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Introduction

State of the art regulators are of the type PID combined with fil-
ters. However, they can be found in various combinations, such as
cascaded structures or loops with feed forward. The use of PID reg-
ulators leads to many advantages: On one hand, the linear theory
allows to design excellent regulators for single in single out systems.
On the other hand, there is huge number of existing plants, which
are robust and stable for themselves and therefore, they don’t need to
be identificated or physically modeled. For those plants, simple rules
from Ziegler and Nichols solve the regulator problems quite well, and
the engineering process is very fast.
State Space regulators are not as well known by many of the engineers.
Either they are a little bit more complicated to understand, either a
modeling of the sytem is needed to design a robust and stable feed-
back loop. However, there is a variety of plants, where a use of State
Space regulators can be justified. Especially, if regulators of multiple
in and multiple out systems need to be designed, a little bit more
complicated regulator structure causes very often very robust stable
systems, which never could be reached by PID regulators.
If in addition an observer is used, it is possible to avoid the integration
of additional sensors, since the model, which is working in the control
loop software, can reconstruct the states by software.
This booklet introduces that theory to the engineers. The prerequi-
sites are a knowledge about Laplace Operator, transfer function and
stability criteria. Those skills are provided by any Bachelor Degree
Schools of Engineering all around the world.
For deeper understanding, each chapter contains solved excercises at
the end. The solutions are very often supplied by a small Matlab code.
This way, it is possible to see the effects of changing parameters.
Thus it helps the engineer solving a regulator problem, to get an other
view of control loop feedback and simplifies the decision, whether to
choose a conventional PID structure or a State Space regulator.
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Chapter 1

State Space description

1 Input Output description and State Space de-

scription

A SISO (single in - single out) system in input-output-description
(also called ’transferfunction’), where U(s) is the input and Y(s) is the
output is given by

Y (s) =
bm · sm + bm−1 · sm−1 + ...+ b0

sn + an−1 · sn−1 + ...+ a0
· U(s)

A system in State Space description is given by

ẋ(t) = A · x(t) + B · u(t) and y(t) = C · x(t) +D · u(t)

Figure 1.1: State Space description as block diagram
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A n x n Matrix n: (number of) states
B n x m Matrix m: (number of) inputs
C r x n Matrix r: (number of) outputs
D r x m Matrix

A: system matrix, defines the system dynamics

B: input matrix, defines what effect the input values have on the n
states of the system

C: output matrix, defines the linear combination of the states to cal-
culate the output value(s)

D: straight-way matrix, defines, how the input values u work directly
on the output values y. In the input-output-description, m = n, if D
is not zero. In this case, the step response of the output contains a
step component too.

2 Find the Input Output description (at a given

State Space description)

Laplace transforming of a state vector x(t), assuming x(t0) = 0 follows

sX(s) = AX(s) + BU(s)

and

X(s) = (sI − A)−1BU(s)

the output equation is then

Y (s) = (C(sI − A)−1B +D)U(s)
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Thus, the transferfunction (input-output-description) is calculated to:

G(s) =
Y (s)

U(s)
= C(sI − A)−1B +D

3 Find the State Space description (at a given

Input Output description)

The A, B, C and D matrixes are not unique for a given system. It
depends the manner, how the state variables x are choosed. Using a so
called similarity transformation, it is possible to take those matrixes
into special forms.

x̃(t) = Tx(t)

T is either a regular n x n matrix or a scalar �= 0. The components x
must no longer correspond to physical values. Doing the transforma-
tion for the whole equation, we get the following

T−1 ˙̃x(t) = AT−1x̃(t) +Bu(t) and y(t) = CT−1 ˙̃x(t) +Du(t)

This leads to new matrixes

Ã = TAT−1 , B̃ = TB , C̃ = CT−1 , D̃ = D

Now, two special forms of A,B,C and D matrixes will be treated, the
controllable canonical form and the observable canonical fom. See also
the solved excercises at the end of the chapter.

3.1 Controllable canonical form

The general forms of Ac, Bc and Cc matrixes are as follows:

Ac =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . .
... . . . . . . ...
0 . . . 0 1
∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

, Bc =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Cc =
( ∗ ∗ ∗ ∗ )

7



Assuming a system in input-output description

Y (s) =
bm · sm + bm−1 · sm−1 + ...+ b0

sn + an−1 · sn−1 + ...+ a0
· U(s)

the complete matrixes are

Ac =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . .
... . . . . . . ...
0 . . . 0 1

−a0 −a1 . . . −an−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Bc =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

Cc =
(
b0 − bna0 b1 − bna1 . . . bn−1 − bnan−1

)
, Dc = bn

3.2 Observable canonical form

The following Ao, Bo, Co and Do matrixes are called observable canon-
ical form. Assumed is the same input-output-description as above.

Ao =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . −a0
1 0 . . . −a1
. . . . . . . . . ...
0 . . . 1 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Bo =

⎛
⎜⎜⎜⎜⎜⎜⎝

b0 − bna0
b1 − bna1

...
bn−1 − bnan−1

⎞
⎟⎟⎟⎟⎟⎟⎠

Co =
(
0 0 0 1

)
, Do = bn

4 Controllability and Observability

Controllability of a system means, that there exists a finite control
input u that can transfer any initial state x(0) to any other desired
state x(t). It is determined whether the system is controllable or not by
investigating the algebraic condition below. A System is controllable,
if the determinant of Dc is not zero. Note that here the Matrix C is
not involved.

Rank[Dc] = Rank[B,AB,A2B...An−1B] = n
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The ability to estimate (observe) every state variable is called observ-
ability. A system is observable if there is existing a finite time T
within that the initial state x(0) can be determined from the history
y(t) and additionally the given control information u(t). The system
is observable if the determinant of Do is not zero. Note that here the
Matrix B is not involved.

Rank[Do] = Rank[

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

CA
...

CAn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
] = n

All real and imaginary parts of the roots of a system can be placed
where ever desired in the s-plane by a State Space regulator if a sys-
tem is observable and controllable (and only if!).
If a system is not controllable, more or different actuators are needed,
which leads to a different Matrix B. If a system is not observable, more
or different sensors are needed, which leads to a different Matrix C.

5 Stability

Using input-output-description a system is stable, if all poles of the
transfer function have negative real parts. In this case, the impulse
response g(t), is zero, for t=∞, where

g(t) = L−1[G(s)]

Using State Space description a system is stable, if all the roots of
the characteristic equation det(sI-A)=0 have negative real parts.
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6 Solved exercises

electrical system

A electrical system in State Space description is given

A =

⎛
⎝ 0 − 1

C
1
L −R

L

⎞
⎠ , B =

⎛
⎝

1
C

0

⎞
⎠ , C =

(
0 R

)
, D = 0

Find the input-output-description G(s) = Y (s)
U(s)

model descriptions

Given is a system in input-output-description

Y (s) =
s+ 12

s3 + 4 · s2 + 4 · s+ 2
· U(s)

1. find the State Space description (controllable canonical form)

2. is the system controllable and observable?

spring and mass

Figure 1.2: spring and mass with friction
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Given is a system with spring and mass, where u(t), the input, is
a force and y(t), the output, is the position of the mass.

1. find the differential equations of the system

2. find the State Space description assuming (x1, x2) = (y, ẏ)

inverted pendulum

Given is an inverted pendulum on top of a vehicle. u(t), the input,
is a force and y(t), the output, is the position of the vehicle. By

Figure 1.3: inverted pendulum

establishing a physical model of the system, the following equations
can be found by linearization

Mÿ +mlθ̈ − u = 0 and mlÿ +ml2θ̈ −mlgθ = 0

the state vector (x1, x2, x3, x4) is assumed as (y, ẏ, θ, θ̇)

1. find the system matrixes A,B,C and D

2. for the following considerations assume M = 1kg, m = 0.1kg,
g = 10m/s2, l=1m. Is the system controllable and observable ?

3. is the system stable ?
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Solutions

solution electrical system
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solution model descriptions
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solution spring and mass
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solution inverted pendulum
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Chapter 2

State Space regulator

1 A plant in State Space description completed

with a feedback loop

Figure 2.1: Block diagram of a State Space regulator with full state feedback

A prefilter Kvf is a transfer function or in most cases just a scalar. It
filters the input signal R(s) in a way, that in steady state the output
y has the same value as a constant input r.

The feedback of the state vector x(t) is weighted by the coefficients
k1, k2, ..., kn. This is exactly the core of the State Space regulator

Furthermore, in comparision with conventional feedback-structures,
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the error signal e = r − y is no more visible in block diagrams.

uR = k1x1+k2x2+...+knxn or uR =
(
k1 k2 ... kn

)
⎛
⎜⎜⎜⎜⎜⎜⎝

x1
x2
...
xn

⎞
⎟⎟⎟⎟⎟⎟⎠
= Kx

The control signal u is calculated by

u = w − uR = Kvf · r −K · x
and the matrix equations

ẋ = A · x+ B · (Kvf · r −Kx) = A · x− BKx+ BKvf · r
ẋ = (A− BK) · x+KvfB · r and y = C · x (assuming D = 0)

The new system (is still linear of course) can be described with new
System Matrixes, Ag, Bb, Cg

Ag = A− BK , Bg = KvfB , Cg = C

2 Calculation of Kvf and k1, k2, ..., kn using pole

placement

See solved excercise

If the poles of the new closed-loop system are placed far (mostly left)
away from the old poles of the plant, the values of k1, k2, ..., kn are
usually large. This means, that the control output is large as well and
could be limited by hardware. Note that this limitation of the output
causes differences between the physical model and the real system, if
it is not considered.

3 Optimal control

The key issue of a LQ-Regulator is to take care to both a limitation
of the control signal u and moreover a fast transcient behaviour of the
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states. The integral below represents the performance index J. The
optimal control design minimizes J, which contains the input u as well
as the states x. It is the integral of the squared error. This must be
worked out this way, because negative and positive errors need to be
treated equally. Such systems are also called optimal control systems.
The index J can be written as

J =
te∫

0

g(x, u, t)dt

X is representing the state vector, u is the control vector, and te the
end of time intervall. We are generally interested in minimizing the
error. If the desired state vector is represented as xs = 0, it is possible
to treat the error as equal to the state vector itself. This means that
any difference between the state vector and zero is equal to an error.
The picture below (Fig. 2.2) shows this.

Figure 2.2: Block diagram of a LQ-Regulator

The control system can be written as

ẋ = (A− BK) · x = Lx

L is the n x n matrix resulting from a subtraction of the elements
of BK from the elements of A. Considering the fact, that negative
and positive errors need to have the same effect, the following matrix
operation is used. As wished, it squares and adds the states, means
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the errors.

xTx =
(
x1 x2 ... xn

)
⎛
⎜⎜⎜⎜⎜⎜⎝

x1
x2
...
xn

⎞
⎟⎟⎟⎟⎟⎟⎠
= x1

2 + x2
2 + ...+ xn

2

Furthermore, it is possible to define a weight matrix Q to weight the
states individualy. Then, the specific form of the performance index,
is

J =
te∫

0

(xTQx)dt

Later on, the general form will be worked out as well. It contains also
a term u, to take care to the control energy part of the performance
index J. But up to now, just the influence of the state vectors, their
deviation from zero will be investigated. The final time of interest is te
=∞. To minimize the value of J, we assume, that an exact differential
is existing so that

d

dt
(xTSx) = −xTQx

where S has to be determined. Using the product rule for differentia-
tion (and assuming that the S matrix is symmetric)

d

dt
(xTSx) = ẋTSx+ xTSẋ

and since ẋ = Lx

d

dt
(xTSx) = (Lx)TSx+xTS(Lx) = xTLTSx+xTSLx = xT (LTS+SL)x

here, (Lx)T = xTLT . Furthermore, we let (LTS +SL) = -Q, doing so
the equation gets

d

dt
(xTSx) = −xTQx

The performance index J can be found now by doing a substitution,
because this is exactly the differential we are looking for.

J =
∞∫

0

− d

dt
(xTSx)dt = 0− (−xT (0)Sx(0))
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or

J =
∞∫

0

(xTQx)dt = xT (0)Sx(0) and (LTS + SL) = −Q

To minimize the performance index J, the following has to be carried
out: first determining the matrix S, by a known L and Q, and second
minimize J by changing the parameters of S as far as it is possible.

3.1 LQ-Regulator theory

Generally, we take also care to the control output u. Consider the
following SISO system

ẋ = (A) · x+ Bu

with a feedback

u = −Kx = − (
k1 k2 ... kn

)
⎛
⎜⎜⎜⎜⎜⎜⎝

x1
x2
...
xn

⎞
⎟⎟⎟⎟⎟⎟⎠

the performance index as shown above is

J =
∞∫

0

(xTQx+ ru2)dt

Here, r is a scalar weighting factor, since u is also a scalar. It can be
shown that this index is minimized when

K = r−1BTS

the n x n matrix S is calculated as the solution of the matrix Riccati
equation

ATS + SA− SBBTSr−1 = −Q

where Q is I for equal weighting of the states (alternatively Q = C ′C,
to involve also the Zeros of the system). This optimal control, called
the linear quadratic regulator can be found using the Matlab function
lqr. There, r and Q can be given as parameters.
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3.2 LQ-Regulator stability

It can be shown, that a LQ-regulator with full state feedback has got
at least a phase margin of 60◦ or a gain margin of 0.5 to ∞ which
means, that a LQ-regulator is a very robust controller. See also the
solved exercises at the end of the chapter.

4 State Space regulator including integral part

Assuming that our plant has no integral part, also the State Space
regulator, which just multiplies the states with a factor, is not able to
realize any integral part. From the linear theory it is known, that this
fact leads to a zero steady state error. To avoid this error, as using a
normal PI regulator, an integral part needs to be worked out. If the
input r is a step, the derivation of r is zero

ṙ = 0

the error e is

e = y − r

This relation is also valid for the time derivative

ė = ẏ = Cẋ

since ṙ = 0. Here, the following block diagram is used. If we define

Figure 2.3: Block diagram of a regulator with integral part
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two new variables, m and n, as below

m = ẋ and n = u̇

a new system with new matrixes can be defined.
⎛
⎝ ė

ṁ

⎞
⎠ =

⎛
⎝ 0 C

0 A

⎞
⎠

⎛
⎝ e

m

⎞
⎠ +

⎛
⎝ 0
B

⎞
⎠n

The order is higher since the integration is an additional state. Doing
so the following form can be found (K1 respectively K2 can be found
eg. by pole placement or optimal control)

n(t) = −K1e(t)−K2m(t)

WhereK1 is a scalar representing the integral part. K2 ist representing
the control vector. Since u ist the integral of n, the control input is

u(t) = −K1

t∫

0

e(τ)dτ −K2x(t)

where the error e needs to be zero to avoid an infinite control input u.
See also the solved exercises at the end of the chapter.
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5 Solved exercises

pole placement

A system plant in State Space description is given

A =

⎛
⎝ 0 1
0 −3

⎞
⎠ , B =

⎛
⎝ 0
6

⎞
⎠ , C =

(
6 0

)
, D = 0

Find K and Kvf for the following given poles p1 and p2 of the closed
loop system:

1. p1 = p2 = -12

2. p1 = -12+i·12, p2 = -12-i·12
3. p1 = p2 = -40

optimal control

A scalar system is given

ẋ = ax+ bu

1. find a regulator u(x) = −kx by minimizing the performance index
J.

J =
∞∫

0

(qx2 + ru2)dt , (q, r > 0)

Algebraic Riccati equation: 2ap− 1
rb

2p2 + q = 0

2. find a regulator u(x) = −kx, which stabilizes the system with a
minimum of control energy (q=0).
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LQ-regulator of an inverted pendulum

Given is an inverted pendulum. u(t), the input, is a force and y(t), the
output, is the position of the vehicle. The state vector (x1, x2, x3, x4)

Figure 2.4: inverted pendulum

is assumed as (y, ẏ, θ, θ̇) and M = 1kg, m = 0.1kg, g = 10m/s2, l=1m.
The following system matrixes can be found:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 −1.11 0
0 0 0 1
0 0 11.1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1.11
0

−1.11

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =
(
1 0 0 0

)
, D = 0

1. compute some optimal control regulators using Matlab command
lqr and plot step responses of the closed-loop systems at different
weights of control energy r. Find also suitable prefilters Kvf .

2. for the same weight’s of control energy r, plot the bode diagram
of the closed-loop systems and discuss the results

3. discuss the robustness of the system

state regulator including integral part

Given is a system in input-output-description

Y (s) =
1

s2 + 3 · s+ 3
· U(s)
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For a step input the steady-state error is not zero.

1. Find the State Space description in controllable canonical form.

2. Assme that all states are directly measurable (what would You
do if not?). Add an integral part and design a controller with
closed loop poles p1=-1+i·1, p2=-1-i·1, p3=-12 using Matlab.

3. Plot the step response of the output y using Simulink.
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Solutions

solution pole placement
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solution optimal control
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solution LQ-regulator of an inverted pendulum

29



30



Discussing the diagram, none of the nyquist curves crosses a circle
with radius 1 and center (-1,-i). This means, that the phase margin is
at least 60◦ or (not both together) the gain margin is of 0.5 to ∞, as
mentioned in the theory.
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state regulator including integral part

As discussed in the theory, the steady-state-error is zero.
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Chapter 3

State Space regulator with
observer

1 Observer

Figure 3.1: observer design
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The State Space regulator design assumed that all the state vari-
ables are available to realize the feedback. However, for most real
existing systems this is not the case. Either it may not be possible
due to physical reasons to measure all the state variables as wished or
the cost of the sensors may be a limitation. In this chapter it is shown
how to calculate all the state variables of a system from at least one
or a few measured states. One method of estimating the states is to
calculate a model of the plant in the regulator software.

˙̂x = Ax̂+ Bu

The estimate of the true state x is x̂ in this case. This estimator
or observer will work properly if we know the initial condition x(0)
and set x̂(0), the estimated initial condition, equal to it. Because the
initial condition of the system is not (or not well) known, the error of
the estimated state would go to zero too slowly. Note here, that in
this case, A, B and u(t) are known. In most real systems, at least the
A and B Matrixes are not well known due to parameter uncertainty.
This fact would also cause a divergence of the estimated from the true
state. To investigate the dynamics of this estimator, we define the
error as

x̃ = x− x̂

and furthermore

˙̃x = Ax̃ or x̃(0) = x(0)− x̂(0)

Here, the error is converging to zero at the same velocity as the dy-
namics of A. However, there is no possibility to influence the velocity
at which it converges to the true state. For a faster convergence, a
feedback H is introduced. It is correcting the model with an additional
signal, using an amplification of the difference between measured and
estimated state(s). The equation for this is shown in figure 3.1

˙̂x = Ax̂+ Bu+H(y − Cx̂) or ˙̂x = (A−HC)x̂+ Bu+Hy

The error equation and the characteristic error equation is then

˙̃x = (A−HC)x̃ respectively det[sI − (A−HC)] = 0
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The dynamics of the error system can be choosed as much faster than
the old dynamics of the system matrix of the plant A. If H is designed
in a way, that A-HC has fast and stable eigenvalues then x̃ will con-
verge to zero, indepedant of the input function u(t) and independant
of the initial condition x̃(0). H can typically be designed in a way that
the error system is still stable and the error is small enough, even with
minor modeling errors. Note that the system behaviour of the plant
and the observer are not the same. The plant is a physical system
such as a thermal process, an electrical or a mechanical system. The
observer is in contradiction a software unit calculating the estimated
state. Note again, that in all considerations it is assumed that A,B
and C are identical in the real plant and in the observer plant. The
dynamics of the error would be different, if there would not be an
accurate model of the plant. H can be calculated in exactly the same
way as K. It can be found by pole placement and comparision of the
coefficients, or as LQR approach. See also the solved exercises.

2 State Space regulator combined with observer

Now an investigation about the influence on the system dynamics us-
ing x̂ instead of x is needed, if a State Space regulator is combined with
an observer. In the following, the closed loop characteristic equation
and the open loop compensator transfer function are treated. The ba-
sic diagram is showed in figure 3.2. The plant equation with a feedback
is

ẋ = Ax− BKx̂

this can be written using the state error x̃

ẋ = Ax− BK(x− x̃) or ẋ = (A− BK)x+BKx̃

The dynamics of the whole system is obtained by combining the
equations for ẋ and ˙̃x

⎛
⎝ ẋ

˙̃x

⎞
⎠ =

⎛
⎝ A− BK BK

0 A−HC

⎞
⎠

⎛
⎝ x

x̃

⎞
⎠
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Figure 3.2: State Space regulator with observer design

The characteristic equation (closed loop) is

det

⎛
⎝ sI − A+ BK −BK

0 sI − A+HC

⎞
⎠ = 0

Because the matrix contains a zero block, it can be separated in

det(sI − A+BK) · det(sI − A+HC) = 0

This means, that the poles of the whole system consist of the control
poles as well as of the estimator poles. The effect is nothing else, that
the design of the regulator and the observer can be done indepently.
The poles of the whole system are an addition of both, the regulator
and the observer. This fact is called ’separation principle’. Figure
3.3 shows another block diagram, which is exactly the same as the
one in Figure 3.2. The State Space regulator with integrated observer
corresponds to a compensator. Note that in this diagram, the error
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Figure 3.3: State Space regulator with observer as compensator

e is visible again, as it is familar using conventional regulators. The
state equation for this compensator is

˙̂x = (A− BK −HC)x̂−He and u = −Kx̂

and the characteristic equation is

det(sI − A+BK +HC) = 0

the input-output-description (transfer function) is calculated by

C(s) =
U(s)

E(s)
= K(sI − A+ BK +HC)−1H

Above, for a LQ regulator a phase margin of at least 60◦ or a gain
margin of 0.5 to ∞ was found. The question is, if a optimal con-
troller with observer has the same properties. The answer, due to the
additional singularities from the observer, is NO!

3 Linear Quadratic Gaussian Regulator (LQG)

with Loop Transfer Recovery (LTR)

The basic idea of the LQG-LTR-procedure is to determine both, the
state controller and the feedback of the observer by a dual design.
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Thus, new possibilities for increasing the robustness must be found.
Very often the way mentioned below is followed. It gives a solution in
a way, that for better loop transfer recovery, the sensitivity for noise
is increased. Thus, the better the noise quality of the sensor signals,
the better is the loop transfer recovery. The observer-amplification H
is calculated by

H = (CS)T

where the Matrix S is (as by calculating the LQ-Regulator) the only
positive solution of the Riccati equation

AS + SAT − SCTCS = −(1 + ρ)BBT

For minimal phased systems, it can be shown, that the solution of
the LQG-LTR-procedure converges by increasing ρ to the frequency
response of the LQ-Regulated system. Then, the observer gets faster
(and therefore more sensitive to noisy signals). This means due to
the separation principle that the observer poles are left far away from
the other system poles. In the followong, two approaches of LTR are
shown using Matlab.

3.1 LTR using Matlab command ltrsyn

The steps are as follows:

1. Design of LQ-regulator

2. Design the loop transfer recovery using K (from LQ-regulator)
and the weighting factor ρ

The result of the ltrsyn-routine is the complete compensator, wich
contains K (state regulator) as well as H (observer feedback).

3.2 LTR using a dual LQR design for the State Space reg-
ulator K as well as for Observer feedback H

The steps are as follows:

1. Find K: K = lqr(A,B,C’*C,r), C’*C and r are the weighting fac-
tors
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2. Find H: H’ = lqr (A’,C’,B*B’,q), B*B’ and q are the weighting
factors

The result is similar to the ltrsyn command.
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4 Solved exercises

design of an observer

A system in State Space description is given.
⎛
⎝ ẋ1
ẋ2

⎞
⎠ =

⎛
⎝ 2 3
−1 4

⎞
⎠

⎛
⎝ x1
x2

⎞
⎠ +

⎛
⎝ 0
1

⎞
⎠u , y =

(
1 0

) ⎛
⎝ x1
x2

⎞
⎠

Only the state y = x1 can be measured directly.

1. is the system observable?

2. design an observer with a characteristic equation s2+2ζωns+ωn
2

(ζ = 1.0 and ωn = 6)

3. simulate the response of the error x̃ with initial conditions x̃0 =⎛
⎝ 1
−1

⎞
⎠

LQG-LTR design with Matlab

Given is a system

A =

⎛
⎜⎜⎜⎝
−110 −35 −8
32 0 0
0 4 0

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝
16
0
0

⎞
⎟⎟⎟⎠ , C =

(
0 0 25

)
, D = 0

1. find a LQR-regulator using Q = C ′ ∗ C and R = 1

2. Plot nyquist diagrams showing the robustness using different RHO’s,
XI = 100 ∗ Q and THETA = 1 (ltrsyn) or q’s (dual lqr) and
find the observer’s feedback H.

four-mass-swinger

Given is the system below, where u1(t) and u2(t), the inputs, are forces
and y1, y2, y3, y4, the outputs, are positions. Assume that m = 1kg,
k = 36N/m, b = 0.6Ns/m.
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The state variables are x1 = y1, x2 = y2, x3 = y3, x4 = y4, x5 = ẏ1,
x6 = ẏ2, x7 = ẏ3, x8 = ẏ4.

1. Find the State Space description for this system.

2. Design a State Space regulator with closed loop poles [−2± i · 3,
−2 ± i · 4, −3 ± i · 3, −3 ± i · 4]. Design an observer with poles
[-15, -15, -15, -15, -16, -16, -16, -16].

3. Compare the behaviour of the system without and with observer
(LQR vs. LQG-LTR). Compare the responses of initial values [-1
-1 -1 -1 0 0 0 0] (Initial states of the observer!).

4. Design the State Space regulator and the observer using optimal
control.

train

Given is the system below, where u1(t) and u2(t), the inputs, are
forces. d1, d2 and d3 are the differences between the positions of the
waggons. Assume that m = 1kg, k = 36N/m, b = 0.6Ns/m.

The state variables are x1 = d1, x2 = d2, x3 = d3, x4 = ḋ1, x5 = ḋ2,
x6 = ḋ3, x7 = ẏ1.
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1. Find the State Space description for this system with one output
ẏ1.

2. Design a State Space regulator with closed loop poles [−2± i · 3,
−2± i · 4, −3± i · 3, -10]. Design an observer with poles [-20, -20,
-20, -20, -21, -21, -21].

3. Compare the behaviour of the system without and with observer
(LQR vs. LQG-LTR).

4. Plot the step response of the output ẏ1. Find a suitable prefilter
Kvf .

5. Design the State Space regulator and the observer using optimal
control.
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Solutions

solution design of an observer
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solution LQG-LTR design with Matlab

solution using Matlab ltrsyn
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solution using Matlab H’ = lqr (A’,C’,B*B’,r) and K = lqr(A,B,C’*C,r)
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four-mass-swinger
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train
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