Welche Auswirkungen hat die Hippotherapie bei Kindern mit spastischer infantiler Zerebralparese?

Schwerpunkt Gross Motor Function Measure

Jennifer Freiburghaus
Reismühlestrasse 1
8409 Winterthur
S08-256-547

Departement: Gesundheit
Institut: Institut für Physiotherapie
Studienjahr: 2008
Eingereicht am: 20.05.2011
Betreuende Lehrperson: Christine Horstmann
Inhaltsverzeichnis

1. Abstract .. 4
2. Einleitung.. 4
 2.1. Darstellung des Themas ... 4
 2.2. Problemstellung ... 5
 2.3. Fragestellung ... 6
 2.4. Zielsetzung .. 6
 2.5. Methodik & Abgrenzung ... 6
3. Theoretische Grundlagen ... 7
 3.1. Hippotherapie ... 7
 3.1.1. Definition ... 7
 3.1.2. Wirkungsmechanismen .. 8
 3.1.3. Anwendungsbereiche ... 11
 3.1.4. Hippotherapie bei Kindern mit Zerebralparese ... 12
 3.2. Zerebralparese .. 12
 3.2.1. Definition ... 12
 3.2.2. Ursachen .. 13
 3.2.3. Einteilung ... 13
 3.2.4. Die spastische Zerebralparese ... 14
 3.2.5. Therapie ... 16
 3.3. Gross Motor Function Measure .. 17
 3.4. Theoretischer Hintergrund .. 20
 3.5. Ergebnisse aus wissenschaftlicher Literatur ... 21
4. Diskussion ... 21
 4.1. Zusammenfassung der Ergebnisse .. 21
 4.2. Kritische Diskussion und Beurteilung der Ergebnisse .. 31
 4.3. Bezug zur Fragestellung ... 34
 4.4. Theorie-Praxis-Transfer ... 35
5. Schlussfolgerung .. 35
 5.1. Schlussfolgerung ... 35
 5.2. Offene Fragen ... 36
 5.3. Zukunftsaussicht .. 37
Hippotherapie bei Kindern mit Zerebralparese

6. Verzeichnisse ..38
 6.1. Literaturverzeichnis ..38
 6.2. Abbildungsverzeichnis ..40
 6.3. Tabellenverzeichnis ..41
 6.4. Abkürzungsverzeichnis ..41
7. Glossar ...42
8. Wortzahl ..48
9. Eigenständigkeitserklärung ..48
10. Danksagung ..48
11. Anhang ..49
1. Abstract

Daraus kann folgende Fragestellung abgeleitet werden: Welche Auswirkungen hat die Hippotherapie auf Kinder mit IZP mit Schwerpunkt auf das Assessment GMFM?

Die Hippotherapie scheint aufgrund dieser Ergebnisse eine geeignete Intervention zur Behandlung von Kindern mit einer IZP darzustellen.

2. Einleitung

2.1. Darstellung des Themas

Sie erwähnt zudem, dass die Hippotherapie sehr häufig bei Kindern mit infantiler Zerebralparese (IZP) angewendet wird. Ziel der Therapie ist es, die Bewegungsübertragungen des Pferdes auf den Reiter zu nutzen und damit den Muskeltonus, sei es ein Hyper- oder Hypotonus, positiv zu beeinflussen. Gleichzeitig werden durch das Schaukeln auf dem Pferd Gleichgewichtsreaktionen gefördert, was die posturale Kontrolle im Rumpf optimiert. Die Physiotherapeutin Ursula Künzle hat eigens

3 Zur Verbesserung der Lesbarkeit wird in dieser Arbeit ausschließlich die männliche Form verwendet. Diese impliziert aber immer auch die weibliche Form.
Hippotherapie bei Kindern mit Zerebralparese

2.2. Problemstellung

Es gibt viele Studien, welche sich mit dem Effekt der Hippotherapie bei Kindern mit IZP beschäftigen, wobei jedoch nur bei wenigen Studien (McGibbon et al. (1998, 2009), Casady et al. (2004)) objektive Assessments zur Überprüfung der Ergebnisse eingesetzt werden. Ohne die Anwendung dieser objektiven Assessments kann jedoch nur bedingt
Hippotherapie bei Kindern mit Zerebralparese

Eine Aussage über die Effektivität der Hippotherapie gemacht werden. Um aussagekräftigere Resultate zu erhalten, ist es daher notwendig, Evaluationsinstrumente einzusetzen, die möglichst valide und reliabel sind. Dies kann beispielsweise das Assessment GMFM sein, welches die grobmotorischen Fähigkeiten und deren Entwicklung festhält. Nur so kann wissenschaftlich aufgezeigt werden, ob die Hippotherapie gezielt Einfluss auf die motorischen Fähigkeiten von Kindern mit IZP nehmen kann. Daraus lässt sich schliesslich ableiten, ob die Hippotherapie bei Kindern mit IZP indiziert ist und sich die Krankenkassen zu Recht an den Kosten dieser Intervention beteiligen.

2.3. Fragestellung

Aus der Problemstellung leitet sich daher folgende Fragestellung ab:

Welche Auswirkungen hat die Hippotherapie auf Kinder mit Zerebralparese mit Schwerpunkt auf das Assessment Gross Motor Function Measure?

2.4. Zielsetzung

Das Ziel dieser Arbeit ist herauszufinden, ob sich die Hippotherapie positiv auf Kinder mit spastischer IZP auswirkt. Um eine möglichst valide Antwort zu bekommen, wurde als Verlaufsparameter das Assessment GMFM gewählt. Es sollen verschiedene Studien, welche sich mit diesem Thema im Zusammenhang mit dem oben genannten Assessment auseinandergesetzt haben, bewertet und einander gegenübergestellt werden.

2.5. Methodik & Abgrenzung

3. Theoretische Grundlagen

3.1. Hippotherapie

3.1.1. Definition

Abbildung 1. Position der Therapeutin

3.1.2. Wirkungsmechanismen

Der Grundgedanke der Hippotherapie ist gemäß Strauss (2000) die Bewegungsanbahnung des Patienten über ca. 110 mehrdimensionale Schwingungsimpulse pro Minute, welche durch das Pferd initiiert22 werden. Diese Impulse kommen durch die physiologischen Bein- und Rumpfbewegungen des Pferdes zustande.
Sie beschreibt, dass der Beginn der Schrittphase durch ein Abfussen des einen Hinterbeines zustande kommt, was eine Beschleunigung nach ventral bewirkt. Dies führt folglich zu einem Rückwärtsimpuls des Oberkörpers des Reiters. Somit kommt der Körperabschnitt (KA) Becken nach vorne, währenddessen die KA Brustkorb und Kopf vorerst zurückbleiben um dann verzögert nachzukommen. Diese Abfolge der KA ist auf Abbildung 2 und 3 gut ersichtlich.

Abbildung 2. Eingeordnete KA
Abbildung 3. Vorwärtstransport Becken, KA Brustkorb und Kopf folgen erst verzögert

Hippotherapie bei Kindern mit Zerebralparese

Abbildung 4. Absenkung des Beckens

Durch die gleichzeitige Vorwärtsbewegung geschieht durch das Vorschieben des Beckens und der Hüfte eine Rotation in der lumbalen Wirbelsäule und abwechselnd eine Aussen- bzw. Innenrotation der Hüfte (siehe Abbildung 5).

Abbildung 5. Rotation des Beckens

Gleichzeitig wird durch das Untreten des Pferdes mit dem Hinterbein die ventrale Muskelkette des Pferderumpfes aktiviert, was zu einer Aufwölbung der Wirbelsäule des Pferdes führt. Der Patient wird somit angehoben. Durch Abfussen senkt sich

Abbildung 6. Bewegungsübertragung des Pferds auf den Reiter

3.1.3. Anwendungsbereiche

- Schädelhirntrauma44
- Apoplexie2
- Torticollis spasmodicus52
- Querschnittlähmung41

Nicht nur bei neurologischen Krankheitsbildern, sondern auch bei lumbalen Beschwerden oder Hüftgelenksproblemen kann die Hippotherapie gemäß Strauss (2000) zum Einsatz kommen. Es gibt aber auch Kontraindikationen, welche beachtet werden müssen. Das können einerseits relative Kontraindikationen wie beispielsweise ungenügende Beweglichkeit in den Hüftgelenken oder absolute Kontraindikationen wie Spondylodesen50 sein.

3.1.4. Hippotherapie bei Kindern mit Zerebralparese

Da Kinder mit einer angeborenen IZP laut Steffers (2003) eine anormale zentralmotorische Entwicklung aufweisen, ist vor allem bei diesen Kindern die Hippotherapie indiziert.

Dabei wirkt sie gemäß Künzle (2000) auf die gesamten motorischen Fähigkeiten. Sie gibt an, dass durch die dreidimensionalen und rhythmischen Bewegungen des Pferdes einerseits durch die Gleichgewichtsreaktionen die Sitzbalance geschult wird und andererseits durch die ständige An- und Entspannung der gesamten Muskulatur eine Tonusregulation herbeigerufen wird.

3.2. Zerebralparese

3.2.1. Definition

Die IZP stellt laut Ferrari et al. (1998) ein eigenständiges Krankheitsbild dar. Die aktuellste Definition stammt gemäß Döderlein (2007) von Bax, Goldstein und Rosenbaum (2005), welche Döderlein als die bisher umfassendste Definition beschreibt:

„Der Begriff Zerebralparese beschreibt eine Gruppe von Entwicklungsstörungen der Haltung und Bewegung, die zur Aktivitätseinschränkung führen. Ursächlich liegt eine nicht progrediente Störung der fetalen13 oder frühkindlichen Hirnentwicklung vor. Die motorischen Probleme werden häufig durch weitere Störungen von Sensorik, Auffassung, Kommunikation, Perzeption36, Verhalten und von Epilepsie begleitet.“

Döderlein (2007) weist darauf hin, dass die Schädigung im zentralen Nervensystem (ZNS) dauerhaft ist, jedoch nicht weiter fortschreitet. Während des Wachstums
können sich jedoch die Auswirkungen auf den Bewegungsapparat kontinuierlich ändern.

3.2.2. Ursachen

Nach Döderlein (2007) handelt es sich bei der Ursache um eine Hirnschädigung, welche pränatal\(^39\), perinatal\(^35\) oder postnatal\(^37\) entstehen kann. Er erwähnt, dass gemäss Nelson und Ellenberg (1986) bei \(\frac{4}{5}\) der Kinder eine pränatale Ursache vorliegt. Hierunter versteht man:
- angeborene Hirnfehlbildungen
- Infektionen (bakteriell, viral)
- Gefässverschlüsse (Plazenta)
- Kernikterus\(^24\)
- Alkohol- oder anderer Drogenkonsum der Mutter

Michaelis et al. (2004) nennt als Ursache die Hypoxie\(^19\), welche unter anderem aufgrund mütterlicher Erkrankungen während der Schwangerschaft oder perinatalen Komplikationen entstehen kann.

Aufgrund dieser Ursachen kommt es laut Steffers (2003) zu einer unvollständigen Reifung des ZNS, wodurch auch die Willkürmotorik nicht genügend entwickelt werden kann. Dies führt folglich zu einem inadäquaten Muskeltonus, der je nach Form der IZP variieren kann. Die daraus entstehende muskuläre Dysbalance wirkt sich folglich negativ auf die Grob- und Feinmotorik\(^12\) sowie die posturale Kontrolle aus.

3.2.3. Einteilung

Die spastische Form ist gemäss Steffers (2003) die häufigste Form und wird ca. bei 75% der Kinder mit einer IZP diagnostiziert. Die spastische IZP zeichnet sich durch
Hippotherapie bei Kindern mit Zerebralparese

einen erhöhten Muskeltonus aus, von dem der Rumpf und die oberen sowie unteren Extremitäten mehr oder weniger betroffen sind. Sie kann in eine Hemiparese, Diparese und Tetraparese aufgeteilt werden. Diese Formen werden im nächsten Kapitel genauer beschrieben.

Weiter kann die IZP laut Strassburg et al. (2003) zusätzlich in die Schweregrade eins bis vier unterteilt werden. Beurteilt werden hierzu funktionelle Beeinträchtigungen sowie die Möglichkeit der Fortbewegung.

3.2.4. Die spastische Zerebralparese

Abbildung 9. spastische Tetraparese

3.2.5. Therapie

Vor allem bei der konservativen Therapie nimmt die Physiotherapie laut Steffers (2003) eine zentrale Stellung ein. Zusätzlich sind auch Pädiater, Orthopäden, Ergotherapeuten und Logopäden an der Therapie beteiligt. Ziele der Therapie, welche gemeinsam angestrebt werden, sind folgende:
- Regulation des Muskeltonus
- Reduzierung des abnormen Bewegungsmusters
- Verbesserung der Grob- und Feinmotorik
- Förderung der normalen sensomotorischen Erfahrungen
- Stimulierung der gesamten körperlichen und damit indirekt auch der mentalen Mobilität und Aktivität
- Vorbeugung und Behandlung von Sekundärschäden

Strassburg et al. (2003) weisen zudem darauf hin, dass in gewissen Fällen auch eine Schienenversorgung in Betracht gezogen werden sollte.

In der medikamentösen Therapie werden gemäß Döderlein (2007) systemisch und lokal wirkende Medikamente eingesetzt, welche der Spastik und den Schmerzzuständen entgegenwirken.

Folgende Faktoren können nach Döderlein (2007) Indikationen für einen operativen Eingriff sein:
- unzureichendes Verhältnis von therapeutischem Aufwand und erzielter funktioneller Verbesserung
- Verschlechterung trotz konsequent durchgeführter Therapie
- fehlende Akzeptanz bzw. Mitarbeit des Patienten bei der konservativen Therapie
- fehlende bzw. unzureichende konservative Therapiemöglichkeiten

3.3. Gross Motor Function Measure

Gemäss Russell et al. (2002) kann der Tester die motorischen Fähigkeiten anhand einer Vier-Punkte-Skala mithilfe eines Bewertungsbogens, welcher im Anhang zu finden ist, beurteilen. Die Vier-Punkte-Skala beinhaltet folgende Punkte:

- 0 = initiiert nicht
- 1 = initiiert
- 2 = vervollständigt teilweise
- 3 = vervollständigt die gestellte Aufgabe

Anhand der Beschreibung von Russell et al. (2002) findet bei Null Punkten keine Durchführung statt. Beträgt die Durchführung weniger als 10% wird der Patient mit einem Punkt bewertet. Die Durchführung von 10% bis weniger als 100% ergibt zwei Punkte und
die Durchführung von 100% ergibt drei Punkte. Das Kind hat jeweils drei Versuche zur Verfügung um die Aufgabe auszuführen.

- Stufe 1: Gehen ohne Einschränkungen; Einschränkungen der höheren motorischen Fähigkeiten
- Stufe 2: Freies Gehen ohne Gehhilfen; Einschränkungen beim Gehen ausserhalb der Wohnung und auf der Strasse
- Stufe 3: Gehen mit Gehhilfen; Einschränkungen beim Gehen ausserhalb der Wohnung und auf der Strasse
- Stufe 4: Selbstständige Fortbewegung eingeschränkt; Kinder werden geschoben oder benützen E-Rollstuhl für draussen auf der Strasse
- Stufe 5: Selbstständige Fortbewegung selbst mit elektrischen Hilfsmitteln stark eingeschränkt

Die Stufen sind weiter in vier Alterskategorien aufgeteilt. Diese beurteilen die motorischen Fähigkeiten vor dem zweiten Geburtstag, vom zweiten Lebensjahr bis zum vierten Geburtstag, vom vierten Lebensjahr bis zum sechsten Geburtstag und schliesslich vom sechsten Lebensjahr bis zum zwölften Geburtstag. Für jede Unterteilung ist laut Russell et al. (2002) eine Beschreibung definiert, bei welcher die zu erreichenden Fähigkeiten angegeben werden. Da sich diese Arbeit jedoch ausschliesslich mit dem Assessment
GMFM auseinandersetzt, wird an dieser Stelle nicht weiter auf die Klassifikation eingegangen.

3.4. Theoretischer Hintergrund

Es gibt einige Studien, welche sich mit der Wirksamkeit der Hippotherapie bei Kindern mit IZP auseinandergesetzt haben und zur Messung des Effekts das Assessment GMFM wählten.

3.5. Ergebnisse aus wissenschaftlicher Literatur

4. Diskussion

4.1. Zusammenfassung der Ergebnisse

Nach Eingrenzung der Literatur mittels der gewählten Keywords bleiben schliesslich sieben Studien übrig. Diese werden anhand von mehreren Kriterien analysiert. Dazu werden folgende Kriterien ausgewählt:

1. gewählte Intervention: Hippotherapie = 3 Punkte
2. Diagnose der Kinder: spastische IZP = 2 Punkte
3. Messinstrument: Gross Motor Function Measure (GMFM) = 2 Punkte
4. Stichprobe (n): mind. fünf Teilnehmer = 2 Punkte
5. Alter der Kinder zwischen 6 – 12 Jahren = 2 Punkte
6. Studie nicht älter als zehn Jahre = 2 Punkte, nicht älter als 15 Jahre = 1 Punkt

Tabelle 1: Punkteverteilung gemäß den definierten Kriterien

<table>
<thead>
<tr>
<th>Titel der Studie</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A randomized controlled trial of the impact of therapeutic horse riding on the quality of life, health, and function of children with Cerebral Palsy.</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Immediate and Long-Term Effects of Hippotherapy on Symmetry of Adductor of Muscle Activity and Functional Ability in Children with spastic Cerebral Palsy.</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Effect of an equine-movement therapy program on gait, energy expenditure and motor function in children with spastic Cerebral Palsy: a pilot study</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>The Effect of Hippotherapy on Postural Control in Sitting for Children with Cerebral Palsy.</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>The Effect of Hippotherapy on ten Children with Cerebral Palsy.</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>The Effects of a 5-week therapeutic horseback riding program on gross motor function in a child with Cerebral Palsy: a case study</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Horseback riding in children with Cerebral Palsy: Effect on gross motor function</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Die ausgewählten Studien (in der Tabelle fett gedruckt) werden im nächsten Kapitel zusammengefasst und danach anhand der PEDro-Skala beurteilt.

Immediate and Long-Term Effects of Hippotherapy on Symmetry of Adductor Muscle Activity and Functional Ability in Children with Spastic Cerebral Palsy.

Diese Studie wurde in zwei Phasen aufgeteilt. Um die Zusammenfassung verständlich darzustellen, werden die Phasen einzeln beschrieben.
Phase 1:

Design: Es handelte sich dabei um eine randomisierte kontrollierte Studie (RCT) mit Prä-/Posttest und Kontrollgruppe. Zusätzlich wurde am Schluss der Studie ein klinisches Follow-up durchgeführt.

Messungen: Im Vorfeld der Interventionen wurde für jedes Kind der GMFCS Level festgelegt, um herauszufinden, ob es einen Bezug zwischen dem GMFCS Level und der Veränderung der Adduktorensymmetrie gibt. Danach wurde die Symmetrie der Adduktoren im Gang mittels EMG-Elektroden gemessen, welche auf die Adduktorenmuskulatur der unteren Extremitäten angebracht wurden. Die Kinder bekamen den Auftrag eine Strecke von sechs Meter hin und her zu gehen. Zuerst wurden sie aufgefordert in ihrem üblichen Tempo zu gehen, danach so schnell wie möglich, ohne jedoch zu rennen. Während diesem Test durften nur die Hilfsmittel eingesetzt werden, welche die Kinder auch im täglichen Leben benutzten. Im Anschluss an die jeweiligen Interventionen wurde dieser Test wiederholt.

Phase 2:
Ziel: In dieser Phase lag der Schwerpunkt bei der Ermittlung des Langzeiteffekts eines zwölfwöchigen Hippotherapieprogramms, welcher anhand der Adduktronqualität, dem GMFM und der Selbsteinschätzung der Teilnehmer evaluiert werden sollte.
Design: Das Design dieser Phase ist identisch mit dem der Phase 1.
Teilnehmer: Die ersten sechs Kinder der Phase 1, welche allen Kriterien der Phase 2 entsprachen, wurden in diese Phase aufgenommen. Diese Einteilung wurde bereits vor den Pretests durchgeführt, um zu verhindern, dass ausschließlich jene Kinder mit den besten Leistungen in die Phase 2 eingeteilt wurden. Die Teilnehmer wiesen ein Durchschnittsalter von acht Jahren und vier Monaten auf.
Messungen: Zur Messung der Effekte wurden die Ergebnisse des Pretests der Phase 1 miteinbezogen und galten als T1. Nach zwölf Wochen ohne Intervention wurde der Test wiederholt (T2). Danach begann die Interventionsphase, welche wiederum zwölf Wochen dauerte. Nach Abschluss dieser Phase wurde erneut getestet (T3) und nach weiteren zwölf Wochen, wieder ohne Intervention, wurden die Schlusstests (T4) durchgeführt. In dieser Phase wurde neben der EMG-Messung, der GMFM-66-Score ermittelt, sowie ein Selbstwahrnehmungsprofil der Kinder aufgenommen. Dieses Profil diente der Selbstbeurteilung der Kinder. Es wurde einerseits von allen Eltern durchgeführt,
andererseits durften auch die Kinder zwischen acht und dreizehn Jahren dieses Assessment ausfüllen.

Tabelle 2: Ergebnisse des GMFM Scores

<table>
<thead>
<tr>
<th>Subject</th>
<th>12 weeks Pre-HPOT</th>
<th>Immediately Pre-HPOT</th>
<th>Immediately Post-HPOT</th>
<th>12 weeks Post-HPOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56.62</td>
<td>56.86</td>
<td>63.33</td>
<td>65.33</td>
</tr>
<tr>
<td>2</td>
<td>51.85</td>
<td>50.62</td>
<td>54.38</td>
<td>53.62</td>
</tr>
<tr>
<td>3</td>
<td>47.68</td>
<td>47.09</td>
<td>50.62</td>
<td>52.62</td>
</tr>
<tr>
<td>4</td>
<td>65.63</td>
<td>65.33</td>
<td>70.39</td>
<td>68.83</td>
</tr>
<tr>
<td>5</td>
<td>58.56</td>
<td>59.86</td>
<td>63.63</td>
<td>64.98</td>
</tr>
<tr>
<td>6</td>
<td>44.31</td>
<td>46.32</td>
<td>49.21</td>
<td>50.09</td>
</tr>
</tbody>
</table>

Abbreviation: HPOT, hippotherapy.

Effect of an equine-movement therapy program on gait, energy expenditure, and motor function in children with spastic cerebral palsy: a pilot study.

Ziel: Diese Studie beschäftigte sich mit dem Effekt eines achtwöchigen Hippotherapieprogramms in Bezug auf Energieaufwand, Schrittlänge, Geschwindigkeit und Kademz beim Gehen, sowie den Einfluss auf das Assessment GMFM. Die Forscher definierten im Vorfeld die Hypothese, dass die Probanden nach der achtwöchigen
Interventionszeit größere positive Veränderungen in den gewählten Verlaufsparametern zeigen als nach der interventionsfreien Zeit.

Design: Es wurde ein repeated-measures within-subject Design gewählt. Das heisst, die Teilnehmer wurden nicht aufgeteilt, sondern alle Probanden absolvierten gleichzeitig eine therapiefreie Zeit und danach die Interventionsphase.

Intervention: Als Intervention absolvierten die Teilnehmer ein Hippotherapieprogramm, welches während acht Wochen zweimal wöchentlich durchgeführt wurde. Eine Sitzung dauerte jeweils dreissig Minuten. Dabei ging es in einem ersten Schritt darum, die Rumpfaufrichtung während den Schubbewegungen, die vom Pferd auf das Kind übertragen wurden, ohne Unterstützung des Therapeuten aufrecht zu erhalten. In einem weiteren Schritt sollten die Kinder aktive Übungen mit Einbezug der oberen und unteren Extremitäten durchführen, wobei auch hier der Schwerpunkt bei der Erhaltung der Aufrichtung lag.

Tabelle 3: Ergebnisse des GMFM Dimension E

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pretest-1 score (%)</th>
<th>Pretest-2 score (%)</th>
<th>Posttest score (%)</th>
<th>X², value for Friedman two-way Anova by ranks</th>
<th>Multiple comparison for Friedman two-way Anova by ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20 (28)</td>
<td>20 (28)</td>
<td>23 (32)</td>
<td>7.6a</td>
<td>[R1-R2] = 1</td>
</tr>
<tr>
<td>B</td>
<td>37 (51)</td>
<td>37 (51)</td>
<td>51 (71)</td>
<td>[R1-R3] = 8b</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>14 (19)</td>
<td>14 (19)</td>
<td>20 (28)</td>
<td>[R2-R3] = 7b</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>16 (22)</td>
<td>16 (22)</td>
<td>18 (25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>12 (17)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aStatistically significant (P<0.05)
bStatistically significant (familywise P<0.10: Porney and Watkins 1993)

The Effect of Hippotherapy on Ten Children with Cerebral Palsy.

Ziel: Diese Studie befasst sich mit dem Effekt der Hippotherapie auf die generelle funktionelle Entwicklung von Kindern mit IZP. Zur Überprüfung dieses Effekts wurden die Assessments GMFM und Pediatric Evaluation of Disability Inventory³⁴ (PEDI) gewählt.

Teilnehmer: Bei den Teilnehmern handelte es sich um zehn Kinder zwischen 2.3 und 6.8 Jahren mit der Diagnose IZP. Die Studienteilnehmer wurden nach Überweisung von Ärzten und Therapeuten anhand von definierten Ein- und Ausschlusskriterien rekrutiert.

zwischen dem Pretest 2 und dem Posttest 1 vorhanden war. Gleichzeitig durften jedoch keine signifikanten Veränderungen zwischen dem Pretest 1 und 2 sowie dem Posttest 1 und 2 vorliegen. Ansonsten wurde die Hypothese verworfen.

Tabelle 4: Signifikanz der Ergebnisse in Bezug auf den Tukey HSD Wert

<table>
<thead>
<tr>
<th>Tukey HSD</th>
<th>PreT1 – PreT2</th>
<th>PreT2 – PostT1</th>
<th>PostT1 – PostT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMFM lying/rolling (p>0.05)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GMFM sitting</td>
<td>3.76</td>
<td>2.85</td>
<td>3.2</td>
</tr>
<tr>
<td>GMFM crawling/kneeling</td>
<td>2.64</td>
<td>2.35</td>
<td>2.85*</td>
</tr>
<tr>
<td>GMFM standing</td>
<td>1.99</td>
<td>1.2</td>
<td>1.65</td>
</tr>
<tr>
<td>GMFM walking/run/jump</td>
<td>4.98</td>
<td>1.95</td>
<td>2.80</td>
</tr>
<tr>
<td>GMFM total</td>
<td>9.34</td>
<td>9.00</td>
<td>12.35*</td>
</tr>
</tbody>
</table>

GMFM = Gross Motor Function Measure; PreT1 = pre test 1; PreT2 = pre test 2; PostT1 = post test 1; PostT2 = post test 2.

The Tukey honest significant difference (HSD) value in the first column indicates the magnitude required for significance. The actual mean score change in the three time periods is listed in the following column.

* Denotes a statistically significant difference in the mean score change.

Zur besseren Übersicht sind in der Tabelle 5 sind alle Ergebnisse der analysierten Studien zusammengefasst aufgelistet.
Tabelle 5: Zusammenfassung der Ergebnisse

<table>
<thead>
<tr>
<th>Autor</th>
<th>Sample</th>
<th>Outcomes</th>
<th>Resultate</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGibbon et al. (2009)</td>
<td>Phase I: n=47</td>
<td>• Asymmetry Score</td>
<td>Asymmetry Score Nach der Hippotherapie zeigte sich eine signifikante Abnahme des Asymmetry Score von 45.82 mV. Die Kontrollgruppe hingegen verzeichnete eine nichtsignifikante Abnahme von 1.92 mV.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Self-Perception Profile</td>
<td>Self-Perception Profile Fünf von sechs Kindern füllten den gesamten Fragebogen aus und verbesserten sich in mindestens einem Bereich. Proband 3 füllte den Fragebogen nicht vollständig aus.</td>
</tr>
<tr>
<td>McGibbon et al. (1998)</td>
<td>n=5</td>
<td>• Energy Expenditure Index (EEI)</td>
<td>EEI Alle fünf Kinder zeigten eine statistisch signifikante Abnahme (p<0.05) des EEI nach Hippotherapie. Dies bedeutet, dass die Kinder eine erhöhte Leistung im Gehen zeigten.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GMFM Dimension E</td>
<td>GMFM Dimension E Alle der fünf Probanden zeigten eine statistisch signifikanten Zunahme (p<0.05) des GMFM im Bereich „Gehen, Rennen und Springen“.</td>
</tr>
<tr>
<td>Casady et al. (2004)</td>
<td>n=10</td>
<td>• Pediatric Evaluation Disability Inventory (PEDI)</td>
<td>PEDI Signifikante Veränderungen wurden in allen PEDI Teilbereichen (Selbstpflege, Mobilität, Gesellschaft und Gesamttotal) ersichtlich.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GMFM-88</td>
<td>GMFM-88 In allen Dimensionen des GMFM ausser dem Bereich „Liegen und Drehen“ wurden signifikante Verbesserungen ersichtlich.</td>
</tr>
</tbody>
</table>
4.2. **Kritische Diskussion und Beurteilung der Ergebnisse**

Immediate and Long-Term Effects of Hippotherapy on Symmetry of Adductor Muscle Activity and Functional Ability in Children with Spastic Cerebral Palsy.

Nancy H. McGibbon, William Benda, Burris R. Duncan, Debbie Silkwood-Sherer

Die Studie von McGibbon et al. ist die einzige RCT Studie im Zusammenhang mit der gewählten Fragestellung, welche auch die vorrangig ausgewählten Auswahlkriterien der Autorin erfüllt. Die Studie erreicht insgesamt sieben von zehn möglichen PEDro-Punkten.

Obwohl einige Kinder während des Verlaufs der Studie ausgeschlossen wurden, fand die Datenanalyse nicht nach der Intention-to-treat Methode\(^{23}\) statt, daher gilt dieses Kriterium als nicht erfüllt. Sowohl für Phase I wie auch Phase II wurden Gruppenvergleiche durchgeführt, welche in Tabellenform dargestellt wurden. In dieser Tabelle sind auch die Punkt- sowie Streuungsmasse für das Outcome ersichtlich.

Effect of an equine-movement therapy program on gait, energy expenditure, and motor function in children with spastic cerebral palsy: a pilot study.

Nancy H. McGibbon, Carla-Krystin Andrade, Gail Widener, Holly L. Cintas

The Effect of Hippotherapy on Ten Children with Cerebral Palsy.

Renee L. Casacy, Deborah S. Nichols-Larsen

entspricht somit den erforderlichen 85%. Die Daten wurden jedoch nicht mittels der Intention-to-tread Methode analysiert, womit dieses Kriterium nicht erfüllt ist. Es wurden Gruppenvergleiche getätigt, in dem die Nontreatment- mit der Interventionsphase miteinander verglichen wurde. In der Studie sind sowohl Behandlungseffekt wie auch Standardabweichung ersichtlich. In Tabelle 6 sind nun noch einmal alle Studien mit den erzielten PEDro Punkten aufgelistet. (Die PEDro Punkteverteilung ist in Tabelle 7 im Anhang ersichtlich.)

Tabelle 6: erzielte PEDro Punkte

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Titel</th>
<th>Design</th>
<th>PEDro</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGibbon et al.</td>
<td>2009</td>
<td>Immediate and Long-Term Effects of Hippotherapy on Symmetry of Adductor Muscle Activity and Functional Ability in Children With Spastic Cerebral Palsy</td>
<td>RCT mit Pre-/ Posttests und Follow up</td>
<td>7/10</td>
<td>Phase I: n = 47 Phase II: n = 6</td>
</tr>
<tr>
<td>Casady et al.</td>
<td>2004</td>
<td>The Effect of Hippotherapy on Ten Children with Cerebral Palsy</td>
<td>Time-series, quasiexperimental research design, repeated-measures design mit Pre- und Posttest</td>
<td>4/10</td>
<td>n = 10</td>
</tr>
</tbody>
</table>

Im Hinblick auf die PEDro-Scale gilt zu beachten, dass in der Physiotherapie bereits ab einer Punktzahl von 7 von einer hochwertigen Qualität die Rede ist. Eine Studie mit 4-6 Punkten verfügt über eine mittelwertige Qualität und unter 3 Punkten spricht man von einer niedrigen Qualität. Dies kommt daher, dass eine Blindung aufgrund der Intervention, vor allem der Probanden und Therapeuten, recht schwierig ist (Kool, 2008).

Jedoch wird aufgrund der geringen Stichprobe (n = 5 – 47) der Studien die allgemeine Aussagefähigkeit in Bezug auf die Gesamtpopulation stark vermindert. Durch die Nontreatmentphase, welche in allen drei Studien durchgeführt wurde, ist ein Referenzwert vorhanden. Jedoch wäre die Aussagefähigkeit höher, wenn die Probanden zusätzlich in zwei Gruppen eingeteilt worden wären und die Nontreatment- sowie Interventionsphase in unterschiedlicher Reihenfolge absolviert hätten.

4.3. Bezug zur Fragestellung

Hippotherapie bei Kindern mit Zerebralparese

zeigt sich in der Messung, welche zwölf Wochen nach Abschluss der Hippotherapie durchgeführt wurde.

4.4. Theorie-Praxis-Transfer

Es scheint, dass die Hippotherapie eine wertvolle Intervention zur Behandlung von Kindern mit IZP darstellt. Wie bereits in den theoretischen Grundlagen erwähnt, wirkt sich die Therapie auf den gesamten Körper aus und somit auch auf die Grobmotorik, was anhand der signifikanten Verbesserungen des GMFM ersichtlich ist.

Es wird jedoch in diverser, gesichteter Literatur auf die Wichtigkeit hingewiesen, dass die Hippotherapie von ausgebildeten Therapeuten mit Zusatzausbildung in Hippotherapie durchgeführt werden sollte. Ausserdem ist es von Bedeutung, dass die Entwicklung der Fähigkeiten der Patienten anhand von standardisierten Assessments festgehalten wird um die Erfolge der Hippotherapie, beispielsweise gegenüber den Krankenkassen, nachhaltig aufzuzeigen.

5. Schlussfolgerung

5.1. Schlussfolgerung

Nach kritischer Auseinandersetzung mit der Literatur kann davon ausgegangen werden, dass die Hippotherapie eine wirksame Therapie für Kinder mit IZP darstellt. Da
sich die Hippotherapie auf den gesamten Körper auswirkt und die Intervention in Bezug auf Individuum, Aufgabe und Umwelt sehr variabel ist, kann sie zudem spezifisch auf den Patienten abgestimmt werden.

5.2. Offene Fragen

5.3. Zukunftsaussicht

Schliesslich könnte so auch gegenüber den Kostenträgern stichhaltiger argumentiert werden, dass die Hippotherapie bei Kindern mit einer IZP indiziert ist. Daher ist es auch von Wichtigkeit, dass die Interventionen anhand validen Assessment, wie beispielsweise dem Assessment GMFM, überprüft werden.
6. Verzeichnisse

6.1. Literaturverzeichnis

Bücher:

Hippotherapie bei Kindern mit Zerebralparese

Artikel:

Studien:

Sonstiges:

6.2. Abbildungsverzeichnis

6.3. **Tabellenverzeichnis**

Tabelle 1. Punkteverteilung gemäß den definierten Kriterien

Tabelle 5. Zusammenfassung der Ergebnisse

Tabelle 6. erzielte PEDro Punkte

Tabelle 7. PEDro Skala der einzelnen Studien

6.4. **Abkürzungsverzeichnis**

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMG</td>
<td>Elektromyographie</td>
</tr>
<tr>
<td>FBL</td>
<td>Funktionelle Bewegungslehre von Klein-Vogelbach</td>
</tr>
<tr>
<td>GMFCS</td>
<td>Gross Motor Function Classification System</td>
</tr>
<tr>
<td>GMFM</td>
<td>Gross Motor Function Measure</td>
</tr>
<tr>
<td>IZP</td>
<td>infantile Zerebralparese</td>
</tr>
</tbody>
</table>
7. Glossar

1) Alignment:
Teil der Haltungskontrolle für eine korrekte intersegmentale Anordnung der Körperteile zueinander

2) Apoplexie:
Schlaganfall

3) Assessment:
Befund mit möglichst ganzheitlicher Erfassung

4) ataktische Zerebralparese:
Verlust der geordneten muskulären Koordination, sodass Bewegungen mit abnormaler Kraft, Rhythmus und Genauigkeit durchgeführt werden.

5) Blindung:
Die betreffende Person (Proband, Therapeut, Untersucher) weiss nicht, welcher Gruppe der Proband zugeordnet worden ist.

6) Bobath-Konzept:
Therapieansatz, der auf neurophysiologischer und entwicklungsneurologischer Basis aufgebaut ist und bei Patienten mit zentralneurologischen Bewegungsstörungen zur Anwendung kommt. Prinzip der Behandlung: Tonusregulierung und Differenzierung der Haltungs- und Bewegungsschemen durch Inhibition und Fazilitation neuromuskulärer Reaktionen zur Förderung kontrollierter funktionsorientierter Bewegungsabläufe.
7) Diparese:
Bewegungsstörung, bei der beide Beine stärker als die Arme betroffen sind.

8) dyskinetische Zerebralparese:
Unwillkürliche, unkontrollierte, wiederkehrende, gelegentlich stereotype Bewegungen der betroffenen Körperteile

9) Elektromyographie (EMG):
Methode zur Registrierung der spontan bzw. bei Willkürinnervation auftretenden oder durch elektrische Stimulation provozierbaren Aktionsströme im Muskelgewebe bzw. einzelner Muskelaktionspotentiale.

10) Enzephalitis:
Entzündung des Gehirns

11) Fazilitation:
Erleichtern, Anbahnen, Ermöglichen von Haltungen und Bewegungen

12) Feinmotorik

13) fetal:
zur Frucht im Mutterleib gehörig

14) Funktionelle Bewegungslehre Klein-Vogelbach (FBL):
Technik der unmittelbaren Beobachtung und Analyse von Haltung und Bewegung des Menschen.

15) Grobmotorik:
Bewegungsfunktionen des Körpers, welche der Gesamtbewegung dienen (z.B. Laufen, Springen, Hüpfen).
16) **Hemiparese:**
inkomplette Lähmung einer Körperhälfte

17) **hyperaktive Muskulatur:**
Muskulatur mit gesteigerter Aktivität

18) **hypotone Muskulatur:**
Muskulatur mit zuwenig Spannung

19) **Hypoxie:**
verminderter Sauerstoffgehalt im Gewebe oder Blut

20) **inadäquat:**
unpassend, nicht angemessen

21) **infantil:**
kindlich

22) **Initierung:**
Beginn, Impuls

23) **Intention-to-treat:**
Dies bedeutet, dass in Fällen, in denen die Probanden die zugedachte Behandlung nicht erhalten haben und in denen Ergebnismessungen möglich waren, die Messwerte so analysiert werden, als ob die Probanden die zugedachte Behandlung erhalten hätten.

24) **Kernikterus:**

25) **Kontrakteuren:**
dauerhafte Verkürzung eines Muskels
26) Koordination:
Abstimmung und Zusammenwirken von Funktionen, neurologisch insbesondere das Zusammenwirken der Muskulatur bei Bewegungsabläufen

27) Kruppe:
Gesäss des Pferdes

28) Malnutrition:
Bezeichnung für inadäquate Ernährung (Unter-, Überernährung oder Nährstoffimbalance)

29) Meningitis:
Entzündung der Hirn- und Rückenmarkhäute

30) Multiple Sklerose:
Chronisch-entzündliche Erkrankung des zentralen Nervensystems

31) Muskeltonus:
Spannungszustand der Muskulatur, Hypertonus = erhöhte Spannung, Hypotonus = verminderte Spannung

32) muskuläre Dysbalance:
Ungleichgewicht zwischen Agonist und Antagonist

33) Pädiatrie:
Fachgebiet der Medizin, das sich mit Diagnose und Therapie von Erkrankungen im Kindes- und Jugendalter befasst.

34) Pediatric Evaluation of Disability Inventory:
kurz PEDI; Assessment zur Evaluation von Durchführung und Veränderungen von funktionellen Fähigkeiten bei Kindern zwischen 8 Monaten und 6 Jahren.

35) perinatal:
Zeitraum zwischen der 24. Schwangerschaftswoche und bis 7 Tage nach der Geburt
36) **Perzeption:**
Informationsgewinn aus Umwelt- und Körperreizen einschliesslich der damit verbundenen Emotionen und der Modifikation durch Lernen und Erfahrung

37) **postnatal:**
Zeitraum nach der Geburt

38) **posturale Kontrolle:**
Aufrechterhaltung des Körperschwerpunkts über der Unterstützungsfläche unter Einfluss der Schwerkraft

39) **pränatal:**
Zeitraum vor der Geburt

40) **progredient:**
fortschreitend, progressiv

41) **Querschnittlähmung:**
vollständige oder anteilige Schädigung des Rückenmarks

42) **Randomisierung:**
Zufallszuteilung der Probanden zu einer Gruppe

43) **reliabel:**
zuverlässig

44) **Schädelhirntrauma:**
Sammelbezeichnung für geschlossene bzw. offene Schädelverletzungen mit Gehirnbeteiligung

45) **Sensomotorik:**
Bezeichnung für das Zusammenspiel motorischer und sensorischer Leistungen bzw. alle motorischen Prozesse, die von sensorischem Input abhängig sind.
46) **Shapingmöglichkeiten:**
Möglichkeiten zur Erleichterung bzw. Erschwerung einer Aktivität oder Übung

47) **Signifikanz:**
Bedeutung, Anschaulichkeit; Ablehnung einer Nullhypothese (z.B. kein Unterschied zwischen Patientengruppen), wenn die Wahrscheinlichkeit eines statistischen Tests kleiner als die zuvor festgelegte Irrtumswahrscheinlichkeit ist.

48) **Sitting Assessment Scale:**
kurz SAS; standardisiertes Assessment zur Untersuchung des Sitzes von Kindern mit Zerebralparese. Das Assessment setzt sich aus fünf Elementen zusammen, welche zur Bewertung der Kopf-, Rumpf- und Fusskontrolle sowie der Arm- und Handfunktion dienen.

49) **Spastik:**
krampfartig erhöhter Muskeltonus, der proportional zur Geschwindigkeit einer passiven Dehnung des Muskels zunimmt oder bei fortgesetzter Dehnung plötzlich nachlassen kann (sog. Taschenmesserphänomen).

50) **Spondylodese:**
Versteifung von Wirbelsäulensegmenten

51) **Tetraparese:**
inkomplette Lähmung aller vier Extremitäten

52) **Torticollis spasmodicus:**
Innervationsstörungen der Hals- und Nackenmuskulatur daraus resultierend Drehung des Kopfs zu einer Seite, Neigung zur Gegenseite sowie Hebung der gleichseitigen Schulter

53) **valide:**
gültig

54) **Validierung:**
Überprüfung, ob ein Verfahren oder ein Lösungsansatz für den vorgesehenen Gebrauch tauglich ist.
55) Willkürmotorik:
Bewegungen des Körpers, welche bewusst gesteuert werden können.

56) zentrales Outcome:
zentrale Ergebnisse

8. Wortzahl
Abstract: 172
Gesamte Arbeit inkl. Abstract: 8443

9. Eigenständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig, ohne Mithilfe Dritter und unter Benützung der angegebenen Quellen verfasst habe.

Datum:

Unterschrift:

10. Danksagung
Hippotherapie bei Kindern mit Zerebralparese

11. Anhang

Tabelle 7: PEDro Skala der einzelnen Studien

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ein- und Ausschlusskriterien wurden spezifiziert</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2. Die Probanden wurden den Gruppen randomisiert zugeordnet</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3. Die Zuordnung der Gruppen erfolgten verborgen</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Zu Beginn der Studie waren die Gruppen bzgl. der wichtigsten prognostischen Indikatoren einander ähnlich.</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>5. Alle Probanden waren geblindet.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6. Alle Therapeuten/Innen, die eine Therapie durchgeführt haben, waren geblindet.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7. Alle Untersucher, die zumindest ein zentrales Outcome gemessen haben, waren geblindet.</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>8. Von mehr als 85% der ursprünglichen den Gruppen zugeordneten Probanden wurde zumindest ein zentrales Outcome gemessen.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9. Alle Probanden, für die Ergebnismessungen zur Verfügung standen, haben die Behandlung oder Kontrollanwendung bekommen wie zugeordnet oder wurden, wenn dies nicht der Fall war, Daten für zumindest ein zentraler Outcome durch eine „intention to treat“ Methode analysiert</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>10. Für mindestens ein zentrales Outcome wurden die Ergebnisse statistischer Gruppenvergleiche berichtet</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11. Die Studie berichtete sowohl Punkt- als auch Streuungsmasse für zumindest ein zentrales Outcome.</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Totale Punktzahl</td>
<td>7/10</td>
<td>4/10</td>
<td>4/10</td>
</tr>
</tbody>
</table>
PEDro Skala

1. Die Ein- und Ausschlusskriterien wurden spezifiziert
 nein □ ja □ wo:

2. Die Probanden wurden den Gruppen randomisiert zugeordnet (im Falle von Crossover Studien wurde die Abfolge der Behandlungen den Probanden randomisiert zugeordnet)
 nein □ ja □ wo:

3. Die Zuordnung zu den Gruppen erfolgte verborgen
 nein □ ja □ wo:

4. Zu Beginn der Studie waren die Gruppen bzgl. der wichtigsten prognostischen Indikatoren einander ähnlich
 nein □ ja □ wo:

5. Alle Probanden waren geblindet
 nein □ ja □ wo:

6. Alle Therapeuten/Innen, die eine Therapie durchgeführt haben, waren geblindet
 nein □ ja □ wo:

7. Alle Untersucher, die zumindest ein zentrales Outcome gemessen haben, waren geblindet
 nein □ ja □ wo:

8. Von mehr als 85% der ursprünglich den Gruppen zugeordneten Probanden wurde zumindest ein zentrales Outcome gemessen
 nein □ ja □ wo:

9. Alle Probanden, für die Ergebnismessungen zur Verfügung standen, haben die Behandlung oder Kontrollanwendung bekommen wie zugeordnet oder es wurden, wenn dies nicht der Fall war, Daten für zumindest ein zentrales Outcome durch eine „intention to treat“ Methode analysiert
 nein □ ja □ wo:

10. Für mindestens ein zentrales Outcome wurden die Ergebnisse statistischer Gruppenvergleiche berichtet
 nein □ ja □ wo:

11. Die Studie berichtet sowohl Punkt- als auch Streuungsmaße für zumindest ein zentrales Outcome
 nein □ ja □ wo:

Der Zweck der PEDro-Skala ist es, Benutzern der PEDro-Datenbank dabei zu helfen, schnell festzustellen, welche der tatsächlich oder vermeintlich randomisierten kontrollierten Studien (d.h. RCTs oder CCTs), die in der PEDro-Datenbank archiviert sind, wahrscheinlich intern valide sind (Kriterien 2-9) und ausreichend statistische Information beinhalten, um ihre Ergebnisse interpretierbar zu machen (Kriterien 10-11). Ein weiteres Item (Kriterium 1), welches sich auf die externe Validität (Verallgemeinerungsfähigkeit von Ergebnissen) bezieht, wurde übernommen, um die Vollständigkeit der Delphi Liste zu gewährleisten. Dieses Kriterium wird jedoch nicht verwendet, um die PEDro-Punktzahl zu berechnen, die auf der PEDro Internetseite dargestellt wird.

Die PEDro-Skala sollte nicht als Maß für die „Validität“ der Schlussfolgerungen einer Studie verwendet werden. Insbesondere warnen wir Benutzer der PEDro-Skala, dass Studien, die einen signifikanten Behandlungseffekt anzeigen, und die hohe Punktzahlen auf der PEDro-Skala erreichen, nicht notwendigerweise den Nachweis dafür erbringen, dass die entsprechenden Behandlungen klinisch sinnvoll sind. Weiterführende Überlegungen beinhalten, ob der Behandlungseffekt so groß genug gewesen ist, um lohnenswert zu sein, ob die positiven Effekte der Behandlung die negativen aufwiegen, und wie das Kosten-Nutzen-Verhältnis der Behandlung ist. Die PEDro-Skala sollte nicht dazu verwendet werden, die „Qualität“ von Studien aus unterschiedlichen therapeutischen Bereichen zu vergleichen, und zwar hauptsächlich deswegen nicht, weil es in manchen Bereichen der physiotherapeutischen Praxis nicht möglich ist, allen Kriterien der Skala gerecht zu werden.

Die deutsche Übersetzung der PEDro-Skala wurde erstellt von Stefan Hegenscheidt, Angela Harth und Erwin Scherfer.

Die deutsche Übersetzung wurde im April 2008 fertiggestellt und wurde im Februar 2010 geändert.
Hinweise zur Handhabung der PEDro scale:

Für alle Kriterien **Punkte werden nur vergeben, wenn ein Kriterium eindeutig erfüllt ist.** Falls beim genauen Lesen einer Arbeit die Möglichkeit besteht, dass ein Kriterium nicht erfüllt wurde, sollte kein Punkt für dieses Kriterium vergeben werden.

Kriterium 1
Dieses Kriterium gilt als erfüllt, wenn berichtet wird, wie die Probanden rekrutiert wurden, und wenn eine Liste mit Kriterien dargestellt wird, die genutzt wurde, um zu entscheiden, wer geeignet war an der Studie teilzunehmen.

Kriterium 2

Kriterium 3
Verborgene Zuordnung bedeutet, dass die Person, die entschieden hat ob der jeweilige Proband für eine Teilnahme geeignet war oder nicht, zum Zeitpunkt dieser Entscheidung nicht wissen konnte, welcher Gruppe der jeweilige Proband zugeordnet werden würde. Für dieses Kriterium wird auch dann ein Punkt vergeben, wenn über eine verdeckte Zuordnung berichtet wird, aber in dem Bericht zum Ausdruck kommt, dass die Zuordnung mit Hilfe blickdichter Briefumschläge erfolgte, oder dass die Allokation über Kontaktaufnahme mit einem unabhängigen Verwalter des Allokationsplans, der sich nicht am Ort der Studiendurchführung befand oder nicht anderweitig an der Studie beteiligt war, erfolgte.

Kriterium 4
In Studien, die therapeutische Interventionen untersuchen, muss jeweils vor Beginn der Intervention mindestens eine Messung hinsichtlich des Schweregrades des zu behandelnden Zustandes, und mindestens ein anderes zentrales Outcome beschrieben werden (Eingangsmessungen). Der Gutachter muss ausreichend davon überzeugt sein, dass sich klinisch signifikante Unterschiede in den Gruppen-Outcomes nicht allein schon aufgrund von Unterschieden in den prognostischen Variablen zu Beginn der Studie (also zum Baseline-Zeitpunkt) erwartet ließen. Dieses Kriterium gilt auch dann als erfüllt, wenn nur Baseline-Daten für diejenigen Probanden beschrieben werden, welche bis zum Ende an der Studie teilgenommen haben.

Kriterien 4.7-11
Zentrale Outcomes sind jene Outcomes, welche das primäre Maß für eine Effektivität (oder eine fehlende Effektivität) der Therapie darstellen. In den meisten Studien wird mehr als eine Variable zur Outcome-Messung verwendet.

Kriterien 5-7
Bindung bedeutet, dass die betreffende Person (Proband/In, Therapeut/In oder Untersucher/in) nicht gewusst hat, welcher Gruppe der Proband zugeordnet worden ist. Außerdem wird eine Bindung von Probanden und Therapeuten nur dann als gegeben angenommen, wenn davon ausgegangen werden kann, dass sie nicht in der Lage gewesen wären, zwischen den Behandlungen, die in den verschiedenen Gruppen ausgeführt wurden, zu unterscheiden. In Studien, in denen zentrale Outcomes von den Probanden selbst angegeben werden (z.B. Visuelle Analog Skala oder Schmerzsubjektive), gilt der Untersucher als gebunden, wenn der Proband gebunden war.

Kriterium 8
Dieses Kriterium gilt nur dann als erfüllt, wenn die Studie sowohl über die Anzahl der ursprünglich den Gruppen zugeordneten Probanden, als auch über die Anzahl der Probanden, von denen tatsächlich zentrale Outcomes festgehalten werden konnten, Auskunft gibt. Bei Studien mit Outcome-Messungen zu mehreren Messzeitpunkten, muss mindestens ein zentrales Outcome bei mehr als 85% der Probanden zu einem dieser Zeiträume gemessen worden sein.

Kriterium 9
Eine **Intention to treat Analyse** bedeutet, dass in den Fällen, in denen Probanden die zugedachte Behandlung (oder Kontrollanwendung) nicht erhalten haben und in denen Ergebnismessungen möglich waren, die Messwerte so analysiert wurden, als ob die Probanden die zugedachte Behandlung (oder Kontrollanwendung) erhalten hätten. Wird eine Analyse nach der „Intention to treat“ Methode nicht erwähnt, gilt dieses Kriterium dennoch als erfüllt, falls explizit zum Ausdruck kommt, dass alle Probanden die Behandlungen oder Kontrollanwendungen wie zugedacht erhalten haben.

Kriterium 10

Kriterium 11
Ein **Punktmaß** ist ein Maß der Größe des Behandlungseffekts. Der Behandlungseffekt kann als Different in den Outcomes zwischen zwei Gruppen beschrieben werden, oder auch als Outcomen in jeder der Gruppen. **Streuungsmäße** können sein: Standardabweichung, Standardfehler, Konfidenzintervalle, Intervartialabstände (oder andere Quantilabsätze), und Ranges. Punktmaße und/oder Maße der Streuung können graphisch dargestellt sein (z.B. können Standardabweichungen als Balkendiagramm dargestellt werden, so lange diese Darstellungen eindeutig sind (z.B. so lange klar ist ob die Fehlerbalken Standardabweichungen oder Standardfehler darstellen). Für kategorische Outcomes (nominal- oder ordinalskaliert) gilt dieses Kriterium als erfüllt, wenn die Anzahl der Probanden für jede Kategorie in jeder Gruppe angegeben ist.

GMFM Bewertungsbogen

GROSS MOTOR FUNCTION MEASURE
GMFM

BEWERTUNGSBOGEN

Name des Kindes:

Geburtsdatum:
Untersuchungsdatum:

Diagnose:
Grad der motorischen Beeinträchtigung (GMFCS):

Name des Untersuchers:

Testbedingungen (z.B. Raum, Bekleidung, Uhrzeit, weitere anwesende Personen):

Die GMFM ist ein standardisiertes Beobachtungsinstrument, welches erstellt und validiert wurde, um Veränderungen der grobmotorischen Funktion über die Zeit bei Kindern mit Zerebralparese zu messen.

* Bewertungsschlüssel
0 = initiiert nicht
1 = initiiert
2 = vollendet teilweise
3 = vollendet

* Solange es nicht ausdrücklich anders beschrieben wird, ist „initiiert“ definiert als die Bewältigung der Aufgabe von weniger als 10%. „Vollendet teilweise“ ist definiert als Vollendung der Aufgabe zu 10% bis unter 100%.

Der Bewertungsschlüssel ist als allgemeine Richtlinie gedacht. Dennoch haben die meisten Aufgaben spezifische Beschreibungen für jede Punktzahl. Es ist unbedingt erforderlich, dass die Richtlinien für die Bewertung jeder einzelnen Aufgabe benutzt werden.

Kontaktdressen:
Dianne Russell, Gross Motor Measure Group, Chedoke-McMaster Hospitals, Chedoke Hospital, Building 74, Room 29, Box 2000, Station "A", Hamilton, Ontario, L8N 3Z5, Canada
Ulla Michaelis/Sabine Stein, Arbeitsgruppe Bewegungsstörungen, Abteilung Neuropädiatrie, Universitäts-Kinderklinik, Mathildenstr. 1, D-79106 Freiburg

Markieren (✓) Sie die entsprechende Punktzahl:

<table>
<thead>
<tr>
<th>Aufgabe</th>
<th>A: LIEGEN UND DREHEN</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RL, KOPF IN MITTELLINIE: dreht Kopf bei symmetrisch gehaltenen Extremitäten</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>2. RL: bringt Hände zur Mittellinie, Finger der einen Hand berühren die andere</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>5. RL: Beugt linke Hüfte und Knie vollständig</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>8. RL: dreht sich in BL über die rechte Seite</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>12. BL, UNTERRÄMSTÜTZ: Gewicht auf dem rechten Unterarm, linker Arm voll nach vorn gestreckt</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>15. BL: dreht über die linke Seite in RL</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>16. BL: Pivoting (Kreisruchem) 90° nach rechts mit Einsatz der Extremitäten</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>17. BL: Pivoting (Kreisruchem) 90° nach links mit Einsatz der Extremitäten</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

GESAMT DIMENSION A:

<table>
<thead>
<tr>
<th>Aufgabe</th>
<th>B: SITZEN</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. SITZ AUF MATTE, THORAX VON UNTERSUCHER UNTERSTÜTZT: hebt Kopf in die Vertikale, hält Stellung 10 Sekunden.</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>23. SITZ AUF MATTE, MIT ABSTÜTZEN DER(S) ARM(E): hält Stellung 5 Sekunden.</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>25. SITZ AUF MATTE, KLEINES SPIELZEUG VOR SICH: lehnt sich nach vorne, berührt Spielzeug, richtet sich ohne Armstütze wieder auf.</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>27. SITZ AUF MATTE: berührt 45° links hinter dem Kind plaziertes Spielzeug, kehrt zur Ausgangstellung zurück.</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>30. SITZ AUF MATTE: erreicht kontrolliert die Bauchlage</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>31. LANGSITZ AUF MATTE: erreicht VFST über die rechte Seite</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>32. LANGSITZ AUF MATTE: erreicht VFST über die linke Seite</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>33. SITZ AUF MATTE: Pivoting (Kreisruchem) 90°, ohne Hilfe der Arme</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>34. SITZ AUF BANK: Arme und Füße frei, hält Stellung 10 Sekunden</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>35. STD: erreicht Sitz auf niedriger Bank</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>36. BODEN: erreicht Sitz auf niedriger Bank</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>37. BODEN: erreicht Sitz auf hoher Bank</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

GESAMT DIMENSION B:

Hippotherapie bei Kindern mit Zerebralparese

<table>
<thead>
<tr>
<th>Aufgabe</th>
<th>C: KRABBELN UND KNIEN</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>38. BL: robbt 1,80 m vorwärts</td>
<td>1 2 3 4 38.</td>
<td></td>
</tr>
<tr>
<td>40. VFST: erreicht freien Sitz</td>
<td>1 2 3 4 40.</td>
<td></td>
</tr>
<tr>
<td>41. BL: erreicht Verfüßerstand mit Gewicht auf Händen und Knien</td>
<td>1 2 3 4 41.</td>
<td></td>
</tr>
<tr>
<td>42. VFST: streckt rechter Arm nach vorne, Hand über Schulterhöhe</td>
<td>1 2 3 4 42.</td>
<td></td>
</tr>
<tr>
<td>43. VFST: streckt linker Arm nach vorne, Hand über Schulterhöhe</td>
<td>1 2 3 4 43.</td>
<td></td>
</tr>
<tr>
<td>44. VFST: krabbelt oder hopptet 1,80 m vorwärts</td>
<td>1 2 3 4 44.</td>
<td></td>
</tr>
<tr>
<td>45. VFST: krabbelt reziprok 1,80 m vorwärts</td>
<td>1 2 3 4 45.</td>
<td></td>
</tr>
<tr>
<td>46. VFST: krabbelt 4 Stufen auf Händen und Knien/Füßen nach oben</td>
<td>1 2 3 4 46.</td>
<td></td>
</tr>
<tr>
<td>47. VFST: krabbelt 4 Stufen rückwärts auf Händen und Knien/Füßen nach unten</td>
<td>1 2 3 4 47.</td>
<td></td>
</tr>
<tr>
<td>48. SITZ AUF MATTE: erreicht den KST mit Hilfe der Arme, kann sich freihändig 10 Sekunden halten</td>
<td>1 2 3 4 48.</td>
<td></td>
</tr>
<tr>
<td>49. KST: erreicht Einbeinkniestand auf dem rechten Knie mit Hilfe der Arme, hält Stellung freihändig 10 Sekunden</td>
<td>1 2 3 4 49.</td>
<td></td>
</tr>
<tr>
<td>50. KST: erreicht Einbeinkniestand auf dem linken Knie mit Hilfe der Arme, hält Stellung freihändig 10 Sekunden</td>
<td>1 2 3 4 50.</td>
<td></td>
</tr>
<tr>
<td>51. KST: geht auf Knien freihändig 10 Schritte vorwärts</td>
<td>1 2 3 4 51.</td>
<td></td>
</tr>
</tbody>
</table>

GESAMT DIMENSION C: | |

<table>
<thead>
<tr>
<th>Aufgabe</th>
<th>D: STEHEN</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>52. AUF DEM BODEN: zieht sich an hoher Bank in den STD</td>
<td>1 2 3 4 52.</td>
<td></td>
</tr>
<tr>
<td>53. STD: 3 Sekunden, freihändig</td>
<td>1 2 3 4 53.</td>
<td></td>
</tr>
<tr>
<td>54. STD: hält sich mit einer Hand an hoher Bank, rechter Fuß 3 Sekunden abgehoben</td>
<td>1 2 3 4 54.</td>
<td></td>
</tr>
<tr>
<td>55. STD: hält sich mit einer Hand an hoher Bank, linker Fuß 3 Sekunden abgehoben</td>
<td>1 2 3 4 55.</td>
<td></td>
</tr>
<tr>
<td>56. STD: hält sich freihändig 20 Sekunden</td>
<td>1 2 3 4 56.</td>
<td></td>
</tr>
<tr>
<td>57. STD: linker Fuß abgehoben, hält Stellung freihändig 10 Sekunden</td>
<td>1 2 3 4 57.</td>
<td></td>
</tr>
<tr>
<td>58. STD: rechter Fuß abgehoben, hält Stellung freihändig 10 Sekunden</td>
<td>1 2 3 4 58.</td>
<td></td>
</tr>
<tr>
<td>59. SITZ AUF NIEDRIGER BANK: erreicht den STD, ohne Hilfe der Arme</td>
<td>1 2 3 4 59.</td>
<td></td>
</tr>
<tr>
<td>60. KST: erreicht STD über Einbeinkniestand auf dem rechten Knie, ohne Hilfe der Arme</td>
<td>1 2 3 4 60.</td>
<td></td>
</tr>
<tr>
<td>61. KST: erreicht STD über Einbeinkniestand auf dem linken Knie, ohne Hilfe der Arme</td>
<td>1 2 3 4 61.</td>
<td></td>
</tr>
<tr>
<td>62. STD: setzt sich freihändig kontrolliert auf den Boden</td>
<td>1 2 3 4 62.</td>
<td></td>
</tr>
<tr>
<td>63. STD: erreicht freihändig die Hocke</td>
<td>1 2 3 4 63.</td>
<td></td>
</tr>
<tr>
<td>64. STD: hebt, ohne sich abzustützen, Gegenstand vom Boden auf, kehrt in Ausgangsstellung zurück</td>
<td>1 2 3 4 64.</td>
<td></td>
</tr>
</tbody>
</table>

GESAMT DIMENSION D: | |
Hippotherapie bei Kindern mit Zerebralparese

<table>
<thead>
<tr>
<th>Aufgabe</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>65. STD. 2 HÄNDE AN HOHER BANK: geht seiltwärts 5 Schritte nach rechts</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 65.</td>
</tr>
<tr>
<td>66. STD. 2 HÄNDE AN HOHER BANK: geht seiltwärts 5 Schritte nach links</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 66.</td>
</tr>
<tr>
<td>67. STD. AN 2 HÄNDEN GEHALTEN: geht 10 Schritte vorwärts</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 67.</td>
</tr>
<tr>
<td>68. STD. AN 1 HÄND GEHALTEN: geht 10 Schritte vorwärts</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 68.</td>
</tr>
<tr>
<td>69. STD: geht 10 Schritte vorwärts</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 69.</td>
</tr>
<tr>
<td>70. STD: geht 10 Schritte vorwärts, stoppt, dreht 180°, kehrt zurück</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 70.</td>
</tr>
<tr>
<td>71. STD: geht 10 Schritte rückwärts</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 71.</td>
</tr>
<tr>
<td>72. STD: geht 10 Schritte vorwärts, trägt großes Objekt mit zwei Händen</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 72.</td>
</tr>
<tr>
<td>73. STD: geht ohne Unterbrechung 10 Schritte vorwärts zwischen 2 parallelen Linien von 20 cm Abstand</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 73.</td>
</tr>
<tr>
<td>74. STD: geht ohne Unterbrechung auf gerader 2 cm breiter Linie 10 Schritte vorwärts</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 74.</td>
</tr>
<tr>
<td>75. STD: steigt über Stock auf Kniehöhe, mit dem rechten Fuß beginnend</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 75.</td>
</tr>
<tr>
<td>76. STD: steigt über Stock auf Kniehöhe, mit dem linken Fuß beginnend</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 76.</td>
</tr>
<tr>
<td>77. STD: rennt 5 m, stoppt und kehrt zurück</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 77.</td>
</tr>
<tr>
<td>78. STD: kickt Ball mit dem rechten Fuß</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 78.</td>
</tr>
<tr>
<td>79. STD: kickt Ball mit dem linken Fuß</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 79.</td>
</tr>
<tr>
<td>80. STD: springt mit beiden Füßen gleichzeitig 30 cm hoch</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 80.</td>
</tr>
<tr>
<td>81. STD: springt mit beiden Füßen gleichzeitig 30 cm vorwärts</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 81.</td>
</tr>
<tr>
<td>82. STD: hüpf auf dem rechten Fuß 10 mal innerhalb eines Kreises von 80 cm Durchmesser</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 82.</td>
</tr>
<tr>
<td>83. STD: hüpf auf dem linken Fuß 10 mal innerhalb eines Kreises von 80 cm Durchmesser</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 83.</td>
</tr>
<tr>
<td>84. STD. HALT AN EINEM GELÄNDER: geht 4 Stufen nach oben, hält sich an einem Geländer, Füße alternierend</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 84.</td>
</tr>
<tr>
<td>85. STD. HALT AN EINEM GELÄNDER: geht 4 Stufen nach unten, hält sich an einem Geländer, Füße alternierend</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 85.</td>
</tr>
<tr>
<td>86. STD: geht 4 Stufen nach oben, Füße alternierend</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 86.</td>
</tr>
<tr>
<td>87. STD: geht 4 Stufen nach unten, Füße alternierend</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 87.</td>
</tr>
<tr>
<td>88. STD AUF 15 CM HOHER STUFE: springt auf den Boden, beide Füße gleichzeitig abgehoben</td>
<td>☐ 1 ☐ 2 ☐ 3 ☐ 88.</td>
</tr>
</tbody>
</table>

GESAMT DIMENSION E: []

Hat diese Bewertung die „üblichen“ Fähigkeiten des Kindes wiedergegeben?

Ja ☐ Nein ☐

Kommentar:

[Blank space for comments]

GMFM

ZUSAMMENFASSUNG DER BEWERTUNG

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>BERECHNUNG DER DIMENSIONEN IN %</th>
<th>ZIELBEREICH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Liegen und Drehen</td>
<td>Gesamt Dimension A = 51/51 x 100 = %</td>
<td>A. □</td>
</tr>
<tr>
<td>B. Sitzen</td>
<td>Gesamt Dimension B = 60/60 x 100 = %</td>
<td>B. □</td>
</tr>
<tr>
<td>C. Krabbeln und Knien</td>
<td>Gesamt Dimension C = 42/42 x 100 = %</td>
<td>C. □</td>
</tr>
<tr>
<td>D. Stehen</td>
<td>Gesamt Dimension D = 39/39 x 100 = %</td>
<td>D. □</td>
</tr>
<tr>
<td>E. Gehen, Rennen und Springen</td>
<td>Gesamt Dimension E = 72/72 x 100 = %</td>
<td>E. □</td>
</tr>
</tbody>
</table>

Gesamtwertung

\[
\text{Gesamtwertung} = \frac{\% A + \% B + \% C + \% D + \% E}{\text{Gesamtzahl der Dimensionen}}
\]

\[
= \frac{\% A + \% B + \% C + \% D + \% E}{5} = \% \text{ im Zielbereich}
\]

Gesamtwertung im Zielbereich

\[
\text{Summe der } \% \text{ derjenigen Dimensionen, die als Zielbereich festgelegt wurden}
\]

\[
\frac{\text{Anzahl der Zielbereiche}}{\text{Anzahl der Zielbereiche}} = \%
\]
BEWERTUNG MIT HILFSMITTELN/ORTHESEN

Markieren Sie unten (✓), welche Hilfsmittel/Orthesen benutzt wurden und in welcher Dimension diese jeweils erstmals angelegt wurden. (Es sind durchaus mehrere Hilfsmittel/Orthesen möglich).

<table>
<thead>
<tr>
<th>Hilfsmittel</th>
<th>Dimension</th>
<th>Orthese</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior Walker</td>
<td></td>
<td>Hüftorthese</td>
<td></td>
</tr>
<tr>
<td>Posterior Walker</td>
<td></td>
<td>Knieorthese</td>
<td></td>
</tr>
<tr>
<td>Achselstützen</td>
<td></td>
<td>Sprunggelenkorthese</td>
<td></td>
</tr>
<tr>
<td>Unterarmgehstützen</td>
<td></td>
<td>Schuheinlagen</td>
<td></td>
</tr>
<tr>
<td>Vierpunktsstützen</td>
<td></td>
<td>Schuhe</td>
<td></td>
</tr>
<tr>
<td>Gehstock</td>
<td></td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>Keine</td>
<td></td>
<td>Andere</td>
<td></td>
</tr>
<tr>
<td>Andere (*) ausführen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ZUSAMMENFASSUNG DER BEWERTUNG MIT HILFSMITTELN/ORTHESEN

DIMENSION	**BERECHNUNG DER DIMENSIONEN IN %**	**ZIELBEREICH**
A. Liegen und Drehen | Gesamt Dimension A \[\frac{51}{51} \times 100\] = ____ % | A. []
B. Sitzen | Gesamt Dimension B \[\frac{60}{60} \times 100\] = ____ % | B. []
C. Krabbeln und Knien | Gesamt Dimension C \[\frac{42}{42} \times 100\] = ____ % | C. []
D. Stehen | Gesamt Dimension D \[\frac{39}{39} \times 100\] = ____ % | D. []
E. Gehen, Rennen und Springen | Gesamt Dimension E \[\frac{72}{72} \times 100\] = ____ % | E. []

Gesamtwertung = \[\frac{\% A + \% B + \% C + \% D + \% E}{\text{Gesamtzahl der Dimensionen}}\] = ____ %

Gesamtwertung im Zielbereich = Summe der % derjenigen Dimensionen, die als Zielbereich festgelegt wurden Anzahl der Zielbereiche = ____ %