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Abstract—When dealing with high-dimensional mea-

surements that often show non-linear characteristics at mul-

tiple scales, a need for unbiased and robust classifica-

tion and interpretation techniques has emerged. Here, we

present a method for mapping high-dimensional data onto

low-dimensional spaces, allowing for a fast visual interpre-

tation of the data. Classical approaches of dimensional-

ity reduction attempt to preserve the geometry of the data.

They often fail to correctly grasp cluster structures, for in-

stance in high-dimensional situations, where distances be-

tween data points tend to become more similar. In order

to cope with this clustering problem, we propose to com-

bine classical multi-dimensional scaling with data clus-

tering based on self-organization processes in neural net-

works, where the goal is to amplify rather than preserve

local cluster structures. We find that applying dimension-

ality reduction techniques to the output of neural network

based clustering not only allows for a convenient visual in-

spection, but also leads to further insights into the intra-

and inter-cluster connectivity. We report on an implemen-

tation of the method with Rulkov-Hebbian-learning clus-

tering and illustrate its suitability in comparison to tradi-

tional methods by means of an artificial dataset and a real

world example.

1. Introduction

Visual inspection of scatterplots is a fast and common

way to interpret data. Yet, high-dimensional data can be

difficult to interpret. Hence, dimensionality reduction is

often performed, aiming to achieve a compact representa-

tion of the data in two or three dimensions. A plethora of

different techniques for dimensionality reduction has been

proposed (see e.g. [1] for an overview). The most common

methods are linear techniques such as principal component

analysis PCA and multidimensional scaling (MDS). These

methods often have difficulties with the representation of

real world data, as in many cases high-dimensional data

is generated by non-linear processes, resulting in highly

non-trivial structures in the space of measurements [2].

Hence, during the last two decades, effort has been put

in the development of nonlinear dimensionality reduction

techniques in order to map nonlinear manifolds, e.g, kernel

PCA, Isomap, Locally Linear Embedding, Diffusion Maps

or t-SNE [3], to name but a few.

Typically, these approaches attempt to preserve the ge-

ometry of the data, at least at a local scale. That is, the dis-

tances between data points in a local neighborhood shall

be preserved in the low-dimensional representation. Less

attention has been paid to mapping cluster-like structures

of a possibly complex (e.g. nonconvex) shape that can be

intrinsically high-dimensional. Here, classical approaches

often struggle because of unclear cluster boundaries that

might even be obscured by data noise or due to the curse

of dimensionality, notably the fact that distances between

data points tend to become more equal with growing di-

mensionality. Real examples of such data situations are

for instance encountered when dealing with flow cytome-

try data. In order to highlight the prevalent intrinsic cluster

structures in the low-dimensional representation, we sug-

gest to no longer stick to the goal of preserving the local

geometry. Our idea is to combine self-organizing cluster-

ing processes with multi-dimensional scaling in order to

enhance local cluster structures. To this end, we employ

the Rulkov-Hebbian-learning clustering algorithm (RHLC)

that has recently been introduced in [2] and can be con-

sidered an efficient cortex-inspired clustering method. The

method presented here however also works with similar al-

gorithms such as HLC with integrate-and-fire neurons [4].

In the following we briefly discuss the two ingredients of

our approach, MDS and RHLC, and then present their ap-

plication to two example data sets.

2. Multi-Dimensional Scaling and Extensions

We are given high-dimensional data vectors xi ∈ Rd

(i ∈ {1, ..., n}) that form the rows of a matrix X. The goal

of classical multidimensional scaling MDS is to find low-

dimensional (often 2-dimensional) reconstruction vectors

yi (or Y as a matrix) that minimize the following cost func-

tion [1]

Φ(y) =
∑

(i, j)

(di j − ||yi − y j||)2 (1)

- 389 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016



where di j = d ji is the Euclidian distance between the origi-

nal data points and ||yi − y j|| denotes the Euclidian distance

in the reconstruction space. The minimum of (1) can be cal-

culated based on the eigendecomposition of the Gram ma-

trix K = XXT which can be obtained by double-centering

the distance matrix D = (di j) [1]. The m = 2 coordinates

of yi are then given by Y = EmΛ
1/2
m , where Λm is the di-

agonal matrix with the m largest eigenvalues and Em is the

matrix of the corresponding eigenvectors of K. For Eu-

clidian distances, principal component analysis (PCA) is

identical to MDS due to the fact that the eigenvectors of

the Gram Matrix and the eigenvectors of the covariance

matrix are directly related. MDS can also be applied for

any other distance matrix, a fact that is exploited by the

Isomap approach with the goal to better account for de-

scribing the neighborhood of datapoints on curved mani-

folds. In Isomap, the distances are calculated by first con-

structing a graph, in which every point is connected to its k
nearest neighbors. The distance between two points is then

set to be the length of the shortest path in the graph [5].

In general metric MDS, the goal of (1) is relaxed by re-

placing di j with δi j = f (di j), where f () leads to a new sym-

metric nonnegative (i.e. positive semi-definite) dissimilar-

ity matrix. Isomap and similar methods can be interpreted

as a kernel PCA method with the advantage of having a

method that also works for datapoints that are not in the

training sample.

3. From Rulkov Clustering to RHLC-MDS/Isomap

Rulkov-Hebbian-learning clustering (RHLC) is based on

self-organization processes in a network of Rulkov neu-

rons, letting clusters arise from the interplay between neu-

ral activity and changes in the network connectivity. Heb-

bian learning-based clustering (HLC) has been introduced

in previous work as a remedy for the intrinsic shape biases

introduced by standard clustering algorithms [2],[6]. Re-

cently, RHLC has been developed, functioning on the same

Hebbian-learing principle but making use of the more effi-

cient map-based Rulkov neuron dynamics [7]. Generally,

in HLC, every data item is interpreted as a dynamical unit

with node dynamics, which are allowed to interact via a k-

nearest neighbors graph. The pair-wise interaction strength

between nodes is weighted so as to represent the local dis-

tances between the data items. In an iterative process,

using Hebbian learning, the network structure is updated

such that the weights between dynamically similar nodes

are strengthened, while a counter-acting mechanism aim-

ing to preserve the level of activity in the network causes

the weights between less similar nodes to decrease. The fi-

nal graph structure can thus be represented by the weights

w∞
i j ∈ [0, 1], where strongly connected nodes will have a

large coupling strength. The connectivity of nodes across

a cluster can in this way easily be represented without the

need for direct interaction, and thus without shape bias. For

clustering, all weights below a threshold are deleted and the

remaining (sub)graphs define the final clusters.

Here, for the purpose of data visualization, we are not us-

ing a hard cluster assignment. Rather, we are interested in

the final weight matrix produced by RHLC as it reflects an

amplified similarity between the data items. On the whole,

RHLC performs a mapping

di j → δi j = f (di j) = 1 − w∞
i j . (2)

The matrix defined by (δi j) can be interpreted as a ’clus-

tered distance matrix’ and can serve as input for MDS,

giving rise to our RHLC-MDS method. As an alternative

method, we use (δi j) as input for Isomap. This RHLC-

Isomap method is motivated by the observation that the ba-

sic connection matrix of RHLC reflects a k nearest neigh-

bor graph as it is also used for Isomap.

4. Experiments and Results

Datasets: We test our methods on the basis of two datasets.

1. The first dataset is an artificial dataset in 3D, where

two clusters cannot be discriminated by comparing

inter- and intra-cluster distances. This is due to the

fact that the inter-cluster distance in V3−direction

is smaller than the clusters’ extension in V1− and

V2−direction (see Fig.1 a)) and can be considered a

low-dimensional simulation of the curse of dimen-

sionality. The situation is reminiscent of many real-

life data sets, where the data may stretch multiple

scales in different dimensions. Additionally, the clus-

ters are embedded into a noisy background of data-

points. The clusters are colored in Fig.1 b).

2. The second dataset contains 2443 flow cytometry

measurements from 3 different phytoplankton species,

reduced to 8 descriptors. The scatterplots for a pair-

wise selection of variables are shown in Fig.1 c),

where the species clusters are color-coded.

Compared Methods and Evaluation: We compare 4

methods: standard MDS and Isomap and our clustered ver-

sions, RHLC-MDS and RHLC-Isomap. In order to assess

the convenience of reading out the (by virtue of construc-

tion) expected clusters or classes from the 2D scatterplot

we use the ratio of the mean inter-class distances and the

mean of the distances between the expected classes A as an

indicator, i.e.

r =
< dwithin >

< dbetween >
, (3)

where the distances are meant to be the Euclidian dis-

tances in the two-dimensional projections. For compact

and clearly separated clusters, a small r is expected.

RHLC as well as Isomap involve parameters to be tuned.

For the following, the tuning was made manually based on

a visual inspection of the results. Hence, they reflect opti-

mal solutions at a pragmatic level.
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Figure 1: Datasets for evaluation. a)/b) artifical dataset, c) phytoplankton dataset. The expected clusters are color-coded.

Figure 2: Visualization results for 1) artificial dataset with a) MDS, b) Isomap, c) RHLC-MDS, d) RHLC-Isomap, 2)

phytoplankton dataset with e) MDS, f) Isomap, g) RHLC-MDS, h) RHLC-Isomap

Results: The visualization results for both datasets and all

the compared methods are subsumed in Fig. 2. We ob-

serve by first focussing at the results for the artificial dataset

(Fig. 2 a)-d)) that normal MDS fails to display the clusters

separately. While normal Isomap seems to do a satisfying

mapping job regarding the internal structure of the data, the

RHLC versions of MDS and Isomap both better display the

cluster structure of the data. However, RHLC-MDS splits

the black cluster into two subunits and, generally, tends to

arrange the points in linear chains with an overall center of

mass in the center of the coordinate system. For RHLC-

MDS, the background points (noise) are concentrated in the

center (Fig. 2 c)). In contrast, RHLC-Isomap separates the

noise as an independent cluster (Fig. 2 d)).

Similar observations regarding the visual output character-

istics of the methods can be made for the phytoplankton

dataset (Fig. 2 e)-h)) with the initial difference that the

clusters are more clearly separable and a noisy background

is absent.

The evaluation using the indicator r confirms that RHLC-

Isomap is clearly superior to the other methods (smallest r)

regarding the capability of highlighting the overall cluster

structures (Table 1). For RHLC-MDS the r measure indi-

cates a performance that is in the range of normal Isomap,
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but better than normal MDS. To some extent, the results

can be explained by the chain-like shape of the clusters

that results from RHLC-MDS. Take the example of the

phytoplankton dataset: while the form makes it convenient

for humans to grasp the group structure of the data, the

inter-class distances become rather large and hence r is in-

creased. In the case of the artificial dataset, the aspect that

RHLC-MDS splits one cluster into two units also leads to

an increased r. At the same time, it hints at the existence of

an internal cluster structure. In fact, a closer inspection of

this cluster reveals two different areas, where the neighbor

density of points reaches a maximum. These slight inho-

mogeneities are amplified by RHLC and are made visible

as two branches in the RHLC-MDS plot. The observation

is illustrated in Fig. 3. The neighbor density was defined as

the number of neighbors within a ball of radius R = 0.8 di-

vided by the volume of the ball. Fig. 3 b) shows the neigh-

bor density as a function of the points of the split cluster in

the V1 − V2−projection.

artifical dataset phytoplankton dataset

MDS 4.00 1.91

Isomap 1.07 0.70

RHLC-MDS 1.32 0.49

RHLC-Isomap 0.246 0.05

Table 1: r values for artificial dataset and phytoplankton

dataset.

Figure 3: The two branches in the RHLC-MDS plot a) re-

flect regions of high neighbor density n in the correspond-

ing cluster.

5. Conclusion and Outlook

Neural network based clustering algorithms such as

RHLC allow for an unbiased detection of local cluster

structures on the basis of self-organization. In this pro-

cess, the neighborhood structure of the data is encoded as

a weighted network that evolves in such a way that inho-

mogeneities are amplified. Hence, the emergence of clear

cluster structures is possible even in cases, where the detec-

tion of clusters is very challenging, e.g. when facing high-

dimensional measurements with non-linear cluster charac-

teristics. Here, we demonstrated that dimensionality re-

duction techniques such as MDS and Isomap allow for a

low-dimensional representation of the evolved clustering

network, shedding light on both the intra- and the inter-

cluster structure. While RHLC-Isomap separates clusters

more clearly, RHCL-MDS elucidates the internal structure

of clusters. This also allows for a more robust determina-

tion of the most natural number of clusters by means of a

quick visual inspection.

The method employs clustering as a preprocessing step

for a dimensionality reduction (DR) step, which switches

the role of the steps in comparison to the standard data

analysis procedure. Thus, for future research, the results

suggest a clustering method that iteratively applies DR

and clustering techniques. Alternatively, DR and self-

organized clustering can be hybridized in one method, fol-

lowing the idea developed in [8].
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