Atemberaubend

Die Effekte von sportlicher Aktivität bei Kindern mit Asthma

Annick Suter
Allmendstrasse 25
1712 Tafers
S07-165-152

Anina Ziörjen
Mattenweg 8
3096 Oberbalm
S07-164-577

Departement: Gesundheit
Institut: Institut für Physiotherapie
Studienjahr: 2007
Eingereicht am: 21. Mai 2010
Betreuende Lehrperson: Herr R. Brakemeier
Inhalt

1. Abstract ... 3

2. Einleitung ... 5
 2.1 Bemerkung ... 5
 2.2 Begriffsverwendung ... 5
 2.3 Problematik .. 6
 2.4 Motivation .. 6
 2.5 Hypothese ... 7
 2.6 Zielsetzung .. 7
 2.7 Fragestellung .. 7
 2.8 Eingrenzung des Themas .. 8

3. Methodik ... 9
 3.1 Erste Schritte ... 9
 3.2 Literaturrecherche ... 9
 3.3 Aufbau der Arbeit ... 10

4. Theoretischer Hintergrund .. 11
 4.1 Asthma .. 11
 4.1.1 Definition .. 11
 4.1.2 Einteilung und Formen ... 11
 4.1.3 Prävalenz .. 13
 4.1.4 Pathogenese .. 14
 4.1.5 Ätiologie .. 15
 4.1.6 Prognose ... 17
 4.1.7 Therapie ... 17
 4.2 Trainingslehre ... 19
 4.2.1 Kondition ... 20
 4.2.2 Koordination ... 20
 4.2.3 Kindesalter .. 20

5. Analyse .. 23
 5.1 Aktueller Forschungsstand .. 23
 5.2 Studien .. 24
 5.2.1 Basaran et al. (2006) .. 25
 5.2.2 Fanelli et al. (2007) .. 27
 5.2.3 Moreira et al. (2008) .. 30
5.2.4 Wang et al. (2009) ... 33

6. Diskussion ... 37
 6.1 Interpretation der Studien ... 37
 6.1.1 Homogenität der Studien .. 37
 6.1.2 Qualität der Studien .. 38
 6.1.3 Outcome: Lebensqualität ... 39
 6.1.4 Outcome: Leistungsfähigkeit 40
 6.1.5 Outcome: Lungenfunktion ... 40
 6.1.6 Outcome: Compliance, Schweregrad, Krankheitskontrolle, Atemwegsentzündung _ 41
 6.2 Bestätigen / Verwerfen der Hypothese 42
 6.3 Relevanz Physiotherapie ... 42
 6.4 Tipps und Argumente ... 45
 6.5 Limitationen .. 46
 6.6 Forschungsempfehlung ... 46

7. Fazit .. 47

8. Danksagung ... 49

9. Verzeichnisse ... 51
 9.1 Literatur ... 51
 9.2 Abbildungen und Tabellen ... 52
 9.3 Auskunftspersonen ... 53

10. Eigenständigkeitserklärung .. 55

11. Anhang ... 57
1. Abstract

Schlussfolgerung: Da keine der Studien negative Effekte aufzeigt, ist sportliche Aktivität bei Kindern mit Asthma sinnvoll und notwendig. Die Umsetzung in den therapeutischen Alltag ist unabdingbar und kann die Aufgabe der Physiotherapie sein.
2. Einleitung

2.1 Bemerkung

Durch die vorgegebenen Kriterien des „Leitfaden Bachelorarbeit“ der ZHAW (Version 4.01, 30.06.09) ist keine Datenerhebung erlaubt, weshalb die folgende Arbeit als eine theoretische Literaturarbeit ausfallen wird.

2.2 Begriffsverwendung

Um das Lesen zu vereinfachen, werden die verwendeten Abkürzungen im Anhang C erklärt. Fachbegriffe, die zum besseren Verständnis eine genaue Definition benötigen, werden im Anhang D als Glossar aufgeführt.

In der gesamten Arbeit wird stellvertretend für beide Geschlechter nur die männliche Form verwendet.

2.3 Problematik

2.4 Motivation

Annick Suter, Anina Zörrjen
2.5 Hypothese

2.6 Zielsetzung

2.7 Fragestellung
Aus der Problematik und der Zielsetzung ergibt sich die folgende Fragestellung:

Welche Effekte hat sportliche Aktivität bei Kindern mit Asthma und welche Schlussfolgerungen leiten sich daraus für die physiotherapeutische Praxis ab?
2.8 Eingrenzung des Themas

3. Methodik

3.1 Erste Schritte

3.2 Literaturrecherche

Studien werden grün markiert und somit für die weitere Verarbeitung im Haupteil legitimiert. Die Matrix dient zudem zu einer übersichtlichen Darstellung der ausgewählten Studien.

3.3 Aufbau der Arbeit

4. Theoretischer Hintergrund

4.1 Asthma

4.1.1 Definition

4.1.2 Einteilung und Formen

Da Asthma eine sehr komplexe Erkrankung ist, erscheint es sinnvoll bei der Einteilung der Erkrankung verschiedene Gesichtspunkte zu berücksichtigen. Berdel et al. (2002) wählten folgende Darstellung:
Theoretischer Hintergrund

Tab. 1: „Zusammenfassung der Einteilungsmöglichkeiten des kindlichen Asthma bronchiale“ nach Berdel et al. (2002)

<table>
<thead>
<tr>
<th>Einteilung</th>
<th>Definition</th>
<th>Ziel</th>
</tr>
</thead>
</table>
| Auslöser | extrinsisch | - allergisch
- Infekt-getriggert
- belastungabhängig |
| | intrinsisch | keine bekannten äusseren Auslöser nachweisbar |
| zeitlicher Verlauf | frühkindlich transient | Beginn vor 3. LJ, sistiert vor 10. LJ |
| | früh persistierend | Beginn vor 3. LJ, persistent |
| | spät persistierend | Beginn nach 3. LJ, persistent |
| Schweregrad | intermittierend | - Husten/ leichte Atemnot <6x/Jahr
- keine Beeinträchtigung
- FEV₁/PEF > 80% der persönlichen Bestleistung im symptomfreien Intervall |
| | persistierend leicht | - Asthmasymptome tagsüber <1x/Woche
- Asthmasymptome nachts <2x/Monat
- keine Beeinträchtigung
- FEV₁/PEF >80% der persönlichen Bestleistung im symptomfreien Intervall |
| | persistierend mittelschwer | - Asthmasymptome tagsüber >1x/Woche
- Asthmasymptome nachts >2x/Monat
- Verlauf anfallsartig oder chronisch
- Beeinträchtigung
- FEV₁/PEF 60-80% der persönlichen Bestleistung im symptomfreien Intervall |
| | persistierend schwer | - Asthmasymptome an den meisten Tagen und Nächten
- deutliche Beeinträchtigung
- FEV₁/PEF <60% der persönlichen Bestleistung im symptomfreien Intervall |

4.1.3 Prävalenz

4.1.4 Pathogenese

4.1.5 Ätiologie

Im folgenden Abschnitt wird die Ätiologie, also die Ursachen von Asthma gemäss Berdel et al. (2002) beschrieben. Dabei ist die Unterscheidung von Ursache, Auslöser und Risikofaktoren wichtig, wobei die Ursachen die beiden anderen Begriffe umfasst.

a) Genetische Prädisposition

Mit der Anzahl von Verwandten ersten Grades, die ebenso an allergischen Erkrankungen im Allgemeinen oder an Asthma im Besonderen leiden, steigt das Risiko Asthma zu entwickeln (Berdel et al., 2002).

b) Schwangerschaft, Geburt und Stillen

Es wird angenommen, dass der Grundstein zur Erkrankung von Asthma bereits sehr früh gelegt wird. Dabei spielen bereits pränatale Faktoren eine grosse Rolle. Es wurde beobachtet, dass Kinder, deren Mütter während der Schwangerschaft häufig in Kontakt mit Tieren waren, später deutlich weniger Asthma entwickelten. Des Weiteren kann zum Beispiel die ständige Exposition mit Passivrauch bereits beim Fötus das Risiko zur Erkrankung an Asthma erhöhen und zu einem verminderten fetalen Lungenwachstum führen (Berdel et al., 2002).

Das Stillen gehört zu den wichtigsten postnatalen Faktoren, welche mit der Entwicklung von Asthma assoziiert werden können. Es hat einen vorübergehenden protektiven Effekt auf die Entstehung von vielen respiratorischen Erkrankungen. Stillende Mütter, welche jedoch früher selber an Asthma erkrankt sind, erhöhen wiederum das Risiko für das Kind (Berdel et al., 2002).
c) Frühkindliche Exposition

Kinder durchleben in ihrer Entwicklung eine Reihe von respiratorischen Infekten mit unterschiedlichsten Viren. Das Risiko, dabei an Asthma zu erkranken, steigt dadurch jedoch nicht zusätzlich an. Studien haben sogar bewiesen, dass die frühe Exposition auch einen protektiven Einfluss haben kann (Berdel et al., 2002).

Die Exposition mit Tabakrauch nach der Geburt kann zu einer reduzierten Lungenfunktion führen. Studien haben bewiesen, dass Passivrauchbelastung nicht nur ein bedeutender Auslöser von Asthmasymptomen, sondern auch zur Neuentstehung der Erkrankung führen kann (Berdel et al., 2002).

d) Ernährung

4.1.6 Prognose

4.1.7 Therapie

Aus der Sicht der Autorinnen spielen in der Behandlung von Patienten mit Asthma hauptsächlich die Pharmakotherapie und die Physiotherapie eine wesentliche Rolle. Sie werden nun genauer erläutert.
a) Pharmakotherapie

Medikamente zur Erweiterung der Bronchien:

Medikamente zur Entzündungshemmung der Bronchien:

b) Physiotherapie

Paul et al. (2003) sehen die Aufgaben der Physiotherapie in den nachstehenden Punkten:

- Das Kind soll mit Hilfe von Anschauungsmaterial lernen, wie die Atmung des mensch- lichen Körpers funktioniert.
- Die Pathophysiologie soll individuell und verständlich erklärt werden, um die Krankheit besser zu verstehen und lernen mit ihr umzugehen.

• Notsignale sollen gemeinsam mit dem Kind herausgearbeitet werden und es sollen geeignete Strategien zur Vermeidung einer Atemnot trainiert werden. Dazu gehören:
 - atem erleichternde Stellungen (z.B. Abgabe des Gewichts von Kopf und Armen)
 - Entspannungstechniken (z.B. Autogenes Training, Yoga, Traumreisen)
 - Lippenbremse
 - Umgang mit inhalativen Medikamenten

• Die Brustkorb beweglichkeit und Muskelkraft soll durch Übungen erhalten werden.

• Anti-Husten-Techniken werden dem Kind beigebracht, um übermässige Kollapsphänomene durch uneffektives Husten zu vermeiden.

4.2 Trainingslehre

Wie im Kapitel Begriffsverwendung (Kapitel 2.2) bereits erwähnt, wird der Begriff „sportliche Aktivität“ synonym zu „Sport“, „Training“ und „Bewegung“ verwendet. Darin sind sowohl konditionelle, wie auch koordinative Fähigkeiten enthalten.
4.2.1 Kondition

Laut Weineck (2010) beinhaltet die Kondition die Komponenten Ausdauer, Kraft, Beweglichkeit und Schnelligkeit. Die beiden Komponenten Ausdauer und Kraft erscheinen für diese Arbeit relevant und werden in der Literatur wie folgt definiert:

Weineck (2010, S. 229): „Unter Ausdauer wird allgemein die psycho-physische Ermüdungswiderstandsfähigkeit des Sportlers verstanden“.

Grosser et al. (2004, S. 40): „Kraft im Sport ist die Fähigkeit des Nerv-Muskelsystems, durch Innervations- und Stoffwechselprozesse mit Muskelkontraktion Widerstände zu überwinden (konzentrische Arbeit), ihnen entgegenzuwirken (exzentrische Arbeit) bzw. sie zu halten (statische Arbeit).“

4.2.2 Koordination

4.2.3 Kindesalter

Die Entwicklung und Leistungsfähigkeit im Kindesalter kann nach Grosser et al. (2004) wie folgt dargestellt werden:

Grosser et al. (2004) und Weineck (2010) formulieren weitere Grundsätze für die einzelnen Trainingskomponenten, welche im folgenden Abschnitt übersichtlich zusammengefasst werden:

<table>
<thead>
<tr>
<th>Alter</th>
<th>Phase muskulärer Anpassung</th>
<th>Muskulatur: Kraft und Beweglichkeit</th>
<th>Stoffwechsel: Ausdauer</th>
<th>Zentralnervensystem: Koordination und Schnelligkeit</th>
</tr>
</thead>
</table>

Ausdauer:
- Das Ziel ist eine gute Grundlageausdauer durch die Verbesserung einer aeroben Kapazität.
- Der Beginn mit einer aeroben Ausdauerschulung kann höchstens zu spät, aber nicht zu früh sein, wobei:
 - aerobe Ausdauer ab der Pubertät erhöht trainierbar ist.
 - anaerobe Ausdauer ab der Adoleszenz erhöht trainierbar ist.

Kraft:
- Das Ziel ist die Kräftigung von Stütz- und Haltemuskulatur, um Dysbalancen auszugleichen.
- Das Training soll über Spielformen parallel zur Koordination stattfinden.
- Es soll nur so viel Krafttraining wie unbedingt nötig durchgeführt werden (nicht maximal, sondern optimal).
- Eine ausreichende Pausenlänge ist unabdingbar, da durch den erhöhten Energieverbrauch bei Kindern die Wiederherstellungszeit notwendig ist.
- Um Fehlbelastungen zu vermeiden, muss eine kontrollierte und korrekte Ausführung der Übungen gewährleistet sein.

Koordination:
- Das Ziel ist eine Verkürzung der Lernzeiten von Bewegungsabläufen durch eine vielseitige Bewegungserfahrung.
- Es gibt keinen zu frühen Beginn für das Training der koordinativen Fähigkeiten, wobei Koordination bereits ab dem Vorschulalter erhöht trainierbar ist.
- Koordinative Fähigkeiten bilden die Grundlage für die weitere Entwicklung eines Kindes.
- Die Koordination soll bei Kindern primär trainiert und mit Ausdauer- und Kraftelementen erweitert werden.
- Komplexität, Variabilität und Kontinuität sind wesentliche Bestandteile des Koordinationstrainings.
5. Analyse

5.1 Aktueller Forschungsstand

Wie bereits im Abschnitt Problematik (Kapitel 2.3) erwähnt, sind die Autorinnen bei der Literaturrecherche auf ein passendes Review gestossen, das den Forschungsstand bis vor fünf Jahren treffend beschreibt. Welsh et al. (2005) fassen in diesem Review „Effects of Physical Conditioning on Children and Adolescents with Asthma“ die Ergebnisse bis zum Jahre 2005 übersichtlich zusammen: Vor über 40 Jahren haben belastungsabhängige Asthmaattacken und die damit verbundene Angst oft zur Vermeidung von sportlicher Aktivität geführt, was noch heute vor allem bei Kindern mit schwerem Asthma der Fall ist.

Laut Hyde und Swarts (1968; zit. nach Welsh et al., 2005, S. 128) kann ein Trainingsprogramm Asthma zwar nicht heilen, jedoch Obstruktionen vermindern. Dies wurde anhand des FEV1 (Forced Expiratory Volume in one second) gemessen. In einer Studie, die mehr als 30 Jahre später erschien, äußern Carroll und Sly (1999; zit. nach Welsh et al., 2005, S. 128): „If aerobic conditioning reduces the likelihood of provoking an asthma attack due to decreased ventilatory requirements for any given task, then increased participation in physical activity by children with asthma is desirable“.

Welsh et al. (2005) bemerken dazu, dass diese negativen Resultate schwer zu erklären sind, da ihrer Meinung nach die Assessments, Interventionen und Intensität angemessen gewählt wurden.

Die wichtigsten Ereignisse der aktuellen Forschung seit den beschriebenen Reviews, also ab dem Jahr 2005, werden die Autorinnen in dieser Arbeit weiterführend beschreiben.

5.2 Studien

In diesem Abschnitt werden die folgenden vier Studien einzeln bearbeitet, objektiv zusammengefasst und zitiert:

5.2.1 Basaran et al. (2006)
Ziel: Das Ziel dieser Studie besteht darin, die Auswirkungen von einem submaximalen Training auf die Lebensqualität, die sportliche Leistungsfähigkeit und die Lungenfunktion von Kindern mit Asthma zu erforschen.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Assessment</th>
<th>Häufigkeit der Messung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebensqualität</td>
<td>PAQLQ</td>
<td>jeweils 1x vor und 1x nach der Intervention</td>
</tr>
<tr>
<td>Leistungsfähigkeit</td>
<td>6MWT, PWC170-Test</td>
<td></td>
</tr>
<tr>
<td>Lungenfunktion</td>
<td>Spirometrie: FEV₁, FVC, FEV₁/FVC, MEF, PEF</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3: „Outcome & Assessment von Basaran et al. (2006)“ nach Suter und Zhörjen (2010)

Ergebnisse: Alle drei Domänen (Aktivitätseinschränkung, Symptome und emotionale Funktionen) des PAQLQ (Pediatric Asthma Quality of Life Questionnaire) steigerten sich nach der Intervention innerhalb beiden Gruppen signifikant. Der Vergleich zwischen den Gruppen zeigte dann allerdings nur noch einen signifikanten Unterschied zu Gunsten der Experimentgruppe. Dabei ist der Domäne „Aktivitätseinschränkung“ die grösste Verbesse-
Analyse

Annick Suter, Anina Zörjen 26

Positive Kritik:
• Ziel, Forschungslücke und Forschungsfrage sind klar formuliert
• Forschungsstand ist mit relevanter Hintergrundliteratur beschrieben
• Wahl RCT als strenges Design ist legitimiert, da nach Effekten gefragt wird
• Stichprobe ist detailliert beschrieben
• freiwillige Teilnahme der Probanden
• Teilnehmer sind über Zweck der Studie informiert
• Einverständniserklärung wurde von Kinder und Eltern unterschrieben
• Ethikkommission hat Studie anerkannt
• Outcomes und Assessments sind strukturiert und quantifizierbar
• Interventionen sind detailliert beschrieben
• Drop-Outs sind dokumentiert und begründet \(\rightarrow n=3 \)
• Signifikanz ist definiert (\(p<0.05 \))
• statistische Analysemethoden: Student’s t-test, paired t-test, Chi-squared test
• klinische Relevanz ist gegeben, da es erst wenige Studien über Landsportarten in der Gruppe gibt, welche Lebensqualität messen
• Limitationen sind dokumentiert:
 - für 6MWT und PWC170-Test gibt es keine Standardwerte für Kinder
 - PWC170-Test ist nur für Kinder über 1.35 m durchführbar, daher erschwerte Bewertung der Resultate (Ausschluss von 17 Kindern)

Negative Kritik:
• kein Follow-Up durchgeführt
• Stichprobengrösse wird nicht begründet
• Zwischen-Gruppen-Vergleich zu Beginn zeigt signifikante Unterschiede bei Einstufung der Symptome und 6MWT
• Reliabilität und Validität der Assessments sind nicht erwähnt
• keine Informationen (Verblindung, Anzahl, Beruf) über Assessor und Interventor
• Intensität und Dauer der Intervention sind nicht begründet
• Kontaminierungen und Ko-Interventionen sind nicht erwähnt, wobei gewohnte Medikamente, Heimprogramm und tägliche Routinen für beide Gruppen erlaubt waren

5.2.2 Fanelli et al. (2007)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Assessment</th>
<th>Häufigkeit der Messung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebensqualität</td>
<td>PAQLQ</td>
<td>jeweils 1x vor und 1x nach der Intervention</td>
</tr>
<tr>
<td>Schweregrad von Belastungsasthma</td>
<td>Spirometrie: FEV₁, FVC, FEV₁/FVC, MVV, Exercise challenge test</td>
<td></td>
</tr>
<tr>
<td>Leistungsfähigkeit</td>
<td>CPET</td>
<td>täglich</td>
</tr>
<tr>
<td>Krankheitskontrolle</td>
<td>Gebrauch von inhalativen Steroiden</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4: „Outcome & Assessment von Fanelli et al. (2007)“ nach Suter und Ziörjen (2010)

te reduzieren konnten. In der Kontrollgruppe war dies nur 23% möglich. Wegen akuter Exazerbation mussten allerdings drei Kinder der Experimentgruppe ihre Medikamenteneinnahme erhöhen.

Positive Kritik:
- Ziel, Forschungslücke und Forschungsfrage sind klar formuliert
- Forschungsstand ist mit relevanter Hintergrundliteratur beschrieben
- Wahl RCT als strenges Design ist legitimiert, da nach Effekten gefragt wird
- Stichprobe und Einschlusskriterien sind detailliert beschrieben
- freiwillige Teilnahme der Probanden
- Teilnehmer sind über Zweck der Studie informiert
- Einverständniserklärung wurde von Kinder und Eltern unterschrieben
- Ethikkommission hat Studie anerkannt
- Interventionen sind sehr detailliert beschrieben
- Drop-Outs sind dokumentiert → n=0
- untersuchender Arzt ist verblindet
- Signifikanz ist definiert (p<0.05)
- statistische Analysemethoden: nonpaired t-test, Sign test, Mann-Whitney test, Chi-square test, Fisher test, Spearman’s ranked correlation coefficient
- klinische Relevanz ist gegeben, da Effekte auf Lebensqualität und Krankheitskontrolle noch wenig erforscht sind
- Limitationen sind dokumentiert:
 - Resultate der Leistungsfähigkeit waren zu Beginn der Studie unterschiedlich → Experimentgruppe hatte mehr Raum zur Verbesserung
- Messungen von FEV₁ erfolgten jeweils 5 Minuten nach dem Training → eventuell wurde wegen Individualität EIB verpasst
- Intensität des Ausdauertrainings wurde nur an maximaler Herzschlagrate angepasst, dadurch keine Berücksichtigung von anderen Komponenten (z.B. Ventilation)
- keine genaue Dokumentation über täglichen Gebrauch von SABA → Reduktion von inhalativen Steroiden dadurch eventuell beeinflusst

Negative Kritik:
- kein Follow-Up durchgeführt
- Stichprobengrössen ist nicht begründet
- Zwischen-Gruppen-Vergleich zu Beginn zeigt signifikante Unterschiede bei FEV₁-Werten, wobei die Teilnehmer der Experimentgruppe grösser und schwerer sind
- unterschiedliche Gruppengrössen
- Reliabilität und Validität der Assessments sind nicht erwähnt
- keine Informationen (Verblindung, Anzahl, Beruf) über Assessor und Interventor
- Intensität und Dauer der Intervention sind nicht begründet
- Kontaminierungen und Ko-Interventionen sind nicht erwähnt, wobei medizinische Behandlung und Ausbildungsprogramm in beiden Gruppen durchgeführt wurden

5.2.3 Moreira et al. (2008)

Intervention: Die Experimentgruppe führte während zwölf Wochen ein submaximales Training im aeroben Bereich durch, welches zweimal wöchentlich 50 Minuten dauerte. Es be-

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Assessment</th>
<th>Häufigkeit der Messung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atemwegsentzündung</td>
<td>Messung: eNO, EOs, CRP, ECP, IgE</td>
<td>jeweils 1x vor und 1x nach der Intervention</td>
</tr>
<tr>
<td>Lungenfunktion</td>
<td>Spirometrie: FEV₁, FEF₂₅-₇₅, PEF</td>
<td></td>
</tr>
<tr>
<td>bronchiale Hyperreaktivität</td>
<td>PD₂₀</td>
<td></td>
</tr>
<tr>
<td>Lebensqualität</td>
<td>PAQLQ, PACQLQ</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5: „Outcome & Assessment von Moreira et al. (2008)“ nach Suter und Ziörjen (2010)

Ergebnisse: Nach der Intervention zeigten sich keine Unterschiede zwischen den Gruppen bezüglich der Veränderung der Werte von eNO (exhaled Nitric Oxide), CRP (C-Reactive Protein), EOs (Eosinophils in blood) und ECP (Eosinophil Cationic Protein). Verglichen mit der Kontrollgruppe war in der Experimentgruppe eine signifikante Verbesserung der IgE-Werte nachweisbar. Der Zwischen-Gruppen-Vergleich der jeweiligen Veränderungen von Lungenfunktion, bronchialer Hyperreaktivität und Lebensqualität ist als nicht-signifikant zu werten, wobei die Studie nicht vertieft darauf eingegangen. Während den zwölf Wochen wurde weder eine Exazerbation, noch eine Anpassung der Medikamente festgestellt.

Schlussfolgerungen: Da erhöhte Messwerte von eNO, CRP, EOs, ECP und IgE als Indikator für eine Atemwegsentzündung gelten und diese nach dem Trainingsprogramm stagnierten oder sich gar senkten, kann eine zusätzliche Atemwegsentzündung ausgeschlossen werden. Die Tatsache, dass weder Exazerbationen noch Anpassungen von Medikamenten verzeichnet wurden, unterstreicht weiter, dass sportliche Aktivität keinen negativen Einfluss auf Asthma hat. Somit gibt es keinen Grund, weshalb ein Kind mit kontrolliertem, allergischem Asthma auf Sport verzichten muss.

Positive Kritik:
- Ziel, Forschungslücke und Forschungsfrage sind klar formuliert
• Wahl RCT als strenges Design ist legitimiert, da nach Effekten gefragt wird
• Stichprobe und Einschlusskriterien sind detailliert beschrieben
• Anzahl der Probanden ist begründet \(\rightarrow\) 30 Teilnehmer sind genügend, um einen positiven Effekt von 25\% am Beispiel der eNO-Werte zu erreichen
• freiwillige Teilnahme der Probanden
• Teilnehmer sind über Zweck der Studie informiert
• Einverständniserklärung wurde von Kinder und Eltern unterschrieben
• Validität der Assessments ist erwähnt und bestätigt
• Interventionen sind detailliert beschrieben
• Jahreszeit und Ort der Durchführung sind erwähnt und genau beschrieben
• Drop-Outs sind dokumentiert und begründet \(\rightarrow\) n=2
• Kontaminierung und Ko-Intervention sind dokumentiert
• zusätzliche Messung von Compliance durch Accelerometer unterstreicht Effektivität des Trainings
• Signifikanz ist definiert (\(p<0.05\))
• statistische Analysemethoden: fisher's exact test, unpaired t-test, paired t-test, ANCOVA
• klinische Relevanz ist gegeben, da Effekte von sportlicher Aktivität auf Atemwegsentzündung bisher noch wenig erforscht wurden
• Limitationen sind dokumentiert:
 - ständiger Kontakt mit medizinischem Personal \(\rightarrow\) Beeinflussung der Resultate
 - freie Nutzung von LABA \(\rightarrow\) Beeinflussung der Resultate
 - Schluss von einer Komponente auf das gesamte Outcome (Entzündung)

Negative Kritik:
• kein Follow-Up durchgeführt
• gesichtete Hintergrundliteratur ist teils unpassend, da Bezug auf Erwachsene und Athleten genommen wird
• Anerkennung durch Ethikkommission ist nicht erwähnt
• Zwischen-Gruppen-Vergleich zu Beginn zeigt signifikanter Unterschied beim Gebrauch von LABA, wobei einige Teilnehmer auch SABA verwenden \(\rightarrow\) Ausgleich Gesamtausprägung \(\beta\)2-Agonisten
• keine Informationen (Verblindung, Anzahl, Beruf) über Assessor und Interventor
Intensität und Dauer der Intervention sind nicht begründet
Kontaminierung ist wahrscheinlich vorgekommen, da Ausschluss eines Teilnehmers der Kontrollgruppe wegen Nicht-Befolgen der Regeln
Ko-Intervention ist wahrscheinlich vorgekommen, da Ausschluss eines Teilnehmers der Experimentgruppe wegen zusätzlichem Training

5.2.4 Wang et al. (2009)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Assessment</th>
<th>Häufigkeit der Messung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lungenfunktion</td>
<td>Spirometrie: FEV<sub>1</sub>, FVC, FEV<sub>1</sub>%FVC, FEF<sub>50</sub>, FEF<sub>25-75</sub></td>
<td>jeweils 1x vor und 1x nach der Intervention</td>
</tr>
<tr>
<td>PEF-Wert</td>
<td>PEF-Meter</td>
<td>täglich</td>
</tr>
<tr>
<td>Schweregrad von Asthma</td>
<td>Klassifikation laut NHLBI: mild intermittend, mild persist, moderate persistent, severe persistent</td>
<td>täglich</td>
</tr>
</tbody>
</table>

Tab. 6: „Outcome & Assessment von Wang et al. (2009)“ nach Suter und Ziörjen (2010)
Ergebnisse: Bei den Untersuchungen vor der Intervention gab es zwischen den Gruppen keine signifikanten Unterschiede bei den Werten von Lungenfunktion, PEF und Schweregrad von Asthma. Nach der Intervention haben sich bei der Spirometrie einige Lungenfunktionswerte (FEV₁, FEF₅₀, FEF₂₅₋₇₅) in der Experimentgruppe verglichen zum Beginn verbessert, was in der Kontrollgruppe nicht der Fall ist. Der Vergleich der Schlusswerte der Lungenfunktion zwischen den Gruppen ist nicht signifikant. Eine signifikante Steigerung innerhalb der Experimentgruppe zeigte sich in den PEF-Werten, was bei der Kontrollgruppe wiederum nicht der Fall war. Diesmal wurde beim Vergleich zwischen den Gruppen zusätzlich ein signifikanter Unterschied ersichtlich. Beim Vorher-Nachher-Vergleich der Experimentgruppe konnte auch eine signifikante Verbesserung des Schweregrades von Asthma festgestellt werden, was bei der Kontrollgruppe ein weiteres mal nicht der Fall war. Der Vergleich zwischen den Gruppen zeigte auch hier wieder einen signifikanten Unterschied.

Positive Kritik:
- Ziel, Forschungslücke und Forschungsfrage sind klar formuliert
- Wahl RCT als strenges Design ist legitimiert, da nach Effekten gefragt wird und bereits ein grosses Wissen über Schwimmen bei Kindern mit Asthma vorhanden ist
- Stichprobe und Einschlusskriterien sind detailliert beschrieben
- Stichprobengrösse ist knapp, jedoch begründet → berechnete Anzahl von sechs Kindern pro Gruppe, die minimal benötigt wird, um einen signifikanten Unterschied von einer Standarddeviation (PEF-Werte auf z-Score) zwischen den Gruppen zu erreichen
- freiwillige Teilnahme der Probanden
- Teilnehmer sind über Zweck der Studie informiert
- Einverständniserklärung wurde von Kinder und Eltern unterschrieben
Analyse

- Ethikkommission hat Studie anerkannt
- Outcomes und Assessments sind gut strukturiert und quantifizierbar
- Interventionen sind detailliert beschrieben
- Ort des Trainings ist erwähnt → Hallenbad ohne Chlor
- Verblindung des Interventors ist bekannt
- Zwischen-Gruppen-Vergleiche ist vorhanden
- Ko-Intervention ist erkannt und beschrieben
- Kontaminierung ist nicht bekannt
- Signifikanz ist definiert (p<0.05)
- statistische Analysemethoden: Student’s t-test, Chi-squared test
- klinische Relevanz ist gegeben, da Effekte von sportlicher Aktivität auf Lungenfunktion, PEF und Schweregrad noch kaum untersucht wurden
- Limitationen sind dokumentiert:
 - Unterschiede im Verbrauch von Medikamenten → Beeinflussung der Resultate
 - ständiger Kontakt mit medizinischem Personal → Beeinflussung der Resultate
 - Experimentgruppe startete mit schlechteren Lungenfunktions-Werten → mehr Raum zur Verbesserung
 - kurze Interventionsdauer und wenig Teilnehmer

Negative Kritik:
- kein Follow-Up durchgeführt
- Forschungsstand ist vor allem anhand von alten Studien (<1990) beschrieben
- Grösse der Stichprobe ist knapp (n=30)
- Verblindung der Patienten ist unklar
- Reliabilität und Validität der Assessments sind nicht erwähnt
- keine Informationen (Verblindung, Anzahl, Beruf) über Assessor
- Zwischen-Gruppen-Vergleich zu Beginn zeigt signifikanten Unterschied bei Lungenfunktionswerten → Experimentgruppe hatte grösseren Spielraum zur Verbesserung
- keine Drop-Outs dokumentiert
Diskussion

6. Diskussion

6.1 Interpretation der Studien

Hier werden nun einige wichtige Aspekte der einzelnen Studien kritisch beleuchtet, subjektiv diskutiert und mit weiterführenden Gedanken der Autorinnen ergänzt.

6.1.1 Homogenität der Studien

Durch die Tatsache, dass jede Studie eine andere Sportart untersucht hat, fällt ein direkter Vergleich ohnehin schwer. Die Dauer und Intensität der Interventionen sind in allen Studien unterschiedlich. Für die Sammlung von Effekten, was das Ziel dieser Arbeit ist, stellt diese Heterogenität jedoch keine Limitation dar.

6.1.2 Qualität der Studien

6.1.3 Outcome: Lebensqualität

Diskussion

Annick Suter, Anina Ziörjen 40

6.1.4 Outcome: Leistungsfähigkeit

Ein weiterer positiver Effekt von Sport bei Kindern mit Asthma ist die Verbesserung der sportlichen Leistungsfähigkeit. Basaran et al. (2006) konnten dies, gemessen am 6MWT und PWC170-Test, bei Kindern mit leichtem bis mittelschwerem Asthma nachweisen. Der 6MWT steigerte sich innerhalb der Experimentgruppe von durchschnittlich 662.1 Meter auf 688.3 Meter. Dies ergibt einen signifikanten Unterschied mit $p<0.05$. Fanelli et al. (2007) beschreiben sogar bei schwerem Asthma eine signifikant bessere Leistungsfähigkeit, gemessen am Widerstand (Watt), an der maximalen Sauerstoffaufnahmekapazität (VO_2), auch im Verhältnis zur Herzfrequenz, und an der Dyspnoe (Borg-Skala). Diese Messungen fanden während dem CPET (Cardiopulmonary Exercise Testing) bei maximaler Belastung statt. Während sich die Kontrollgruppe im Durchschnitt nur von 3 auf 5 Watt steigern konnte, verbesserte sich die Experimentgruppe von anfänglichen 7 auf 17 Watt am Ende der Studie. Der VO_2 hat sich in der Kontrollgruppe von 0.8 auf 0.5 mL kg$^{-1}$ min$^{-1}$ verschlechtert. Die Experimentgruppe hingegen hat sich von 1.1 auf 3.3 mL kg$^{-1}$ min$^{-1}$ verbessert. Der Wert auf der Borg-Skala steigerte sich in der Experimentgruppe um vier Punkte, derjenige der Kontrollgruppe blieb jedoch konstant.

6.1.5 Outcome: Lungenfunktion

Bisher wurden in dieser Arbeit lediglich die signifikanten Resultate der untersuchten Studien besprochen. Die Lungenfunktion tauchte dabei nicht auf. Gerade der FEV$_1$-Wert, als Bestandteil der Lungenfunktion, ist für die Physiotherapie bedeutend, weil er eine ent-
Diskussion

Zusammenfassend konnte also bisher noch keinen signifikanten Effekt von Sport auf die Lungenfunktion bei asthmatischen Kindern nachgewiesen werden. Da aber bei Wang et al. (2009) eine Verbesserung des FEV$_1$ innerhalb der Gruppe und eine Steigerung des PEF nachgewiesen werden konnten, darf dieses Outcome nicht vollständig vernachlässigt werden. Um eine Signifikanz von Sport bei Kindern mit Asthma auf die Lungenfunktion, ins Besondere auf den FEV$_1$-Wert, abschliessend zu bestätigen oder zu verwerfen, bedarf es somit weiteren Untersuchungen.

6.1.6 Outcome: Compliance, Schweregrad, Krankheitskontrolle, Atemwegsentzündung

der inhalativen Steroiden mit einer konsekutiv verbesserten Krankheitskontrolle. 11 von 21 (52\%) Kinder der Experimentgruppe konnten die Medikamente reduzieren, in der Kontrollgruppe konnten dies hingegen nur 4 von 17 (23\%) Kindern. Moreira et al. (2008) konnten keine zusätzlichen Atemwegsentzündungen, gemessen an eNO, CRP, EOs, ECP und IgE, durch sportliche Aktivität bei Kindern mit allergischem Asthma auslösen. Die Werte sind nach der Intervention grundsätzlich gleich geblieben, der IgE-Wert hat sich als einziger signifikant gesenkt. Dabei ist zu beachten, dass nur aus einer signifikant besseren Komponente, nämlich dem IgE-Wert, auf das gesamte Outcome der Atemwegsentzündung geschlossen wurde. Da jedoch keine Veränderung der Entzündungswerte auch bedeutet, dass keine zusätzliche Entzündung ausgelöst wurde und es bisher noch kaum Untersuchungen bezüglich dem Outcome Atemwegsentzündung gibt, hat das Resultat besondere Aufmerksamkeit verdient.

6.2 Bestätigen / Verwerfen der Hypothese

6.3 Relevanz Physiotherapie

Die in der Motivation und Problematik angesprochenen Aspekte des Informationsdefizits und der Unsicherheit aller Beteiligten müssen hier erneut angesprochen werden. Medizinisches Personal, Ärzte und auch Physiotherapeuten fühlen sich durch das Informationsdefizit unsicher im Umgang mit pädiatrischem Asthma. Deswegen und weil eine übersichtliche Darstellung fehlt, werden Patienten und ihre Angehörigen oftmals ungenügend informiert und aufgeklärt. Unsicherheit über die geeignete Sportart und deren Aus-
Diskussion

Wer soll diesen nun durchbrechen? Könnte dies gar die Aufgabe der Physiotherapie sein? Bei einem Gespräch der Autorinnen mit der Sporttherapeutin Silvia Oberholzer vom Kinderspital Zürich konnte unter anderem diese Fragen thematisiert werden. Nach dem Gespräch fand zudem der oben dargelegte Teufelskreis seine Bestätigung. Silvia Oberholzer arbeitet auf der Abteilung Pneumologie im Kinderspital Zürich. Sie betreut dort hauptsächlich ambulante Kinder mit Atembeschwerden. Ihre Hauptziele dabei sind das Vermitteln von Vertrauen in den eigenen Körper und Freude an der Bewegung. Sie will den Kindern und auch deren Eltern die Angst vom Sport nehmen. Während des Gesprächs wurde deutlich, dass diese Angst tatsächlich vorhanden ist. Vor allem die Eltern stellen oft ein Hindernis für die sportliche Aktivität ihrer Kinder dar. Sie haben Angst, dass ihr Kind durch Bewegung noch mehr Probleme mit dem Atmen bekommt. Doch nicht nur die Eltern bremsen ihre Kinder. Das Problem beginnt häufig schon bei den Hausärzten. Denn auch dort besteht ein reges Informationsdefizit, was auch Silvia Oberholzer so bestätigte. Auf-

Diskussion

6.4 Tipps und Argumente

Argumente für Sport bei Kindern mit Asthma:
- Der Teufelskreis muss unbedingt durchbrochen werden! → Teufelskreis (Abb.1) als Erklärungsmodell benutzen
- Das Problem bei Asthma liegt nicht nur bei der Obstruktion, sondern häufig auch bei einer schlechten Grundkondition!
- Evidenzbasierte Studien beweisen, dass Sport bei Kindern mit Asthma keinerlei negative Auswirkungen hat!
- Sportliche Aktivität steigert die Lebensqualität und das Wohlbefinden des Kindes!
- Sport in einer Gruppe fördert die soziale Integration und das Selbstbewusstsein des Kindes!
- Prävention und ein verbesserter Allgemeinzustand sind zusätzliche Vorteile von sportlicher Aktivität im Kindesalter!

Tipps für die praktische Umsetzung:
- Spiel und Spass!
- primär Koordination, sekundär Kondition!
- Freude an Bewegung und Selbstvertrauen vermitteln!
- Motivieren!
- Kombination von Atemtherapie, Sport und Aufklärung (Patient Education)!
- Gruppentherapie schafft Gemeinschaftsgefuhl und soziale Integration!
- Umfang vor Intensität → Training langsam angehen!
- Vorsichtsmaßnahmen: regelmässige Kontrolle von Sauerstoffsättigung, Herzfrequenz und Borg-Skala!
- Ziel = Kontinuität → Überweisung in Club/Verein oder Integration in der Schule!
- Kontaktdaten:
 - „Ambulante pulmonale Rehabilitation“ (inkl. Kanukurs!) für Kinder und Jugendliche, Kinderspital Zürich, Silvia Oberholzer, silvia.oberholzer@kispi.uzh.ch, www.gesundheitspass.ch
 - Lungenliga Zürich, www.lungenliga-zh.ch
 - Lungenliga Schweiz, www.lung.ch
6.5 Limitationen

6.6 Forschungsempfehlung

7. Fazit

„Welche Effekte hat sportliche Aktivität bei Kindern mit Asthma und welche Schlussfolgerungen leiten sich daraus für die physiotherapeutische Praxis ab?“

Demnach ist Sport bei Kindern mit Asthma sinnvoll und notwendig. Weil sportliche Aktivität bei asthmatischen Kindern fördernd ist, muss sie ein fixer Bestandteil der Therapie werden. Da die Physiotherapie bereits für die Atemtherapie zuständig ist, ist die praktische Umsetzung der sportlichen Aktivität im therapeutischen Alltag der Kinder naheliegend.

Zwei Aussagen von Autoren der untersuchten Studien bringen das Thema auf den Punkt und heben folgende Quintessenz hervor:

Basaran et al. (2006, S. 134): „Children with asthma should be encouraged to engage in sports and lifetime exercise."

Moreira et al. (2008, S. 1574): „It is concluded that there is no reason for discouraging asthmatic children with controlled disease from exercise."

Annick Suter, Anina Ziörjen
8. Danksagung

9. Verzeichnisse

9.1 Literatur

9.2 Abbildungen und Tabellen

Abb. 1: Teufelskreis

Tab. 2: Überblick zur Entwicklung und Leistungsfähigkeit im Kindes- und Jugendalter

Tab. 3: Outcome & Assessment von Basaran et al. (2006)

Tab. 4: Outcome & Assessment von Fanelli et al. (2007)

Tab. 5: Outcome & Assessment von Moreira et al. (2008)

Tab. 6: Outcome & Assessment von Wang et al. (2009)

9.3 Auskunftspersonen

Fragen bezüglich Sport und Sporttherapie:
- Silvia Oberholzer
 Sporttherapeutin
 Kinderspital Zürich
 e-Mail: silvia.oberholzer@kispi.uzh.ch

Fragen bezüglich innere Medizin:
- Dr. Arnoldus J.R. van Gestel
 Master of Science in Physiotherapy cand.
 Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) Winterthur
 e-Mail: vrns@zhaw.ch
10. Eigenständigkeitserklärung

„Wir erklären hiermit, dass wir die vorliegende Arbeit selbständig, ohne Mithilfe Dritter und unter Benützung der angegebenen Quellen verfasst haben.“

Ort, Datum: _______________________________ _______________________________

_______________________________ _______________________________
Annick Suter Anina Ziörjen
11. Anhang

A) Search History
B) Matrix
C) Abkürzungen
D) Glossar
A) Search History

Medline via OvidSP – 08.09.09

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>„asthma“ in keyword</td>
<td>89639</td>
</tr>
<tr>
<td>2a</td>
<td>„training“ in keyword → „physical education and training“ in MeSH</td>
<td>10560</td>
</tr>
<tr>
<td>2b</td>
<td>„exercise“ in keyword → „physical education and training“ in MeSH</td>
<td>10560</td>
</tr>
<tr>
<td>3</td>
<td>1 AND 2</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>Limit to child, adolescent, young adult, german, english, last 10 years</td>
<td>14</td>
</tr>
</tbody>
</table>

- < 2005 - 9
- not asthma specific - 1
- not training specific - 1
- EIB - 1

RESULT

- Fanelli et al. (2007)
- Clark et al. (1999) → Review

Medline via OvidSP – 08.10.09

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>„asthma“ in keyword</td>
<td>88951</td>
</tr>
<tr>
<td>2</td>
<td>„sports“ in keyword</td>
<td>82905</td>
</tr>
<tr>
<td>3</td>
<td>1 AND 2</td>
<td>451</td>
</tr>
<tr>
<td>4</td>
<td>Limit to child, adolescent, young adult, german, english, > 2005</td>
<td>43</td>
</tr>
</tbody>
</table>

- not asthma specific - 9
- not training specific - 8
- comparison - 1
- no abstract - 7
- competitive athletes - 14
- EIB - 1

RESULT

- Basaran et al. (2006)
- Juvonen et al. (2008)
- Welsh et al. (2005) → Review

PEDro – 12.10.09

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abstract&Title: „asthma“</td>
</tr>
<tr>
<td>2</td>
<td>Therapy: „fitness training“</td>
</tr>
<tr>
<td>3</td>
<td>Published since: 2005</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

- practice guideline - 10
- not asthma specific - 3
- not training specific - 4
- comparison - 1

RESULT

- Basaran et al. (2006)
- Fanelli et al. (2007)
- Moreira et al. (2008)
- Ram et al. (1999) → Review

The Cochrane Library via Wiley InterScience – 08.09.09

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>„asthma“ in keyword AND „training“ in keyword AND „child“ keyword</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

- < 2005 - 6
- not training specific - 2
- EIB - 1
- No fulltext available - 1

RESULT

- Fanelli et al. (2007)
The Cochrane Library via Wiley InterScience – 12.10.09 (1)

1	„asthma“ in MeSH	6471
2	„training“ ➔ „physical education and training“ in MeSH	1134
3	1 AND 2	5

< 2005 - 4
RESULT - 1
 ▪ Fanelli et al. (2007)

The Cochrane Library via Wiley InterScience – 12.10.09 (2)

| 1 | Title, Abstract or Keywords: „asthma“, „child“, „swimming“ | 14 |

< 2005 - 11
not training specific - 1
RESULT - 2
 ▪ Wang et al. (2008)
 ▪ Weisgerber et al. (2008)

The Cochrane Library via Wiley InterScience – 12.10.09 (3)

1	„asthma“ in MeSH	8471
2	„exercise“ in MeSH	6737
3	1 AND 2, 2005 - 2009	18

not training specific - 3
EIB - 11
RESULT - 4
 ▪ Basaran et al. (2006)
 ▪ Flapper et al. (2008)
 ▪ Moreira et al. (2008)
 ▪ Ram et al. (2000) ➔ Review
<table>
<thead>
<tr>
<th>Autor</th>
<th>Titel</th>
<th>Teilnehmer</th>
<th>Interventionen</th>
<th>Outcomes</th>
<th>Assessments</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basaran et al. (2006)</td>
<td>„Effects of physical exercise on quality of life, exercise capacity and pulmonary function in children with asthma“</td>
<td>62 children</td>
<td>1. basketball training</td>
<td>QoL</td>
<td>PAQLQ</td>
<td>asthma children quality of life exercise physical capacity pulmonary rehabilitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.4±2.1 years</td>
<td>2. home respiratory exercise</td>
<td></td>
<td>6MWT, PWC170-Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mild/moderate</td>
<td></td>
<td></td>
<td>Spirometry (FEV1, FVC, FEV1/FVC, MEF, PEF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanelli et al. (2007)</td>
<td>„Exercise training on disease control and quality of life in asthmatic children“</td>
<td>38 children</td>
<td>1. physical training</td>
<td>QoL</td>
<td>PAQLQ</td>
<td>asthma EIB physical training quality of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-15 years</td>
<td>2. education</td>
<td></td>
<td>Spirometry (FEV1, FVC, FEV1/FVC, MVV), exercise challenge test</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>moderate/</td>
<td></td>
<td></td>
<td>CPET</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>severe asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flapper et al. (2008)</td>
<td>„Happiness to be gained in pediatric asthma care“</td>
<td>36 children</td>
<td>1. education</td>
<td>QoL</td>
<td>TACQOL, DUCATQOL</td>
<td>asthma childhood education physical exercise pulmonary rehabilitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-12 years</td>
<td>2. physical exercise</td>
<td></td>
<td>Spirometry (FEV1, FVC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>treated asthma</td>
<td></td>
<td></td>
<td>Morbidity Number of visits to general physician, emergency room and hospital, asthma attacks, days absent from school, ...</td>
<td></td>
</tr>
<tr>
<td>Juvonen et al. (2008)</td>
<td>„Training improves physical fitness and decreases CRP also in asthmatic conscripts“</td>
<td>892 young men</td>
<td>military service</td>
<td>Respiratory health</td>
<td>questionnaire, hsCRP, PEF, 12-min-running-test</td>
<td>adolescents respiratory health physical health hsCRP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.4-29.6 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Intervention</td>
<td>Participants</td>
<td>Exercise Type</td>
<td>Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--------------</td>
<td>---------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moreira et al. (2008)</td>
<td>Physical training does not increase allergic inflammation in asthmatic children</td>
<td>34 children</td>
<td>aerobic exercise</td>
<td>Inflammation (eNO, EOs, ECP, CRP, IgE), Lung function (Spirometry (FEV₁, FEF₂⁵-₇⁵, PEF)), Bronchial responsiveness (PD₂₀)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al. (2009)</td>
<td>The effects of swimming intervention for children with asthma</td>
<td>30 children</td>
<td>swimming</td>
<td>Inflammation (Spirometry (FVC, FEV₁, FEV₁%FVC, FEF₅₀, FEF₂⁵-₇⁵)), Lung function (PEF), Severity of asthma (Classification NHLBI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weisgerber et al. (2008)</td>
<td>Moderate and vigorous exercise programs in children with asthma: safety, parental satisfaction, and asthma outcomes</td>
<td>45 children</td>
<td>swimming & golf</td>
<td>QoL (parent) (PACQLQ), QoL (child) (PAQLQ), Asthma symptoms (PAQLQ, LWAQ), Asthma symptoms (Number of visits), Fitness (Cooper’s test, VO₂max)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C) Abkürzungen

CPET Cardiopulmonary Exercise Testing
CRP C-Reactive Protein
DUCATQOL Dutch Children AZL (Academisch Ziekenhuis Leiden) TNO (Toegepast-Natuurwetenschappelijk Onderzoek) Quality of Life Questionnaire, auch DUX-25 genannt
DUX-25 siehe DUCATQOL
ECP Eosinophil Cationic Protein
EIB Exercise-Induced Bronchoconstriction
eNO exhaled Nitric Oxide
EOs Eosinophils in blood
FEF25-75 Forced Expiratory Flow at 25-75%
FEF50 Forced Expiratory Flow at 50%
FEV1 Forced Expiratory Volume in one second
FVC Forced Vital Capacity
GINA Global Initiative for Asthma
HRQoL Health-Related Quality of Life
hsCRP high sensitive C-Reactive Protein
IgE Immunglobulin E
LABA Long Acting β2-Agonist
LWAQ Living With Asthma Questionnaire
MVV Maximal Voluntary Ventilation
NHLBI National Heart, Lung and Blood Institute
PACQLQ Pediatric Asthma Caregiver’s Quality of Life Questionnaire
PAQLQ Pediatric Asthma Quality of Life Questionnaire
PD20 Provocative Dose of metacholine causing a 20% fall in FEV1
PEF Peak Expiratory Flow
PWC170-Test Physical Work Capacity Test bei einer Herzfrequenz von 170
QoL Quality of Life
RCT Randomised Controlled Trial
SABA Short Acting β2-Agonist
TACQOL TNO (Toegepast-Natuurwetenschappelijk Onderzoek) AZL (Academisch Ziekenhuis Leiden) Children Quality of Life Questionnaire
VO2max maximale Sauerstoffaufnahmekapazität
6MWT 6-Minute Walk Test
D) Glossar

Accelerometer
Der Accelerometer misst die vertikale Beschleunigung und Verlangsamung in einem Abstand von jeweils einer Minute. Anhand dessen kann die Aktivität in leicht, mässig und stark eingeteilt werden. Der Monitor des Accelerometers wird oberhalb der Crista iliaca mit einem elastischen Gurt angebracht (Moreira, Delgado, Haahela, Fonseca, Moreira, Lopes, ...Castel-Branco, 2008).

Aerobe Ausdauer

Anaerobe Ausdauer
Wenn die Bereitstellung von Energie ohne Inanspruchnahme von Sauerstoff geschieht, spricht man von anaerob Ausdauer (Klinke et al., 2005). Dabei ist die Sauerstoffzufuhr wegen einer hohen Belastungsintensität zur oxidativen Verbrennung ungenügend, weshalb die Energie anoxidativ bereitgestellt wird (Weineck, 2004).

Aspiration
Das Eindringen von Flüssigkeiten oder festen Stoffen in die Luftröhre oder Lunge beim Einatmen (Duden, 2007).

Atelektase

Bewegungstherapie

Borg-Skala

Bronchialepithel
Bronchial: zu den Bronchien gehörend (Duden, 2007)
Epithel: oberste Zellschicht des menschlichen und tierischen Haut- und Schleimhautgewebes (Duden 2007)
Bronchiale Hyperreakтивität

CPET (Cardio Pulmonary Exercise Test)
Der CPET ist ein symptom-limitierter Test, der auf einem Veloergometer durchgeführt werden kann. Dabei wird die Atmung auf Stoffwechsel, Ventilation und Vitalzeichen hin untersucht (Fanelli, Cabral, Neder, Martins & Carvalho, 2007).

CRP (C- Reactive Protein)

ECP (Eosinophil Cationic Protein)
Das ECP ist eine extrem zytotoxische Substanz, welche von Eosinophilen im entzündlichen Gewebe frei gesetzt wird. Es zerstört die Membran und lässt sich nicht nur am „Ort des Geschehens“, sondern auch in anderen Körperflüssigkeiten nachweisen. Die gemessene Höhe des ECP-Spiegels beschreibt den allergischen Entzündungsprozess (von Baehr, 2010).

EIB (Exercise-Induced Bronchoconstriction)
Englisch für Anstrengungs- oder Belastungsasthma.

eNO (exhaled Nitric Oxide)
Anhand der Messung von eNO in der ausgeatmeten Luft kann Asthma diagnostiziert werden. Die Anzahl eNO sind dabei proportional zu der bronchialen Entzündung und bronchialen Hyperreaktivität. Durch diese Messungen kann zudem die medikamentöse Behandlung optimal eingestellt werden (Smith, Cowan, Brascott, Herbison & Taylor, 2005).

EOs (Eosinophils in blood)
Eosinophile gehören zu den Granulozyten (Duden, 2007). Eosinophile Granulozyten spielen eine wichtige Rolle bei der Infektabwehr. Sie können nach Anlagerung von IgE zytotoxisch wirkende Substanzen aus ihrer Granula freisetzen (Klinke et al., 2005).

Exazerbation
FEV₁ (Forced Expiratory Volume in one second)
"Einsekundenkapazität (forciertes expiratorisches Volumen in einer Sekunde): das nach maximaler Inspiration unter stärkster Anstrengung schnellstmöglich ausgeatmete Volumen der ersten Sekunde" (Bösch & Créée, 2007).

FEF₅₀ (Forced Expiratory Flow at 50%)
"Maximale (forcierte) exspiratorische Atemstromstärke bzw. Flussgeschwindigkeit (Flow) zu dem Zeitpunkt, bei dem 50% der Vitalkapazität ausgeatmet wurden […]" (Bösch et al., 2007).

FEF₂₅₋₇₅ (Forced Expiratory Flow at 25-75%)
„Maximale exspiratorische Atemstromstärke bzw. Flussgeschwindigkeit (Flow) im Volumenabschnitt 25-75% der ausgeatmeten FVC […]“ (Bösch et al., 2007).

FVC (Forced Vital Capacity)
"Forcierte Vitalkapazität: das nach kompletter Inspiration unter stärkster Anstrengung schnellstmöglich ausgeatmete maximale Volumen (Tiffenau-Manöver)“ (Bösch et al., 2007).

Histamin
Histamin ist ein Inhaltsstoff der basophilen Granulozyten und wirkt als Lockstoff für eosinophile Granulozyten. Deshalb ist Histamin an der allergischen Reaktion, d.h. an der Abwehr von Parasiten, beim Bronchialasthma beteiligt (Klinke et al., 2005). => siehe auch EOs

IgE (Immunglobulin E)
Immunglobulin im Allgemeinen weist Antikörpereigenschaften auf. Das Immunglobulin E ist speziell zuständig für den Schutz vor Parasiten und ist somit an der allergischen Reaktion beteiligt (Duden, 2007).

Krankheitskontrolle
Durch die Autorinnen aus dem Englischen übersetzt: disease control.

Leistungsfähigkeit
PAQLQ (Pediatric Asthma Quality of Life Questionnaire)

PEF (Peak Expiratory Flow)
"Peak Expiratory Flow: maximale exspiratorische Atemstromstärke bzw. Flussgeschwindigkeit, die bei for-cierter Expiration nach kompletter Inspiration erreicht werden kann" (Bösch et al., 2007).

PWC170-Test (Physical Work Capacity Test)
Bei diesem Test wird die Herzfrequenz auf einen Wert von 170 Schlägen pro Minute erhöht und die entspre-chende Wattzahl auf der Ordinate abgelesen. Das Verfahren wird PWC_{170} genannt (pulse work capacity) (Klinke et al., 2005).

VO_{2\text{max}}
Die maximale Sauerstoffaufnahme (VO_{2\text{max}}) dient als globale kardiovaskuläre und metabolische Kenn-grösse. Sie gilt als Bruttokriterium der maximalen aeroben Leistungsfähigkeit, da sie alle an der Leistungs-erbringung beteiligten Mechanismen erfasst (Weineck, 2004).

Zytotoxische Substanzen
Das sind zellvergiftende und zellschädigende Substanzen, welche auf die Zellsubstanz bzw. auf die physio-logischen Zellvorgänge einwirken (Duden, 2007).

6MWT (6-Minute Walk Test)

Quellen Glossar:

