Tissue Engineering for Drug Development

Defined Organotypic Skin Models

Diego Santini¹, Epifania Bono¹, Daniel Schmid², Stephanie Mathes¹, Ursula Graf-Hausner¹

1 Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences, Wädenswil, Switzerland
2 Mibelle Biochemistry, Buchs, Switzerland

Introduction

Diabetis is a widespread disease and numbers of patients are supposed to rise to 380 million within the next 20 years. Therefore products, which are able to minimize secondary effects of diabetis, will be of demanding interest. As the blood sugar level in diabetis patients is increased, expanded occurance of advanced glycated end (AGE) products can be observed. These products are generated when sugars interact with lysine residues of amino acids in a non-enzymatic reaction and result in a crosslinking of proteins. AGE formation in collagen structures result in a decreased matrix elasticity.****

Materials and Methods

For collagen glycation a collagen solution (5mg/ml in 0.02N acetic acid) was mixed with methylglyoxal (MGO), in order to obtain a final collagen concentration of 3mg/ml in acetic acid 0.5N enriched with MGO (final concentration: 250mM). The mixture was incubated for 64h at 22°C. After dialysis and measurement of AGE product formation (λem 440nm and λex 355nm) the solution was mixed with the same volume of non-glycated collagen solution and human primary fibroblasts (Provitro, Germany) to a final concentration of 1.22·10⁶ cells/ml. The cellular hydrogels were incubated until contraction in DMEM/F12 medium. Human primary keratinocytes (Provitro, Germany) were seeded on top of the gels and cultivated submerged for 11 days after the air-lift and analysed by histological and immunohistological methods.

Results and Discussion

Glycation of Collagen I was effective, as shown by increased fluorescence intensities (n=3) and delayed gel contraction (data not shown) by fibroblasts. As the underlying Maillard reaction is hardly controllable, a batch-to-batch variation occurred, resulting in different fluorescence intensities. Nevertheless, the glycated matrix was always polymerizable and feasible for organotypic skin model creation.

Immunohistological analysis of vimentin (blue) and nuclei counterstain with propidium iodide (red) revealed an interesting phenomenon. The distribution of intermediary filaments of fibroblasts differed in glycated (B) collagen I hydrogels from the unglycated control (A). Fragmentation of vimentin was obviously increased. The fact, that vimentin plays a major role in AGE related skin alteration, was already shown in 2D fibrobalsts cell cultures by Kueper et al (Ann. N.Y. Acad. Sci., 2008).

Conclusion

In order to create organotypic skin models, which simulate the characteristics of aged or diabetic skin, the following conclusions can be drawn:

- Glycation of collagen I by a non-enzymatic Maillard reaction is hardly controllable
- Epidermal differentiation is altered on glycated dermal equivalent
- Vimentin distribution is altered in glycated 3D dermal models

We gratefully acknowledge the financial support of CTI Project No. 8626.2 PFLS-LS

Note: The text contains a table, which is not transcribed in detail due to its format. The table details AGE formation measurements and fluorescence data, among other aspects of the study. The conclusion highlights important differences in cellular behavior and collagen matrix properties due to glycation and age-related changes.