf einem normalen Fahrradergometer und die exzentrische Gruppe auf einem exzentrischen...
Fahrradergometer.
- Trainingsintensität:
 Beide Gruppen trainierten bei gleicher Trainingsintensität, das heisst beim gleichen Prozentsatz der individuell maximalen HF. Die HF wurde bei allen Probanden während des Trainings gemessen. Während den 8 Wochen wurde die Intensität von anfänglich 54% auf 65% der maximalen HF gesteigert.

<table>
<thead>
<tr>
<th>Messungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messungen</td>
</tr>
<tr>
<td>Vor und nach der Intervention:</td>
</tr>
<tr>
<td>- maximale VO₂</td>
</tr>
<tr>
<td>- maximale HF</td>
</tr>
<tr>
<td>- respiratorischer Quotient</td>
</tr>
<tr>
<td>- Muskelfaserstruktur</td>
</tr>
<tr>
<td>- Anzahl Kapillaren pro Muskelfaser</td>
</tr>
<tr>
<td>- isometrische Kraft der Knieextensoren rechts und links bei 45° Knieflexion während des Trainings:</td>
</tr>
<tr>
<td>- VO₂</td>
</tr>
<tr>
<td>- HF</td>
</tr>
<tr>
<td>- Tretleistung (Watt)</td>
</tr>
<tr>
<td>- subjektive Ermüdung des Körpers und der Beine mittels Borg Skala (6-20)</td>
</tr>
<tr>
<td>- Schmerzen in den Beinen mittels VAS</td>
</tr>
<tr>
<td>- isometrische Kraft der linken Knieextensoren (1x/Woche) bei 45° Knieflexion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Willentliche Einteilung der Probanden auf die Trainingsgruppen.</td>
</tr>
<tr>
<td>- Kleines Sample von 14 Probanden</td>
</tr>
<tr>
<td>- Das Einschlusskriterium „Gesunde Probanden“ ist sehr weit gefasst.</td>
</tr>
<tr>
<td>- Studie wurde mit ausschliesslich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.</td>
</tr>
<tr>
<td>- Dosierung wurde nicht begründet → nicht in die Praxis umsetzbar</td>
</tr>
<tr>
<td>- Kein follow up → Nachhaltigkeit?</td>
</tr>
</tbody>
</table>
Tabelle 4 Zusammenfassung Studie LaStayo et al. (1999)

Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen

LaStayo, P.C., Reich, T.E., Urquhart, M., Hoppeler, H. & Lindstedt S.L.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Design</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>RCT</td>
<td>11/18</td>
</tr>
</tbody>
</table>

Ziel
Ziel dieser Studie war es, zwei Fragen zu beantworten.
1. Kann exzentrisches Ausdauertraining die lokomotorische Muskelkraft verbessern ohne Muskelverletzungen zu verursachen?
2. Ist es möglich mit exzentrischem Training auf einem niedrigen Energielevel Kraftsteigerung zu erlangen, welches bei konzentrischem Training keinen Effekt hätte?

Sample

<table>
<thead>
<tr>
<th>N</th>
<th>Diagnose</th>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 9</td>
<td>Gesunde</td>
<td>-</td>
</tr>
<tr>
<td>(18 – 34 Jahre)</td>
<td>Probanden</td>
<td></td>
</tr>
<tr>
<td>Männer und Frauen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervention
- 2 Gruppen: konzentrische und exzentrische Trainingsgruppe
- Trainingsperiode von 6 Wochen
- Trainingsgestaltung:
 - Das Ausdauertraining wurde von der konzentrischen Gruppe auf einem normalen Fahrradergometer und von der exzentrischen Gruppe auf einem exzentrischen Fahrradergometer durchgeführt.
 - Trainingsintensität:
 - Dabei wurden die Trainingsfrequenz und -dauer wie folgt progressiv erhöht:
 1. Woche: 2x wöchentlich, 10-20 min
 2. Woche: 3x wöchentlich, 30 min
 3. bis 6. Woche: 5x wöchentlich, 30 min
- In den ersten 4 Wochen begannen die exzentrisch trainierenden Probanden mit einer dreifach höheren Arbeitsleistung als die konzentrische Gruppe. Während der 5. Woche wurde die Arbeitsleistung angepasst, um einen Ausgleich der VO₂ zwischen den Gruppen zu erreichen.

Messungen
Vor und nach der Trainingsperiode sowie wöchentlich:
- Die maximale willkürliche isometrisch erzeugte Kraft der Knieextensoren während des Trainings:
 - VO₂ (4. - 6. Woche 1x wöchentlich)
Vor und nach jedem Training und vor und nach der Trainingsperiode:
- Muskelkater der unteren Extremität, anhand der VAS
- subjektiv wahrgenommene Anstrengung wurde von jedem Teilnehmer,
anhand der Borg Skala (6-20) für den Körper allgemein und die untere Extremität spezifisch bewertet.

<table>
<thead>
<tr>
<th>Limitationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Das Einschlusskriterium „Gesunde Probanden“ ist sehr weit gefasst.</td>
</tr>
<tr>
<td>- Heterogene Gruppen → Gruppeneffekt ist nicht so deutlich, da der Grundumsatz bei Männern und Frauen verschieden ist.</td>
</tr>
<tr>
<td>- Die Gruppen waren einander nicht ähnlich.</td>
</tr>
<tr>
<td>- Kleines Sample von 9 Personen.</td>
</tr>
<tr>
<td>- Dosierung wurde nicht begründet → nicht in die Praxis umsetzbar</td>
</tr>
<tr>
<td>- Kein follow up → Nachhaltigkeit?</td>
</tr>
</tbody>
</table>
Eccentric Exercise in Coronary Patients: Central Hemodynamic and Metabolic Responses

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Design</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>RCT</td>
<td>13/18</td>
</tr>
</tbody>
</table>

Ziel

Ziel dieser Studie war es, die zentralen hämodynamischen und metabolischen Reaktionen von Herzpatienten während des exzentrischen Ausdauertrainings mit der herkömmlichen konzentrischen Ergometrie zu vergleichen und zu bewerten.

Sample

- **n**: 13
- **Diagnose**: Koronare Herzkrankheit
 - 5 pro Gruppe hatten einen Herzinfarkt
 - insgesamt hatten 9 eine Herzkranzgefäß-erweiterung und 3 eine By-Pass-Operation
 - die Probanden hatten eine wiedererlangte und/oder leicht reduzierte Funktion des linken Ventrikels
- **Ausschlusskriterien**: Angina pectoris, Belastungsschäumen, Vorhofflimmern, Signifikante Rhythmusstörungen der Ventrikel, Obstruktive oder restriktive Lungenprobleme, Signifikante periphere vaskuläre Krankheiten, Orthopädische oder neurologische Probleme, welche das Ausführen der Übungen behindern könnten.

Inter-vention

- 2 Gruppen: konzentrische und exzentrische Trainingsgruppe
- Trainingsperiode von 8 Wochen
- 30 Min Training 3x pro Woche
- Trainingsgestaltung:
 - Das Ausdauertraining wurde auf einem Standardfahrradergometer in der konzentrischen und auf einem exzentrischen Fahrradergometer in der exzentrischen Gruppe durchgeführt. Das Ausdauertraining war in ein Standard Rehabilitationsprogramm integriert. So führten beide Gruppen zusätzlich leichte Gymnastik, Stretching- und Entspannungsübungen durch.
 - Trainingsintensität:
 - es wurde bis Woche 5 auf ca. 60% der maximalen VO₂ und/oder 85% der maximalen HF gesteigert. Danach blieb die Trainingsintensität für die restlichen 3 Wochen gleich.
- Sonstiges:
 - Alle Patienten waren medikamentös optimal eingestellt.

Messungen

Anfangs und in der 8. Woche:
- Messen der Funktion des linken Ventrikels (Echokardiographie (EKG)) in...
RL)
- Messen der Veränderungen der kardiopulmonalen Belastbarkeit: maximale Leistung und VO\(_2\) (Test auf einem konzentrischen Fahrradergometer)

Ende 5. Woche:
- Messung der zentralen Hämodynamik (mittels Rechtsherzkatheter) während eines 20-minütigen exzentrischen oder konzentrischen Trainings (bei 60% der maximalen VO\(_2\) und/oder 85% der maximalen HF).
- Messen des zentralen Venendrucks (Blutdruck im rechten Vorhof), des pulmonalen Kapillardrucks, der Sauerstoffsättigung der Arteria pulmonalis, der arteriellen Sauerstoffsättigung, des systemisch arteriellen Blutdrucks, der HF und der Laktatkonzentration im Blut. Daraus wurde die arteriovenöse Sauerstoff-Differenz, der Schlagvolumenindex, das Herzzeitvolumen, der Herzindex, der periphere Gesamtgefässwiderstand und die linksventrikuläre Schlagarbeit errechnet.

Limitationen
- Aufgrund des ungenügenden Wissens bezüglich der hämodynamischen Reaktionen auf exzentrisches Ausdauertraining bei KHK-Patienten, wurden nur Patienten mit minimalen Dysfunktionen des linken Ventrikels ins Sample eingeschlossen.
- Kleines Sample von 13 Patienten
- Unklar, ob gleiches Sample getestet wurde, wie bei Steiner et al. (2003), da die Ergebnisse leicht differieren.
- Studie wurde mit ausschließlich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.
- Aus Sicherheitsgründen wurde nach der fünften Woche die Intensitätssteigerung gestoppt.
- Dosierung wurde nicht begründet → nicht in die Praxis umsetzbar
- Kein follow up → Nachhaltigkeit?
Eccentric endurance training in subjects with coronary artery disease:
a novelexercise paradigm in cardiac rehabilitation?

Jahr 2003 **Design** RCT **Bewertung** 13/18

Ziel
Das Ziel dieser Studie war, strukturelle und funktionelle Anpassungen aufgrund von exzentrischem Ausdauertraining bei Patienten mit koronarer Herzkrankheit zu untersuchen.

Sample

| n = 13 (42 – 60 Jahre) Männer; eine Person| Koronare Herzkrankheit| Angina pectoris
| einschied aus| - 5 pro Gruppe hatten einen Herzinfarkt| - Belastungsischämien
| | - insgesamt hatten 9 eine Herzkranzgefässverweiterung und 3 eine By-Pass-Operation| - Vorhofflimmern
| | die Probanden hatten eine wiedererlangte und/oder leicht reduzierte Funktion des linken Ventrikelns| - Signifikante Rhythmusstörungen der Ventrikel
| | | - Obstruktive oder restriktive Lungenprobleme
| | | - Signifikante periphere vaskuläre Krankheiten
| | | - Orthopädische oder neurologische Probleme, welche das Ausführen der Übungen behindern könnten

Intervention
- 2 Gruppen: konzentrische und exzentrische Trainingsgruppe
- Trainingsperiode von 8 Wochen
- 30 min Training 3x pro Woche
- Trainingsgestaltung:
 - Das Ausdauertraining wurde auf einem Standardfahrradergometer in der konzentrischen und auf einem exzentrischen Fahrradergometer in der exzentrischen Gruppe durchgeführt. Das Ausdauertraining war in ein Standard Rehabilitationsprogramm integriert. So führten beide Gruppen zusätzlich leichte Gymnastik, Stretching- und Entspannungsübungen durch
 - Trainingsintensität:
 - es wurde bis Woche 5 auf ca. 60% der maximalen VO2 und/oder 85% der maximalen HF gesteigert. Danach blieb die Trainingsintensität für die restlichen 3 Wochen gleich.
 - Sonstiges:
 - Alle Patienten waren medikamentös optimal eingestellt.

Messungen
zu Beginn
- BMI
vor und nach der Intervention
- Körperbau → Fettmasse, Körpermasse ohne Fettanteil, Mineralgehalt der Knochenmasse und Muskulatur der Beine
- Muskelkraft der Knie-Extensoren → isometrisch (bei 60° Knieflexion), dynamisch konzentrisch und dynamisch exzentrisch (im ROM 15° - 100° Knieflexion, während zwei verschiedenen Geschwindigkeiten)
- Muskelfaseranalyse mit einer Biopsie des rechten M. vastus lateralis → Muskelfaserquerschnitt, Anzahl Kapillaren pro Muskelfaser, Dichte der Mitochondrien, Dichte der subsakrolemmalen Mitochondrien, Dichte der interfibrillären Mitochondrien, Dichte der Fetttröpfchen, prozentualer Anteil der Myofibrillen in der Muskelfaser

Limitationen
- Kleines Sample von 12 Personen
- Studie wurde mit ausschließlich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.
- Unklar, ob gleiches Sample wie bei Meyer et al. (2003) getestet wurde, da die Ergebnisse leicht differieren.
- Steigerung der Trainingsintensität nur über die ersten 5 Wochen, dadurch eine relativ geringe und konstante Arbeitsbelastung in den letzten 3 Wochen.
- Dosierung wurde nicht begründet → nicht in die Praxis umsetzbar
- Kein follow up → Nachhaltigkeit?
Ziel
Ziel dieser Studie war es, die physiologischen Reaktionen von Männern im mittleren Alter auf exzentrische und konzentrische Arbeit mittels eines Fahrradergometers bei verschiedenen Umdrehungsfrequenzen zu vergleichen.

Sample
n = 12
(39 – 65 Jahre)
Männer

Diagnose
Gesunde
Probanden

Ausschlusskriterien
- kardiopulmonale Krankheit
- Teilnahme bei einem offiziellen Trainingsprogramm

Intervention
Keine Interventionen

Messungen

Vorbereitung
Alle Testpersonen absolvierten 2 bis 3 Übungslektionen, um die Koordination des exzentrischen und konzentrischen Bewegungsablaufes auf dem Fahrrad zu erlernen.

Testung
Nach einem 2-minütigen Aufwärmen, indem die Beine der Probanden passiv durch den Motor bewegt wurden, mussten die Testpersonen die vorgegebene Tretfrequenz und Intensität übernehmen. Bevor der Test bei dieser Tretkadenz endete, wurden Messungen während 5-7 min gemacht. Danach gab es ein cool down, wobei der Motor wieder die Beine bewegte. Nach 30 min wurde ein weiterer Test bei einer anderen Tretfrequenz gestartet.
Bremsen mit Herz

<table>
<thead>
<tr>
<th>Messungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor jedem Testtag:</td>
</tr>
<tr>
<td>- Grösse und Gewicht der Probanden → BMI errechnet</td>
</tr>
<tr>
<td>- Lungenfunktionsprüfung, um Lungendysfunktionen auszuschliessen</td>
</tr>
<tr>
<td>Vor dem Test: 8 min Ausruhen</td>
</tr>
<tr>
<td>- metabolische Messungen</td>
</tr>
<tr>
<td>Während des Tests alle 15 Sekunden</td>
</tr>
<tr>
<td>- VO₂</td>
</tr>
<tr>
<td>- Atemzeitvolumen</td>
</tr>
<tr>
<td>- Atemzugvolumen</td>
</tr>
<tr>
<td>- Atemfrequenz</td>
</tr>
<tr>
<td>Während des Tests jede Minute</td>
</tr>
<tr>
<td>- Dyspnoe auf der Borg Skala</td>
</tr>
<tr>
<td>- Blutdruck</td>
</tr>
<tr>
<td>Während des Tests kontinuierlich</td>
</tr>
<tr>
<td>- HF</td>
</tr>
<tr>
<td>- Herzrhythmus</td>
</tr>
<tr>
<td>- Sauerstoffsättigung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Messungen wurden bei nur 60 Watt gemacht.</td>
</tr>
<tr>
<td>- Kleines Sample von 12 Teilnehmer</td>
</tr>
<tr>
<td>- Studie wurde mit ausschliesslich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.</td>
</tr>
<tr>
<td>- Die Dosierung des Tests wurde nicht begründet.</td>
</tr>
<tr>
<td>- Aus der Studie wird nicht klar, wie lange ein Test pro Tretkadenz dauerte.</td>
</tr>
</tbody>
</table>
Tabelle 8 Zusammenfassung Studie Dufour et al. (2004)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Design</th>
<th>Fallstudie</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td>9/15</td>
</tr>
</tbody>
</table>

Ziel

Die Autoren dieser Studie wollten Kreislaufanpassungen bezüglich VO$_2$ und HF während exzentrischer Belastung auf dem Fahrradergometer beschreiben.

Sample

<table>
<thead>
<tr>
<th>n</th>
<th>Diagnose</th>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Gesunde</td>
<td>Einnahme von Medikamenten</td>
</tr>
<tr>
<td>(22 - 42 Jahre)</td>
<td>Probanden</td>
<td>Beschwerden der Muskeln, Sehnen oder Gelenke</td>
</tr>
<tr>
<td>Männer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervention

Keine Intervention

Messungen

Die Testung wurde auf einem speziellen motorisierten Fahrradergometer durchgeführt. Das Studienprotokoll sah für jeden Probanden 2 Testungen vor, wobei als erstes konzentrisch und dann exzentrisch bei 80 Umdrehungen pro Minute auf dem Fahrradergometer getreten werden musste.

Vorbereitung

Alle Studienteilnehmer mussten sich während 2 Wochen vor dem Studienbeginn in 3 bis 4 Lernstunden die Koordination des exzentrischen Fahrradfahrens aneignen. Durch diese Angewöhnungsphase sollten Probleme der Muskulatur, Sehnen oder Gelenke vermieden werden. In jeder Lernstunde wurde die Intensität von anfänglichen 100 Watt auf 200 Watt gesteigert.

Testung

Messungen in Ruhe während 10-minütigem Sitzen auf dem Fahrradergometer.

Die konzentrische Muskelarbeit mit beginnender Arbeitsbelastung bei 50 Watt wurde alle 3 min um 50 Watt gesteigert, bis der Proband seine maximale Leistungsfähigkeit erreichte.

Im anschliessenden exzentrischen Test wurde die Arbeitsbelastung auf gleiche Weise gesteigert. Die Studie hatte zum Ziel, Kreislaufreaktionen von konzentrischer und exzentrischer Ausdauerbelastung bei identischer mechanischer Intensität zu messen. Deshalb wurden die Daten während dem exzentrischen Test nicht über der konzentrischen maximalen Arbeitsleistung durchgeführt.

Messungen
Kontinuierlich:
- VO₂
- Abatmung von CO₂,
- HF
- Schlagvolumen
- Herzzeitvolumen
- arteriovenöse Sauerstoffdifferenz
Vor und nach dem Test:
- Laktatkonzentration im Blutplasma

Limitationen
- Beide Messungen wurden am selben Tag durchgeführt → Ermüdung?
- Kleines Sample von 8 Teilnehmer
- Studie wurde mit ausschließlich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.
- Dosierung des Tests wurde nicht begründet.
10 Ergebnisse aus wissenschaftlicher Literatur

Nachfolgend werden die verschiedenen Ergebnisse der ausgewählten Studien dargestellt. Die Autorinnen der vorliegenden Arbeit gehen dabei auf die Tretleistung, die \(\text{VO}_2\), die HF und die subjektive Anstrengung ein. Ebenfalls werden Ergebnisse bezüglich des Muskelskaters und muskulären Beschwerden, der Kraft, der Gehtests, der Muskelfaserstruktur sowie der Blutlaktatwerte beleuchtet.

10.1 Tretleistung

10.2 Sauerstoffaufnahme (VO₂)

Die Studien von Gremeaux et al. (2009), LaStayo et al. (2000) und Meyer et al. (2003) massen den Trainingseffekt des exzentrischen und konzentrischen Ausdauertrainings auf einem konventionellen konzentrischen Fahrradergometer anhand der VO₂. Gremeaux et al. (2009) konnten einen signifikanten Trainingseffekt (p<0.01) bezüglich der symptomlimitierten VO₂ in beiden Patientengruppen aufzeigen, wobei die Testung bei 60 Umdrehungen pro Minute stattfand. Die Intensität steigerte sich jede Minute um 10 Watt. Die konzentrische Kontrollgruppe hatte vor der Intervention eine VO₂ von 26,4 ml/kg/min

¹ genauer: konzentrisch 53,7 ml/kg/min, exzentrisch 19,1 ml/kg/min
bei einer Arbeitsbelastung von 130 Watt und danach eine VO\textsubscript{2} von 27,6 ml/kg/min bei 170 Watt. Die exzentrische Interventionsgruppe wies vor der Trainingsperiode eine VO\textsubscript{2} von 24,8 ml/kg/min bei 125,7 Watt auf und nach der Trainingsperiode eine VO\textsubscript{2} von 28,3 ml/kg/min bei 150 Watt. Die exzentrische Gruppe zeigte also eine Tendenz zu grösseren Fortschritten bezüglich der VO\textsubscript{2}. Die Resultate von LaStayo et al. (2000) stellten keine Verbesserungen bezüglich der maximalen VO\textsubscript{2} und ebenso keinen signifikanten Unterschied zwischen den beiden Probandengruppen dar. Vor der Intervention lagen die Werte der konzentrischen Gruppe durchschnittlich bei 52,2 ml/kg/min und die der exzentrischen bei 51,4 ml/kg/min. Nach der Intervention war die maximale VO\textsubscript{2} der konzentrischen Gruppe bei 46,9 ml/kg/min und derjenige der exzentrischen Gruppe bei 45,5 ml/kg/min. In der Studie von Meyer et al. (2003) stieg nach der achtwöchigen Trainingsperiode nur in der exzentrischen Patientengruppe die VO\textsubscript{2} signifikant an (p<0.05)2.

Die Studie von Chung et al. (1999) untersuchte die Reaktionen der VO\textsubscript{2} bei verschiedenen Pedalfrequenzen. Dabei wurde während 35, 55 und 75 Umdrehungen pro Minute gemessen. Aus den Ergebnissen lässt sich schliessen, dass die Pedalfrequenz einen signifikanten Einfluss auf die VO\textsubscript{2} hat (p=0.002). Dabei stieg bei den Probanden während der konzentrischen Messung die VO\textsubscript{2} linear mit der Pedalfrequenz an (signifikant bei P<0.01). In der Messung während des exzentrischen Fahrradfahrens war die VO\textsubscript{2} während 55 Umdrehungen pro Minute am tiefsten (p<0.01) und während 35 und 75 Umdrehungen war die VO\textsubscript{2} beinahe gleich hoch. Bei den exzentrischen Messergebnissen war die Streuung grösser als bei den konzentrischen.

10.3 Herzfrequenz (HF)

Chung et al. (1999) besagen, dass die Pedalfrequenz einen signifikanten Einfluss auf die HF hat (p=0.003). Dabei ist sie bei exzentrischer Ausdauerbelastung signifikant geringer als bei der konzentrischen (p<0.001). Des Weiteren nahm während der konzentrischen Belastung die HF linear mit der Tretfrequenz zu (p<0.05). In der exzentrischen Muskelarbeit hingegen, war die HF wie bereits die VO\textsubscript{2} bei 55 Umdrehungen pro Minute am geringsten3.

2 genauer: VO\textsubscript{2} konzentrisch: vor 28 ml/kg/min, nach 30 ml/kg/min, exzentrisch: vor 31 ml/kg/min, nach 34 ml/kg/min

3 genauer: konzentrisch bei 35: 93 Schläge/min, 55: 95 Schläge/min, 75: 99,2 Schläge/min, exzentrisch bei 35: 82,5 Schläge/min, 55: 77,8 Schläge/min, 75: 85,1 Schläge/min

Iris Heer & Barbara Wagner
Dabei war während der exzentrischen Ausdauerbelastung die HF signifikant kleiner
(p<0.001)\(^4\). Die HF war allerdings bei gleicher VO\(_2\) von 1 Liter pro Minute während der
exzentrischen Messung signifikant höher, was bei gleich bleibendem Schlagvolumen zu
einem signifikant grösseren Herzzeitvolumen führt (p<0.001)\(^5\). Weiter fanden Dufour et al.
(2004) heraus, dass die Reaktionen der HF bei gesunden Teilnehmer, auf die exzen-
trische Ausdauerbelastung, sehr verschieden sind.

LaStayo et al. (2000) untersuchten die maximale HF während eines Tests auf
einem konzentrischen Fahrradergometer. Dabei wurde die Intensität alle drei Minuten um
60 Watt gesteigert, während die Pedalfrequenz konstant bei 60 Umdrehungen pro Minute
gehalten werden musste. Zwischen den beiden Probandengruppen gab es vor und nach
der Trainingsperiode keinen signifikanten Unterschied bezüglich der maximalen HF\(^6\).

10.4 Subjektive Anstrengung

Die subjektiv wahrgenommene Anstrengung fiel in den Studien mit unterschiedlichen
Ergebnissen aus. In Gremeaux et al. (2009) war nach den Tests die wahrgenommene
Anstrengung sowohl des gesamten Körpers als auch der Beine nie über den Wert 15 auf
der Borg-Skala angestiegen. Bei Meyer et al. (2003) war die subjektive Anstrengung in
den beiden Gruppen signifikant nicht unterschiedlich. Während den Trainings lag in der
konzentrischen Gruppe der Wert auf der Borg-Skala durchschnittlich bei 10,0 und bei der
exzentrischen bei 9,2. Die Studie von LaStayo et al. (2000) ergab keinen signifikanten
Unterschied zwischen den beiden Gruppen bezüglich der subjektiven Ermüdung des ge-
samen Körpers. Jedoch war die subjektive Anstrengung der Beine in der exzentrischen
Gruppe signifikant grösser (p=0.001). LaStayo et al. (1999) verzeichneten während der
ersten Trainingswoche in der exzentrischen Trainingsgruppe einen höheren Wert auf der
Borg-Skala bezüglich der eingeschätzten Ermüdung der Beine. Danach wurde zwischen
überstieg die subjektive Anstrengung (dazu zählen Dyspnoe und Ermüdung der Beine) nie
den Wert 11 auf der Borg-Skala. Dabei lag der Wert für Dyspnoe in der konzentrischen
Gruppe eher höher als der Wert der Ermüdung der Beine. In der exzentrischen Gruppe
waren die Werte tendenziell umgekehrt. In der Studie von Chung et al. (1999) stieg der

\(^4\) genauer: konzentrisch 180 Schläge/min, exzentrisch 120 Schläge/min
\(^5\) genauer: konzentrisch 95 Schläge/min, exzentrisch 110 Schläge/min
\(^6\) genauer: konzentrisch vor: 202 Schläge/min, nach 201 Schläge/min, exzentrisch vor: 206 Schläge/min, nach 203 Schläge/min
Wert „Dyspnoe“ auf der Borg-Skala während der Testung um jeweils einen Punkt an, unabhängig von der Umdrehfrequenz oder der muskulären Arbeit.

10.5 Muskelnkater und muskuläre Beschwerden

10.6 Kraft-/Gehtests
In den Studien von LaStayo et al. (2000), LaStayo et al. (1999) und Steiner et al. (2003) zeigten die konzentrischen Trainingsgruppen keinen signifikanten Trainingseffekt bezüglich der maximalen isometrischen Kontraktion der Knieextensoren. Hingegen zeigten alle exzentrischen Gruppen eine signifikante Zunahme der maximalen isometrischen Kontraktion der Knieextensoren. LaStayo et al. (2000) zeigt zehn Tage nach der Intervention in den linken Knieextensoren einen Kraftzuwachs von 46% und in den rechten Knieextensoren eine Verbesserung um 26% (p=0.01). In der Studie von LaStayo et al. (1999) ist die isometrische Maximalkraft der exzentrischen Gruppe zwei bis drei Tage nach der sechswöchigen Intervention um 27% signifikant gestiegen (p<0.05). In beiden Probandengruppen wurden signifikante Unterschiede bezüglich der isometrischen Maximalkraft der Knieextensoren innerhalb der Gruppe gefunden (p<0.05). Die Probanden der exzentrischen Gruppe von Steiner et al. (2003) zeigten einen statistisch signifikanten Kraftzuwachs der isometrischen Maximalkraft um 4,9% (p<0.05). Bei einer langsamen Geschwindigkeit verbesserte sich die dynamisch konzentrische Maximalkraft um 3,2% (p<0.01), bei einer schnellen Geschwindigkeit um 2,5% (p<0.05). Die dynamisch exzentrische Maximalkraft verbesserte sich auch, jedoch statistisch nicht signifikant.

Gremeaux et al. (2009) massen den Trainingseffekt zusätzlich anhand eines 6-Minuten-Gehtests und einem Test, bei dem die Probanden eine Strecke von 200m so schnell wie möglich zurücklegen mussten. Im 6-Minuten-Gehtest resultierte in beiden Gruppen ein signifikanter Trainingseffekt (p<0.01), dabei absolvierte die konzentrische Gruppe vor der Intervention eine Strecke von durchschnittlich 508,4m, nach der Intervention 559,9m. Die exzentrische Gruppe legte vorher 495m zurück, nach der Trainingsperiode 557,1m. Der 200m-Gehtest wurde von der konzentrischen Gruppe vor der Intervention in 108,6 und danach in 99,6 Sekunden absolviert und die exzentrischen Gruppe legte die 200m vorher in 107,7 und nachher in 101,7 Sekunden zurück. Die Verbesserungen in beiden Gruppen waren dabei statistisch nicht signifikant.

10.7 Muskelfaserstruktur
nahm die Muskelmasse der Beine signifikant zu. Dabei war in der konzentrische Gruppe eine Zunahme von 191 Gramm pro Bein (signifikant bei P<0.01) und in der exzentrischen Gruppe eine Zunahme von 259 Gramm pro Bein (signifikant bei P<0.05) zu verzeichnen. Der Zuwachs zwischen den Gruppen war statistisch nicht unterschiedlich.

10.8 Blutlaktatwerte

In Dufour et al. (2004) stiegen die Blutlaktatwerte bei einer Arbeitsintensität von 287 Watt nicht signifikant an. In der konzentrischen Gruppe wurden 9,6 mmol Laktat pro Liter Blut und in der exzentrischen Gruppe 1,2 mmol Laktat pro Liter Blut gemessen. Bei einer VO2 von einem Liter pro Minute lag der Laktatwert in beiden Gruppen bei 1,0 mmol Laktat pro Liter Blut. Bei Meyer et al. (2003) war die Laktatkonzentration der exzentrischen Gruppe signifikant kleiner als diejenige der konzentrischen Trainingsgruppe. Dabei betrug der Laktatwert nach 5-minütigem Fahrradfahren in der exzentrischen Gruppe ca. 1,5 mmol und in der konzentrischen Gruppe ca. 3 mmol Laktat pro Liter Blut.
11 Diskussion

11.1 Studien mit Messungen während konzentrischer und exzentrischer Ausdauerbelastung

11.1.1 Studienprotokoll

Ziele der Studien

11.1.2 Gegenüberstellung der Ergebnisse

Sauerstoffaufnahme (VO\textsubscript{2})

Die Probanden von Dufour et al. (2004) erreichten bei einer VO\textsubscript{2} von 1 Liter pro Minute eine durchschnittliche konzentrische Leistung von 50 Watt und eine exzentrische von 256 Watt. Daraus schliessen Dufour et al. (2004), dass die exzentrische VO\textsubscript{2} ca. 1/5 der konzentrischen beträgt. Dieser Rückschluss ist nach Ansicht der Autorinnen jedoch falsch. Aus diesem Resultat kann nur geschlossen werden, dass eine 5-fach grössere mechanische Leistung während exzentrischer Ausdauerbelastung erzielt werden kann, als während konzentrischer Belastung. Ein weiteres Resultat dieser Studie zeigt bei gleicher mechanischer Belastung, dass die VO\textsubscript{2} während exzentrischer Arbeit, die Hälfte der VO\textsubscript{2} während konzentrischer Belastung beträgt.

Herzfrequenz (HF)

Dabei ist die VO\textsubscript{2} während den beiden Muskelarbeitsweisen identisch. Es kann sein, dass die HF erhöht wird, um den thermalen Unterschied auszugleichen. (Nadel, Bergh und Saltin, 1972 zitiert nach Dufour et al., 2004)

Im Praxisalltag sollten die Herzfrequenzwerte vorsichtig interpretiert werden. Insbesondere wenn man mit einem Patienten mit dem Trainingsparameter HF trainieren möchte.

Blutlaktatwerte
Laut Dufour et al. (2004) stiegen die Blutlaktatwerte bei einer Arbeitsintensität von 287 Watt nicht signifikant an. Dabei betrug der Laktatgehalt in der konzentrischen Gruppe 9,6 mmol Laktat pro Liter Blut und in der exzentrischen Gruppe 1,2 mmol. Die 9,6 mmol Laktat

11.1.3 Einflussfaktoren auf die Ergebnisse

11.2 Studien zum Effekt von exzentrischem und konzentrischen Ausdauertraining

11.2.1 Studienprotokoll

Ziel der Studien

Studiendesign
Alle Studien waren RCTs. Dabei absolvierte die Interventionsgruppe ein exzentrisches und die Kontrollgruppe ein konzentrisches Ausdauertraining. In vier von diesen fünf Studien

Sample

Ein Grund einheitliche Probanden bezüglich des Geschlechts zu wählen, besteht wahrscheinlich darin, dass Männer einen anderen Ruheenergieverbrauch haben, als Frauen. Somit ist der Energieverbrauch bei einem gleichgeschlechtlichen Sample besser zu vergleichen.

Intervention

In allen Studien trainierten die Probanden durchschnittlich ca. 3 x 30 Minuten pro Woche auf dem Fahrradergometer. Die Trainingsintensität wurde in den Studien anhand von verschiedenen Parametern unterschiedlich gesteigert. In Gremeaux et al. (2009) wurde die Intensität anhand der vorgegebenen HF und der Schmerzen in den Beinen gesteigert. LaStayo et al. (2000) steigerten die Intensität anhand eines Prozentsatzes der individuell

11.2.2 Gegenüberstellung der Ergebnisse

Tretleistung

Sauerstoffaufnahme (VO$_2$)

schliessen, dass der Trainingseffekt bezüglich der VO\textsubscript{2} durch exzentrisches Ausdauertraining noch nicht klar scheint und weiter zu untersuchen gilt.

Herzfrequenz (HF)

Subjektive Anstrengung
Die subjektive Anstrengung wurde in den Studien anhand unterschiedlicher Parameter gemessen. In allen Studien war die subjektive Anstrengung im Allgemeinen eher niedrig und die Unterschiede zwischen den Trainingsgruppen waren gering.

Muskelkater und muskuläre Beschwerden

Kraft-/Gehests und Muskelfaserstruktur
In den Studien von LaStayo et al. (2000), LaStayo et al. (1999) und Steiner et al. (2003) nahm in der exzentrischen Gruppe die isometrische Muskelkraft der Knieextensoren

Im Alter nimmt die Kraft der Plantarflexoren ab, wobei die Kraft der Dorsalextensoren gleich bleibt (Simoneau, Martin, Van Hoecke, 2005 zitiert nach Gremeaux et al., 2009). Die Dekonditionierung im Alter ist vergleichbar mit der Dekonditionierung bei Herzpatienten. Deshalb könnte der Kraftzuwachs der Plantarflexoren bei Herzpatienten von Bedeutung sein. (Gremeaux et al., 2009)

ergometer stattfand, zeigen die Ergebnisse der Muskelbiopsien und Muskelkraft eher Anpassungen an ein Krafttraining anstatt an ein Ausdauertraining.

12 Schlussfolgerung

Die Aussagekraft der Studienergebnisse wird durch weitere Faktoren limitiert. Darunter zählen die meist mangelnde Verblindung der Beurteiler und Probanden, die kleinen Samples, das Alter vereinzelter Probandengruppen sowie die Medikation der Patienten oder die Therapieübungen des Rehabilitationsprogrammes. Auch spielt die eher kurze Trainingsperiode von maximal acht Wochen eine Rolle. Koronarpatienten sollten ihr Trainingsprogramm über Monate bis Jahre ausführen, um die Progression der Krankheit positiv zu beeinflussen. Wichtige Erkenntnisse dazu würde eine Langzeitstudie oder eine Studie mit follow-up liefern.

Trotzdem zeichnen sich im Vergleich der sieben Studien gewisse Tendenzen ab. Alle Studienteilnehmer mit einer koronaren Herzkrankheit haben das exzentrische Ausdauertraining gut vertragen und verzeichneten weder einen Muskelfater noch andere muskuläre Beschwerden. Im Vergleich zu den gesunden Probanden ist die eingeschränkte Leistungskapazität durch ihre meist schon länger bestehende koronare Problematik anhand der Tretleistung gut ersichtlich. Der geringe Energiebedarf der exzentrischen Muskelarbeit wird in allen Studien bestätigt. Dieses Ergebnis lässt sich anhand einer geringeren VO$_2$ oder einer tieferen HF während exzentrischer Belastung erkennen. Überdies kann exzentrisch eine grössere Leistung erzielt werden, obwohl der Sauerstoffbedarf tiefer oder gleich hoch ist wie während konzentrischer Arbeit. Die subjektive Anstrengung fiel dabei im Allgemeinen niedrig aus. In einer Studie wurde die HF bei einem Liter VO$_2$ pro Minute gemessen. Dabei war diese während exzentrischer Ausdauerbelastung signifikant höher und interindividuell sehr verschieden. Das heisst, die Dosierung der Trainingsintensität anhand der HF sollte individuell angepasst werden, da die Patienten auf die Belastung verschieden reagieren. Der Trainingseffekt von exzentrischem, im Vergleich zu konzentrischem Ausdauertraining, ist bezüglich der isometrischen und dynamisch konzentrischen

Die meisten Ergebnisse sind noch zu wenig breit abgestützt, um daraus definitive Schlüsse zu ziehen. So war beispielsweise die Dosierung des Trainings anhand der HF, der Tretleistung und der VO₂ von Studie zu Studie unterschiedlich. Deshalb sollten weitere Studien mit größeren Samples durchgeführt werden.

13 Theorie-Praxis-Transfer

Schliesslich sollte grundsätzlich überlegt werden, was das Ziel des exzentrischen Ausdauertrainings ist. Ist es die Verbesserung der Muskelkraft bei geringer Herzkreislaufbelastung oder ist es die Verbesserung der kardiopulmonalen Ausdauerfähigkeit?
14 Bezug zu den Fragestellungen

In diesem Kapitel werden die nachstehenden beiden Fragestellungen dieser Bachelorarbeit beantwortet. Welche kardiovaskulären Reaktionen zeigen sich während exzentrischer Fahrradergometer-Ausdauerbelastung anhand der Sauerstoffaufnahme (VO$_2$) und der Herzfrequenz (HF)? Was ist der Effekt von exzentrischem Fahrradergometer-Ausdauertraining bei Herzpatienten in Bezug auf das kardiovaskuläre System und die muskuläre Belastbarkeit der Beine?

Während exzentrischer Ausdauerbelastung zeigen sich die folgenden kardiovaskulären Reaktionen: Die VO$_2$ und die HF sind während exzentrischer Arbeit signifikant geringer, wobei eine grössere Leistung erzielt wird. Ist während exzentrischer und konzentrischer Belastung die VO$_2$ bei einem Liter pro Minute, zeigt sich während exzentrischer Arbeit eine höhere HF, aber auch eine grössere Tretleistung. Die Blutlaktatwerte sind während exzentrischer Ausdauerbelastung geringer als während konzentrischer. Daraus kann geschlossen werden, dass exzentrische Ausdauerbelastung weniger Energie benötigt als konzentrische.

15 Danksagung

16 Eigenständigkeitserklärung
Wir erklären hiermit, dass wir die vorliegende Arbeit selbständig, ohne Mithilfe Dritter und unter Benutzung der angegebenen Quellen verfasst haben.

Datum Datum

Iris Heer Barbara Wagner
17 Quellenverzeichnis

17.1 Literaturverzeichnis

17.2 Abbildungsverzeichnis

Heruntergeladen von
Heruntergeladen von

17.3 Tabellenverzeichnis

Tabellen 2-8 wurden von den Autorinnen dieser Bachelorarbeit selbst erstellt.
18 Anhang

18.1 Wortzahl

Abstract: 199
Arbeit: 11'717
(exklusive Abstract, Tabellen, Tabellenbeschriftungen, Abbildungen,
Abbildungsbeschriftungen, Literaturverzeichnis, Danksagung, Eigenständigkeitserklärung
und Anhang)
18.2 Beurteilungsformular

Formular zur kritischen Besprechung quantitativer Studien (auf Physiotherapie abgeändert)

<table>
<thead>
<tr>
<th>TITEL:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOREN:</td>
<td></td>
</tr>
<tr>
<td>PUNKTE:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZIEL DER STUDIE</th>
<th>Skizzieren Sie das Ziel der Studie. Inwiefern bezieht sich die Studie auf Physiotherapie und/oder Ihre Forschungsfrage?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde der Zweck klar angegeben?</td>
<td>o ja</td>
</tr>
<tr>
<td></td>
<td>o nein</td>
</tr>
<tr>
<td>1 P.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LITERATUR</th>
<th>Geben Sie an, wie die Notwendigkeit der Studie gerechtfertigt wurde.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde die relevante Hintergrundliteratur gesichtet?</td>
<td>o ja</td>
</tr>
<tr>
<td></td>
<td>o nein</td>
</tr>
<tr>
<td>1 P.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>Beschreiben Sie das Studiendesign. Entsprach das Design der Studienfrage (z.B. im Hinblick auf den Wissensstand zur betreffenden Frage, auf Ergebnisse (Outcomes), auf ethische Aspekte)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>o randomisierte kontrollierte Studie (RCT)</td>
<td>1 P. wenn Studiendesign der Studienfrage entsprach.</td>
</tr>
<tr>
<td>o Kohortenstudie</td>
<td></td>
</tr>
<tr>
<td>o Einzelfall Design</td>
<td></td>
</tr>
<tr>
<td>o Vorher Nachher Design</td>
<td></td>
</tr>
<tr>
<td>o Fall Kontroll Studie</td>
<td></td>
</tr>
<tr>
<td>o Querschnittsstudie</td>
<td></td>
</tr>
<tr>
<td>o Fallstudie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 P Abzug pro Bias</td>
</tr>
</tbody>
</table>

Iris Heer & Barbara Wagner
<table>
<thead>
<tr>
<th>STICHPROBE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde die Stichprobe detailliert beschrieben?</td>
<td>N = Stichprobenauswahl (wer, Merkmale, wie viele, wie wurde die Stichprobe zusammengestellt?). Bei mehr als einer Gruppe: Waren die Gruppen ähnlich?</td>
</tr>
<tr>
<td>○ ja</td>
<td>Ähnlichkeit:</td>
</tr>
<tr>
<td>○ nein</td>
<td>1 P. bei Ähnlichkeit</td>
</tr>
<tr>
<td>Wurde die Stichprobengröße begründet?</td>
<td>Beschreiben Sie die Ethik Verfahren. Wurde wohlinformierte Zustimmung eingeholt?</td>
</tr>
<tr>
<td>○ ja</td>
<td>1 P. bei Einholung wohlinformierter Zustimmung</td>
</tr>
<tr>
<td>○ nein</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTCOMEMESSUNGEN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Waren die Outcome-Messungen zuverlässig (reliabel)?</td>
<td>Geben Sie an, wie oft Outcome-Messungen durchgeführt wurden (also vorher, nachher, bei Nachbeobachtung (pre-, post-follow up)).</td>
</tr>
<tr>
<td>○ ja</td>
<td>Outcome-Bereiche:</td>
</tr>
<tr>
<td>○ nein</td>
<td>Verwendete Messungen:</td>
</tr>
<tr>
<td>○ nicht angegeben</td>
<td></td>
</tr>
<tr>
<td>Waren die Outcome-Messungen gültig (valid)?</td>
<td></td>
</tr>
<tr>
<td>○ ja</td>
<td></td>
</tr>
<tr>
<td>○ nein</td>
<td></td>
</tr>
<tr>
<td>○ nicht angegeben</td>
<td>1 P.</td>
</tr>
<tr>
<td>Wurde ein post-follow up gemacht?</td>
<td></td>
</tr>
<tr>
<td>○ ja</td>
<td></td>
</tr>
<tr>
<td>○ nein</td>
<td>1 P.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASSNAHMEN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden die Massnahmen detailliert beschrieben?</td>
<td>Beschreiben Sie kurz die Massnahmen (Schwerpunkt, wer führte sie aus, wie oft, in welchem Rahmen). Könnten die Massnahmen in der physiotherapeutischen Praxis wiederholt werden?</td>
</tr>
<tr>
<td>○ ja</td>
<td></td>
</tr>
<tr>
<td>○ nein</td>
<td>1 P.</td>
</tr>
<tr>
<td>○ nicht angegeben</td>
<td></td>
</tr>
<tr>
<td>Wurde Kontaminierung vermieden?</td>
<td></td>
</tr>
<tr>
<td>○ ja</td>
<td></td>
</tr>
<tr>
<td>○ nein</td>
<td></td>
</tr>
<tr>
<td>Bremsen mit Herz</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERGEBNISSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden gleichzeitige weitere Massnahmen (Ko-Intervention) vermieden?</td>
</tr>
<tr>
<td>- Ja</td>
</tr>
<tr>
<td>- Nein</td>
</tr>
<tr>
<td>- nicht angegeben</td>
</tr>
</tbody>
</table>

Welches waren die Ergebnisse? Waren sie statistisch signifikant (d.h. \(p < 0.05 \))? Falls nicht statistisch signifikant: War die Studie gross genug, um einen eventuell auftretenden wichtigen Unterschied anzuzeigen?

<table>
<thead>
<tr>
<th>ERGEBNISSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden die statistische Signifikanz der Ergebnisse angegeben?</td>
</tr>
<tr>
<td>- ja</td>
</tr>
<tr>
<td>- nein</td>
</tr>
<tr>
<td>- entfällt</td>
</tr>
<tr>
<td>- nicht angegeben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERGEBNISSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>War(en) die Analysemethode(n) geeignet?</td>
</tr>
<tr>
<td>- ja</td>
</tr>
<tr>
<td>- nein</td>
</tr>
<tr>
<td>- nicht angegeben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERGEBNISSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden Fälle von Ausscheiden aus der Studie angegeben?</td>
</tr>
<tr>
<td>- ja</td>
</tr>
<tr>
<td>- nein</td>
</tr>
</tbody>
</table>

Schieden Teilnehmer aus der Studie aus? Warum? (Wurden Gründe angegeben und wurden Fälle von Ausscheiden angemessen gehandhabt?)

1 P. Abzug wenn keine angemessene Handhabung beschrieben:

<table>
<thead>
<tr>
<th>SCHLUSSFOLGERUNGEN UND KLINISCHE IMPLIKATIONEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde die klinische Bedeutung angegeben?</td>
</tr>
<tr>
<td>- ja</td>
</tr>
<tr>
<td>- nein</td>
</tr>
<tr>
<td>- nicht angegeben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCHLUSSFOLGERUNGEN UND KLINISCHE IMPLIKATIONEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waren die Schlussfolgerungen</td>
</tr>
<tr>
<td>- ja</td>
</tr>
<tr>
<td>- nein</td>
</tr>
<tr>
<td>- nicht angegeben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCHLUSSFOLGERUNGEN UND KLINISCHE IMPLIKATIONEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waren die Schlussfolgerungen</td>
</tr>
<tr>
<td>- ja</td>
</tr>
<tr>
<td>- nein</td>
</tr>
<tr>
<td>- nicht angegeben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCHLUSSFOLGERUNGEN UND KLINISCHE IMPLIKATIONEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welches war die klinische Bedeutung der Ergebnisse?</td>
</tr>
</tbody>
</table>

Welches waren die hauptsächlichen Begrenzungen oder...
<table>
<thead>
<tr>
<th>angemessen im Hinblick auf Methoden und Ergebnisse der Studie?</th>
<th>systematischen Fehler der Studie?</th>
</tr>
</thead>
<tbody>
<tr>
<td>◦ ja</td>
<td></td>
</tr>
<tr>
<td>◦ nein</td>
<td></td>
</tr>
<tr>
<td>1 P.</td>
<td></td>
</tr>
</tbody>
</table>
18.3 Studienbeurteilungen

Formular zur kritischen Besprechung quantitativer Studien (auf Physiotherapie abgeändert)

McMaster Universität

| TITEL: Does eccentric endurance training improve walking capacity in patients with coronary artery disease? A randomized controlled pilot study |
| AUTOREN: Gremeaux, V., Duclay, J., Deley, G., Philipp, J.L., Laroche, D., Pousson, M. und Casillas, J.M. |
| PUNKTE: 14/18 |

| Wurde der Zweck klar angegeben? | ✓ ja | o nein |
| 1/1 P. |

| LITERATUR | Geben Sie an, wie die Notwendigkeit der Studie gerechtfertigt wurde. Exzentrisches Ausdauertraining wurde bei Herzpatienten bereits in vorangehenden Studien durchgeführt, der Effekt wurde jedoch noch nicht funktional (v.a. während dem Gehen) gemessen. |
| Wurde die relevante Hintergrundliteratur gesichtet? | ✓ ja | o nein |
| 1/1 P. |

DESIGN	Beschreiben Sie das Studiendesign. RCT: Randomisation, Experiment- und Kontrollgruppe Messung der funktionalen Wirksamkeit von exzentrischem Ausdauertraining
✓ randomisierte kontrollierte Studie (RCT)	o Kohortenstudie
o Einzelfall Design	o Vorher Nachher Design
o Fall Kontroll Studie	o Querschnittsstudie
o Fallstudie	

| entsprach das Design der Studienfrage (z.B. im Hinblick auf den Wissensstand zur betreffenden Frage, auf Ergebnisse (Outcomes), auf ethische Aspekte)? | Studiendesign entsprach der Studienfrage Bereits vorangegangene Fallstudien und RCTs bei Gesunden und RCTs bei Herzpatienten. Ethikkomitee wurde miteinbezogen 1/1 P. |

Spezifizieren Sie alle systematischen Fehler (Verzerrungen, bias), die vielleicht aufgetreten sein könnten, und in welche Richtung sie die Ergebnisse beeinflussen. - Teilnehmer waren nicht geblindet. – 1P. |

| STICHPROBE | Bei mehr als einer Gruppe: Waren die Gruppen ähnlich? |
| Wurde die Stichprobe detailliert beschrieben? | ✓ ja | o nein |
| 1/1 P. |

Die Gruppen waren einander ähnlich. 1/1 P.

Beschreiben Sie die Ethik Verfahren. Wurde wohlinformierte Zustimmung eingeholt?

Das Studienprotokoll wurde vom Ethikkomitee überprüft und entspricht den Prinzipien der „Declaration of Helsinki“. Die Probanden mussten nach dem Lesen des Studienprotokolls eine schriftliche Einwilligung geben. 1/1 P.

OUTCOMEMESSUNGEN

Geben Sie an, wie oft Outcome-Messungen durchgeführt wurden (also vorher, nachher, bei Nachbeobachtung (pre-, post-follow up)).

Outcome-Messungen: vor und nach der 5-wöchigen Intervention

Waren die Outcome-Messungen zuverlässig (reliabel)?

- ja
- nein
- nicht angegeben

Da objektive Messungen. 1/1 P.

Waren die Outcome-Messungen gültig (valide)?

- ja
- nein
- nicht angegeben

1/1 P.

Wurde ein post-follow up gemacht?

- ja
- nein

0/1 P.

Outcome Bereiche:

- funktionelle Tests
 - Gehtests
 - 6-Min.-Gehtest
 - 200m so schnell wie möglich Gehen
 - Maximalkraft Knie-Extensoren
 - Maximalkraft Plantarflexoren
 - Kreislaufreaktionen auf konzentrischem Fahrradergometer

Verwendete Messungen:

- Blutdruck, Herzfrequenz, Dyspnoe, klinische Symptome wie Angina pectoris
- Leg press: von 90° Flexion in maximale Extension, Messung in Newton
- Speziell angefertigter Stuhl, wobei sich die Probanden mit den Plantarflexoren wegrücken mussten, Messung in Newton
- Blutdruck, Herzfrequenz, Herzrhythmus, Atemfrequenz, respiratorischer Quotient, VO₂, Dyspnoe, Kohlenstoffdioxid-Pro duktion, aerobe Ventilationsschwelle

MASSNAHMEN

Beschreiben Sie kurz die Massnahmen (Schwerpunkt, wer führte sie aus, wie oft, in welchem Rahmen).

5 Wochen, 1,5h Training 3x pro Woche 2 Gruppen. Warm-up, 30 Minuten Fahrradergometer*, 30 Minuten Armvelo, 20 Minuten individuell angepasstes Kraftcircuit, cool-down.

- konzentrische Gruppe: normaler Fahrradergometer
- exzentrische Gruppe: exzentrischer Fahrradergometer
- Intensität wurde je nach individueller anzustrebender Herzfrequenz und Schmerzen in den Beinen gesteift. Im Eintrittstest wurden die Ventilationsschwelle und die zugehörige Herzfrequenz bestimmt. An diesem Wert wurde die Trainingsherzfrequenz definiert.

* konzentrische Gruppe: normaler Fahrradergometer
* exzentrische Gruppe: exzentrischer Fahrradergometer
* Intensität wurde je nach individueller anzustrebender Herzfrequenz und Schmerzen in den Beinen gesteigert. Im Eintrittstest wurden die Ventilationsschwelle und die zugehörige Herzfrequenz bestimmt. An diesem Wert wurde die Trainingsherzfrequenz definiert.
<table>
<thead>
<tr>
<th>Massnahmen (Ko-Intervention) vermieden?</th>
<th>Könnten die Massnahmen in der physiotherapeutischen Praxis wiederholt werden?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
<td>Exzentrischer Fahrradergometer ist im Handel nicht erhältlich.</td>
</tr>
<tr>
<td>nein</td>
<td>Ko-Interventionen</td>
</tr>
<tr>
<td>nicht angegeben</td>
<td>- Konzentrisches und exzentrisches Training war in Standard Rehabilitationsprogramm integriert.</td>
</tr>
<tr>
<td>entfällt</td>
<td>- Medikamente</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERGEBNISSE</th>
<th>Welches waren die Ergebnisse? Waren sie statistisch signifikant (d.h. (p<0.05))? Falls nicht statistisch signifikant: War die Studie gross genug, um einen eventuell auftretenden wichtigen Unterschied anzuzeigen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
<td>- keine muskulären Verletzungen und keine Herzrhythmusstörungen während beiden Trainings</td>
</tr>
<tr>
<td>nein</td>
<td>- Bei beiden Gruppen signifikanter Trainingseffekt bez.:</td>
</tr>
<tr>
<td>entfällt</td>
<td>- symptomlimitierte (\text{VO}_2)</td>
</tr>
<tr>
<td>nicht angegeben</td>
<td>- maximaler Leistung</td>
</tr>
<tr>
<td></td>
<td>- Gehastrecke beim 6-Minuten-Gehtest</td>
</tr>
<tr>
<td></td>
<td>- maximaler Kraft der Knieextensoren und Plantarflexoren</td>
</tr>
<tr>
<td></td>
<td>- exzentrische Gruppe zeigte:</td>
</tr>
<tr>
<td></td>
<td>- signifikant höhere Kraftzunahme der Plantarflexoren</td>
</tr>
<tr>
<td></td>
<td>- eine Tendenz zu grösseren Fortschritten bezüglich der symptomlimitierten (\text{VO}_2)</td>
</tr>
<tr>
<td></td>
<td>- Kein Zusammenhang zwischen besserer Maximalkraft und den Gehtests.</td>
</tr>
<tr>
<td>War(en) die Analysemethode(n) geeignet?</td>
<td>Welche waren die Ergebnisse? Waren sie statistisch signifikant (d.h. (p<0.05))? Falls nicht statistisch signifikant: War die Studie gross genug, um einen eventuell auftretenden wichtigen Unterschied anzuzeigen?</td>
</tr>
<tr>
<td>ja</td>
<td>- keine muskulären Verletzungen und keine Herzrhythmusstörungen während beiden Trainings</td>
</tr>
<tr>
<td>nein</td>
<td>- Bei beiden Gruppen signifikanter Trainingseffekt bez.:</td>
</tr>
<tr>
<td>entfällt</td>
<td>- symptomlimitierte (\text{VO}_2)</td>
</tr>
<tr>
<td>nicht angegeben</td>
<td>- maximaler Leistung</td>
</tr>
<tr>
<td></td>
<td>- Gehastrecke beim 6-Minuten-Gehtest</td>
</tr>
<tr>
<td></td>
<td>- maximaler Kraft der Knieextensoren und Plantarflexoren</td>
</tr>
<tr>
<td></td>
<td>- exzentrische Gruppe zeigte:</td>
</tr>
<tr>
<td></td>
<td>- signifikant höhere Kraftzunahme der Plantarflexoren</td>
</tr>
<tr>
<td></td>
<td>- eine Tendenz zu grösseren Fortschritten bezüglich der symptomlimitierten (\text{VO}_2)</td>
</tr>
<tr>
<td></td>
<td>- Kein Zusammenhang zwischen besserer Maximalkraft und den Gehtests.</td>
</tr>
<tr>
<td>ja</td>
<td>- exzentrisches Ausdauertraining bei Herzpatienten scheint sicher</td>
</tr>
<tr>
<td>nein</td>
<td>- die Resultate von exzentrischem Ausdauertraining sind vergleichbar mit längeren konzentrischen Trainingsprogrammen, vor allem bezüglich Belastbarkeit während des Gehens und Verbesserungen der symptomlimitierten (\text{VO}_2).</td>
</tr>
<tr>
<td>nicht angegeben</td>
<td>- 5 Wochen exzentrisches Ausdauertraining führt zu grösseren Verbesserungen der Maximalkraft der Plantarflexoren</td>
</tr>
<tr>
<td></td>
<td>- Wegen dem geringen Energieverbrauch stellt exzentrisches Training eine attraktive Alternative für Herzpatienten dar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCHLUSSFOLGERUNGEN UND KLINISCHE IMPLIKATIONEN</th>
<th>Welches waren die hauptsächlichen Begrenzungen oder systematischen Fehler der Studie?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden Fälle von Ausscheiden aus der Studie angegeben?</td>
<td>- kurze Trainingsperiode von 5 Wochen</td>
</tr>
<tr>
<td>ja</td>
<td>- kleines Sample von 14 Patienten</td>
</tr>
<tr>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>nicht angegeben</td>
<td></td>
</tr>
<tr>
<td>Waren die Schlussfolgerungen angemessen im Hinblick auf Methoden und Ergebnisse der Studie?</td>
<td>Welches war die klinische Bedeutung der Ergebnisse? Waren die Unterschiede zwischen Gruppen (falls es Gruppen gab) klinisch von Bedeutung? Zu welchem Schluss kam die Studie? Welche Implikationen haben die Ergebnisse für die physiotherapeutische Praxis?</td>
</tr>
<tr>
<td>ja</td>
<td>- exzentrisches Ausdauertraining bei Herzpatienten scheint sicher</td>
</tr>
<tr>
<td>nein</td>
<td>- die Resultate von exzentrischem Ausdauertraining sind vergleichbar mit längeren konzentrischen Trainingsprogrammen, vor allem bezüglich Belastbarkeit während des Gehens und Verbesserungen der symptomlimitierten (\text{VO}_2).</td>
</tr>
<tr>
<td>nicht angegeben</td>
<td>- 5 Wochen exzentrisches Ausdauertraining führt zu grösseren Verbesserungen der Maximalkraft der Plantarflexoren</td>
</tr>
<tr>
<td></td>
<td>- Wegen dem geringen Energieverbrauch stellt exzentrisches Training eine attraktive Alternative für Herzpatienten dar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fehlende Ergebnisse</th>
<th>fehlende Analysemethode</th>
<th>fehlende Ausscheidungen</th>
<th>fehlende Schlussfolgerungen</th>
<th>fehlende klinische Bedeutung</th>
<th>fehlende Begrenzungen</th>
<th>fehlende Fehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>nicht angegeben</td>
</tr>
</tbody>
</table>

Iris Heer & Barbara Wagner
- Studie wurde mit ausschließlich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.
- Durch die Ausschlusskriterien und Einschlusskriterien wurden verhältnismässig gute Patienten in die Studie eingeschlossen.
- Dosierung wurde nicht begründet und die Trainingsherzfrequenz nicht in Zahlen erläutert. → Studie ist schlecht nachvollziehbar und auch nicht in die Praxis umsetzbar
- Kraftcircuit wurde nicht genau erläutert.
- Die funktionellen Tests wurden direkt nach der Trainingsperiode durchgeführt. Ob die Übernahme der Kraft in die Funktion dabei schon stattgefunden hat, ist ungewiss.
- Kein follow-up → Nachhaltigkeit?
TITEL: Eccentric ergometry: increases in locomotor muscle size and strength at low training intensities
AUTOREN: LaStayo, P. C., Pierotti, D. J., Pifer, J., Hoppeler, H. und Lindstedt, S. L.
PUNKTE: 10/18

ZIEL DER STUDIE

| Wurde der Zweck klar angegeben? | ✓ ja | ☒ nein | 1/1 P. |

Skizzieren Sie das Ziel der Studie. Inwiefern bezieht sich die Studie auf Physiotherapie und/oder Ihre Forschungsfrage?

Die Autoren wollten herausfinden, ob mit exzentrischem Ausdauertraining die Grösse und Kraft eines Muskels verbessert werden kann. Die Trainingsintensität, anhand der VO₂, wurde dabei so tief gewählt, dass bei konzentrischem Training keine strukturellen und funktionalen Anpassungen geschehen würden.

⇒ Effekt von exzentrischem Ausdauertraining auf Muskelstrukturen.

LITERATUR

| Wurde die relevante Hintergrundliteratur gesichtet? | ✓ ja | ☒ nein | 1/1 P. |

Geben Sie an, wie die Notwendigkeit der Studie gerechtfertigt wurde.

DESIGN

- randomisierte kontrollierte Studie (RCT)
- Kohortenstudie
- Einzelfall Design
- Vorher Nachher Design
- Fall Kontroll Studie
- Querschnittsstudie
- Fallstudie

Beschreiben Sie das Studiendesign.

Entsprach das Design der Studienfrage (z.B. im Hinblick auf den Wissensstand zur betreffenden Frage, auf Ergebnisse (Outcomes), auf ethische Aspekte)?

⇒ Es gibt bereits vorangegangene Fallstudien und Interventionsstudien.

⇒ Es ist kein Ethikverfahren beschrieben, jedoch gesunde Teilnehmer.

1/1 P.

Spezifizieren Sie alle systematischen Fehler (Verzerrungen, bias), die vielleicht aufgetreten sein könnten, und in welche Richtung sie die Ergebnisse beeinflussen.

- Gezielte Einteilung der Teilnehmer auf 2 Gruppen
 − 1 P.
- keine Angaben bezüglich Verblindung der Probanden.
 − 1 P.
- Beurteiler waren nicht geblindet.
 − 1 P.

STICHPROBE

| Wurde die Stichprobe detailliert beschrieben? | ✓ ja | ☒ nein | 0/1 P. |

N = Stichprobenauswahl (wer, Merkmale, wie viele, wie wurde die Stichprobe zusammengestellt?). Bei mehr als einer Gruppe: Waren die Gruppen ähnlich?

- 14 gesunde Männer im Alter von 19-38 Jahren.
- Die Probanden wurden in 2 Gruppen eingeteilt, wobei darauf geachtet wurde, dass die durchschnittliche...
<table>
<thead>
<tr>
<th>Wurde die Stichprobengrösse begründet?</th>
<th>maximale VO₂ in beiden Gruppen gleich war (Testung zu Beginn).</th>
</tr>
</thead>
<tbody>
<tr>
<td>o ja</td>
<td>- Keine Angaben zum Trainingszustand der Teilnehmer</td>
</tr>
<tr>
<td>✓ nein</td>
<td>Bei mehr als einer Gruppe: Waren die Gruppen ähnlich?</td>
</tr>
<tr>
<td></td>
<td>Die Gruppen waren einander ähnlich.</td>
</tr>
<tr>
<td>0/1 P.</td>
<td>Beschreiben Sie die Ethik Verfahren. Wurde wohlinformierte Zustimmung eingeholt?</td>
</tr>
<tr>
<td></td>
<td>Darüber ist nichts erwähnt.</td>
</tr>
<tr>
<td></td>
<td>0/1 P.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTCOMEMESSUNGEN</th>
<th>Geben Sie an, wie oft Outcome-Messungen durchgeführt wurden (also vorher, nachher, bei Nachbeobachtung (pre-, post-follow up)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waren die Outcome-Messungen zuverlässig (reliable)?</td>
<td>- Vor und nach der Intervention: maximale VO₂, maximale Herzfrequenz, respiratorische Quotient, Muskelfaserstruktur, isometrische Kraft der Knieextensoren rechts</td>
</tr>
<tr>
<td>✓ ja</td>
<td>- während dem Training: VO₂, Herzfrequenz, Leistung (Watt), Ermüdung, Schmerzen in den Beinen, isometrische Kraft der Knieextensoren links (1x/Woche)</td>
</tr>
<tr>
<td>o nein</td>
<td>- nicht angegeben</td>
</tr>
<tr>
<td>1/1 P.</td>
<td>Waren die Outcome-Messungen gültig (valide)?</td>
</tr>
<tr>
<td></td>
<td>Outcome Bereiche:</td>
</tr>
<tr>
<td></td>
<td>Kreislaufreaktionen während exzentrischem und konzentrischem Training</td>
</tr>
<tr>
<td></td>
<td>Verwendete Messungen:</td>
</tr>
<tr>
<td></td>
<td>maximale VO₂, maximale Herzfrequenz., respiratorische Quotient</td>
</tr>
<tr>
<td></td>
<td>Muskelfaserstruktur</td>
</tr>
<tr>
<td></td>
<td>Biopsie des M. vastus lateralis → Anzahl Kapillaren pro Muskelfaser, Dichten der Muskelfasern, der Mitochondrien, der Sarkoplasmatischen Retikuli,.</td>
</tr>
<tr>
<td></td>
<td>Muskelfaserdurchschnitt</td>
</tr>
<tr>
<td></td>
<td>isometrische Kraft</td>
</tr>
<tr>
<td></td>
<td>VO₂</td>
</tr>
<tr>
<td></td>
<td>Herzfrequenz Leistung (Watt)</td>
</tr>
<tr>
<td></td>
<td>Ermüdung</td>
</tr>
<tr>
<td></td>
<td>Schmerzen in den Beinen</td>
</tr>
<tr>
<td></td>
<td>Verwendet Messungen:</td>
</tr>
<tr>
<td></td>
<td>Maxima VO₂, Maximale Herzfrequenz, Respiratorische Quotient</td>
</tr>
<tr>
<td></td>
<td>Muskelfaserstruktur</td>
</tr>
<tr>
<td></td>
<td>Biopsie des M. vastus lateralis Anzahl Kapillaren pro Muskelfaser, Dichten der Muskelfasern, der Mitochondrien, der Sarkoplasmatischen Retikuli,.</td>
</tr>
<tr>
<td></td>
<td>Muskelfaserdurchschnitt</td>
</tr>
<tr>
<td></td>
<td>isometrische Kraft</td>
</tr>
<tr>
<td></td>
<td>VO₂</td>
</tr>
<tr>
<td></td>
<td>Herzfrequenz Leistung (Watt)</td>
</tr>
<tr>
<td></td>
<td>Ermüdung</td>
</tr>
<tr>
<td></td>
<td>Schmerzen in den Beinen</td>
</tr>
<tr>
<td></td>
<td>VAS</td>
</tr>
<tr>
<td></td>
<td>Wurde ein post-follow up gemacht?</td>
</tr>
<tr>
<td>o ja</td>
<td>Outcome Bereiche:</td>
</tr>
<tr>
<td>✓ nein</td>
<td>Kreislaufreaktionen während exzentrischem Training</td>
</tr>
<tr>
<td>0/1 P.</td>
<td>Verwendete Messungen:</td>
</tr>
<tr>
<td></td>
<td>maximale VO₂, maximale Herzfrequenz., respiratorische Quotient</td>
</tr>
<tr>
<td></td>
<td>Muskelfaserstruktur</td>
</tr>
<tr>
<td></td>
<td>Biopsie des M. vastus lateralis Anzahl Kapillaren pro Muskelfaser, Dichten der Muskelfasern, der Mitochondrien, der Sarkoplasmatischen Retikuli,.</td>
</tr>
<tr>
<td></td>
<td>Muskelfaserdurchschnitt</td>
</tr>
<tr>
<td></td>
<td>isometrische Kraft</td>
</tr>
<tr>
<td></td>
<td>VO₂</td>
</tr>
<tr>
<td></td>
<td>Herzfrequenz Leistung (Watt)</td>
</tr>
<tr>
<td></td>
<td>Ermüdung</td>
</tr>
<tr>
<td></td>
<td>Schmerzen in den Beinen</td>
</tr>
<tr>
<td></td>
<td>VAS</td>
</tr>
<tr>
<td></td>
<td>Beschreiben Sie kurz die Massnahmen (Schwerpunkt, wer führte sie aus, wie oft, in welchem Rahmen).</td>
</tr>
<tr>
<td></td>
<td>- Trainingsdauer: 8 Wochen</td>
</tr>
<tr>
<td></td>
<td>- konzentrische Gruppe: Training auf normalem Fahrradergometer</td>
</tr>
<tr>
<td></td>
<td>- exzentrische Gruppe: Training auf exzentrischem Fahrradergometer</td>
</tr>
<tr>
<td></td>
<td>- beide Gruppen trainierten bei gleicher Trainingsintensität, (d.h. beim gleichen Prozentsatz der individuell maximalen Herzfrequenz).</td>
</tr>
<tr>
<td></td>
<td>- Intensität wurde über die Trainingsperiode von 54% der maximalen Herzfrequenz auf 65% gesteigert.</td>
</tr>
</tbody>
</table>
| Wurden gleichzeitige weitere Massnahmen (Ko-Intervention) vermieden? | ja | 1/1 P. | - Die Umdrehungszahl wurde in der Woche 5 von beginnenden 50 Umdrehungen/Min. auf 70 Umdrehungen erhöht.
- Es wurde wie folgt trainiert:
 1. Woche: 2x/Woche, 15 min.
 2. und 3. Woche: 3x/Woche, 25-30 min.
 4. Woche: 4x/Woche, 30 min.
 5. und 6. Woche: 5x/Woche, 30 min.
 7. und 8. Woche: 3x/Woche, 30 min. (weil sich die exzentrische Gruppe über Fatigue beklagte, musste die Trainingsfrequenz wieder reduziert werden)
Könnten die Massnahmen in der physiotherapeutischen Praxis wiederholt werden?
Exzentrischer Fahrradergometer ist im Handel nicht erhältlich.
Ko-Interventionen
Es wurden keine Ko-Interventionen erwähnt.
|
| ERGEBNISSE | Welches waren die Ergebnisse? Waren sie statistisch signifikant (d.h. p<0.05)? Falls nicht statistisch signifikant: War die Studie gross genug, um einen eventuell auftretenden wichtigen Unterschied anzuzeigen?
- maximale VO₂ und Herzfrequenz: kein signifikanter Unterschied zwischen den beiden Interventionsgruppen (vor und nach der Intervention)
- geleistete Arbeit: bei exzentrischer Gruppe signifikant grösser (p<0.0001)
- subjektive Anstrengung der Beine: war in der exzentrischen Gruppe signifikant grösser (P=0.001)
- subjektive Ermüdung des gesamten Körpers: keinen signifikanten Unterschied zwischen den beiden Gruppen
- Muskelkater: In den ersten 4 bis 5 Wochen war der Unterschied zwischen den beiden Gruppen signifikant. (P=0.001) (weil die konzentrische Gruppe gar keinen Muskelkater angab und die exzentrische Gruppe ganz leichten)
- isometrische Kraft: nahm bei der exzentrischen Gruppe signifikant zu (in Wo. 7 p<0.0001; 10d nach der Intervention P=0.01), bei der konzentrischen Gruppe keine signifikanten Verbesserungen
- Muskelfaserstruktur:
 - Dichte: in beiden Gruppen keine Veränderungen. (P>0.05) (das heisst die Dichten der Muskelfasern, der Mitochondrien oder der Sarkoplasmatischen Retikuli blieben gleich)
 - Muskelfaserdurchschnitt bei der exzentrischen Gruppe signifikant grösser (P=0.003), bei der konzentrischen Gruppe keine Veränderungen
 - Kapillardichte bei beiden Trainingsgruppen unverändert
 - Anzahl Kapillaren pro Muskelfaser stieg in der exzentrischen Gruppe signifikant an (P=0.001), bei der konzentrischen Gruppe blieb sie gleich (mehr Kapillaren, da Muskelfaserquerschnitt grösser wurde.)
| Wurden Fälle von Ausscheiden aus der Studie angegeben? | ja | 1/1 P. |
| Schieden Teilnehmer aus der Studie aus? Warum? (Wurden Gründe angegeben, und wurden Fälle von Ausscheiden angemessen gehandhabt?) | | |
Ein Teilnehmer aus der konzentrischen Gruppe schied aus. Handhabung damit ist nicht beschrieben. – 1 P

<table>
<thead>
<tr>
<th>SCHLUSSFOLGERUNGEN UND KLINISCHE IMPLIKATIONEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde die klinische Bedeutung angegeben?</td>
</tr>
<tr>
<td>✓ ja</td>
</tr>
<tr>
<td>o nein</td>
</tr>
<tr>
<td>o nicht angegeben</td>
</tr>
<tr>
<td>1/1 P.</td>
</tr>
</tbody>
</table>

| Welches war die klinische Bedeutung der Ergebnisse? |
| Waren die Unterschiede zwischen Gruppen (falls es Gruppen gab) klinisch von Bedeutung? |
| Zu welchem Schluss kam die Studie? Welche Implikationen haben die Ergebnisse für die physiotherapeutische Praxis? |
| Exzentrische Fahrradergometrie über 8 Wochen erbringt bei gesunden Probanden Verbesserungen der isometrischen Beinkraft und einen Zuwachs des Muskelfaserquerschnitts, während man bei so geringer Intensität trainierte, dass es konzentrisch keine Verbesserungen geben konnte. |

<p>| Welches waren die hauptsächlichen Begrenzungen oder systematischen Fehler der Studie? |
| - Willentliche Einteilung der Probanden auf die Trainingsgruppen. |
| - Kleines Sample von 14 Probanden |
| - Studie wurde mit ausschliesslich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert. |
| - Dosierung wurde nicht begründet → nicht in die Praxis umsetzbar |
| - Kein follow up → Nachhaltigkeit? |
| - Das Einschlusskriterium „Gesunde Probanden“ ist sehr weit gefasst. |</p>
<table>
<thead>
<tr>
<th>Titel: Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoren: LaStayo, P.C., Reich, T.E., Urquhart, M., Hoppeler, H. und Lindstedt S.L.</td>
</tr>
<tr>
<td>Punkte: 11/18</td>
</tr>
</tbody>
</table>

Ziel der Studie

Wurde der Zweck klar angegeben?
- Ja
- Nein

1/1 P.

Skizzieren Sie das Ziel der Studie. Inwiefern bezieht sich die Studie auf Physiotherapie und/oder Ihre Forschungsfrage?

Das Ziel der Studie war es zwei Fragen zu beantworten:
1. Kann exzentrisches Ausdauertraining die lokomotorische Muskelkraft verbessern ohne Muskelverletzungen zu verursachen?
2. Ist es möglich mit exzentrischem Training auf einem niedrigen Energielevel eine Kraftsteigerung zu erlangen, welches bei konzentrischem Training keinen Effekt hätte?

⇒ Ist exzentrisches Ausdauertraining für Patienten mit einem niedrigen Energielevel möglich?

Literatur

Wurde die relevante Hintergrundliteratur gesichtet?
- Ja
- Nein

0/1 P.

Geben Sie an, wie die Notwendigkeit der Studie gerechtfertigt wurde.

Es ist nicht viel zur Hintergrundliteratur geschrieben –
- Exzentrische Muskelarbeit kann eine größere Spannung erzeugen als konzentrische oder isometrische.
- Die VO₂ ist bei der exzentrischen Aktivität geringer als bei konzentrischer.

Design

- Randomisierte kontrollierte Studie (RCT)
- Kohortenstudie
- Einzelfall Design
- Vorher Nachher Design
- Fall Kontroll Studie
- Querschnittsstudie
- Fallstudie

Beschreiben Sie das Studiendesign.

RCT: Randomisation, Experiment- und Kontrollgruppe
⇒ Messung Effekt von exzentrischem Ausdauertraining bei geringer Intensität

Entsprach das Design der Studienfrage (z.B. im Hinblick auf den Wissensstand zur betreffenden Frage, auf Ergebnisse (Outcomes), auf ethische Aspekte)?

Studiendesign entsprach der Studienfrage
⇒ Bereits vorangegangene Fallstudien
⇒ Kein Ethikkomitee, da Teilnehmer Gesunde waren

1/1 P.

Spezifizieren Sie alle systematischen Fehler (Verzerrungen, bias), die vielleicht aufgetreten sein könnten, und in welche Richtung sie die Ergebnisse beeinflussen.
- keine Angaben zur Verblindung der Teilnehmer – 1 P.
- keine Verblindung der Beurteiler. – 1 P.

Stichprobe

Wurde die Stichprobe detailliert beschrieben?
- Ja
- Nein

1/1 P.

Wurde die Stichprobengrösse begründet?

N = Stichprobenauswahl (wer, Merkmale, wie viele, wie wurde die Stichprobe zusammengestellt?).
- 9 gesunde Probanden zwischen 18 und 34 Jahren
- Randomisation in exzentrische oder konzentrische Ausdauertrainings-Gruppe.
- exzentrische Gruppe: ein regelmässiger, mittelmässiger Sportler und ein wenig Sport treibender Mann sowie eine wettbewerbsfähige Triathletin und eine regelmässig Sport treibende Frau.
Bremsen mit Herz

- konzentrische Gruppe: 2 unregelmäßig sportlich aktive Männer und 3 leicht sportliche Frauen

Bei mehr als einer Gruppe: Waren die Gruppen ähnlich?
Gruppen sind sich nicht ähnlich, da Probanden innerhalb der Gruppen unterschiedliche Trainingslevel aufzeigten. Zusätzlich nahmen Frauen und Männer an der Studie teil. 0/1 P.

Beschreiben Sie die Ethik Verfahren. Wurde wohlinformierte Zustimmung eingeholt?
Kein Ethikverfahren und keine wohlinformierte Zustimmung angegeben. 0/1 P.

OUTCOMEMESSUNGEN

Waren die Outcome-Messungen zuverlässig (reliabel)?
- ja
- nein
- nicht angegeben

Da objektive Messungen. 1/1 P.

Waren die Outcome-Messungen gültig (valide)?
- ja
- nein
- nicht angegeben

VO_2
Von der 4. bis zur 6. Woche wurde einmal wöchentlich die VO_2 während des Trainings gemessen.

Muskelkater der unteren Extremität
Anhand der 14cm langen VAS wurde das subjektive Empfinden eines Muskelkaters oder Schmerzen der unteren Extremität objektiviert. Vor und nach der 6-wöchigen Trainingsperiode und vor jedem Training mussten die Teilnehmer ihren Muskelkater einschätzen.

Wahrgenommene Anstrengung
Die subjektiv wahrgenommene Anstrengung wurde von jedem Teilnehmer für den Körper allgemein und die untere Extremität spezifisch bewertet. Dabei benutzten sie eine Borg RPE Scale von 6-20 und mussten diese während jedem Training angeben.

MASSNAHMEN

Wurden die Massnahmen detailliert beschrieben?
- ja
- nein
- nicht angegeben

Beschreiben Sie kurz die Massnahmen (Schwerpunkt, wer führte sie aus, wie oft, in welchem Rahmen).
- Trainingsdauer: 6 Wochen
 - Das Ausdauertraining wurde für beide Gruppen auf einem Fahrradergometer durchgeführt, wobei das der exzentrischen Gruppe speziell für die Studie angefertigt wurde
 - Dabei wurden die Trainingsfrequenz und -dauer wie folgt progressiv erhöht (bei einer Pedalfrequenz von 50-60 Umdrehungen/Min.)
 - 1. Woche: 2x/Woche, 10-20 Minuten
 - 2. Woche: 3x/Woche, 30 Minuten
 - 3. bis 6. Woche: 5x/Woche, 30 Minuten

Dabei wurden gleichzeitig weitere Massnahmen (Ko-Intervention)
Arbeitsleistung als die konzentrische Gruppe. Während der 5. Woche wurde die Arbeitsleistung angepasst, um ein...
ERGEBNISSE

<table>
<thead>
<tr>
<th>Vermieden?</th>
<th>Ausgleich der VO$_2$ zwischen den Gruppen zu erreichen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ja</td>
<td>Können die Massnahmen in der physiotherapeutischen Praxis wiederholt werden?</td>
</tr>
<tr>
<td>o nein</td>
<td>Exzentrischer Fahrradergometer ist im Handel nicht erhältlich.</td>
</tr>
<tr>
<td>o nicht angegeben</td>
<td>Ko-Interventionen?</td>
</tr>
<tr>
<td>o entfällt</td>
<td>Es wurden keine Ko-Interventionen erwähnt.</td>
</tr>
</tbody>
</table>

| 1/1 P. |

<table>
<thead>
<tr>
<th>Wurden Fälle von Ausscheiden aus der Studie angegeben?</th>
<th>Schieden Teilnehmer aus der Studie aus? Warum?</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ja</td>
<td>(Wurden Gründe angegeben, und wurden Fälle von Ausscheiden angemessen gehandhabt?)</td>
</tr>
<tr>
<td>o nein</td>
<td>Es gab keine Ausscheidungen.</td>
</tr>
</tbody>
</table>

| 1/1 P. |

<table>
<thead>
<tr>
<th>War(en) die Analysemethode(n) geeignet?</th>
<th>Welches waren die Ergebnisse? Waren sie statistisch signifikant (d.h. p<0.05)? Falls nicht statistisch signifikant: War die Studie gross genug, um einen eventuell auftretenden wichtigen Unterschied anzuzeigen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ja</td>
<td>Arbeitsbelastung und VO$_2$</td>
</tr>
<tr>
<td>o nein</td>
<td>- die exzentrische Gruppe startete mit einer dreifach höheren Arbeitsleistung als die konzentrische Gruppe. In der 6. Woche wuchs dieser Unterschied auf bis zu siebenfache Differenz. Dabei beanspruchte die exzentrische Gruppe weniger oder gleich viel Sauerstoff wie die konzentrische Gruppe</td>
</tr>
<tr>
<td>o entfällt</td>
<td>VAS</td>
</tr>
<tr>
<td>o nicht angegeben</td>
<td>- In den ersten 2-3 Wochen gab die exzentrische Gruppe nur minimale Schmerzen der unteren Extremität auf der VAS an, wobei keine Kraftveränderung stattfand</td>
</tr>
</tbody>
</table>

| 1/1 P. |

<table>
<thead>
<tr>
<th>Borg</th>
<th>Muskelkraft:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Die isometrische Kraft der exzentrischen Gruppe ist um 33% (gemessen in der 6. Woche) und um 27% (gemessen 2-3 Tage nach der 6-wöchigen Trainingsperiode) signifikant gestiegen (p<0.05).</td>
</tr>
<tr>
<td></td>
<td>- In keiner Periode wurde eine signifikante Verbesserung der isometrischen Kraft der konzentrischen Gruppe gemessen.</td>
</tr>
<tr>
<td></td>
<td>- Jedoch wurden signifikante Unterschiede (p<0.05) bezüglich isometrischer Kraft zwischen den Probanden in beiden Gruppen festgestellt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muskelkraft:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Muskelkraft:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Die isometrische Kraft der exzentrischen Gruppe ist um 33% (gemessen in der 6. Woche) und um 27% (gemessen 2-3 Tage nach der 6-wöchigen Trainingsperiode) signifikant gestiegen (p<0.05).</td>
</tr>
<tr>
<td>- In keiner Periode wurde eine signifikante Verbesserung der isometrischen Kraft der konzentrischen Gruppe gemessen.</td>
</tr>
<tr>
<td>- Jedoch wurden signifikante Unterschiede (p<0.05) bezüglich isometrischer Kraft zwischen den Probanden in beiden Gruppen festgestellt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1/1 P.</th>
<th>Welches war die klinische Bedeutung der Ergebnisse?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden Fälle von Ausscheiden aus der Studie angegeben?</td>
<td>Waren die Unterschiede zwischen Gruppen (falls es Gruppen gab) klinisch von Bedeutung?</td>
</tr>
<tr>
<td>✓ ja</td>
<td>Zu welchem Schluss kam die Studie? Welche Implikationen haben die Ergebnisse für die physiotherapeutische Praxis?</td>
</tr>
<tr>
<td>o nein</td>
<td>Exzentrisches Training kann, wenn es zu Beginn langsam</td>
</tr>
<tr>
<td>o nicht angegeben</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 1/1 P. |</p>
<table>
<thead>
<tr>
<th>Waren die Schlussfolgerungen angemessen im Hinblick auf Methoden und Ergebnisse der Studie?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ja</td>
</tr>
</tbody>
</table>

1/1 P.

Welches waren die hauptsächlichen Begrenzungen oder systematischen Fehler der Studie?
- Heterogene Gruppen → Gruppeneffekt ist nicht so deutlich, da der Grundumsatz bei Männern und Frauen verschieden ist.
- Das Einschlusskriterium „Gesunde Probanden“ ist sehr weit gefasst.
- Die Gruppen waren einander nicht ähnlich.
- Kleines Sample von 9 Personen.
- Dosierung wurde nicht begründet → nicht in die Praxis umsetzbar
- Kein follow up → Nachhaltigkeit?
TITEL: Eccentric Exercise in Coronary Patients: Central Hemodynamic and Metabolic Responses
PUNKTE: 13/18

<table>
<thead>
<tr>
<th>ZIEL DER STUDIE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde der Zweck klar angegeben?</td>
<td>✓ ja</td>
</tr>
<tr>
<td>o nein</td>
<td></td>
</tr>
<tr>
<td>1/1 P.</td>
<td></td>
</tr>
</tbody>
</table>

Skizzieren Sie das Ziel der Studie. Inwiefern bezieht sich die Studie auf Physiotherapie und/oder Ihre Forschungsfrage?

Die Autoren wollten die zentralen hämodynamischen und metabolischen Reaktionen von Herzznotpatienten während exzentrischem Ausdauertraining mit der herkömmlichen konzentrischen Veloergometrie vergleichen und bewerten.
⇒ Herzkreislauf-Reaktionen bei Herzpatienten auf exzentrisches Ausdauertraining

<table>
<thead>
<tr>
<th>LITERATUR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde die relevante Hintergrundliteratur gesichtet?</td>
<td>✓ ja</td>
</tr>
<tr>
<td>o nein</td>
<td></td>
</tr>
<tr>
<td>1/1 P.</td>
<td></td>
</tr>
</tbody>
</table>

Geben Sie an, wie die Notwendigkeit der Studie gerechtfertigt wurde.

Es gibt noch keine Daten über die zentralen Kreislauf-Reaktionen während exzentrischem Ausdauertraining. Um Herzpatienten sicher zu trainieren, sind diese Informationen wichtig.

<table>
<thead>
<tr>
<th>DESIGN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ randomisierte kontrollierte Studie (RCT)</td>
<td></td>
</tr>
<tr>
<td>o Kohortenstudie</td>
<td></td>
</tr>
<tr>
<td>o Einfallszahl Design</td>
<td></td>
</tr>
<tr>
<td>o Vorher Nachher Design</td>
<td></td>
</tr>
<tr>
<td>o Fall Kontroll Studie</td>
<td></td>
</tr>
<tr>
<td>o Querschnittsstudie</td>
<td></td>
</tr>
<tr>
<td>o Fallstudie</td>
<td></td>
</tr>
</tbody>
</table>

Beschreiben Sie das Studiendesign.

RCT: Randomisation, Experiment- und Kontrollgruppe
⇒ Messung Herzkreislauf-Reaktionen bei Herzpatienten auf exzentrisches Ausdauertraining.

Entsprach das Design der Studienfrage (z.B. im Hinblick auf den Wissensstand zur betreffenden Frage, auf Ergebnisse (Outcomes), auf ethische Aspekte)?

Studiendesign entsprach der Studienfrage
⇒ Bereits vorangegangene Fallstudien bei Gesunden
⇒ Ethikkomitee wurde miteinbezogen
1/1 P.

Spezifizieren Sie alle systematischen Fehler (Verzerrungen, bias), die vielleicht aufgetreten sein könnten, und in welche Richtung sie die Ergebnisse beeinflussen.

- Teilnehmer waren nicht geblindet – 1 P.
- Beurteiler waren nicht geblindet – 1 P.

<table>
<thead>
<tr>
<th>STICHPROBE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde die Stichprobe detailliert beschrieben?</td>
<td>✓ ja</td>
</tr>
<tr>
<td>o nein</td>
<td></td>
</tr>
<tr>
<td>1/1 P.</td>
<td></td>
</tr>
</tbody>
</table>

N = Stichprobenauswahl (wer, Merkmale, wie viele, wie wurde die Stichprobe zusammengestellt?).
- 13 Herzpatienten mit wiedererlangter und/oder leicht reduzierter Funktion des linken Ventrikels, zwischen 40 und 60 Jahren
- 10 Teilnehmer: Myokardinfarkt, 9 Teilnehmer: Arterienwiedereröffnung, 3 Teilnehmer: Bypass Operation, die Diagnose eines Teilnehmers ist nicht definiert.

- Ausschlusskriterien sind definiert.
- Randomisation in 2 Gruppen (exzentrisch und konzentrisch)

Bei mehr als einer Gruppe: Waren die Gruppen ähnlich?
Die Gruppen waren einander ähnlich.
1/1 P.
die beiden Studien wurden zusammen durchgeführt
1/1 P.

Beschreiben Sie die Ethik Verfahren. Wurde wohlinformierte Zustimmung eingeholt?
Das Studienprotokoll wurde von einem Ethikkomitee überprüft. Vor der Teilnahme gaben alle Probanden ein schriftliches Einverständnis.
1/1 P.

OUTCOMEMESSUNGEN
Waren die Outcome-Messungen zuverlässig (reliabel)?
- ja
- nein
- nicht angegeben
Da objektive Messungen.
1/1 P.

Waren die Outcome-Messungen gültig (valide)?
- ja
- nein
- nicht angegeben
1/1 P.

Wurde ein post-follow up gemacht?
- ja
- nein
0/1 P.

Geben Sie an, wie oft Outcome-Messungen durchgeführt wurden (also vorher, nachher, bei Nachbeobachtung (pre-, post-follow up)).
- Ende 5. Woche: zentrale Hämodynamik (mittels Rechtsherzkatheter) während eines 20-minütigen exzentrischen oder konzentrischen Trainings gemessen (bei 60% der maximalen VO\(_2\) und/oder 85% der maximalen Herzfrequenz)
- Anfang und in der 8. Woche:
 - Echokardiographie in Rückenlage → messen der Funktion des linken Ventrikels
 - Test auf dem Fahrradergometer → messen von Veränderungen der kardio-pulmonalen Belastbarkeit

Outcome Bereiche:
- Zentrale Hämodynamik (in den Pausen und nach 5, 10, 15 und 20 Minuten während der Übung)

Verwendete Messungen:
- zentrale Venendruck (Blutdruck im rechten Vorhof)
- pulmonale Kapillardruck
- Sauerstoffsättigung der Arteria pulmonalis
- arterielle Sauerstoffsättigung
- systemisch arterieller Blutdruck
- Herzfrequenz
- Laktatkonzentration Blut

Daraus wurde errechnet:
- arteriovenöse Sauerstoffunterschied
- Schlagvolumenindex
- Herzzeitvolumen
- Herdindex
- periphere Gesamtgefässwiderstand
- linksventrikuläre Schlagarbeit

- kardio-pulmonale Belastbarkeit

- maximale Leistung (Watt)
- VO\(_2\)

MASSNAHMEN
Wurden die Massnahmen detailliert beschrieben?
- ja
- nein
- nicht angegeben
1/1 P.

Beschreiben Sie kurz die Massnahmen (Schwerpunkt, wer führte sie aus, wie oft, in welchem Rahmen).
- 8 Wochen, 3x/Wochen à 30 min.
- Konzentrische Gruppe: trainierte auf einem Standardfahrradergometer
- Exzentrische Gruppe: trainierte auf einem speziell angefertigten Fahrradergometer
- Trainingsintensität wurde für beide Interventionsgruppen bis Ende 5. Woche auf 60% der maximalen VO\(_2\) und/oder 85% der maximalen Herzfrequenz gesteigert.
<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden gleichzeitige weitere Massnahmen (Ko-Intervention) vermieden?</td>
<td>ja</td>
</tr>
<tr>
<td>ERGEBNISSE</td>
<td></td>
</tr>
<tr>
<td>Erklärung der Ergebnisse der Studie angegeben?</td>
<td>ja</td>
</tr>
<tr>
<td>Ko-Interventionen</td>
<td></td>
</tr>
<tr>
<td>Wurden Falle von Ausscheiden aus der Studie angegeben?</td>
<td>ja</td>
</tr>
<tr>
<td>SCHLUSSFOLGERUNGEN UND</td>
<td></td>
</tr>
<tr>
<td>Welches war die klinische Bedeutung der Ergebnisse?</td>
<td></td>
</tr>
<tr>
<td>KLINISCHE IMPLIKATIONEN</td>
<td>Waren die Unterschiede zwischen Gruppen (falls es Gruppen gab) klinisch von Bedeutung?</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Wurde die klinische Bedeutung angegeben?</td>
<td>Zu welchem Schluss kam die Studie? Welche Implikationen haben die Ergebnisse für die physiotherapeutische Praxis?</td>
</tr>
<tr>
<td>□ ja</td>
<td>- Obwohl des fast 4x grösseren muskulären Stresses während exzentrischem Ausdauertraining, waren die kardiovaskulären Reaktionen vergleichbar mit denen der konzentrischen Gruppe → alle hämodynamischen Parameter waren im normalen Range</td>
</tr>
<tr>
<td>□ nein</td>
<td>- Exzentrisches Ausdauertraining als neuer Ansatz, um Steigerung der Muskelmasse und –kraft bei Herzenpatienten zu erzielen</td>
</tr>
<tr>
<td>□ nicht angegeben</td>
<td>- Die Messungen wurden bei gering eingeschränkten Herzenpatienten gemacht.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Welches waren die hauptsächlichen Begrenzungen oder systematischen Fehler der Studie?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Kleines Sample von 13 Patienten</td>
</tr>
<tr>
<td>- Herzenpatienten mit nur minimalen Dysfunktionen ausgewählt, aufgrund ungenügenden Wissens bezüglich Reaktionen auf exzentrisches Ausdauertraining bei Herzenpatienten.</td>
</tr>
<tr>
<td>- Studie wurde mit ausschliesslich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.</td>
</tr>
<tr>
<td>- Unklar, ob gleiches Sample getestet wurde, wie bei Steiner et al. (2003), da die Ergebnisse leicht differieren.</td>
</tr>
<tr>
<td>- Dosierung wurde nicht begründet → nicht in die Praxis umsetzbar</td>
</tr>
<tr>
<td>- Kein follow up → Nachhaltigkeit?</td>
</tr>
</tbody>
</table>
TITEL: Eccentric endurance training in subjects with coronary artery disease: a novel exercise paradigm in cardiac rehabilitation?

AUTOREN: Steiner, R., Meyer, K., Lippuner, K., Schmid, J.-P., Saner, H., Hoppeler, H.

PUNKTE: 13/18

<table>
<thead>
<tr>
<th>ZIEL DER STUDIE</th>
<th>Skizzieren Sie das Ziel der Studie. Inwiefern bezieht sich die Studie auf Physiotherapie und/oder Ihre Forschungsfrage?</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ja</td>
<td>Die Autoren wollten strukturelle und funktionelle Anpassungen durch exzentrisches Ausdauertraining bei Patienten mit koronarer Herzkrankheit untersuchen. ⇒ Effekt von exzentrischem Ausdauertraining bei Herzpatienten</td>
</tr>
<tr>
<td>o nein</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LITERATUR</th>
<th>Geben Sie an, wie die Notwendigkeit der Studie gerechtfertigt wurde.</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ja</td>
<td>Vorgängige Studien zeigten, dass exzentrisches Ausdauertraining bei Herzpatienten sicher machbar ist. Nun wollten die Autoren die strukturellen und funktionellen Anpassungen auf das exzentrische Ausdauertraining herausfinden.</td>
</tr>
<tr>
<td>o nein</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>Beschreiben Sie das Studiendesign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ randomisierte kontrollierte Studie (RCT)</td>
<td>RCT: Randomisation, Experiment- und Kontrollgruppe ⇒ Messung der funktionellen Wirksamkeit von exzentrischem Ausdauertraining</td>
</tr>
<tr>
<td>o Kohortenstudie</td>
<td>Entsprach das Design der Studienfrage (z.B. im Hinblick auf den Wissensstand zur betreffenden Frage, auf Ergebnisse (Outcomes), auf ethische Aspekte)?</td>
</tr>
<tr>
<td>o Einzelfall Design</td>
<td>Design entsprach der Studienfrage ⇒ Bereits vorangegangene Fallstudien und RCTs bei Gesunden ⇒ Ethikkomitee mit einbezogen 1/1 P.</td>
</tr>
<tr>
<td>o Vorher Nachher Design</td>
<td>Spezifizieren Sie alle systematischen Fehler (Verzerrungen, bias), die vielleicht aufgetreten sein könnten, und in welche Richtung sie die Ergebnisse beeinflussen.</td>
</tr>
<tr>
<td>o Fall Kontroll Studie</td>
<td>- Teilnehmer waren nicht geblindet. – 1 P.</td>
</tr>
<tr>
<td>o Querschnittsstudie</td>
<td>- Beurteiler waren nicht geblindet. – 1 P.</td>
</tr>
<tr>
<td>o Fallstudie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STICHPROBE</th>
<th>N = Stichprobenauswahl (wer, Merkmale, wie viele, wie wurde die Stichprobe zusammengestellt?).</th>
</tr>
</thead>
</table>

1/1 P.
Beschreiben Sie die Ethik Verfahren. Wurde wohlinformierte Zustimmung eingeholt?

<table>
<thead>
<tr>
<th>OUTCOMEMESSUNGEN</th>
<th>Geben Sie an, wie oft Outcome-Messungen durchgeführt wurden (also vorher, nachher, bei Nachbeobachtung (pre-, post-follow up)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waren die Outcome-Messungen zuverlässig (reliabel)?</td>
<td>zu Beginn</td>
</tr>
<tr>
<td>✓ ja</td>
<td>- BMI vor und nach der Intervention</td>
</tr>
<tr>
<td>o nein</td>
<td>- Körperbau</td>
</tr>
<tr>
<td>o nicht angegeben</td>
<td>- Muskelkraft</td>
</tr>
<tr>
<td>Da objektive Messungen.</td>
<td>- Muskelfaseranalyse</td>
</tr>
<tr>
<td>1/1 P.</td>
<td>Während dem Training</td>
</tr>
<tr>
<td>Waren die Outcome-Messungen gültig (valid)?</td>
<td>- aller 5 Minuten: subjektive Anstrengung</td>
</tr>
<tr>
<td>✓ ja</td>
<td>Outcome Bereiche:</td>
</tr>
<tr>
<td>o nein</td>
<td>subjektive Anstrengung</td>
</tr>
<tr>
<td>o nicht angegeben</td>
<td>(Dyspnoe, Ermüdung der Beine)</td>
</tr>
<tr>
<td>1/1 P.</td>
<td>Körperbau</td>
</tr>
<tr>
<td>Wurde ein post-follow up gemacht?</td>
<td>Muskelkraft der Knie-Extensoren</td>
</tr>
<tr>
<td>o ja</td>
<td>Muskelkaseranalyse: Biopsie des rechten M. vastus lateralis</td>
</tr>
<tr>
<td>✓ nein</td>
<td>Verwendete Messungen:</td>
</tr>
<tr>
<td>0/1 P.</td>
<td>Borg-Skala (6-20)</td>
</tr>
</tbody>
</table>

Beschreiben Sie kurz die Massnahmen (Schwerpunkt, wer führte sie aus, wie oft, in welchem Rahmen).
Trainingsdauer: 8 Wochen
- Konzentrisches und exzentrisches Ausdauertraining war in ein Standard Rehabilitationsprogramm integriert. Beide Gruppen hatten deshalb zusätzlich leichte Gymnastik, Stretching- und Entspannungsübungen
Das Ausdauertraining wurde in beiden Gruppen 3x wöchentlich, 30 min. durchgeführt.
- Die konzentrische Gruppe trainierte auf einem normalen Fahrradergometer
- Die exzentrische Gruppe trainierte auf einem exzentrischen Fahrradergometer
- Die Trainingsintensität wurde in den ersten 5 Wochen auf 60% der maximalen VO$_2$ (basierend auf dem Eintrittstest zu Beginn der Studie) gesteigert. Anhand der individuellen Herzfrequenz versuchten die Untersucher die Arbeitsintensität des Stoffwechsels zwischen den Gruppen ungefähr gleich zu halten.

Könnten die Massnahmen in der physiotherapeutischen Praxis wiederholt werden?
Exzentrischer Fahrradergometer ist im Handel nicht erhältlich.

Ko-Interventionen:
- Konzentrisches und exzentrisches Ausdauertraining war in ein Standard Rehabilitationsprogramm integriert.
- Patienten nahmen Medikamente

ERGEBNISSE

Wurde die statistische Signifikanz der Ergebnisse angegeben?
- ja
- nein
- nicht angegeben

1/1 P.

War(en) die Analysemethode(n) geeignet?
- ja
- nein
- nicht angegeben

1/1 P.

Welches waren die Ergebnisse? Waren sie statistisch signifikant (d.h. p<0.05)? Falls nicht statistisch signifikant: War die Studie gross genug, um einen eventuell auftretenden wichtigen Unterschied anzuzeigen?
- Es gab keine Komplikationen
- Gegen Ende der Studie trainierten alle nahe bei 60% der maximalen VO$_2$ und bei 76% der individuell maximalen Herzfrequenz
- geleistete Arbeit: die konzentrische Gruppe trainierte bei 97 Watt, die exzentrische Gruppe bei 338 Watt.

Subjektive Anstrengung:
- überstieg nie den Wert 11,
 - konzentrische Gruppe: Dyspnoe-Wert eher höher als Ermüdung der Beine
 - exzentrische Gruppe: Dyspnoe-Wert eher tiefer als Ermüdung der Beine

BMI:
- änderte sich in beiden Gruppen nicht

Körperfett:
- änderte sich nicht in der exzentrischen Gruppe, jedoch in der konzentrischen Gruppe signifikant (p<0.001, von 25.4% auf 24.4%)

Muskelsmasse:
- In beiden Gruppen nahm die Muskelmasse der Beine signifikant zu.
 - konzentrische Gruppe: Zunahme von 191 Gramm pro Bein (p<0.01)
 - exzentrische Gruppe: Zunahme von 259 Gramm pro Bein (p<0.05)
- Zunahme zwischen den Gruppen war statistisch nicht unterschiedlich
Muskelkraft:
- konzentrische Gruppe: keinen Kraftzuwachs bezüglich Maximalkraft
- exzentrische Gruppe: signifikante isometrische (p<0.05) und dynamisch konzentrische (langsame Geschwindigkeit: p<0.01; schnelle Geschwindigkeit p<0.05) Maximalkraftverbesserung
Die exzentrische Maximalkraft verbesserte sich auch, jedoch nicht statistisch signifikant

Muskelbiopsie
- In beiden Gruppen: Anzahl Kapillaren pro Muskelfaser und Dichte der Mitochondrien blieben unverändert.
- konzentrische Gruppe:
 - Muskelfaserquerschnitt nahm zu (p<0.05)
 - subsakrolemmale Mitochondrien nahmen zu
 - prozentuale Anteil der Myofibrillen in der Muskelfaser nahm ab
- exzentrische Gruppe:
 - subsakrolemmale Mitochondrien nahmen ab
 - interfibrilläre Mitochondrien nahmen ab
 - prozentuale Anteil der Myofibrillen in der Muskelfaser nahm zu

<table>
<thead>
<tr>
<th>Wurden Fälle von Ausscheiden aus der Studie angegeben?</th>
<th>Schieden Teilnehmer aus der Studie aus? Warum?</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ja</td>
<td>(Wurden Gründe angegeben, und wurden Fälle von Ausscheiden angemessen gehandhabt?) Ein Teilnehmer schied aus der Studie aus, der Grund wurde nicht angegeben, dieser Patient wurde in der Studie nicht erfasst.</td>
</tr>
<tr>
<td>o nein</td>
<td></td>
</tr>
</tbody>
</table>

1/1 P.

| SCHLUSSFOLGERUNGEN UND KLINISCHE IMPLIKATIONEN |
| Wurde die klinische Bedeutung angegeben? |
| ✓ ja |
| o nein |

1/1 P.

| Waren die Schlussfolgerungen angemessen im Hinblick auf Methoden und Ergebnisse der Studie? |
| ✓ ja |
| o nein |

1/1 P.

<p>| Welches war die klinische Bedeutung der Ergebnisse? |
| Waren die Unterschiede zwischen Gruppen (falls es Gruppen gab) klinisch von Bedeutung? |
| Zu welchem Schluss kam die Studie? Welche Implikationen haben die Ergebnisse für die physiotherapeutische Praxis? |
| Welches waren die hauptsächlichen Begrenzungen oder systematischen Fehler der Studie? |
| - kleines Sample von 12 Personen |
| - Studie wurde mit ausschliesslich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert. |
| - Unklar, ob gleiches Sample wie bei Meyer et al. (2003) getestet wurde, da die Ergebnisse leicht differieren. |
| - Steigerung der Trainingsintensität nur während den ersten 5 Wochen, wobei die letzten 3 Wochen mit einer relativ geringen und konstanten Arbeitsbelastung. Aufgrund von Vorgaben des Ethikkomitees durfte man nach einer hämodynamischen Rechtsherzkathetermessung die Trainingsintensität nicht steigern. |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dosierung wurde nicht begründet</td>
<td>nicht in die Praxis umsetzbar</td>
</tr>
<tr>
<td>- Kein follow up</td>
<td>Nachhaltigkeit?</td>
</tr>
</tbody>
</table>
TITEL: Cardiopulmonary Responses of Middle-Aged Men Without Cardiopulmonary Disease to Steady-Rate Positive and Negative Work Performed on a Cycle Ergometer

AUTOREN: Chung, F., Dean, E., Ross, J.

PUNKTE: 9/15

<table>
<thead>
<tr>
<th>ZIEL DER STUDIE</th>
<th>Skizzieren Sie das Ziel der Studie. Inwiefern bezieht sich die Studie auf Physiotherapie und/oder Ihre Forschungsfrage?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde der Zweck klar angegeben?</td>
<td>Die Autoren wollten die physiologischen Reaktionen von Männern im mittleren Alter während exzentrischer und konzentrischer Arbeit auf einem Fahrradergometer bei verschiedenen Umdrehungsfrequenzen vergleichen.</td>
</tr>
<tr>
<td>✔ ja</td>
<td>➔ Das Wissen um physiologische Reaktionen auf verschiedene konzentrische und exzentrische Ausdauerbelastungen könnte bei der Dosierung von Ausdauertraining bei Herzpatienten helfen.</td>
</tr>
<tr>
<td>o nein</td>
<td></td>
</tr>
</tbody>
</table>

1/1 P.

<table>
<thead>
<tr>
<th>LITERATUR</th>
<th>Geben Sie an, wie die Notwendigkeit der Studie gerechtfertigt wurde.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurde die relevante Hintergrundliteratur gesichtet?</td>
<td>Die physiologischen Reaktionen auf exzentrische Arbeit ist bei älteren Erwachsenen noch nicht bekannt (nur bei jungen Probanden und bei konzentrischer Arbeit)</td>
</tr>
<tr>
<td>✔ ja</td>
<td></td>
</tr>
<tr>
<td>o nein</td>
<td></td>
</tr>
</tbody>
</table>

1/1 P.

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>Beschreiben Sie das Studiendesign. Entsprach das Design der Studienfrage (z.B. im Hinblick auf den Wissensstand zur betreffenden Frage, auf Ergebnisse (Outcomes), auf ethische Aspekte)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>o randomisierte kontrollierte Studie (RCT)</td>
<td>Fallstudie: um Informationen über die Beziehung zwischen einer bestimmten Behandlung (Exposition) und einem interessierenden Ergebnis zu gewinnen.</td>
</tr>
<tr>
<td>o Kohortenstudie</td>
<td>➔ wenn man noch wenig über eine Behandlung weiss, Ergebnisse sind jedoch nur als Beschreibung einer spezifischen Situation zu interpretieren.</td>
</tr>
<tr>
<td>o Einzelfall Design</td>
<td>➔ Grundlage für weitere Studien.</td>
</tr>
<tr>
<td>o Vorher Nachher Design</td>
<td>➔ Keine Intervention ➔ physiologische Reaktionen während konzentrischer und exzentrischer Arbeit messen.</td>
</tr>
<tr>
<td>o Fall Kontroll Studie</td>
<td>Studiendesign entsprach der Studienfrage:</td>
</tr>
<tr>
<td>o Querschnittsstudie</td>
<td>➔ noch wenige Kenntnisse über die physiologischen Reaktionen während exzentrischer Arbeit bei älteren Erwachsenen.</td>
</tr>
<tr>
<td>✔ Fallstudie</td>
<td>➔ Ethische Frage berücksichtigt: bei Gesunden gemacht, da noch nicht viel über die Reaktionen auf exzentrische Arbeit bekannt ist.</td>
</tr>
<tr>
<td></td>
<td>➔ Zweck: mehr über das Thema herausfinden.</td>
</tr>
</tbody>
</table>

1/1 P.

<table>
<thead>
<tr>
<th>STICHPROBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N =Stichprobenauswahl (wer, Merkmale, wie viele, wie</td>
</tr>
</tbody>
</table>

Seite 94 von 130

Iris Heer & Barbara Wagner
Wurde die Stichprobe detailliert beschrieben?
- ja
- nein
0/1 P.

Wurde die Stichprobengröße begründet?
- ja
- nein
0/1 P.

Wurde die Stichprobe zusammengestellt?
- ja
- nein
0/1 P.

OUTCOMEMESSUNGEN

Waren die Outcome-Messungen zuverlässig (reliabel)?
- ja
- nein
- nicht angegeben
Da objektive Messungen.
1/1 P.

Waren die Outcome-Messungen gültig (valide)?
- ja
- nein
- nicht angegeben
1/1 P.

Wurde ein post-follow up gemacht?
- ja
- nein
0/1 P.

OUTCOMEMESSUNGEN

Waren die Outcome-Messungen zuverlässig (reliabel)?
- ja
- nein
- nicht angegeben
Da objektive Messungen.
1/1 P.

Waren die Outcome-Messungen gültig (valide)?
- ja
- nein
- nicht angegeben
1/1 P.

Wurde ein post-follow up gemacht?
- ja
- nein
0/1 P.

Geben Sie an, wie oft Outcome-Messungen durchgeführt wurden (also vorher, nachher, bei Nachbeobachtung (pre-, post-follow-up)).
Vorbereitung:
- 2 bis 3 Übungslektionen, um die Koordination des exzentrischen und konzentrischen Bewegungsablaufs auf dem Velo zu erlernen.

Testung:
- Die Teilnehmer wurden in 2 Gruppen randomisiert.
- 2 Test-Tage:
 - 1. Test-Tag: bei der einen Gruppe die physiologischen Reaktionen auf exzentrische Belastung und bei der anderen Gruppe die Reaktionen auf konzentrische Belastung ermittelt.
 - 2. Test-Tag: eine Woche später, umgekehrt.
- Jeder Teilnehmer wurde 6x getestet. Davon 3x während konzentrischer und 3x während exzentrischer Ausdauerbelastung.
- Die verschiedenen Tests wurden jeweils bei einer Intensität von 60 Watt durchgeführt
- jedoch wechselte die Umdrehfrequenz der Pedale (35, 55 oder 75 Umdrehungen pro Minute). Die Reihenfolge der Umdrehfrequenz war bei jeder Testperson zufällig.

Messungen:
- Zu Beginn der Testung: Grösse und Gewicht → BMI, Lungenfunktionsprüfung
- Während den Tests alle 15 Sekunden: \(VO_2 \), Atemzeitvolumen, Atemzugvolumen und Atemfrequenz
- Während dem Test jede min.: Dyspnoe
- Kontinuierlich während dem Test: Herzfrequenz und Herzrhythmus (mittels EKG)
- Als Sicherheit wurde kontinuierlich die Sauerstoffsättigung des arteriellen Blutes und jede Minute der Blutdruck gemessen.

Outcome-Bereiche:
Charakteristika des Samples
Verwendete Messungen:
BMI, Blutdruck, Sauerstoffsättigung, Lungenfunktionsprüfung, Dyspnoe (Borg 1-10)
<table>
<thead>
<tr>
<th>Atmung</th>
<th>- VO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Atemzeitvolumen</td>
</tr>
<tr>
<td></td>
<td>- Atemzugvolumen</td>
</tr>
<tr>
<td></td>
<td>- Atemfrequenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herz</th>
<th>- Herzfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Herzrhythmus</td>
</tr>
</tbody>
</table>

MASSNAHMEN

Wurden die Massnahmen detailliert beschrieben?
- ja
- nein
- nicht angegeben

Wurde Kontaminierung vermieden?
- ja
- nein
- nicht angegeben
- entfällt

Wurden gleichzeitige weitere Massnahmen (Ko-Intervention) vermieden?
- ja
- nein
- nicht angegeben
- entfällt

ERGEBNISSE

Wurde die statistische Signifikanz der Ergebnisse angegeben?
- ja
- nein
- entfällt
- nicht angegeben

War(en) die Analysemethode(n) geeignet?
- ja
- nein
- nicht angegeben

ANOVA, da mehrere Outcomes gemessen wurden.

Keine Massnahmen, nur Messungen.

Beschreiben Sie kurz die Massnahmen (Schwerpunkt, wer führte sie aus, wie oft, in welchem Rahmen). Könten die Massnahmen in der physiotherapeutischen Praxis wiederholt werden?

Keine Massnahmen, nur Messungen.

Welches waren die Ergebnisse? Waren sie statistisch signifikant (d.h. p<0.05)? Falls nicht statistisch signifikant: War die Studie gross genug, um einen eventuell auftretenden wichtigen Unterschied anzuzeigen?

Charakteristika des Samples
- Blutdruck im normalen Range
- Sauerstoffsättigung durchschnittlich 97%
- BMI durchschnittlich 26,1 kg/m\(^2\) (zwischen 21.8 und 31.5)
- Lungenfunktionstest im normalen Bereich
- Borg Dyspnoe stieg bei exzentrischer und konzentrischer Gruppe um jeweils einen Punkt an.

VO\(_2\):
- während exzentrischer Belastung geringer als bei konzentrischer. (p<0.001)
- Die Pedalfrequenz hat einen Einfluss auf die VO\(_2\) (P=0.002)
- VO\(_2\) nahm bei konzentrischer Belastung linear mit der Höhe der Tretfrequenz zu (p<0.01)
- Bei exzentrischer Belastung war die VO\(_2\) bei einer Tretfrequenz von 55 Umdrehungen pro Minute am geringsten.
- Die VO\(_2\) während exzentrischer Arbeit war 55% der VO\(_2\) während konzentrischer Arbeit.

Herzfrequenz
- war während exzentrischer Belastung geringer als während konzentrischer (p<0.001).
- Die Pedalfrequenz hat einen Einfluss auf die Herzfrequenz (p=0.003).
- nahm bei konzentrischer Belastung linear mit der Höhe der Tretfrequenz zu. (p<0.05)
- Bei exzentrischer Belastung war die Herzfrequenz bei einer Tretfrequenz von 55 Umdrehungen pro Minute am geringsten.

Atemzeitvolumen:
- war während exzentrischer Belastung geringer als während konzentrischer (p<0.001)
- Die Pedalfrequenz hat einen Einfluss auf das Atemzeitvolumen (p<0.01)
- war bei 75 Umdrehungen pro Minute bei beiden Gruppen am grössten. (p<0.05)

Atemzugvolumen:
- war während exzentrischer Belastung geringer als während konzentrischer (p<0.001)
- Die Pedalfrequenz hat einen Einfluss auf das Atemzugvolumen (p=0.03)
- nahm bei beiden Belastungen linear mit der Höhe der Tretfrequenz zu (p<0.05)

Atemfrequenz:
- Die Ergebnisse ergeben keinen Unterschied zwischen den beiden Arbeitsbelastungen.

Wurden Fälle von Ausscheiden aus der Studie angegeben?
- ja
- nein

Schieden Teilnehmer aus der Studie aus? Warum?
(Wurden Gründe angegeben, und wurden Fälle von Ausscheiden angemessen gehandhabt?)
Es gab keine Ausscheidungen.

Waren die Schlussfolgerungen angemessen im Hinblick auf Methoden und Ergebnisse der Studie?
- ja
- nein

Welches war die klinische Bedeutung der Ergebnisse?
Waren die Unterschiede zwischen Gruppen (falls es Gruppen gab) klinisch von Bedeutung?
Zu welchem Schluss kam die Studie? Welche Implikationen haben die Ergebnisse für die physiotherapeutische Praxis?

- Exzentrische Muskelarbeit bei geringer Intensität ist nicht zu vergleichen mit konzentrischem Training bei einer ebenso geringen Intensität.
- Exzentrisches Training ist bei älteren Menschen gut durchführbar

Welches waren die hauptsächlichen Begrenzungen oder systematischen Fehler der Studie?
- Messungen wurden bei nur 60 Watt gemacht.
- Kleines Sample von 12 Teilnehmer
- Studie wurde mit ausschliesslich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.
- Tests wurden am gleichen Tag mit verschiedenen
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Es wird nicht klar, wie lange ein Test pro Tretkadenz dauerte.</td>
<td></td>
</tr>
</tbody>
</table>
TITEL: Eccentric cycle exercise: training application of specific circulatory adjustments

AUTOREN: Dufour, SP., Lampert, E., Doutreleau, S., Lonsdorfer-Wolf, E., Billat, V.L., Piquard, F. und Richard, R.

PUNKTE: 9/15

ZIEL DER STUDIE

<table>
<thead>
<tr>
<th>Skizzieren Sie das Ziel der Studie. Inwiefern bezieht sich die Studie auf Physiotherapie und/oder Ihre Forschungsfrage?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Autoren wollten 1. die Herzfrequenz während exzentrischem und konzentrischem Velofahren ermitteln, wobei beide Gruppen die gleiche VO₂ (gemessen in Liter/Minute oder ml/kg/min) hatten. 2. abschätzen, in wie fern die Schwankungen der Herzfrequenzen der Probanden innerhalb der Gruppen (exzentrisches und konzentrisches Ausdauertraining) übereinstimmen. → Kreislaufanpassungen bezüglich VO₂ und Herzfrequenz während exzentrischer Fahrradergometer-Belastung beschreiben.</td>
</tr>
</tbody>
</table>

LITERATUR

<table>
<thead>
<tr>
<th>Geben Sie an, wie die Notwendigkeit der Studie gerechtfertigt wurde.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Ausdauerleistung einer Person wird anhand der VO₂ gemessen und nicht an der Herzfrequenz. Eine gleiche Herzfrequenz von zwei Personen während exzentrischer und konzentrischer Arbeit bedeutet nicht die gleiche VO₂. Viele vielversprechende Resultate über exzentrisches Ausdauertraining haben dies nicht berücksichtigt. Das Wissen über die individuelle Beziehung zwischen Herzfrequenz und VO₂ während exzentrischem Training (mit einem IET = Test, bei welchem sich die Übungsintensität steigert) würde praktische Infos für Trainings- und Rehabilitationsansätze geben.</td>
</tr>
</tbody>
</table>

DESIGN

<table>
<thead>
<tr>
<th>Beschreiben Sie das Studiendesign.</th>
</tr>
</thead>
</table>

Entsprach das Design der Studienfrage (z.B. im Hinblick auf den Wissensstand zur betreffenden Frage, auf Ergebnisse (Outcomes), auf ethische Aspekte)?
- noch wenige Kenntnisse über das Verhalten der Herzfrequenz auf exzentrische und konzentrische Arbeit bei gegebener VO₂.
- Ethische Frage wurde berücksichtigt: Die Studie wurde bei Gesunden gemacht, da noch nicht viel über die Reaktionen auf exzentrische Arbeit bekannt sind.
- Zweck: mehr über das Thema und die Machbarkeit bei Patienten mit herabgesetzter Belastbarkeit herausfinden.

1/1 P.
Spezifizieren Sie alle systematischen Fehler (Verzerrungen, bias), die vielleicht aufgetreten sein könnten, und in welche Richtung sie die Ergebnisse beeinflussen.
- Teilnehmer waren nicht geblindet. – 1 P.
- Beurteiler waren nicht geblindet. – 1 P.
- Tests wurden am gleichen Tag durchgeführt, zuerst konzentrisch, dann exzentrisch → Ermüdung? – 1 P.

STICHPROBE

<table>
<thead>
<tr>
<th>Wurde die Stichprobe detailliert beschrieben?</th>
</tr>
</thead>
<tbody>
<tr>
<td>o ja</td>
</tr>
<tr>
<td>✓ nein</td>
</tr>
<tr>
<td>0/1 P.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wurde die Stichprobengröße begründet?</th>
</tr>
</thead>
<tbody>
<tr>
<td>o ja</td>
</tr>
<tr>
<td>✓ nein</td>
</tr>
<tr>
<td>0/1 P.</td>
</tr>
</tbody>
</table>

N = Stichprobenauswahl (wer, Merkmale, wie viele, wie wurde die Stichprobe zusammengestellt?).
- 8 gesunde junge Männer, durchschnittlich 28 jährig
- Keine Angaben bezüglich des Trainingszustandes der Probanden.

Bei mehr als einer Gruppe: Waren die Gruppen ähnlich?
Es gab keine Gruppen, alle Probanden machten beide Tests am gleichen Tag.
1/1 P.

OUTCOMEMESSUNGEN

<table>
<thead>
<tr>
<th>Waren die Outcome-Messungen zuverlässig (reliabel)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ja</td>
</tr>
<tr>
<td>o nein</td>
</tr>
<tr>
<td>o nicht angegeben</td>
</tr>
<tr>
<td>Da objektive Messungen.</td>
</tr>
<tr>
<td>1/1 P.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waren die Outcome-Messungen gültig (valide)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ja</td>
</tr>
<tr>
<td>o nein</td>
</tr>
<tr>
<td>o nicht angegeben</td>
</tr>
<tr>
<td>1/1 P.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wurde ein post-follow up gemacht?</th>
</tr>
</thead>
<tbody>
<tr>
<td>o ja</td>
</tr>
<tr>
<td>o nein</td>
</tr>
<tr>
<td>0/1 P.</td>
</tr>
</tbody>
</table>

Geben Sie an, wie oft Outcome-Messungen durchgeführt wurden (also vorher, nachher, bei Nachbeobachtung (pre-, post-follow up)).

Gerät
Die Vorbereitung sowie die Testung wurden auf einem speziellen motorisierten Sitzfahrradergometer durchgeführt.

Vorbereitung
2 Wo Vorbereitung, um sich das konzentrische und exzentrische Velofahren anzuzeigen.
- Angewöhnung (exzentrisch → Muskelkater)
- Vermeidung Muskeln-, Sehnen-, Gelenks-Probleme
- In jeder Lernstunde wurde die Intensität von anfänglichen 100 Watt auf 200 Watt gesteigert.

Testung
2 Testungen pro Proband
- entweder konzentrisch oder exzentrisch bei 80 Umdrehungen / Minute auf dem Fahrradergometer
Vor jedem Test wurden Messungen in Ruhe durchgeführt, wobei die Teilnehmer 10 Minuten auf dem Fahrradergometer sitzen mussten.
1. Test konzentrische Muskelarbeit:
- beginnende Arbeitsbelastung bei 50 Watt, alle 3 Minuten Steigerung um 50 Watt, bis der Proband ermüdete.
- Ob der Proband seine maximale Leistungsfähigkeit erreicht hatte, wurde anhand der folgenden Kriterien gemessen:
 - Stagnation der VO2, obwohl die Intensität erhöht wurde. (v.a. anaerobe Glykolyse)
- Respiratorische Quotient (RER) ist größer als 1.15
- Blutlaktat-Level ist höher als 8 mmol/Liter
- Herzfrequenz ist höher als 90% der theoretischen maximalen Herzfrequenz des Probanden

2. Test exzentrische Muskelarbeit
- Vorgang gleich wie beim Test konzentrische Muskelarbeit
Da die Studie zum Ziel hatte, Kreislauf-Reaktionen von konzentrischer und exzentrischer Ausdauerbelastung bei identischer mechanischer Intensität (287 Watt) zu messen, wurden die Daten während dem exzentrischen Test nicht über der konzentrischen maximalen Arbeitsleistung durchgeführt.

Messungen:
- Kontinuierlich: \(\text{VO}_2 \), Abatmung Kohlenstoffdioxid, Herzfrequenz, Schlagvolumen, (dementsprechend Herzzeitvolumen und arteriovenöse Sauerstoffdifferenz)
- Vor und nach dem Test: Laktatkoncentration im Blutplasma

<table>
<thead>
<tr>
<th>Outcome-Bereiche:</th>
<th>Verwendete Messungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas austausch pro Atemzug</td>
<td>- (\text{VO}_2)</td>
</tr>
<tr>
<td>Kardiale Messungen</td>
<td>- Abatmung von Kohlenstoffdioxid</td>
</tr>
<tr>
<td>Arteriovenöse Sauerstoffdifferenz</td>
<td>- Herzfrequenz</td>
</tr>
<tr>
<td></td>
<td>- Schlagvolumen</td>
</tr>
<tr>
<td></td>
<td>(\rightarrow) Herzzeitvolumen</td>
</tr>
<tr>
<td>Blutparameter</td>
<td>(\text{VO}_2) dividiert durch Herzminutenvolumen</td>
</tr>
<tr>
<td></td>
<td>Laktatkoncentration im Blutplasma</td>
</tr>
</tbody>
</table>

MASSNAHMEN
Wurden die Massnahmen detailliert beschrieben?
- ja
- nein
- nicht angegeben

Wurde Kontaminierung vermieden?
- ja
- nein
- nicht angegeben
- entfällt

Wurden gleichzeitige weitere Massnahmen (Ko-Intervention) vermieden?
- ja
- nein
- nicht angegeben
- entfällt

Beschreiben Sie kurz die Massnahmen (Schwerpunkt, wer führte sie aus, wie oft, in welchem Rahmen). Könnten die Massnahmen in der physiotherapeutischen Praxis wiederholt werden?
Es gab keine Intervention.
ERGEBNISSE
Wurde die statistische Signifikanz der Ergebnisse angegeben?

- ja
- nein
- entfällt
- nicht angegeben

War(en) die Analysemethode(n) geeignet?

- ja
- nein
- nicht angegeben

ANOVA, da mehrere Outcomes gemessen wurden.

1/1 P.

Welches waren die Ergebnisse? Waren sie statistisch signifikant (d.h. p<0.05)? Falls nicht statistisch signifikant: War die Studie gross genug, um einen eventuell auftretenden wichtigen Unterschied anzuzeigen?

Nach der Vorbereitung hatte kein Teilnehmer Muskelkater. Tests konnten ohne Einschränkungen durchgeführt werden.

Exzentrisches versus konzentrisches Velofahren: Ausmass der metabolischen und Kreislauf-Reaktionen

Bei gleicher Arbeitsintensität
- Die metabolischen und Kreislauf-Reaktionen wurden bei Belastungen von durchschnittlich 287 Watt gemessen (= maximale konzentrische und submaximale exzentrische Arbeit)
- VO₂ bei exzentrischer Ausdauerbelastung signifikant geringer (p<0.001)
- Herzzeitvolumen und Herzfrequenz sind bei exzentrischer Ausdauerbelastung signifikant kleiner. (p<0.001)
- Schlagvolumen war jedoch bei exzentrischer und konzentrischer Belastung gleich.
- arteriovenöser Sauerstoffunterschied war bei exzentrischer Arbeit signifikant geringer. (d.h. exzentrische Arbeit braucht weniger Sauerstoff). (p<0.001)
- Die oben erwähnten signifikanten Unterschiede sind über die ganze Belastungsspannbreite (d.h. von 50 bis 300 Watt) zu erkennen.
- Blutlaktatwerte stiegen bei exzentrischer Arbeit bis 300 Watt nicht an.

Bei gleicher VO₂
- Bei der konzentrischen Belastung erreichten die Teilnehmer eine VO₂ von 1 l/Min. bei 50 Watt und bei exzentrischer Belastung bei durchschnittlich 256 Watt. Die Autoren schlossen aus diesem Ergebnis Folgendes: Die VO₂ während exzentrischer Belastung beträgt ca. 1/5 der VO₂ während konzentrischer Belastung. Dieser Rückschluss ist nach Ansicht der Autorinnen dieser Arbeit falsch. Aus dem genannten Resultat kann nur geschlossen werden, dass eine 5-fach grössere mechanische Leistung während exzentrischer Ausdauerbelastung erzielt werden kann als während konzentrischer. Ein weiteres Resultat dieser Studie zeigt bei gleicher mechanischer Belastung, dass die VO₂ während exzentrischer Arbeit die Hälfte VO₂ während konzentrischer Belastung beträgt
- Beim exzentrischen Training war die arteriovenöse Sauerstoffdifferenz signifikant kleiner (p<0.001) (da die Herzfrequenz höher war und somit auch das Herzzeitvolumen).
- Das Schlagvolumen war nicht signifikant unterschiedlich zwischen den Trainingsarten.

Interindividuelle Varianten der Kreislauf-Reaktionen
- Beim exzentrischen Test reagierten alle Teilnehmer beträchtlich unterschiedlich mit der Herzfrequenz und dem Herzzeitvolumen.
<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwort</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden Fälle von Ausscheiden aus der Studie angegeben?</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
<tr>
<td>Schieden Teilnehmer aus der Studie aus? Warum? (Wurden Gründe angegeben und wurden Fälle von Ausscheiden angemessen gehandhabt?)</td>
<td>Es schieden keine Teilnehmer aus.</td>
<td></td>
</tr>
</tbody>
</table>

SCHLUSSFOLGERUNGEN UND KLINISCHE IMPLIKATIONEN

<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwort</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurden die Schlussfolgerungen angemessen im Hinblick auf Methoden und Ergebnisse der Studie?</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
<tr>
<td>Welches war die klinische Bedeutung der Ergebnisse? Waren die Unterschiede zwischen Gruppen (falls es Gruppen gab) klinisch von Bedeutung?</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
<tr>
<td>Zu welchem Schluss kam die Studie? Welche Implikationen haben die Ergebnisse für die physiotherapeutische Praxis?</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
<tr>
<td>Welches waren die hauptsächlichen Begrenzungen oder systematischen Fehler der Studie?</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
<tr>
<td>- Beide Messungen wurden am selben Tag durchgeführt → Ermüdung?</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
<tr>
<td>- Kleines Sample von 8 Teilnehmer</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
<tr>
<td>- Studie wurde mit ausschliesslich Männern durchgeführt, was die Übertragbarkeit der Ergebnisse auf Patientinnen erschwert.</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
<tr>
<td>- Dosierung des Tests wurde nicht begründet.</td>
<td>Ja</td>
<td>1/1 P.</td>
</tr>
</tbody>
</table>
18.4 Energiestoffwechsel
Die Autorinnen gehen in diesem Kapitel auf den Energiestoffwechsel ein, als Grundlage für die Ausdauerleistung im Kapitel 8.

18.4.1 Energiequellen

„Lebende Zellen benötigen eine konstante Zufuhr freier Energie, hauptsächlich um mechanische Arbeit (Muskelnkontraktionen) zu leisten, Moleküle und Ionen zu transportieren sowie Makromoleküle und andere Biomoleküle zu synthetisieren.“ (Van den Berg et al., 2003, S. 197)

Durch die Abnahme der Muskelmasse und vermehrten metabolisch inaktiven Fettzellen nimmt der Energieverbrauch im Alter ab. Männer haben einen grösseren Ruheenergieverbrauch als Frauen. (Speckmann, Hescheler, Köhling, 2008)

18.4.2 Energieproduktion
Die Energieproduktion erfolgt in den Mitochondrien und im Zytoplasma der Zellen. Dabei werden die Kohlenhydrate, Fettsäuren und Aminosäuren katabolisiert. Während dieses Vorganges wird Energie freigesetzt, die für die Phosphorisierung gebraucht wird. Phosphorisierung ist der Prozess, bei welchem eine Phosphatgruppe (P) einem anderen Stoff hinzugefügt wird. Um Arbeit zu leisten, benötigt eine Zelle Energie, welche vom ATP,

18.4.3 ATP-Quellen im Muskel
In einer Muskelzelle verlaufen folgende Prozesse zur ATP-Gewinnung:
- das Kreatinphosphatsystem
- die Glykolyse
- der Abbau von Fettsäuren
Diese Prozesse werden in den folgenden Kapiteln beschrieben.

18.4.4 Das Kreatinphosphatsystem
Im Kreatinphosphatsystem bindet sich das aminosäureähnliche Kreatin (C) an eine Phosphatgruppe (P) und bildet das hoch energetische Kreatinphosphat (CP). Dieses wird in den Muskelfasern gespeichert und gibt zu einem späteren Zeitpunkt (z.B. unter Belastung) die Phosphatgruppe ab. Da die Bindung von CP sehr energiereich ist, wird bei der Abspaltung der Phosphatgruppe eine grosse Menge an Energie frei. Diese Energie und die Phosphatgruppe werden sofort wieder dafür eingesetzt, um ADP zu ATP zu phosphorisieren.

Die chemischen Formeln dieser Reaktionen werden wie folgt dargestellt:

\[
CP \leftrightarrow C + P + \text{Energie}
\]

Energie + ADP + P \rightarrow ATP

In der Erholungszeit nach der Belastung wird CP wieder aufgebaut und gespeichert. Die dafür benötigte Energie wird durch den Abbau von Nahrungsstoffen geliefert. Der Vorrat von CP in der Zelle ist um 2-3mal grösser als der Vorrat an ATP.

18.4.5 Die Glykolyse

\[
\text{Glukose} + 2 \text{NAD}^+ + 2 \text{ATP} \leftrightarrow 2 \text{Pyruvate} + 4 \text{ATP} + 2 \text{NADH/H}^+
\]

Für diesen Vorgang wird kein Sauerstoff benötigt. (Horn et al., 2005)

Aerobe Glykolyse

Anaerobe Glykolyse

Der anaerobe Abbau der Pyruvate findet statt, sobald zu wenig Sauerstoff in den Muskelzellen vorhanden ist. Dies kann zu Beginn starker Muskelaktivitäten durch verzö-

18.4.6 Abbau von Fettsäuren

18.5 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>zirka</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>Kalzium-Ion</td>
</tr>
<tr>
<td>EKG</td>
<td>Echokardiographie</td>
</tr>
<tr>
<td>et al.</td>
<td>und andere</td>
</tr>
<tr>
<td>HF</td>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>k.D.</td>
<td>kein Datum</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KHK</td>
<td>koronare Herzkrankheit</td>
</tr>
<tr>
<td>l/min</td>
<td>Liter pro Minute</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>max</td>
<td>maximal</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mmol</td>
<td>Milli-Mol</td>
</tr>
<tr>
<td>n</td>
<td>Stichprobengrösse</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association; Stadieneinteilung der Herzinsuffizienz</td>
</tr>
<tr>
<td>P</td>
<td>Phosphat</td>
</tr>
<tr>
<td>p</td>
<td>Überschreitungswahrscheinlichkeit, Signifikanzwert</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial/randomisierte kontrollierte Studie</td>
</tr>
<tr>
<td>ROM</td>
<td>Range of motion/Bewegungsumfang</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scale</td>
</tr>
<tr>
<td>VO$_2$</td>
<td>Sauerstoffaufnahme/-verbrauch</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
18.6 Glossar

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 MWD</td>
<td>Die Strecke, welche der Patient während 6 Minuten in seinem maximalen Tempo mit seinen notwendigen Gehhilfen zurücklegt, wird gemessen. (Schädler, Kool, Lüthi, Marks, Oesch, Pfeffer und Wirz, 2006)</td>
</tr>
<tr>
<td>Abusus</td>
<td>„Anwendung von Pharmaka oder so genannten Genussmitteln (Alkohol, Tabak und andere) ohne medizinische Indikation bzw. in übermäßiger Dosierung. (WHO)” (Missbrauch, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Aerob</td>
<td>„Sauerstoff zum Leben brauchend.“ (Aerob, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Agonist</td>
<td>„Muskel, der eine bestimmte Bewegung (z.B. Flexion oder Extension) verursacht und dabei von einem Antagonisten gehemmt wird.“ (Agonist, DocCheck Flexikon, k.D.)</td>
</tr>
<tr>
<td>Akutes Coronarsyndrom</td>
<td>„Abk. ACS; Sammelbez. für akute, unmittelbar Lebensbedroh. Phasen der KHK (instabile Angina pectoris u. alle Formen des Herzinfarkts)” (Akutes Coronarsyndrom, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Alveole</td>
<td>Alveolus pulmonis: Lungenbläschen (Alveole, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Angina pectoris</td>
<td>„Brustenge, Herzenge; Bezeichnung für die typischen Symptome einer akuten Koronarinsuffizienz mit plötzlich einsetzenden, in der linke (seltener rechte) Schulter-Arm-Hand-Region bzw. in die Hals-Unterkiefer-Region sowie auch in den Rücken ausstrahlten […], häufig besteht ein gürteförmiges Engegefühl um den Brustkorb mit Erstickungsanfall und Atemnot bis zu Vernichtungsgefühl und Todesangst“ (Pschyrembel, 2004, S. 81)</td>
</tr>
<tr>
<td>Antagonist</td>
<td>„In der Anatomie bezeichnet der Begriff Muskeln oder Muskelgruppen, die eine gegenläufige Bewegung wie der Agonist verursachen, z.B. Flexion gegenüber Extension.“ (Antagonist, DocCheck Flexikon, k.D.)</td>
</tr>
<tr>
<td>Aorta</td>
<td>von der linken Herzkammer abgehende große Körperschlagader (Aorta, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Aortenstenose</td>
<td>„angeborene (ca. 4 % der angeborenen Herzfehler) od. erworbene Einengung des aortalen Ausflusstrakts“ (Aortenstenose, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Arterien</td>
<td>Synonyme: „Schlagadern, Pulsadern; Blutgefäße mit vom Herzen wegzuleitender Strömungsrichtung: führen im Körperkreislauf sauerstoffreiches u. im Lungenkreislauf sauerstoffarmes Blut.“ (Arterien, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Arteriosklerose</td>
<td>Synonyme: „Atherosklerose; sog. Arterienverkalkung; wichtigste u. häufigste pathol. Veränderung der Arterien mit Verhärzung, Verdickung, Elastizitätsverlust u. Lumeneinengung.“</td>
</tr>
</tbody>
</table>

Iris Heer & Barbara Wagner

Seite 109 von 130
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteriovenöse Sauerstoffdifferenz</td>
<td>Abk. AVDO₂; Unterschied im Sauerstoffgehalt zwischen arteriellem (20 Vol%) und venösem (15 Vol%) Blut; kann bei starker körperlicher Anstrengung durch erhöhte Entsättigung auf über 10 Vol% steigen (Pschyrembel, 2004, S. 1616). Der arterielle O₂-Gehalt des Blutes wird durch den alveolären Sauerstoff-Partialdruck bestimmt. Der venöse Sauerstoffgehalt entspricht der Kapazität der Muskulatur, Sauerstoff aufzunehmen. Die AVDO₂ gibt Auskunft über die Effizienz des Gasaustausches und beträgt in Ruhe ca. 5-10mmHg (Pokan et al., 2009).</td>
</tr>
<tr>
<td>Atemäquivalent</td>
<td>„Ventiliertes Volumen pro Volumen aufgenommenen Sauerstoffs“ (Speckmann et al., 2008, S. 773).</td>
</tr>
<tr>
<td>Atmung</td>
<td>Gasaustausch zwischen den Zellen und der Umgebung (Van Gestel, 2010).</td>
</tr>
<tr>
<td>Azidose</td>
<td>„Störung im Säure-Basen-Haushalt mit Abfall des arteriellen pH unter 7,36; Ausmaß abhängig von Kompensationskapazität (Gegenregulation zur Verhinderung einer Entgleisung)“ (Azidose, Pschyrembel online, k.D.).</td>
</tr>
<tr>
<td>Biopsie</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>„Entnahme einer Gewebeprobe am Lebenden […]“ (Biopsie, Pschyrembel online, k.D.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blutdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Abk. BD; Druck in Blutgefässen und Herzkammern; im engeren Sinne der in beziehungsweise an einer peripheren Arterie in mmHg oder kPa (1mmHg = 133,322 Pa) gemessene arterielle Blutdruck, der die Blutzirkulation bewirkt, abhängig von Herzleistung und Gefässwiderstand (Tonus und Elastizität der Gefässwand) ist und durch die Blutdruckregelung gesteuert wird, systolischer Blutdruck: Blutdruck während der Herzsystole (höchster Punkt der Druckkurve bei direkter Blutdruckmessung); diastolischer BD: BD während der Herzdiastole (niedrigster Punkt der Druckkurve).“ (Pschyrembel, 2004, S. 240)</td>
</tr>
<tr>
<td>Zeigt den Druckverlauf in der Aorta in Abhängigkeit von der Herzaktion</td>
</tr>
<tr>
<td>Druckmaximum: ca. 120 mmHg systolischer Blutdruck</td>
</tr>
<tr>
<td>Druckminimum: ca. 80 mmHg diastolischer Blutdruck (Steffers und Credner, 2006)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body Mass Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Abk. BMI; […] Verhältniszahl zur Beurteilung des Köpergewichts; Ermittlung durch Berechnung: BMI = Köpergewicht (Kg) / Körperlänge² (m²) oder mit Hilfe eines Nomogramms. Der Normalbereich liegt bei 18.5-25Kg/m²“ (Pschyrembel, 2004, S. 250)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borg-Skala</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bypass-Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Umgehungsplastik; Gefässtransplantation zur Umgehung beziehungsweise Überbrückung eines Gefässverschlusses oder stenotischen Prozesses durch proximale und distale seitliche Anastomosierung; funktionelle Rekonstruktion durch Schaffung eines künstlichen Kollateralkreislaufs mit autologer Vene oder allplastischem Material“ (Pschyrembel, 2004, S. 277)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cholesterin</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Cholesterin ist ein fettähnlicher Stoff, der vom Körper zur Aufrechterhaltung des Stoffwechsels benötigt und selber produziert wird (endogenes Cholesterin). Cholesterin wird ausserdem über tierische Nahrungsmitteln zugeführt (exogenes Cholesterin). Eine übermässig hohe Cholesterinkonzentration im Blut kann zu ernsthaften gesundheitlichen Störungen wie Arteriosklerose oder koronare Herzkrankheiten führen.“ (Cholesterin, Lexikon Gesundheit Sprechstunde, k.D.)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Diastole</td>
</tr>
<tr>
<td>Dorsalextensoren</td>
</tr>
<tr>
<td>Dynamisch</td>
</tr>
<tr>
<td>Dysfunktionen</td>
</tr>
<tr>
<td>Elektronen-mikroskop</td>
</tr>
<tr>
<td>Endoplasmatisches</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Evidenz</td>
</tr>
<tr>
<td>Fahrradergometer</td>
</tr>
<tr>
<td>Fatigue</td>
</tr>
<tr>
<td>Flexoren</td>
</tr>
<tr>
<td>Follow-up-Studie</td>
</tr>
<tr>
<td>Gefässwiderstand</td>
</tr>
<tr>
<td>Hämoglobin</td>
</tr>
<tr>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>Herzinsuffizienz</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Stadien</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IV</td>
</tr>
</tbody>
</table>

| Herzkloppenstörung | Herzklappenfehler: „Schlussunfähigkeit (Insuffizienz) oder Verengung (Stenose) von Herzklappen“ (Pschyrembel, 2004, S. 752) |

| Herzrhythmus-störung | „Bezeichnung für alle Veränderungen der elektrischen Herztätigkeit, die durch eine untermäßig Abfolge der Erregungen (Arrhythmie), eine Abweichung von der normalen Herzfrequenz (60-100/Min) oder eine Stöung des zeitlichen Ablaufs der einzelnen Herzaktionen gekennzeichnet sind.“ (Pschyrembel, 2004, S. 754) |

| Herzzeitvolumen | Synonym Herzminutenvolumen (Abk. HZV), Minutenvolumen; die in 1 Minute vom linken Ventrikel ausgeworfene Blutmenge (HMV = Schlagvolumen x Herzschläge/min); beim gesunden, ruhenden Menschen 4,5-5l/min; Bestimmung mittels Indikatorverdünnungsmethoden (Pschyrembel 260. Auflage 2004) |

<p>| Hypertrophietraining | Eine Krafttrainingsmethode, mit dem Ziel die Masse der Muskeln zu vergrössern. Dabei werden 3 Serien an 8-12 Wiederholungen mit 45-90 Sekunden Pausen dazwischen durchgeführt. (Van |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instabile Angina Pectoris</td>
<td>„Entweder neu oder an Häufigkeit, Dauer oder Intensität progredient oder in Ruhe auftretend; meist [...] von vegetativen Symptomen begleitet; gehört als lebensbedrohliche potentielle Vorstufe des Herzinfarkts zum Akuten Koronsyndrom [...] und ist entsprechend zu behandeln; Einteilung in klinische Schweregrade [...]“ (Angina pectoris, Pschyrembel online, k.D.) Definition „Angina pectoris“ siehe Glossar unter „Angina pectoris“.</td>
</tr>
<tr>
<td>Interindividuell</td>
<td>„zwischen zwei oder mehreren Personen (Individuen) ablaufend, mehrere Personen (Individuen) betreffend; z. B. interpersonelle Variation der Intelligenz: Ausprägung der Intelligenz bei verschiedenen Personen“ (Interpersonell, Pschyrembel online, k.D)</td>
</tr>
<tr>
<td>Intervention</td>
<td>„Dazwischenkommen, Eingreifen, Vermittlung“ (Pschyrembel, 2004, S. 878)</td>
</tr>
<tr>
<td>Kapillaren</td>
<td>„Haargefäße“ (Blutkapillaren, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Kardiorespiratorisch, Test</td>
<td>Test das Herz und die Atmung betreffend (Kardiorespiratorisch, Rochelexikon, k.D.)</td>
</tr>
<tr>
<td>Kinetik</td>
<td>„(physikalisch) Bewegungslehre“ (Kinetik, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Kohlendioxid</td>
<td>„CO₂, […] farbloses, schweres, nicht brenbares Gas. […] kommt in der Luft zu 0,03% vor (Ausatemluft ca. 4,5 Vol.%) […] entsteht als Enproduktion im Oxidationsstoffwechsel“ (Pschyrembel, 2004, S. 952)</td>
</tr>
<tr>
<td>Kohlendioxidäquivalent</td>
<td>Atemminutenvolumen (Luftmenge, die in einer Minute ein- und ausgeatmet wird) / CO₂-Abgabe (Vogt et al., 2005, S. 2)</td>
</tr>
<tr>
<td>Kollateralisierung, myokardiale</td>
<td>alternative Blutgefäße versorgen die Myokardregion eines insuffizienten Blutgefässes (Mewis et al., 2006)</td>
</tr>
<tr>
<td>Kontraktion</td>
<td>„Zusammenziehung; z.B. Verkürzung eines Muskels bei gleichzeitiger Spannungszunahme“ (Pschyrembel, 2004, S. 969)</td>
</tr>
<tr>
<td>Koronarerterien-Stenting</td>
<td>Koronarerterien: „arterielle Kranzgefäße des Herzens“ Stent: „selbstexpandierende, scherengitterartige endoskopisch oder radiologisch platzierbare Prothese aus verschiedenen</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Laktat</td>
<td>„Salz der Milchsäure; L-Laktat entsteht [...] z.B. bei Muskelarbeit unter Sauerstoffmangel“ (Pschyrembel, 2004, S. 1002)</td>
</tr>
<tr>
<td>M. vastus lateralis</td>
<td>Größer der fünf Anteile des M. quadriceps, welcher die Vorderseite des Oberschenkels bedeckt und eine Streckung im Knie bewirkt. (Hochschild, 2008)</td>
</tr>
<tr>
<td>Mitochondrien - Subsarcolemmale - Interfibrilläre</td>
<td>Ovale Zellorganellen, die für die Energiegewinnung zuständig sind. (Pschyrembel, 2004, S. 1168) „Die subsarkolemmalen Mitochondrien befinden sich direkt unter dem Sarkolemma (siehe „Sarkolemm“), die interfibrillären Mitochondrien liegen zwischen den einzelnen Myofibrillen.“</td>
</tr>
</tbody>
</table>
Mortalität
„Sterblichkeit; Mortalitätsziffer: das Verhältnis der Anzahl der Sterbefälle zum Durchschnittsbestand der Population.“ (Pschyrembel, 2004, S. 1180)

Muskelatrophie
Abnahme der Muskelmasse infolge Verkleinerung des Durchmessers (einfache Muskelatrophie) oder der Anzahl (numerische hypoplastische Muskelatrophie) von Muskelfasern. (Muskelatrophie, Pschyrembel online, k.D.)

Myokard
„muskuläre Wand des Herzens; die Muskelzüge der Kammern sind in einer äußeren Schrägs-, mittleren Ring- u. inneren Längsschicht angeordnet; die Muskulatur der Vorhöfe u. der Kammern ist durch das Herzsklelett voneinander getrennt.“ (Myokard, Pschyrembel online, k.D.)

Nachlast
„Widerstand, den die Herzmuskulatur bei der Entleerung der Kammer überwinden muss (Auswurfwiderstand)“ Nachlast, (Pschyrembel online, k.D.)

Neurologisch
Neurologie: „Fachgebiet der Medizin, das sich mit der Erforschung, Diagnostik und Behandlung der Erkrankung des Nervensystems und der Muskulatur befasst.“ (Pschyrembel, 2004, 1268)

Niereninsuffizienz
„Eingeschränkte Fähigkeit der Nieren, harnpflichtige Substanzen […] auszuschleiden“ (Pschyrembel, 2004, S. 1278)

Obstruktive oder restriktive Lungenprobleme
Obstruktion: „Verschluss, Verstopfung, Verlegung eines Hohlrangs, Gangs oder Gefäßes“

Orthopädisch
Orthopädie: „Fachgebiet der Medizin, die sich mit der Entstehung, Erkennung, Verhütung und Behandlung angeborener oder
erworbener Störungen und Anomalien in Form oder Funktion des Stütz- und Bewegungsapparates befasst.“ (Pschyrembel, 2004, S. 1324)

Perfusion
"Durchströmung, z.B. des Körpers oder einzelner Organe mit Flüssigkeit (Blut u.a.)“ (Pschyrembel, 2004, S. 1389)

Peripher
„weg oder fern vom Zentrum“ (Pschyrembel, 2004, S. 1395)

Phasische Muskeln
Bestehen hauptsächlich aus Muskelelementen Typ II, kontrahieren schnell, haben ein geringes Ausdauervermögen, eine hohe Kraftentwicklung und gewinnen v.a. anaerob Energie. (Van den Berg et al., 2003)

Plantarflexoren
Muskeln, die eine Plantarflexion (Winkel zwischen Schienbein und Fußrücken wird größer) in dem OSG bewirken. (Hochschild, 2008)

Population
„Bez. für die Gesamtheit von Individuen, die sich hinsichtl. bestimmter Kriterien gleichen“ (Population, Pschyrembel online, k.D.)

Prävalenz

Progressiv
„sich in einem bestimmten Verhältnis allmählich steigernd, entwickelnd“ (Progressiv, Duden online, k.D.)

Pulmonale Hypertonie
Synonym: pulmonale Hypertension; erhöhter Blutdruck der Arteria pulmonalis (Lungenarterie) (Pschyrembel, 2004, S. 818)

Randomisiert
Randomisierung: „Zufallszuteilung; Verfahren zur Ausschaltung von systematischen Fehlern oder Einflüssen für die statistische Auswertung“ (Pschyrembel, 2004, S. 1538)

Range of motion (ROM)
„Bewegungsumfang“ (ROM, Pschyrembel online, k.D.)

Rechtsherzkatheter
Verfahren zur kardiovaskulären Diagnose oder Therapie; Prinzip Punktion oder chirurgische Eröffnung eines art. (Linksherzkatheter) oder venösen Gefäßes (z.B. in der Femoralis- oder Kubitalregion, Rechtsherzkatheter) zur Sondierung aller zentralen Herz- und Gefäßabschnitte mit Hilfe von vorgeformten, röntgenkontrastgebenden, dreh- und formstabilen Kathetern kleinen Durchmessers (Herzkatheterisierung, Pschyrembel online, k.D.)

Respiratorischer Quotient, RER

Sample
„Teilmenge der Population, über die eine Aussagegemacht werden soll“ (Stichprobe, Pschyrembel online, k.D.)

Sarkolemm
Bezeichnung für die Zellmembran der quergestreiften Muskelfaser
<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffaufnahme/ -verbrauch, VO₂</td>
<td>„Bezeichnung für die Sauerstoffmenge pro Zeiteinheit, die vom Organismus verstoffwechselt beziehungsweise chemisch (und physikalisch) gebunden wird; Bestimmung: zum Beispiel aus dem Produkt von arteriovenöser Sauerstoffdifferenz und Herzmittenvolumen; beträgt beim Erwachsenen in Ruhe 250-300ml O₂/min; starker Anstieg bei körperlicher Arbeit, Fieber und anderem“ (Pschyrembel, 2004, S. 1616)</td>
</tr>
<tr>
<td>Sauerstoffaufnahme, maximale</td>
<td>„Sauerstoffmenge, die pro Minute bei individuell maximaler möglicher dynamischer Arbeit grosser Muskelgruppen aufgenommen werden kann […]; Bruttokriterium der kardiovaskulär-metabolischen Leistungsfähigkeit; Normalwerte für untrainierte Männer des 3. Lebensjahrzehnts ca. 3l/min, bei Frauen ca. 2l/min. Weltklassesportler in Ausdauersportarten können Werte um 7l/min erreichen.“ (Pschyrembel, 2004, S. 1616)</td>
</tr>
<tr>
<td>Sauerstoffsättigung</td>
<td>„Anteil des Oxyhämoglobins am Gesamthämoglobin; Referenzwerte: im arteriellen Blut 95-97%, im venösen Blut ca. 73%.“ (Pschyrembel, 2004, S. 1617)</td>
</tr>
<tr>
<td>Schlagvolumen</td>
<td>„Die Blutmenge, die jeder Ventrikel des Herzens bei einer Kontraktion (Systole) auswirft; beim erwachsenen Mann normal 70ml in Ruhe.“ (Pschyrembel, 2004, S. 1633)</td>
</tr>
<tr>
<td>Signifikanz</td>
<td>„(Bedeutung, Anschaulichkeit) Ablehnung einer Nullhypothese (z.B. kein Unterschied zwischen Patientengruppen), wenn die Wahrscheinlichkeit eines statistischen Tests kleiner als die zuvor festgelegte Irrtumswahrscheinlichkeit ist.“ (Signifikanz, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Stabile koronare Herzkrankheit</td>
<td>Koronare Herzkrankheit mit belastungsabhängiger (stabiler) Angina pectoris, ausgelöst durch körperliche oder seelische Belastung. (Angina pectoris, Pschyrembel online, k.D)</td>
</tr>
<tr>
<td>Statische Kontraktion</td>
<td>siehe „Isometrische Kontraktion“</td>
</tr>
<tr>
<td>Stretching</td>
<td>Muskeldehnung (Saner, 2009, S. 2)</td>
</tr>
<tr>
<td>Sympathikus</td>
<td>„Pars sympathica des vegetativen Nervensystems […] enthält afferente viszerssensible Fasern für die Schmerzempfindung der Eingeweide.“ (Pschyrembel, 2004, S. 1764)</td>
</tr>
<tr>
<td>Systemisch</td>
<td>„Ein ganzes Organsystem (z.B. Blut, Muskulatur, ZNS), im weiteren Sinne den gesamten Organismus betreffend.“ (Pschyrembel, 2004, S. 1778)</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Systole</td>
<td>Ventrikelmyokard kontrahiert und die Taschenklappen öffnen sich. Besteh aus Anspannungs- und Austreibungsphase (Steffers et al., 2006)</td>
</tr>
<tr>
<td>Tonische Muskeln</td>
<td>Bestehen hauptsächlich aus Muskelfasern Typ I, kontrahieren langsam, haben eine niedrige Kraftentwicklung und gewinnen v.a. aerob Energie. (Van den Berg et al., 2003)</td>
</tr>
<tr>
<td>Untere Extremität</td>
<td>Extremitäten: Gliedmassen (Pschyrembel, 2004, S. 545)</td>
</tr>
<tr>
<td>Vaskulär</td>
<td>„die Blutgefäße betreffend“ (Vaskulär, Duden online, k.D.)</td>
</tr>
<tr>
<td>Vasodilatation</td>
<td>„Erweiterung der Blutgefäße“ (Pschyrembel, 2004, S. 1899)</td>
</tr>
<tr>
<td>Vasokonstriktion</td>
<td>„Engstellung der Gefäße“ (Pschyrembel, 2004, S. 1899)</td>
</tr>
<tr>
<td>Ventilation</td>
<td>„Belüftung der Lungenalveolen im Wechsel von Inspiration und Expiration (gesteuert vom Atemzentrum)“ (Pschyrembel, 2004, S. 161)</td>
</tr>
<tr>
<td>Verblindung</td>
<td>„Geheimhaltung der Gruppenzuordnung (Intervention od. Kontrolle) vor Patienten, Studienärzten, Pflegepersonal u./od. Auswertern, die an einer Studie teilnehmen; beugt unbewusster (u. bewusster) Einflussnahme auf das Studienergebnis vor.“ (Verblindung, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Visual analogue scale (VAS)</td>
<td>„eindimensionale, semiquantitative Skala zur standardisierten Erfassung der Schmerzintensität durch subjektive Selbsteinschätzung des Pat.; Markierung auf einer 10 cm langen kontinuierlichen Leiste zwischen den beiden Endpunkten kein Schmerz sowie Schmerz maximal vorstellbarer Ausprägung</td>
</tr>
<tr>
<td>Vorhofflimmern</td>
<td>Herzrhythmusstörungen im Vorhofmyokard, mit schnell frequentierten, elektrischen Vorhoferregungen ohne wirksame Vorhofkontraktion. (Vorhofflimmern, Pschyrembel online, k.D.)</td>
</tr>
<tr>
<td>Zytoplasma</td>
<td>Plasma, das von der Zellmembran umschlossen ist. Es enthält in Wasser gelöste Proteine, Lipide, Kohlenhydrate, Mineralsalze, Spurenelemente und viele kleinere Granula oder Vesikel sowie größere Zellorganellen. (Zytoplasma, Pschyrembel online, k.D.)</td>
</tr>
</tbody>
</table>
18.7 Literaturverzeichnis Glossar

Aerob. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243366471949074&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%2734833%27]&anchor=el__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4376703%27]

Agonist. (k.D.). In DocCheck Flexikon. Heruntergeladen von
http://flexikon.doccheck.com/Agonist

Akutes Koronarsyndrom. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=anita46hofmann64zhwin46ch2991591771211&startbk=pschyrembel_kw&bk=pschyrembel_kw#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel-v12879558%27]

Alveole. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=anita46hofmann64zhwin46ch2991591771211&startbk=pschyrembel_kw&bk=pschyrembel_kw#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4377202%27]

Antagonist. (k.D.). In DocCheck Flexikon. Heruntergeladen von
http://flexikon.doccheck.com/Antagonist?q=antagon

Aorta. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=anita46hofmann64zhwin46ch2991591771211&startbk=pschyrembel_kw&bk=pschyrembel_kw#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4377963%27]

Aortenstenose. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=anita46hofmann64zhwin46ch2991591771211&startbk=pschyrembel_kw&bk=pschyrembel_kw#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4377987%27]

Arterien. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243352907942442&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%27161466%27]&anchor=el__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4378649%27]

Arteriosklerose. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243352907942442&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%272161466%27]&anchor=el__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4378649%27]
Bremsen mit Herz

Autonomes Nervensystem. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243352907942442&startbk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%27161466%27]&anchor=el#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4378672%27]

Azidose. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243352907942442&startbk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%27161466%27]&anchor=el#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4379255%27]

Biceps brachii. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243352907942442&startbk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%27161466%27]&anchor=el#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4379985%27]

Biopsie. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243352907942442&startbk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%27161466%27]&anchor=el#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4380256%27]

Blutkapillaren. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=anita46hofmann64zhwin46ch2991591771211&startbk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%27161466%27]&anchor=el#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4380256%27]

Evidenz. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243355343111464&startbk=pschyrembel_pflege&bk=pschyrembel_pflege&hitnr=1&start=%2f%2f*%40node_id%3D%2768733%27&anchor=el#__pschyrembel_pflege__%2F%2F*[%40attr_id%3D%27sl9796856%27]
Fatigue. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=anita46hofmann64zhwin46ch2991591771211&startbk=pschyrembel_kw&bk=pschyrembel_kw#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikelb72733f4-8048-403c-aa88-3326513535e2%27]
Follow-up-Studie. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d524336316292510&startbk=pschyrembel_sozmed&bk=pschyrembel_sozmed&hitnr=1&start=%2f%2f*%40node_id%3D%2774257%27&anchor=el#__pschyrembel_sozmed__%2F%2F*[%40attr_id%3D%27sozmed_artikel10688586%27]
Bremsen mit Herz

Herzkatheterisierung. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83cf457a354546b345b7794586ce2e14d5243366471949074&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f[%40node_id%3D%27374833%27]&anchor=el#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel438899%27]

Interpersonell. (k.D.) In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83cf457a354546b345b7794586ce2e14d5243366471949074&startbk=pschyrembel_ppp&bk=pschyrembel_ppp&hitnr=1&start=%2f%2f[%40node_id%3D%27288909%27]&anchor=el#__pschyrembel_ppp__%2F%2F*[%40attr_id%3D%27ppp_artikel12839476%27]

Kinetik. (k.D.) In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83cf457a354546b345b7794586ce2e14d52433664702563905&startbk=pschyrembel_hunnius&bk=pschyrembel_hunnius&hitnr=1&start=%2f%2f[%40node_id%3D%27166268%27]&anchor=el#__pschyrembel_hunnius__%2F%2F*[%40attr_id%3D%27hunnius_artikel504761%27]

Missbrauch. (k.D.) In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83cf457a354546b345b7794586ce2e14d5243366471949074&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f[%40node_id%3D%2711875%27]&anchor=el#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4388999%27]
Bremsen mit Herz

Muskelatrophie. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a3545
46b345b7794586ce2e14d5243361259207668&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f%40node_id%3D%271246046%27&anchor=el
#__pschyrembel_kw__%2F%2F*%40attr_id%3D%27kw_artikel436595%27

Myokard. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a3545
46b345b7794586ce2e14d5243361259207668&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f%40node_id%3D%271246046%27&anchor=el
#__pschyrembel_kw__%2F%2F*%40attr_id%3D%27kw_artikel436577%27

Nachlast. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a3545
46b345b7794586ce2e14d5243361259207668&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f%40node_id%3D%271246046%27&anchor=el
#__pschyrembel_kw__%2F%2F*%40attr_id%3D%27kw_artikel436679%27

Population. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a3545
46b345b7794586ce2e14d5243361259207668&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f%40node_id%3D%271246046%27&anchor=el
#__pschyrembel_kw__%2F%2F*%40attr_id%3D%27kw_artikel4400939%27

Prävalenz. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a3545
46b345b7794586ce2e14d5243361259207668&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f%40node_id%3D%271246046%27&anchor=el
#__pschyrembel_kw__%2F%2F*%40attr_id%3D%27kw_artikel4401127%27

Progressiv. (k.D.). In Duden online. Heruntergeladen von
http://www.duden.de/rechtschreibung/progressiv

ROM. (k.D.). In Pschyrembel online. Heruntergeladen von
http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a3545
Bremsen mit Herz

Verblindung. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d524336198079126&startbk=pschyrembel_hunnius&bk=pschyrembel_hunnius&hitnr=1&start=%2f%2f*[%40node_id%3D%2787769%27]&anchor=el#__pschyrembel_hunnius__%2F%2F*[%40attr_id%3D%27hunnius_artikel6e1e9aa4-f1b1-4bb6-9097-087e3e63d40c%27]

Visual analogue scale. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d524336198079126&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f*[%40node_id%3D%272376682%27]&anchor=el#__pschyrembel_kw__%2F%2F*[%40attr_id%3D%27kw_artikel4410460%27]

Vorhofflimmern. (k.D.) In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d5243366471949074&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f* [%40node_id%3D%274409386%27]&anchor=el#__pschyrembel_kw__%2F%2F* [%40attr_id%3D%27kw_artikel4409386%27]

Zytoplasma. (k.D.). In Pschyrembel online. Heruntergeladen von http://www.wdg.pschyrembel.de/Xaver/start.xav?SID=ssoatypon8da83fcf457a354546b345b7794586ce2e14d524335334938117&startbk=pschyrembel_kw&bk=pschyrembel_kw&hitnr=1&start=%2f%2f* [%40node_id%3D%2727376682%27]&anchor=el#__pschyrembel_kw__%2F%2F* [%40attr_id%3D%27kw_artikel4410460%27]