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ABSTRACT. This paper deals with smooth stable planes which generalize the notion of differ
entiable (affine or projective) planes [7). It is intended to be the first one of a series of papers 
on smooth incidence geometry based on the Habilitationsschrift of the author. It contains the 
basic definitions and results which are needed to build up a foundation for a systematic study of 
smooth planes. We define smooth stable planes, and we prove that point rows and line pencils 
are closed submanifolds of the point set and line set, respectively (Theorem (1.6». Moreover, 
the flag space is a closed submanifold of the product manifold PxI. (Theorem (1.14», and the 
smooth structure on the set P of points and on the set I. of lines is uniquely determined by the 
smooth structure of one single line pencil. In the second section it is shown that for any point 
pEP the tangent space T. P carries the structure of a locally compact affine translation plane 
A., see Theorem (2.5). Dually, we prove in Section 3 that for any line LEI. the tangent space 
TLI. together with the set SL={TLI.plpEL} gives rise to some shear plane. It turned out that 
the translation planes Ap are one of the most important tools in the investigation of smooth 
incidence geometries. The linearization theorems (3.9), (3.11), and (4.4) can be viewed as the 
main results of this paper. In the closing section we investigate some homogeneity properties 
of smooth projective planes. 
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1. Introduction 

The first characterizations of plane geometry date back more than 2300 years, the most 

famous text book on this subject being that of Euclid. The axioms of Euclid essentially 

remained unchanged until M. Pasch published his "Vorlesungen tiber neuere Geometrie" in 

1882. The axioms he used for describing Euclidean geometry introduced the concept of an 

order. In this way he was able to incorporate continuity properties of the Euclidean plane. 

The axioms of Pasch reappeared in David Hilbert's book "Grundlagen der Geometrie", 

published in 1899, and they became well-known to mathematicians. In order to extend 

the axioms of Pasch and Hilbert to other geometries such as the affine plane over the com

plex numbers, the concept of an order has to be replaced by a more general idea, namely 

by that of topology. In 1932 Kolmogoroff was the first who combined projective spaces 

with topological structures. In the mid-fifties, Skornyakov (1954) and Freudenthal (1957) 

published two papers on topological planes, and it was Helmut Salzmann who started the 

systematic investigation of topological plane geometries in 1955. The programme that em

anated from his studies is the classification of homogeneous compact connected projective 
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planes, where homogeneity is most often measured by the dimensions of their collineation 

groups. The progress that Salzmann and his school achieved within the last four decades 

is documented in the recent book Compact Projective Planes [36] that appeared in 1995. 

Although containing almost 700 pages, only part of the theory developed by now has found 

its way into this book. This shows the amount of knowledge that has been obtained in this 

mathematical field, not to mention various other types of topological incidence geometries 

(see the articles of Steinke and Grundhofer-Lowen in [13]). 

In every classical projective plane :P, i.e. the projective plane defined over the real, 

complex, quaternion, or octonion numbers (which we abbreviate by R, C, 1Hl, and 0, 
respectively), the geometric operations are not only continuous but even differentiable. 

Already in 1955 Hellmuth Kneser suggested to study non-Desarguesian smooth planes, 

but until now only a few isolated papers dealt with differentiable incidence structures. 

Considering smooth geometries, we have to specify the degree of differentiability to be 

required. If we regard smooth manifolds as being complex differentiable, then it turns out 

that the only smooth projective plane is the projective plane over the complex numbers. 

This was proved by S. Breitsprecher [6] and L. Kramer [25], see also [36], 75.1. Thus we 

have to use weaker notions of smoothness. The case of real analyticity was also tackled by 

Breitsprecher. For two-dimensional projective planes he proved in [6] that such a plane:P is 

isomorphic to the real projective plane (which, of course, is analytic) if:P can be embedded 

analytically into the complex projective plane :P2c. Up to the present day it is unknown 

whether this additional embedding assumption is necessary or not. In fact, it seems that 

the real analytic case is too hard to handle by now. Hence we will use the words smooth 

and COO-differentiable synonymously. 

Next we are going to give an overview of the existing literature on differentiable 

incidence structurfMl. We have mentioned already the pioneer of smooth geometry, S. 

Breitsprecher, who wrote three papers in the late 60's, [6], [7], [8], on this subject. In 

1972, D. Betten published a paper [2] on differentiable two-dimensional projective planes, 
in which he answered a question of Kneser by showing that the proper Moulton planes 

cannot be turned into smooth projective planes. After a period of 14 years where nothing 

was published about smooth incidence geometry, H. Hiihl and T. Grundhofer wrote two 

papers, [16] and [15], on spherical fibrations which lead to smooth translation planes defined 

over division algebras. The main result of these two papers is that every smooth translation 

plane defined over some division algebra is isomorphic to one of the classical projective 

planes:P. J. Otte generalized this result in 1992 to arbitrary translation planes, see [33] 

and [34]. It is important to note that an analoguous result is false for smooth affine 

translation planes: Otte constructed a large variety of non-classical examples of smooth 

affine translation planes and of smooth projective non-translation planes. The most recent 

results on smooth projective planes are due to 1. Kramer [24]. He showed that the point 

space (and the line space) of a smooth projective plane is homeomorphic to the point space 
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of the classical projective plane of the same dimension. For compact connected projective 

planes in general this is still an open question. 

Since smoothness is a local property, it is convenient to adapt the underlying incidence 

geometry to that local situation. This leads to the concept of a stable plane which is already 

a well-known object of topological geometry. Stable planes originate from Salzmann's 

paper Topological planes [35] and have been studied systematically by R. Lowen and by 

M. Stroppel, see for example [28], [30], [39], and [40]. 

This manuscript is intended to be the first one of a series of papers on smooth incidence 

geometry based on the Habilitationsschrift of the author. It contains most of the basic 

definitions and results which are needed to build up a foundation for a systematic study 

of smooth planes. It turned out that the tangent translation planes are one of the most 

important tools in this investigation, see Theorem (3.5). The linearization theorems (3.9), 

(3.11), and (4.4) can be viewed as the main results of this paper. The author likes to thank 

P. Taylor for his 'lEX macro package that easily allows to typeset commutative diagrams. 

Last but not least I want to thank the referee of this paper for the many valuable remarks 

and suggestions he made. 

2. Definitions and basic results 

(2.1) Definition. A linear space is a triple (P,,c,:3'") of sets P, ,c and 1", where P denotes 

the set of points, f- is the set of lines and ::T ~ P x f- is the set of flags, such that for every 

pair of distinct points p, q there is exactly one joining line L E f-, i.e. (p, L), (q, L) E ::T. If 
(p, L) E 9'", we shall say that p and L are incident, or that p lies on L, or that L passes 

through p. 

An equivalent formulation of this axiom is that the join map V : P x P \ diagp -> f
which assigns to each pair of distinct points its joining line is well-defined. Dually, one can 

speak of the intersection map 1\. Note that in a linear space two lines may not intersect. 

Hence, for a linear space, the operation 1\ need not be defined on the whole set f- x f- \ diag.c,. 

It is convenient to identify each line L of a linear space with the set of points that are 

incident with L, i.e. we identify L with the set {p E P I (p, L) E 9'"}. If we look at a line 

this way, we will frequently call it a point row. Similarly, a pencil f-p of lines is the set of 

all lines that are incident with a given point p. A triangle in a linear space S is a set of 

three (pairwise distinct) points which do not lie on a common line. A quadrangle is a set 
of four points such that any three of them form a triangle. 

(2.2) Definition. A stable plane S is a linear space (P,f-,9'") which satisfies the following 

three axioms: 
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(81) There are Hausdorff topologies on both P and £, that are neither discrete nor 

anti-discrete such that the join map V and the intersection map 1\ are continuous. 
Moreover, the domain ~" of the intersection map is an open subset of £, x £,. 

(82) The topology on P is locally compact and has positive finite covering dimension. 

(83) S contains a quadrangle. 

Note that a projective space of dimension ~ 3 over a locally compact skewfield is not 

a stable plane, because in this case the domain ~" of the intersection map is not open. 

The following theorem summarizes those properties of stable planes which we will need 

later. Proofs can be found in Lowen [28] and [30]. 

(2.3) Theorem. Let S = (P, £', 1") be a stable plane and let pEP, L E £'. 

a) The point row L is a closed subset of the set P of points, the line pencil £'p is 
compact, and the flag space :J is a closed subset of P x £'. 

b) The set £, of lines and the line pencils £'p are connected. 

c) dimL = dim£'p = I = 2k with k = 0,1,2,3, and dimP = dim£' = 21, dim:J = 31, 
where dim denotes the topological covering dimension. The stable plane S is said 

to be 21-dimensional. 

d) dimU = dimX for every open subset U of X E {L,£'p,P,£',:J}. 

(2.4) Definition. A smooth stable plane S is a stable plane (P, £',:J) such that P and £, 

are smooth manifolds and such that the join and intersection maps are smooth on their 

(respective) domains. If, in addition, (P,£',:J) is a projective plane, then S is called a 

smooth projective plane. 

Throughout this paper, let S = (P, £',:J) denote a smooth stable plane of dimension 

21 and let ~" be the open domain of the intersection map 1\. Note that in contrast to 

Breitsprecher [7] we do not require the point rows and the line pencils of S to be closed 
submanifolds of P and £', respectively. As we will see below, this follows already from the 

definition of a smooth stable plane. When speaking of a submanifold, we always mean a 

smoothly embedded manifold. A map f : X -+ Y, where X is a subset of Y, is called a 

retraction onto A ~ Y, if and only if f(X) = A and f 0 f = f. The following criterion for 

a subset of a smooth manifold to be a smoothly embedded submanifold has turned out to 

be very useful. 

(2.5) Lemma. Let N be a subset of a smooth manifold M such that for every point x E N 

there exists a neighborhood base U( x) of x in N consisting of open neighborhoods of finite 

covering dimension n = dimN. The set N is a submanifold of M (i.e., the inclusion map 

N C-...+ M is an embedding), if for every x E N and every neighborhood V of x in M there 

exists an open subset U of x in V and a smooth retraction f : U -+ M onto N n U. 
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Proof. The proof of [101, 5.13, shows that N is a local submanifold of M, i.e. for every 

x E N there is a neighborhood U of x in M such that N n U is a submanifold of M, see also 

Hirsch [171, p. 20, Ex. 2. Thus it only remains to show that all these local submanifolds 

are of uniform dimension. Since, by hypothesis, the covering dimension of N n U is n, we 

infer that N n U is an n-dimensional submanifold, which proves the lemma. 

(2.6) Theorem. Every point row L is a closed submanifold of P and every line pencil £'p 

is a compact submanifold of £'. 

Proof. Fix a line L E £, and some point pEP \ L. By axiom (Sl) of a stable plane, the 

map f : U -+ P : x f-+ (x V p) 1\ L is defined on some open subset U of P which contains 

the point row L. Clearly we have f 0 f = f and thus L = f(U) is a sub manifold of P 
by (2.5) and (2.3), part d). By Theorem (2.3), part a), the submanifold L is closed in P. 

For the dual statement, let L E £'p and choose some line K E £, \ £'p which intersects L. 

Consider the smooth map g : U -+ £'p : M f-t (M 1\ K) V P which is defined on some open 

neighborhood U of Lin £'. Again, we have gog = g, and by (2.5) and (2.3), the line pencil 

£'p is a compact submanifold of £'. 

As an easy consequence, we get the following simple but nevertheless important result 

on perspectivities. 

(2.7) Corollary. For L ELand pEP \ L the perspectivity "'p,L : L -+ Lp : x f-t x V pis 

a diffeomorphism between L and an open subset of L p, and rtL,p : U -+ L : X f-+ X 1\ Lis 

the inverse map ofrtp,L. 

Proof. The map rtp,L : L -+ rtp,L(L) is a smooth bijection defined on the smooth manifold 

L whose inverse map is given by some restriction of T/L,p : U -+ L : X f-t X 1\ L which 

is smooth as well. By (Sl), the domain U is open and contains the image rtp,L(L). Since 

rtp,L( L) = £'p n U, we infer that T/p,L( L) is an open subset of £'p. 

It turns out that the smooth structures on the set £, of lines and on the set P of points 

are uniquely determined by the smooth structures of all line pencils and the geometric 

operations. In order to prove this, we need two preparatory lemmas. For pEP we put 

Vp : P \ {p} -+ £'p : x f-+ x V p and dually we set I\L : elL -+ L : K f-t K 1\ L for some line 

L E £', where elL C £, is the (open) domain of I\L. 

(2.8) Lemma. Let p,q E P be distinct points, set L:= pVq and £,* := £'p \ {L} X£'q \ {L}. 

Then the map Xp,q : P \ L -+ £, * : x f-t (V p( x), V q (x)) is a diffeomorphism onto the open 
subset X:= £,* n ell\ of L*. 

Proof. The set £,* is a submanifold of £, x £, by Corollary (2.6). By definition of a smooth 

stable plane, the map Xp,q is smooth. Since every pair of distinct points determines exactly 
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one line, the map Xp,q is an injection. By definition of the set 0", the image of Xp,q is just 

X. Moreover, its inverse map is given by the restriction of the intersection map /\ to X 
which is smooth, too. 

We will also formulate the dual statement of the previous lemma. However, we omit 

the proof, since it is analogous to the one above. 

(2.9) Lemma. Let K, L E ~ be distinct lines, let p E K \ L, q E L \ K, and set 

M = p V q. Tben tbere is an open neigbborbood UM of M in ~ such tbat tbe map 

I/K,L : UM --+ K xL: X ....... (/\K(X), /\L(X» is a diffeomorpbism onto some open subset 
of K x L. 

(2.10) Corollary. Tbe smootb structures of tbe set P of points and tbe set ~ of lines 
is uniquely determined by tbe smootb structure of one single line pencil ~o and by tbe 

geometric operations of S. 

Proof. Using Corollary (2.7) we can transfer the given smooth structure on the line pencil 

~o to any other line pencil of S. Set K := 0 V U, L := 0 V v, and M := U V v. Since the 

point rows K, L and M are closed subsets of P, the set {P \ K, P \ L, P \ M} is an open 

covering of P, and the smooth structures of its members are determined by the smooth 

structures of the line pencils ~o, ~U, and ~v by Lemma (2.8). Thus, the same is true for 

the smooth structure on P. Let N E~. We may assume that the point U does not lie 

on M . Then the smooth structure on N is given by the map V u : N --+ ~u : n ....... U V n, 

see Corollary (2.7) . Thus, the smooth structure of a line in S is determined by one of 

the given line pencils and by the perspectivity VU . By Lemma (2.9), this implies that the 

smooth structure on ~ only depends on the smooth structure of ~o, because the family 

{UM I M E ~} is an open covering of ~. 

A more detailed result on the link between the smooth structures of the set of points 

and the set of lines which we will prove next, yields that two point rows with a common 

point p intersect transversally in p. Moreover, statement (ii) will play an important role 

in Section 3. 

(2.11) Lemma. Let L 1 , L2 be two lines tbat intersect in some point p, and let qi E Li \ {p} . 
Tben tbere exist open neigbborboods U of p in P and U of Ll in ~ such tbat 

(i) tbe map IP : U --+ U1 xU2 : x ....... «xVq2)/\L1 ,(xVqt}/\L2), wbereUi := UnLi, 
is a diffeomorpbism of U onto U1 X U2, 

(ii) Un L is diffeomorpbic to RI for every line LEU, 

(iii) PL : U1 --+ Un L : x ....... (x V q2) /\ L is a diffeomorpbism for every line LEU. 

Proof. By (Sl), there are neighborhoods Vi of Li in ~qi such that VI x V2 ~ 0". By 

Lemma (2.8), the set VI x V2 is mapped onto some open neighborhood U ~ P of p by 
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the diffeomorphism X-I . The map <p as defined in the Lemma is well-defined (because of 
q"q. 

VI X V2 ~ C>A) and smooth on U. In order to show that <p maps U onto U1 X U2, we only 

have to check that Ui = (U V q3-i) /\ Li holds for i = 1,2. The inclusion "~" is trivial, 

since x = (x V q3-i) /\ Li for x E Ui . Conversely, if we have x = (y V q3-i) /\ Li for some 

y E U, then y V q3-i E V3 - i . Thus, we infer that x E X~~q.(VI x V2) = U, and hence 
x E U n Li = Ui. Since the smooth map 

is the inverse mapping of <p, this shows that <p is a diffeomorphism. 

In order to prove statements (ii) and (iii), we choose V2 to be diffeomorphic to jRl, which is 

possible because £'p is an I-dimensional manifold by Theorem (2.6). By (i) and Corollary 

(2.7), the neighborhood V2 is mapped onto U1 by the diffeomorphism K 1-+ K /\ L 1 • Thus, 
the intersection U1 = LI n U is diffeomorphic to jRl. For any LEVI, the projectivity 

PL : U1 -+ L : x 1-+ (x V q2) /\ L is well-defined and maps U1 onto some open subset U L 

of L. Recall that Vq'/(V2 ) is the set of all those points that lie on some line of V2 . Since 

V.;;I(V2) n LI ~ U and 

V.;;I(V2) n L = PL(Ut} = {(x V qz) /\ L I x E Ud, 

the continuity of the intersection map /\ gives us some neighborhood li' ~ £, of LI such 

that V.;;I(VZ) n L ~ U holds for every line L E li/. Setting li := li' n VI, we conclude that 

for any line L E li. By definition of U we have 

and hence, relation (*) is in fact an equality. This proves (ii) and (iii). 
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In Section 4 we will also need the dual of Lemma (2.11). For convenience we formulate 

the dual statement and sketch a proof. 

(2.12) Lemma. Let PI,P2 E P be two points and set L = PI V P2. Then there exist open 

neighborhoods U of L in £, and U of PI in P, and there exist lines Ki E £'Pi such that 

(i) themap.,p: U -+ UI XU2 : X f-+ ((XI\.K2)VPI,(XI\.KI )Vp2), whereUi := un£'Pi' 
is a diffeomorphism ofU onto UI x U2 , 

(ii) Un £,p is diffeomorphic to ]RI for every point P E U, 

(iii) Pp : UI -+ un £,p : X f-+ (X I\. K 2 ) V P is a diffeomorphism for every point pEP. 

7""=- '\. __ ...... _. __ . __ . ~-.~.--
! Pl \ L 

Sketch of proof. Choose lines Ki E £'Pi \ {L}. By Lemma (2.9), there are disjoint open 

neighborhoods Vi of Pi in Ki such that the product VI X V2 is mapped onto some open 

neighborhood U ~ £, of L by the diffeomorphism vi(~,K2' The map.,p defined in the lemma 

is well-defined by the very definition of U and is smooth on U. Now we can argue as in 

the proof of Lemma (2.11) in order to show that t.p is a diffeomorphism. This proves (i). 
Now choose V2 to be diffeomorphic to ]RI by using Lemma (2.6). By (i) and Corollary 

(2.7), the projectivity x f-+ x V PI : V2 -+ UI is a diffeomorphism, whence UI ~ ]RI. Choose 

an open neighborhood U ~ P of PI which is disjoint to V2. Then, for each point P E U 
the projectivity Pp : UI -+ £,p : X f-+ (X I\. K 2 ) V P is defined. Since the join map V is 

continuous, we may select U in such a way that 1\.i(!(V2 ) n £,p <;;; U holds for every P E U. 

Now we proceed as in Lemma (2.11) in order to prove (ii) and (iii). 

(2.13) Corollary. If two lines of S intersect, they intersect transversally, i.e. if K, L E £, 

with P = K I\. L, then there is a coordinate neighborhood (U, h) at P such that h(U n K) = 
]RI X {O} and h(U n L) = {O} X ]RI. Dually, any two line pencils intersect transversally in 

£,. 

(2.14) Theorem. The flag space :J of a smooth stable plane S is a closed submanifold of 

the product manifold P x £,. 
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Proof. Let (p, L) E :r and select some point 0 E P \ L. By (S 1), there are open neighbor

hoods U of p and V of L such that {x V 0 I x E U} X V ~ 0". Then the map 

f: U X V --+:r: (q,K) t-+ «q Vo) 1\ K,K) 

is well-defined and smooth. Moreover, we have f 0 f = f, since (q V 0) 1\ K = q if 

(q, K) E :rn (U x V). Thus, by Lemma (2.5) and Theorem (2.3), part d), the flag space:r 

is a submanifold of P x f. which is closed by Theorem (2.3), part a). 

The restrictions 7rp and 7rt:. of the natural projections P x f. --+ P and P x f. --+ f. are 

submersions: for a given flag (p, L) choose some point q =f p on L and let U be an open 

neighborhood of pin P that does not contain q. Putting t : U --+ :r: x t-+ (x, X V q), we 

have 7rp 0 t = idu which shows that 7rp has maximal rank 21 at (p, L). In particular, the 

fibre 7r.c:1(L) is a submanifold of:r and the restriction 7rL := 7rpl7r.c:l(L) is a submersion. 

Because 7rL is a smooth injection between two I-dimensional manifolds, the inverse function 

theorem yields that 7rL : 7r.c:1(L) --+ L C P is a homeomorphism and consequently we have 

the following result. 

(2.15) Corollary. For every line L E f. the restriction 7rpl7r.c:l(L) is a diffeomorphism 

between the fibre 7r.c:1(L) and the point row L. 

Analogously, the dual statement holds: 

(2.16) Corollary. For every point q E P the restriction 7rt:. l7rpl(q) is a diffeomorphism 

of the fibre 7rp1(q) onto the line pencil f. q . 

3. Tangent translation planes 

Let S = (P, f.,:r) be a smooth stable plane of dimension 21. In this chapter we 

introduce the fundamental concept of a tangent translation plane of the smooth stable plane 

S. As the name suggests, a tangent translation plane lives on some tangent space T pP. As 

a main result we prove that the collection Sp = {T pL I L E f.p } of vector subspaces of T pP 

constitutes a locally compact translation plane Ap on TpP. These translation planes will 

prove to be one of our most important tools in the investigation of smooth stable planes. 

Let us first consider the tangent bundles (TP,P,Tp), (Tf.,.c"Tt:.), and (T:r,:r,T:7). 

Since the canonical projection 7rt:. : :r --+ f. is a submersion (see the and of the last 
section), the pullback 

7rL(Tf.):= {(f,v) E:r X Tf.I7rt:.(f) = Tt:.(V)} 
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with respect to the diagram 

7r.c 
~ ----+. L 

defines a vector bundle (7r,UT L), ~, T~) with T~ (j, v) = f, see Husemoller [18], Chap. 3, 

Prop. 3.1. Moreover, we have the commutative diagram 

D7rp D7r.c 
TP .... ------"--- T~ ------. TL 

Tp 

where 7r~(j,v) = v and 7r~(v) = (T!T(v),D7r.c(v». The triangles on the left hand side of 
the diagram will be explained below. For a fixed flag f = (p, L) E ~ we have 

Since 7r.c is a submersion, the differential D7r.c maps every fibre T f~ of T!T onto some 

fibre TLL of T.c. Hence, by relation (*), we infer that 7r~ maps Tf~ onto {f} x TLL. 
Consequently, the triple (X,~,TX)' where X = ker7r~ = {v E T~I7r~(v) E ~ x {O}} = 
{v E T~I D7r.c(v) = O} and TX = T!Tlx' is a vector sub bundle of (T~,~,T!T)' see Huse
moller [18J, Chap. 3, Cor. 8.4. The kernel X consists exactly of those tangent vectors of 
T~ which are tangent to some fibre of 7r.c. Later on we will see that the set X minus the 

zero section is mapped by D7r p bijectively onto T P minus the zero section. 

Before we proceed, we have to interpose a few facts on (topological) vector bundles. 

Let ~ = (E,B,7r) be an n-dimensional vector bundle. We write E(OX = EX for the total 

space of ~ with the zero section removed. It is possible to define on EX an equivalence 

relation '" by calling two vectors vI, Vz E EX equivalent, if and only if they lie in a 

common fibre of 7r and span the same one-dimensional subspace there. We write PE for 

the quotient space EX / "'. Let 7r' : EX -T PE be the canonical projection. Then the 

bundle Pe = (PE, B, 7f), where 7f is given by the relation 7r = (7f 0 7r') I EX, is called the 
projective bundle associated to ~ (see [18J, Chap. 16, (2.1)). Providing PE with the quotient 
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topology, the fibres of 'if are compact. Thus, the total space PE is compact if and only 

if the base space B is compact, cf. Breuning [9], §4, Lemma 2. If 6 = (El ,Bl ,7rt) and 

6 = (E2 , B2 , 7r2) are vector bundles, then every bundle morphism 9 : 6 -+ e2 induces a 

bundle morphism 9 between the projective bundles Pel and Pe2, since 9 is linear on every 

fibre of 7rl. We need the following lemma on vector bundles. 

(3.1) Lemma. Let ei = (Ei,Bi,7ri), (i = 1,2) be two vector bundles, where the base 

spaces Bi are (topological) manifolds and dimEl = dimE2 = n. If 9 : 6 -+ e2 is a bundle 
morphism such that gX := glE X is injective, then the mapping gX : E: -+ E; is an open 

1 
map. If, in addition, Bl is compact and B2 is connected, then gX is a homeomorphism. 

Proof. Passing to the projective bundles Pei associated to ei, we obtain an injective bundle 

morphism 9 : Pel -+ Pe2. By invariance of domain (see Bredon [5], Chap. IV, (19.9», 
the maps 9 and gX are open (note that the total spaces Ei are topological manifolds as 

well). According to the remark above, the total space PEl is a compact (n -1 )-dimensional 

topological manifold, and PE2 is a connected manifold of the same dimension. Because 

the restriction 9 x is an injection, the induced map 9 is injective on PEl. If PEl is compact 

and PE2 is connected, we infer that 9 maps PEl onto PE2 • In order to show that 9 x is 

surjective, let V2 E E; and denote by V2 the one-dimensional subspace of E2 with V2 E V2. 

Since 9 is a surjection, there is an element VI E PEl with g( VI) = V2. By linearity, the 

map 9 is a surjection, too. 

For the rest of this section, fix some point pEP, and set 23 := 7r p1 (p) = {p} x £'p, 

9 := 7rZl (£,p), and X13 = XI13. Via restriction, we obtain from the last diagram 

T,P ~D'P ),)"123 

rp X13 T'J 

~ 
{p} • trp 13 

where T13 = T'Jlx13. Using the terminology of Husemoller [18], the next lemma states that 

'19 is an effective Gauss map of the vector bundle (X13 , 13, T13) into TpP, cf. [18], Chap. 3, 
§5 and [9], §3, p. 22. 

(3.2) Lemma. The restriction ax := D7rpl(X13)X : (X13)X -+ TpP \ {O} is a smooth 

homeomorphism with aX(Til(p,L) \ {O}) = TpL \ {O} for every line L E Lp. 

Proof. Being the restriction of a smooth map to a submanifold of T:t, the map ax IS 

smooth. 
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1) In order to show that {}X is injective, let VI,V2 E (X:a)X with {}X(VI) = {}X(V2). 
Since two distinct point rows through p intersect transversally by Corollary (2.13), and 

since VI,V2 =f 0, there is a flag (p,L) E:J such that VI,V2 E T(p,L):J. By Corollary (2.15), 

the fibre 7r.c:I(L) is mapped by 7rp onto the point row L C P. Hence, the tangent fibre 

D7r.c:I(TvC) is mapped injectively into TP by D7rp. From T(p,L):J ~ D7r.c:I(TL.c) and 

D7rp(vd = {}X(vd = {}X(V2) = D7rP(V2), we conclude that VI = V2. 

2) The vector bundles (TpP, {p} ,rplT p) and (X:a, 13,r:a) have compact connected 
p 

manifolds as bases and dimTpP = 21 = 1 + 1 = dim 13 + dimril(b) = dimX:a holds for 

every bE 13. By part 1), the map {} is a bundle morphism such that {}X is an injection. 

Thus, the map {}X is a homeomorphism by Lemma (3.1). 

3) Since {}X is a bijection by 2) which is linear on the fibres of r:a and because of 

dimIR ril(p, L) = dimIR T pL, it suffices to show that {}X( ril(p, L) \ {O}) ~ T pL \ {OJ holds 

for every line L E .cp. Let (p, L) E 13 and select a vector v E ril(p, L) \ {OJ. By definition 

of X:a, the vector v is tangent to the fibre 7r.c:I(L). Since this fibre is mapped into P by the 

diffeomorphism 7rpl7r.c:I(L)' the image of v under the map D7rp lies in the tangent space 

TpL \ {OJ. This completes the proof of the Lemma. 

We call the Gauss map {}p = {}X the characteristic map of S at the point p, and we 

refer to the restriction D7rplx as the (global) characteristic map of S. 

(3.3) Definition. Let V be a real vector space of dimension 2m. A family X of m

dimensional subspaces of V is called a spread in V, if and only if the properties 

(i) UX = V, 
(ii) Xl Ell X 2 = V for every pair of distinct elements XI ,X2 of X 

are satisfied. 

Every point row L E .cp is a closed submanifold of P by Theorem (2.6) and their 

tangent spaces TpL at p are I-dimensional subspaces of TpP. Since two distinct lines 

K, L of .cp are transversal by Corollary (2.13), the tangent space T pP decomposes as 

TpP = TpK Ef) TpL. We call Sp := {TpL I L E .cp} the tangent spread of S at p. By 

Lemma (3.2) and the remark preceeding it, we get USp = TpP, and thus we have indeed: 

(3.4) Proposition. The set Sp is a spread in TpP. 

Every spread of a vector space V defines an (affine) translation plane, see Andre [1] 

or Bruck/Bose [11]. Thus, Proposition (3.4) shows that the tangent space TpP is an affine 

translation plane Ap which is defined by the spread Sp. In fact, we will even prove the 

following theorem. 
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(3.5) Theorem. The tangent translation planes Ap of a smooth stable plane S are locally 

compact connected topological afIine translation planes. 

Since every locally compact connected affine translation plane is coordinatized by a 

locally compact connected ternary field (see [36J, 7.15, 71.6, or [14], 4.2), the theorem 

above yields the following result (compare also Lowen [31]). 

(3.6) Corollary. The projective closures Pp of the tangent planes Ap are compact con

nected projective translation planes. 

We will base the proof of Theorem (3.5) on the first Linearization Theorem (3.9). 

Recall that (91\ is the domain of the intersection map A. 

(3.7) Lemma. The inverse image 9 = 7l'Zl(.Cp ) is a submanifold of '3". 

Proof. By Theorem (2.6), the line pencil £"p is a submanifold of £", and thus P x £"p is a 

submanifold of P x £". Since 9 ~ P x £"p, it suffices to show that 9 is a sub manifold of 

P x £"p. In order to verify this, we will again utilize Lemma (2.5). Let (q, L) E P x £"p. 

Choose some point 0 E P\L and let U and V be connected open neighborhoods of q and L, 

respectively, such that {x Vol x E U} x V ~ (91\ holds. Considering as in Theorem (2.14) 

the smooth retraction 

f: U x V -t P X £"p: (r,K) f--ot ((r Vo) A K,K) 

onto 9 n (U x V), we conclude that 9 n (U x V) is a submanifold of U x V. Since 9 \ 'B is 

diffeomorphic to P \ {p} via the projection (r, K) f--ot r, we infer by Theorem (2.3), part d) 

that all these local submanifolds 9 n (U x V) are of uniform dimension. Hence, by Lemma 
(2.5) we infer that 9 is a submanifold of P x £"p' 

In the next corollary we use the notion of a (smooth) microbundle, cpo Milnor, [32J 
and the book of Kirby and Siebenmann [20J, Essay IV, §l. 

(3.8) Definition. A quadruple (M, N, K, t) is called a smooth n-microbundle, if M and 

N are smooth manifolds and K : M -t Nand t : N -t M are smooth maps such that the 

following axioms are satisfied: 

(i) KOt=:D.N , 

(ii) For any x E N there are open neighborhoods U of x and V of t(x) such that 

t(U) ~ V, K(V) ~ U and the diagram above commutes for some homeomorphism 
h: V -t U x IRn 

U • U x IR n 

Uf--ot(u,O) 
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(3.9) Corollary. The quadruple (9,13, K, t), where t : 13 '---+ 9 is the inclusion map and 

K : 9 -+ 13 : (q, L) r-+ (p, L), is a smooth I-dimensional microbundle. 

Proof. Clearly, we have K 0 t = 1'13. Let (p, L) E 13 and choose some line L' E ,cp \ {L}. 
Select neighborhoods U ~ P of p and U ~ ,c of L according to Lemma (2.11). The set 

V := {p} X (U n .cp ) is an open neighborhood of (p, L) in 13 and W := (U xU) n 9 is an 

open neighborhood of (p, L) in 9. The map 

h : V x (U n L) -+ W n K-1(V) : ((p, K), q) r-+ ((q V q') 1\ K, K), 

where q' E L' corresponds to q2 in Lemma (2.11), is a diffeomorphism by Lemma (2.11)(iii). 

It satisfies the relations 

K 0 h((p, K), q) = K((q V q') 1\ K, K) = (p, K) 

and 

h((p,K),p) = (p,K). 

Since Un L is diffeomorphic to JR I by Lemma (2.11 )(ii), this shows that h is a smooth local 

trivialization of (9,13, K) and hence (9,13, K, t) is a smooth microbundle. 

By the Kister-Mazur theorem (see Kister [21], Kuiper/Lashof [23], and Siebenmann/ 

Guillou/Hilil [37]), there is an open neighborhood W of 13 in 9 such that ~ = (W, 13, Klw) 
is a locally trivialJRI-bundle with zero section t and structure group Diffo(JRI) consisting of 

all origin-preserving diffeomorphisms of JRI. Since OIJR is a deformation retract of Diff(JRI) 
(see Stewart [38]), we may reduce the structure group of e to O/JR. In this way, the 
bundle ~ becomes a smooth I-dimensional vector bundle. Moreover, we have dim 9 = 
dim 13 + dimJR/ = 21, and thus the set W is a tubular neighborhood of 13 (Kosinski [22], 
III, (2.4)). Since any two tubular neighborhoods of 13 in 9 are isomorphic, the bundle ~ is 
isomorphic to the normal bundle 1/13 of 13 in 9, see [22], (3.2) and (2.3). We will denote this 
isomorphism by 131' Note that ~ and 1/13 are isomorphic smooth vector bundles, hence 131 
induces a diffeomorphism between their total spaces, cpo [22], p.48, Ex. Providing 9 with 

a Riemannian metric, we may represent 1/13 as the orthogonal bundle to T13 in T9113' The 

restriction 1fJ:., 113 : 13 -+ ,c is an embedding and thus D1fJ:., IT13 : T13 -+ T,c is an injection. 
Recalling that X = {v E T:fl D1fr.,(v) = O}, we thus have T(p,L)13nX(p,L) = {O} for every 

line L E ,cpo In particular, no vector of X(p,L) is orthogonal to l/(p,L)13. Since both 1/13 

and X'13 are I-dimensional vector bundles over 13, orthogonal projection in each fibre gives 

rise to a bundle isomorphism /32 between 1/13 and X'13. According to Lemma (3.2), the 

composition 



314 BOdi 

is a smooth homeomorphism. The following two theorems are the main result of this 

section. They state that a smooth stable plane can be linearized in some neighborhood of 

each point. 

(3.10) First Linearization Theorem. There exists an open neighborhood U of pin P 

and a smooth homeomorphism).. : U\ {p} -+ TpP\ {O} such that )..(LnU\ {p}) = TpL\ {O} 
holds for every line L E £'p. 

Proof. Since the projection pr 1 : 9 \ 13 -+ P \ {p} : (q, L) f-+ q is a smooth homeomorphism 

and because W is an open neighborhood of 13 in 9, the set U := pr1 (W) is an open 

neighborhood of pin P. Moreover, the map 0: : U \ {p} -+ W \ 13 : q f-+ (q,p V q) is a 

smooth bijection having pr1 as a smooth inverse map. Hence, the composition).. := f3 00: : 

U \ {p} -+ TpP \ {O} is a smooth homeomorphism, too. For every line L E £'p we have 

0:( L n U \ {p}) = (( L n U) \ {p}) x {L} and the composition f32 0 f31 maps the latter set 

one-to-one onto T;l(p, L) \ {O}. Hence, we have )"(L n U \ {p}) = T pL \ {O} according to 

Lemma (3.2). 

Remark. The smooth homeomorphism).. we constructed can be regarded as the inverse 

map of some special exponential map which maps the tangent spaces of point rows L 

through pinto L. This is quite similar to the situation for symmetric planes, see Lowen, 

[29]. 

(3.11) Lemma. Let h be a homeomorphism of R := lRn \ {O} onto itself, where n ~ 2, 
and let S := R U {O} U {oo} ~ §n be the two-point compactification of R. Then the map 
h can be extended to a homeomorphism H : S -+ S. 

Proof. Let L1 ~ R be an (n-l)-sphere. Then L2 := h(L1) is an (n-l)-sphere too. By the 

generalized Jordan curve theorem (see Bredon [5], Chap. IV, §19, e.g.) the complements 

S \ Lj consist of exactly two connected components K i, Li, where we may assume that 

o E K j • Since n ~ 2, the sets Ki := K j \ {O} and L'; := Li \ {oo} are the connected 

components of R. Thus we have h( Ki), h( Li) E {K2', L~}. Suppose that h( Ki) = L2. 
Extending the map h by H(O) = 00 and H( 00) = 0 to S, it remains to show that H : S -+ S 

is continuous at the points 0 and 00. Choose a sequence (Xn)nEN in S that converges to 

O. Since n-spheres are locally connected, we may assume that this sequence lies in K 1 . 

The sequence (h(Xn))nEN is thus contained in the compact set L2 U L2. In particular, 

the sequence (h(xn))nEN has an accumulation point in L2 U [2. Since h : R -+ R is a 

homeomorphism, every accumulation point of the sequence above must be 00. Hence, the 

map H is continuous at the point O. Analoguously, one proves that H is continuous at 00 

and that H- 1 is continuous. For the case h(Ki) = K2', the proof runs as before. 

From Theorem (3.10) and the previous lemma we immediately get the second Linear
ization Theorem. 
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(3.12) Second Linearization Theorem. There exists an open neighborhood U of pin 

P and a homeomorphism A : U -+ TpP such that A(L n U) = TpL holds for every line 

L E £'p. 

Proof. By Lemma (3.11) we can extend the homeomorphism A : U \ {p} -+ TpP \ {OJ to 

some homeomorphism :x- : U U {oo} -+ T pP U {oo}. If :X-(p) = 00, we take a rotation '-P of 

the I-sphere T pP U {oo} which interchanges the points 0 and 00. Otherwise we take the 

identity for '-P. Then the composition '-P 0 :x- obviously satisfies the assertion of the theorem. 

In order to prove Theorem (3.5), we have to check that the tangential spread Sp is 

compact with respect to the Grassmann topology, see Lowen [31] and [36], 64.4d. 

(3.13) Corollary. The tangent spread Sp is a compact subset of the Grassmann manifold 

Gl(]R21). 

Proof. Let (T pLII )IIEN be a sequence of spread elements of Sp converging to an i-dimensional 

vector subspace V of ]R21. We have to show that V ESp. Let q E V \ {OJ. There are 

vectors qll E TpLII \ {OJ such that the sequence (qll)IIEN converges to q in ]R21. By Theorem 

(3.10), the sequence A-1(qll) ~ U \ {p} converges to A-1(q), and hence A-1(qv) V P = Lv 

converges to L := A-1(q) V pin £'. Thus we have 

q = A(A-l(q)) E A(L n U \ {p}) = TpL \ {OJ 

and we conclude that V is contained in TpL \ {OJ. Since both subspaces V and TpL have 

the same dimension I, the claim follows. 

(3.14) Corollary. For every point pEP the map u : £'p -+ Sp : L t-t T pL IS a 

homeomorphism. 

Proof. Clearly, the map u is a bijection. For q E TpP \ {OJ we denote by Sq the unique 

spread element of Sp that contains q. Since the affine tangent plane Ap is a topological 

plane by (3.5), the join map T : TpP\ {OJ -+ Sp : q t-t Sq is a continuous surjection. Hence, 

the composition u 0 V p = TO A is continuous on U \ {p}. Since V p is an identification map, 

we conclude that u is continuous, too. Because the line pencil £'p is compact, the map u 

is in fact a homeomorphism. 

4. Tangent shear planes 

In the case of a smooth projective plane the results of the preceeding section can 

canonically be dualized in order to get a tangent translation plane on the tangent space 

TL£' of any line L E £'. For a smooth stable plane S, however, the set SL := {T L£'p I PEL}, 
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where L is some line of S, may fail to satisfy condition (i) of Definition (3.3). Nevertheless, 

the set SL still satisfies property (ii) of Definition (3.3) . Such a set is called a partial spread, 

cf. Lowe [27), (2.2). H. Lowe has shown that each partial spread which is a I-dimensional 

(topological) submanifold of the Grassmannian G,(]R21) gives rise to a stable plane. Such 

stable planes which turn out to be shear planes can be regarded as a generalization of 

translation planes. The following definition shows why. 

(4.1) Definition. Let S = (P,.c,:J) be a stable plane. A subgroup r of Aut(S) is called 

quasi-perspective or straight, if every orbit of r is contained in some point row of S. The 

stable plane S is called a shear plane if there exists a quasi-perspective closed subgroup 
r ~ ]R21 that acts on P without fixed points. 

Note that for an affine translation plane the subgroup r is the translation group. 

Other examples of affine shear planes are the so-called shift planes, where r possesses a 

subgroup T ~ ]Rl of translations with common axis (= line at infinity) and common center, 

see [36], §74. 
In this section we shall show that for each line L the set SL := {TL.cp I pEL} 

defines a shear plane. We start by briefly describing how shear planes can be con

structed out of partial spreads, cf. Lowe, [27), Section 3. Let H be some hyperplane 

of ]R21+I and let X ~ G,(H) be a partial spread which is an I-dimensional (topological) 

submanifold of G,(H) with respect to the induced topology. We shall call such a par

tial spread proper. Then a stable plane S = (P,.c,:J) is defined as follows. Take P = 

{p E GI+I(1R21+1 ) I p n HEX} with the induced topology, set L = Xu G1 (1R 21+I) \ G 1 (H) 
and define :J = {(p, L) E P x .c I L ~ p} . By a theorem of Lowe ([27), Theorem 1) the 

incidence structure S is a shear plane with group r = ha I a E H} , where fa is the linear 

map which fixes H pointwise and maps some fixed vector e fj. H to e + a . So what we 

have to prove is that S L is a proper partial spread. In order to do this, we shall generalize 

the results of the last section. For a start we consider the double square diagram at the 
beginning of the Section 3 with the roles of.c and P interchanged. We denote the resulting 

diagram by (D). Fixing some line L E.c and setting 13 := 7rZ 1(L) = {L} xL, e := 7rpl(L), 
and X~ = XI 13 , we get from diagram (D) 

TLL~D«yT9'I21 

T.c, X~ T'J 

~ 
{L} . 7r.c, 13 

where T~ = T'J Ix~. As in Section 3, it turns out that the map {) is an injection; for the 

proof use corollaries (2.13) and (2.16). Moreover, the vector bundles (TL.c, {L}, T.c, ITL.c) 
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and (X'B'~' T'B) both have 2/-dimensional manifolds as total spaces. Applying Lemma 

(3.1) to {) we get that {)X := Dl!'.c, I(X'B)x : (X'B)X ---+ TL.c \ {O} is a smooth topological 

embedding. For (p, L) E ~ any non-zero vector VET;; 1 (p, L) is tangent to the fibre 

T;;I(.cp ) by definition of X'B' Since this fibre is mapped into .c by the projection 1!'.c, 
(Corollary (2.16)), we have {)X(T;;l(p,L) \ {O}) ~ TL.c p \ {O} for every point pEL. In 

fact, equality holds, for {) is a linear bijection and dimIR T;;l(p, L) = dimIR TL.cp • Thus we 

have proved the following lemma. 

(4.2) Lemma. The restriction {)X := Dl!'.c, I(X'B)x : (X'B)X ---+ TL.c \ {O} is a smooth 

topological embedding with {)X(T;I(p,L) \ {O}) = TL.cp \ {O} for every point pEL. 

Using Lemma (2.12) instead of Lemma (2.11), we get as in Section 3: 

(4.3) Proposition. The inverse image f, := l!';;I(L) is a submanifold of:1. The quadruple 

(f" ~,p, £), where £ : ~ '-t f, is the inclusion map and p : f, ---+ ~ : (p, K) 1--+ (p, L), is a 

smooth I-dimensional microbundle. 

There is an open neighborhood W of ~ in f, such that ~ = (W, ~,plw) is a locally 

trivial bundle and we obtain a smooth topological embedding 

where,B~ and ,B~ are diffeomorphisms. Using this result we can prove a similar linearization 

theorem as in the last section. 

(4.4) Third Linearization Theorem. There exists an open neighborhood U of Lin.c 

and a smooth topological embedding )'" : U \ {L} ---+ T L.c \ {O} such that )..(.cp n U \ {L } ) = 

TL.cp \ {O} holds for every point pEL. 

Now we are going to prove that the partial spread SL defines a shear plane. 

(4.5) Corollary. For every line L E .c the map (7' : L ---+ SL : p 1--+ TL.cp is a topological 

embedding, where SL is taken with the induced topology of the Grassmannian G1(T L.c), 

and the incidence structure :P(S£) is a shear plane. 

Proof. Since line pencils meet transversally in.c by Corollary (2.13), the map (7' is injective. 

Let (.cpJ be a sequence of line pencils with (Pn) ~ L converging to some point pEL. 

Since G1(T L.c) is compact, we may assume that T L.cpn converges to some vector space 

V E Gl(TLL). Let)..' : U \ {L} ---+ TL.c \ {O} be the map of Theorem (4.4). Fix some line 

K E U through p and select a sequence (Kn) ~ U of lines through Pn which converges to 

K in.c. Then )..'(Kn) E TL.cpn converges to )"'(K) E TL.c p. Thus we have )..'(K) E V 
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for every KELp. From T LLp ~ V and dim T LLp = dim V we conclude that T LLp 
and V coincide. Hence, the map a' is continuous. Conversely, let (T LLPn) be a sequence 

in GI(TLL) that converges to TLLp. Select some non-zero vector W E TL.cp as well as 

a sequence (wn) of elements Wn E TL.c pn \ {O} that converges to w. Then .>..'-I(wn) 
converges to .>..'-I(w) E U ~ L. Since .>..'-I(wn) E LPn and .>..'-I(w) E Lp by Theorem 

(4.4), the continuity of the intersection map implies that Pn = .>..'-1 (Wn ) 1\ L converges to 

.>..'-I(w) 1\ L = pin L ~ P. Now the second claim follows from Lowe, [27], Theorem 1. 

5. Homogeneity of smooth projective planes 

In our last section we shall prove some homogeneity properties of a smooth projective 

plane:P = (P,L,~). Let n = dimP = 21. We start by showing that any two point rows 

are embedded equivalently into the point space P. More precisely, we have the following 

lemma. 

(5.1) Lemma. Let Lo and Ll be two point rows of:P. Then there is a diffeotopy 
F: P X [0,1] -+ P with Fo = idp and Fl(Lo) = L1 • 

Proof. Let p = Lo 1\ L 1 • The line pencil .cp is a smooth manifold homeomorphic to the 

i-sphere ([4], (4.4)). Hence there is a smooth path, : [0,1] -+ .cp from Lo to Ll with 

,([0,1]) =1= Lp. Choose a point q E P which is not incident with a line of ,([0,1]). Consider 
the isotopy 

I: Lo x [0,1]-+ P: (x, t) f-+ (x V q) 1\ ,(t). 

Clearly, 10 is the identity on Lo, h (Lo) = L11 and every map It is an embedding, since 
every point row of:P is a compact submanifold of P by Theorem (2.6). By the isotopy 

extension theorem (see e.g. Hirsch, [17], §8), the isotopy I can be extended to a diffeotopy 
F on P with Fo = idp. This proves the lemma. 

Of course, the dual statement of Lemma (5.1) is also true, i.e. in L any two line 

pencils are embedded equivalently. From now on we shall always omit the formulations 

(and the proofs) of the dual statements. 

(5.2) Lemma. For any point row L and every point p not on L the bundle ep,L = 
(P \ {p} , L, I\L 0 V p) is a smooth locally triviallR I-bundle with zero section l : L '-+ P \ {p}. 

Proof The map 7r = I\L 0 V p is smooth. The fibres of 7r are the point rows through p 
minus the point p itself. Thus, the fibres of 7r are diffeomorphic to JR. I , see [4], (4.4). Using 

Lemma (2.11) it is easy to see that ep,L is locally trivial, cpo the proof of Corollary (3.9). 

Since 7r is the identity on L, the inclusion map l : L '-+ P \ {p} is a smooth zero section of 

ep,L. 
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Reducing the structure group of ep,L from Diffo(lRl) to GLIIR (see Stewart [38]), the 

IR I-bundle ep,L becomes a vector bundle with zero section t : L '-+ P \ {p}, i.e. ep,L is a 
tubular neighborhood of Lin P. Hence we get the following corollary. 

(5.3) Corollary. For every line L and every point P not on L the bundle ep,L is isomorphic 

to the normal bundle vL of Lin P. 

Together with Lemma (5.1) this corollary gives 

(5.4) Corollary. Any two bundles ep,L and eq,K are isomorphic as smooth vector bundles. 

Proof. According to Corollary (5.3) we have ep,L ~ ex,L for any point x E P \ L. Choosing 

x E P \ (K U L) we get ep,L ~ ex,L ~ ex,K ~ eq,K, where the isomorphism in the middle 

is due to Lemma (5.1). 

Buchanan, Hiihl, and Lowen ([12], (1.3)) proved that the point space Q of a compact 

connected projective plane is n-homogeneous, i.e. for any two sets A and B of n distinct 

points and for any bijection <p : A -t B there is a homeomorphism <I> : Q -t Q with 

<I> I A = <po The next corollary is in the same spirit as this result. 

(5.5) Corollary. For any two points p, q E P and any line L E L not passing through 
one of the points p and q there is a homeomorphism <I> : P -t P such that <I>(K) E Lq for 

every line KELp. Moreover, the map <I> fixes every point on L and is isotopic rel L to 

the identity. 

Proof. By Corollary (5.4) and (5.3) and the fact that any two tubular neighborhoods 
are isotopic, the total spaces of the bundles ~p,L and ~q,L are thus isotopic reI L. This 
isotopy can be extended to all of P in order to give an isotopy F : P x [0,1] -t P of 

homeomorphisms Ft. Clearly, the homeomorphism <I> = FI has the desired properties. 

The dual of Lemma (5.1) showed that any two line pencils of P are embedded equi

valently in L. A slight modification of the proof of this lemma shows that this is also true 

for the subsets 9'"p := Lp x {p} = 7rpI(p) of the flag space 9'". More precisely, we have 

(5.6) Lemma. For any two points Po and PI ofP there is a diffeotopy F : 9'" x [0,1] -t 9'" 

with Fo = id!J and FI (9'"po) = 9'"Pl· 

Now choose two points p and q in P and fix some line L with p, q ¢ L. Since the affine 

point set A:= P \ L is diffeomorphic to IRn (cp. [4], (4.4», there is a smooth path I in A 
connecting p with q. Let w denote the antipodal mapping of L ~ SI. It is not clear whether 

or not the point rows (or the line pencils) are diffeomorphic to standard spheres, although 
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smooth I-spheres are always standard if I = 1,2,3,5,6. It is an open problem whether 

there are exotic structures on the 4-sphere. In the case I = 8, Kervaire and Milnor, [19], 
proved that there is exactly one exotic 8-sphere. Unfortunately, the antipodal map (as well 

as any other fixed-point free map on the 8-sphere) is not smooth on the exotic 8-sphere, 

see the book of Lopez de Medrano, [26]. For the following construction, however, we shall 

need a fixed point free diffeomorphism 0: of the point row L. Thus we have to assume that 

L is diffeomorphic to the standard sphere S/. For x E P put Ux := 7rZ 1 (,c,x). The mapping 

'P : Up x [0,1] --+ :r: (x, K, t) ~ «x V (K 1\ LY') 1\ «K 1\ L) V 'Y(t)), (K 1\ L) V 'Y(t)) 

is an isotopy of embeddings with 'Po = idup and 'P1(Up ) = Uq • According to Lemma (3.7) 
the sets Ux are submanifolds of:r which are closed and thus they are compact. Hence the 

isotopy extension theorem (see [17], §8, (1.3)) yields the following proposition. 

(5.7) Proposition. For any two points p, q E P and any line L E £, not passing tbrougb 
one of tbe points p and q tbere is a diffeotopy <I> rel 7rZ 1 (L) of:r witb <1>0 = id:]" and 

<l>l(Up ) = Uq . 

Since pointed lines are diffeomorphic to JR /, the set Up \ {(x, x V p) I x E L} can be 

regarded as a smooth JR/-bundle ~p = (Up \ {(x,x V p) I x E L}, {p} x£'p,(x,K) ~ (p,K)). 
The map <1>1 is a diffeomorphism between the total spaces E(~p) and E(~q). Moreover, the 

map <1>1 maps fibres of ~p onto fibres of ~q. However, the base space of ~p is not mapped 
onto the base space of ~q. Nevertheless, the image <1>1 ( {p} x .cp ) is a smooth section of 
~q and hence is diffeotopic via some isotopy {) to the zero section ~ : {q} X £'q '-> E( ~q). 
The composition of <1>1 with the diffeomorphism {)1 gives a diffeomorphism \II between the 

total spaces of ~p and ~q which preserves the fibres and the zero sections. Reducing the 
structure group to GL/JR we get 

(5.8) Theorem. For any two points p, q E P and any line L E £, not passing tbrougb one 

of tbe points p and q tbe bundles ~p and ~q are isomorpbic smootb vector bundles. 
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