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Abstract. Smooth projective planes are projective planes defined on smooth manifolds (i.e. the set
of points and the set of lines are smooth manifolds) such that the geometric operations of join and
intersection are smooth. A systematic study of such planes and of their collineation groups can be
found in previous works of the author. We prove in this paper that a 16-dimensional smooth projective
plane which admits a collineation group of dimensibk 39 is isomorphic to the octonion projective
plane #>0. For topological compact projective planes this is trud i= 41. Note that there are
nonclassical topological planes with a collineation group of dimension 40.
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1. Introduction

The theory of compact projective planes is presented in the recent book of Salz-
mann et al. [29]. A main theme of this theory is the classificatiosudficiently
homogeneousompact planes, i.e. planes that admit a collineation group of suffi-
ciently large dimension. For 16-dimensional compact projective planes, we have
the following theorem ([29], 85.16):

THEOREM. Let % be al6-dimensional compact projective planedii Aut? >
40, then.? is isomorphic to the Cayley projective plasO andAut P = Eg_2g).

Note that the dimension bound of 40 is sharp, since there exist nonclassical
compact planes with a 40-dimensional (Lie) group of collineations, [29], 82.27. In
this paper, we will studygmoothprojective planes and prove a similar result (see
the Main Theorem at the end of this section).

DEFINITION 1.1. A projective plane® = (P, {£) is calledsmoothif the setP of
points and the set of lines are smooth=£ C>) manifolds such that the geometric
operationsv of join andA of intersection are smooth mappings.
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It is convenient to identify every lingé € £ with the set of points incident with
L. The set£, of all lines through some point is called dine pencil The integer
n = dim P which is called thedimensionof the projective plane? is always a
power Z, wherek = 1, 2, 3, 4, see [29], Section 54. Moreover, for= 2/ we have
dim L = dim.£, = [ for any line L and any line pencilZ,,.

By [1], for any pointp € P the tangent space,P together with theangent
spreads$, = {T,K|K e £,} induced by the line pencit, forms a locally com-
pact affine translation plang,. These affine planes are calleshgent translation
planes Their projective closures are denoted By and we putL, as the line at
infinity (which is also the translation line). We denote Ay the classical affine
translation plane over the division rifig € {R, C, H, @} and we put?,F as the
projective closure of4,F. According to [2], (2.3), every continuous collineation
of a smooth projective plang is in fact smooth. This enables us to compare the
results in the topological situation with the results in the smooth case, see the
remark after the Main Theorem. The grolipof continuous (or, equivalently, of
smooth) collineations’ of & is a Lie transformation group (with respect to the
compact-open topology) on both the &bf points and the set of lines, see [2],
(2.4). In particular, any collineatiop is a diffeomorphism ofP onto P and of £
onto L. The stabilizer”, of some pointp € P induces an action on the tangent
translation plane4, via thederivation mapping

D,.T', - %, :=Aut(A,), < GL(T,P):y — Dy(p),

where Aut(+4 ), is the stabilizer of Aut(A,) at the origino. By [2], (3.3) and
(3.9), the map D is a continuous homomorphism and key B= I'j, ,; is the
subgroup of all elations df" having p as their center. If a grou acts on a set
X, we denote byGx the kernel of this action and we p@* := G/Gy. For

x € X the stabilizer ofx in G is abbreviated by ,. For a subset’ of X we set
Gy = {g € G|Vy € Y:y8 = y}. The connected component of the identity of a
topological groupG is written asG*.

Our aim is to prove the following result.

MAIN THEOREM. Let # be al6-dimensional smooth projective plane which
has a locally compact collineation groups of dimension at leas89. Then is
isomorphic (as a smooth projective plane) to the classical Moufang piafe

Remark. There are nonclassicébpological 16-dimensional projective planes
admitting a 40-dimensional group of collineations, see [29], 82.26—82.29. Such
planes are always translation planes. It is not known, whether there exist
nontranslation planes with a collineation group of dimension 39. Compared to the
theorem given at the beginning of this paper the Main Theorem shows that nonclas-
sical smooth 16-dimensional planes are less homogeneous than in the topological
situation.
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2. Auxiliary Results

Throughout, let? = (P, «£) be a smooth 16-dimensional projective plane with a
closed connected subgrowp< I'. We shall always assume that 39dimA < 40.
We putF, := {x € P U L|VS € A:x° = x} as the set of fixed elements af

Very often we implicitely shall make use of Halder's dimension formula for
locally compact groups, [7], which is formulated below for convenience.

2.1. HALDER’'S DIMENSION FORMULA

If a locally compact Lindel6f grougr acts on a separable metric spadé, then
dimG = dimG, + dima® for every pointz € M.

Note that dim denotes the covering dimension. Another useful dimension formula
is proved in [3], Lemma (1.2).

LEMMA 2.2. If A is a locally compact connected collineation group of a smooth
projective plane which fixes some point € P, thendimA = dimker D, +
dimD,A and dimD,A < dim Aut(+4,),, whereD,: A — Aut(+,), is the
derivation map andhut(4,), is the stabilizer ofAut(+4 ) at the origino. More-
over, we havéder D, = A, ).

Tangent translation planes of$. For the investigation of the collineation group
A we utilize results of H. Hahl, see [10], (4.2). Let = (A, §) be a locally
compact affine translation plane of dimensioge= 2/. We choose some pointin
A as well as three distinct liné&, S, X € 4, througho. Fixing a ‘unit point’e in
X\ {0}, the affine translation plang is coordinatized by some quasifief@ilwhose
additive group(Q, +) is isomorphic taR’. Hence, the kernel of the quasifie{
contains the real numbers as a subfield. In particular, the gf@up-) can be
viewed as ari-dimensional real vector space. In this setting, theAsef points
can be written ast = Q x Q = R, the origino has coordinateg0, 0), and we
haveW = Q x {0}, S = {0} x Q, andX = diag(Q x Q). The automorphism
groupX of «4 is a semi-direct product = %, T, where T= R? is the group of
translations and, is the stabilizer of the origin. Moreover, the stabilizeEy s
can be expressed in termsddinear mappings of the real vector spg@enamely

Tw.s < {(B,C): 0% — 0% (x,y) — (Bx,Cy) | B,C € GL(Q)}.

Since we haveX = diag(Q x Q), the stabilizer of the three line§ W andX can
be written as

Ywsx < {(B, B): Q* — Q% (x,y) — (Bx, By) | B € GL(Q)}.

Now we can formulate a theorem by Hahl (see [8], 2.1 or [29], 81.8), which turns
out to be a very effective tool in our proofs.
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THEOREM 2.3.Let A be an affine locally compact translation plane of dimension
n = 2] and letW, S and X be three different lines oft through the origino. Let
»! be the connected component of the stabiliZgr

(a) The group
M:={(A, B) € £}||detA| = |detB| = 1} < SOIR x SOIR

is the largest compact subgroup of the stabiliZes := (1) w.s and dim
Q/M L 2. If dimQy/M = 2, then there is a closed noncompact one-
parameter subgroup of Q, such thatQ} can be decomposed a8} =
M-P- E[O,Lw].

(b) The group

N:={(A, A) e 21| |det, A| = 1} < SOR

is the largest compact subgroup of the stabiliggy:= (1) s x anddim
Q3/N < 1. If dimQ3/N = 1, then there is a closed noncompact one-para-
meter subgrou of Q3 such thaiQ! = N x P.

We will also use the following strong result of J. Otte, [20] and [21], on smooth
translation planes.

OTTE’'S THEOREM. 2.4.Every smooth projective translation plane is isomorphic
(as a smooth projective plane) to one of the classical projective plahedefined
over an alternative fiel@ € {R, C, H, O}.

Suppose now thak has some fixed flagp, L). We are going to determine the
tangent translation plang, = (T, P, §,) of 2 at the fixed poinip. In order to do
that, we consider the derivation map

Dyt A = AUt(A,)o 7,28 F> D3,

whereo is the origin of the point set JP. Note that D A fixes the subspace,L,
because fixes L. Since a smooth projective translation plane is classical by Otte’s
Theorem, we may assume that dits, ,; < 15. BecauseP, is a compact 16-
dimensional translation plane, we obtain from Lemma (2.2)

dmX = dimX,+16>dimD,A + 16
= dimA —dimA, ,) +16> dimA + 1 > 40.

The compact translation planes with a collineation group of dimension at least
40 are completely classified. This classification is due to H. Hahl, see [12], [13],
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and compare [29], 82.26(5), 82.27, and 82.21. The following theorem collects the
relevant information.

THEOREM 2.5. Let 4 be a topologicall6-dimensional compact projective trans-
lation plane with collineation group.. Assume thadim A > 40. Then the following
assertions hold.

(i) EitherA = $,0 anddimA = 78, or 4 is isomorphic to some projective plane
defined over the mutationi$, (see[6], XI.14 or[29], 82.27) anddim A = 40.

(i) Let L, be a translation axis of4 and letR, S be two lines such that their
intersectiono = R A S is not incident withL,. LetB denote the connected
component of the stabilizexg s ;. ThenB contains a largest compact sub-
groupM, B = M - P - By, for some closed noncompact one-parameter
subgroupP of B, andBy, ;.| = R.¢. If A = £,0 thenM = SpingR, and we
haveM = Gy_14) in the case oflimA = 40.

The dimension of the stabilizer of two lines. Let K # L be another line ofP
through the pointp. We denote byd the connected component of the stabilizer
k.. and byW a Levi subgroup ofb. We are going to consider the derivation map
D,: ® — Q, whereQ2 is the connected component of the stabilizer@) 7, k.7,
and 4, is the affine tangent translation plane 8f at the pointp. We want to
determine upper bounds for the possible dimensionb.dthe next lemma will be
the key result for this task.

LEMMA 2.6. If dimW > 14, then the derivation map,: ® — Q is a closed
mapping.

We prove Lemma (2.6) in several steps. We start with a lemma on subgroups of
Lie groups. Ananalytic subgroupH of a Lie groupG is a subgroup oG which
admits a Lie group structure such that the inclusion m&p — G is a Lie group
homomorphism, cp. [18], Section 2, Chap. 9; note that in [18] analytic subgroups
are calledvirtual Lie subgroupsA virtual Lie subgroup of a Lie group may not be
a closed subgroup. In contrast, a Lie subgrélipf G is a Lie group with respect
to the induced smooth structure 6f A subgroup ofG is a Lie subgroup if and
only if it is closed inG. We introduce a few abbreviations. The torus rank of a Lie
groupG, i.e. the dimension of a maximal torus subgroup, is written bg ridhe
centralizer ofH in G is denoted by GH.

LEMMA 2.7. Let H be an analytic subgroup of a Lie grou@, and letT be a
torus subgroup off of rankr. If r > rk G — 1, then the centralizer T is closed
in G. In particular, C4 T is a Lie subgroup o

Proof. A subgroupU of G is closed if and only if every closed one-parameter
subgroup ofU is closed inG, see Hochschild [14], XVI, Th. 2.4. Assume that
there is a closed one-parameter subgr@dupf Cy T which is not closed inG.
ThenP N'T = 11, becauseP is not compact, otherwise it would be closeddn
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Moreover, the closur® of P in G is compact and connected, [14], XVI, 2.3. Since
P is commutative, the closur® is commutative as well. The dimension Bfis
greater than dinP = 1, because a subgroup of maximal dimension of a connected
Lie group coincides with the whole group. The proditt= P - T is a direct
product, i.e. we hav88 = P x T, sinceP commutes witil" by hypothesis an®
intersectsT trivially. Since P is closed in G;T, we getP N CyT = P, whence
PNT =PNT = 1. Thus we conclude th&# = P x T = P x T is a compact
Abelian Lie subgroup with dimB > dim B. In particular, we haved = T"**,
wherek > 2. This, however, contradicts the fact that the torus rani& of at most

r + 1. This proves the Lemma.

LEMMA 2.8. LetW be a Levi subgroup ob, and lety/® denote the solvable rad-
ical of ®. Then,/D,® = D,~/®,D,® = D,¥ - D,+/® is a Levi decomposition
of D, @, and the inequality

dim,/D,® < 6 —rkW¥

holds

Proof. By the Levi decomposition we writ® = W - /® with dim (¥ N/ ®) =
0, see [19], Chap. 1, 4.1. By Nagami [17], (2.1), this yields dm= dimW¥ +
dim+/®. The derivation map Pis a Lie isomorphism between the Lie groups
¥ and D,V, see [4], Proposition (3.1). Clearly, the imagg\IZE is a solvable
normal subgroup with dinD,¥ N D,+/®) = 0. Since D,V is semisimple and
@ is connected, this shows tha},® = D, ¥ - D,/® is a Levi decomposition of
D, ®. This proves the first equation. By [3], Theorem (1.6) and [2] Corollary (3.9),
the maximal dimension of a closed solvable subgroup of Ayt « 1,2 is 6. A
maximal solvable subgroup of J& is conjugate to some subgroup®f ,/D, P,
whereT is a maximal torus subgroup @f. Using Nagami [17], (2.1) once again,
this proves the inequality.

We will need some information about subgroups of the orthogonal groyg,SO
cp. Hahl [11], 2.8, and [29], 95.12.

LEMMA. 2.9. LetK be a closed connected subgroupSfiR which does not
contain a subgroup isomorphic ®3R. Then eitheK is isomorphic to one of the
groupsSpinR, U4C, SULC, or Gy_14), or dimK < 13 holds. Moreover, we have
K Z U4C, if rkK < 3.

Proof. By hypothesis, the group SR is not contained iK. In particular, we
have dimK < dim SGQR. Since dim S@R = 28, this implies that dim SER/K >
7, or, equivalently, that dirk < 21 holds, see Mongomery, Zippin [16], Chap. VI,
Th. 2. Thus we have to check which compact groups of dimension at most 21 are
subgroups of SgR. According to the Levi decomposition we may wrike= W - T,
whereW is a semi-simple compact group and= T" is a central torus subgroup.
We assume first that is quasi-simple. Using the classification of quasi-simple Lie
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groups, see for example [29], Section 95, J. Tits, [30], and recallingtdaes not
contain a subgroup isomorphic to §& we infer thatk is isomorphic to one of
the groups

Spin;R SuU,C, Gz(_14) s SplrgR PSU;C, SU;C, SU,C, SOzRR.

Note that a group which is locally isomorphic to & has dimension 21, but
such a group does not have a faithful representation of dimension less than 12 and
hence is not a subgroup of R The same argument excludes the group RSU

from being a subgroup of SR. Since the groups that appear on the right hand
side of G_14) have dimension at most 10, the lemma is proved in the case of a
guasi-simple groug. The following table shows the dimensions of real irreducible
representations of dimension at most 8, together with their centralizers, see again
[29], Section 95, J. Tits, [30].

group SpirR  SWC G149y SpigR  PSUBC  SUsC  SUL,C  SO3R
dimension 8 8 7 8 8 6 4.8 3,5,7
centralizer R C R H R C H R

Since a semi-simple Lie group is completely reducible, we get the following cen-
tralizers in GIgR

SpivR  SUC  Gy_14) SPIR  PSLC  SUsC SU,C SO3R

R C RxR* H R CxGLR HxGLsRorH R xGL,R

where the possible values afare 1 3, 5.

This shows that a closed subgroup ofg®®f dimension at least 14 which does
not contain a group of type S@ is isomorphic to one of the groups Saiy U,C,
SU,C, Gy(_14). Noting that the torus rank of AT is 4, this proves the lemma.

Proof of Lemma2.6. We use the Levi decompositich = W - /@ of &.
By [4], Proposition (3.1), the Levi subgroup is compact and the restriction of
the derivation map Pto ¥ is injective. By Lemma (2.8), p® = D,V - Dpﬁ
is a Levi decomposition of P, where D, ¥ is compact and isomorphic td.
Thus, in order to prove Lemma (2.6), it is sufficient to verify that the radita:
JVD,® = Dpﬁ is closed inQ. If dim & > 14, every closed solvable subgroup
of W of maximal dimension (which, of course, is a maximal torus subgroup) is
at least 2-dimensional according to the classification of quasi-simple Lie groups,
see the tables of J. Tits [30]. Hence, we conclude by Lemma (2.8) thafldith
6 — 2 = 4. A quasi-simple compact Lie group of dimension at least 14 cannot
act on a manifold of dimensiomless than 5, otherwise dit < %n(n +1) <10
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holds by Montgomery—Zippin [16], Chap. VI, Th. 2. Thus, the Levi subgroyyD
commutes with the radical.

According to [4], Theorem (3.8), the group is locally isomorphic to some
subgroup of SpigiR. Consider the two-sheeted covering maBpin,R — SGsR.
Any subgroup® of SpirgRR is mapped viar onto a subgroug (®), and® is an at
most two-sheeted covering groupof®). Hence, the torus ranks af(®) and®
coincide. Recalling that S{R cannot act on a compact connected projective plane
by M. Lineburg [15], I, Korollar 1 or [29], 55.40, we may apply Lemma (4.9) of
[4] in order to obtain thatr (D, W) is isomorphic to one of the groups

SplnSJR{, SplWR, SU,C, Gz(_14) . (*)

The first three groups SpiR, Spin,R and SUC have torus rank at least 3. By
M. Luneburg [15], II, Satz 2 (see also [29], 55.37), the torus rank & at most
4. Thus the assumptions of Lemma (2.7) are satisfiedsfer @, H = D,® and
some maximal torus subgroupof D, W. Hence the centralizer;¢ T is closed in
Q. By what we have shown above, the radifabf D ,® is a subgroup of € ¢T.
Since D,V is semi-simple, the torus groupis a solvable subgroup of b of
maximal dimension, and thug is also the radical of £ ¢T. In particular, the
group Il is closed in G,oT. Since G ,oT is closed ing2, this shows thafl is
closed in2, too. This proves Lemma (2.6) in the case, whéré isomorphic to
one of the groups Spii®, SpirvR or SU,C.

Now let us consider the remaining cage= Gy_14. According to Theorem
(2.5), a maximal compact subgrowp of Q is isomorphic to either SpiR or
Gy(—14. We will show that the centralizer of B in M is trivial. This is obvious
if M = Gy_14. Hence, we may assume thet = SpirgR, and consequently,
it is sufficient to verify that the centralizer of JW in GLgR has no nontrivial
compact subgroup, see [2], (3.13). Using the second table of Lemma (2.9), we
get Ger(D, W) = R?. This implies that G,o(D, V) is closed inQ. As before
IT=,/D,®is a (closed) subgroup ofe(D,¥), whence the groupl is closed
in Q. This finishes the proof of Lemma (2.6).

STABILIZER THEOREM 2.10. Let # be a smoothL6-dimensional projective
plane. Let® be a connected closed subgroup of the collineation group wfich
fixes two distinct lineX and L. LetW be a Levi subgroup ob. Then exactly one
of the following statements is true:

(i) & isisomorphic (as a smooth projective plane) to the octonion piesi@,
(i) ¥ = SpingR anddim® < 38,
(i) dim ¥ < 14anddim® < 31

Proof. Let us assume tha is not isomorphic to the octonion plane. Thens
neither a translation plane nor a dual one according to Otte’s Theorem (2.4). Thus
we have dim®;, ,; < 16, wherep = K A L. Consequently, we may assume that,
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say, dim®(, x; < 8 holds. We have mentioned already that the gréuip compact
and locally isomorphic to some subgroup of SfiinWe continue our proof with a
case by case study depending on the size ofdim

(1) dim ¥ = dim SpigR = 28. Then¥ = SpingR, because the group
(P) SGQR cannot act on the tangent plasg,, see M. Lineburg [15], I, Korol-
lar 1 or [29], 55.40. Any nontrivial irreducible real representation of @Rihas
dimension at least 8. Thus, the growpacts trivially on the elation grougp, k),
since we have din®(, x; < 8. The center of SpyR is isomorphic toZ, x Zj.
These involutions cannot act as Baer involutionsA)) since SpigR neither acts
trivially on some Baer subplane nor acts nontrivially (as the grougiR$On a Baer
subplane. Hence, the centerbfcontains a central involutiom with centerp. By
Corollary (4.10) of [2], this involution is not an elation and we may apply Lemma
(4.4) of [4] in order to getd|, x; = 1. Thus we obtain

dim q)[p,p] < dim q)[p’K] +8=28

by Salzmann [28], (F). According to Theorem (2.5), the groyplDs a maximal
compact subgroup ¢, and Lemma (2.2) together with Theorem (2.3) yields

dim® = dim D,® + dim ker D,

= dmD,® +dm®;, ,; < (dmW¥ +2) +8= 38

(2) 14 < dimW¥ < dim SpingR = 28. By Lemma (2.6), the map P — Q
is closed. LeK be a maximal compact subgroup ®fthat contains the (compact)
Levi subgroup¥. By [4], (3.8), the grouiK is locally isomorphic to some closed
subgroup of SpigR. Thus we may apply Lemma (2.9) which shows tKais
isomorphic to one of the groups Spity SU,C x T/(—1), U4C, SU,C, or Gy(_14).
Let us first consider the last group. Then dim= 14, and we get

dim® < dimK+2+dim®y, ,; <14+2+15=31

The groups SpiR and SUC both have unique nontrivial 8-dimensional irre-
ducible real representations which map their central involutioosito —1.. Since

K is compact and fixes the linds and L throughp, the derivation map P maps

K bijectively into GLsR x GLgR if we identify the point space oft, with the
product T,K x T,L. If D,K acts trivially on one of the subspacesA or T,L,
then D,K is a homology group with axis, say, K (note: since DK is compact, it
cannot contain an elation with axis, KX). According to T. Buchanan and H. Hahl
[5], a homology group of a locally compact connected translation plane is a closed
subgroup of the multiplicative group of the quaternions. Thus, the derivatjve D
maps the central involutiorr onto —1L of GLy¢R. In particular, this proves that
D,« is a homology with centes and sox is a homology with centep. Since we
have dim®;, x; < 8, the grouK acts trivially on the elation groug, xj. Now
Lemma (4.4) of [4] applies and we g&},, x; = 1L. This provides the inequality

dim® < dimK + 2 4 dim &y, ,; < 21+ 2+ 8 =231
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(3) 11 < dimW¥ < 13. ThenW is not quasi-simple and we conclude by using
the classification of quasi-simple Lie groups that the torus rank of at least 3.
This yields dim/D,® < 6 — 3 = 3, and as before we end up with difh <
(13+3) +15=31.

(4) dim¥ < 10. Then dm R® = dimW¥ 4 dim,/D,® < 10+ 6 = 16, and
hence we get din® = dim D,® 4 dim®;, ,; < 164 15 = 31. This proves the
Theorem.

3. Proof of the Main Theorem

We continue with a reduction result that shows that we may restrict our attention
to the case, where the sBt of fixed elements ofA is given byFx = {p, L} for
some flag p, L), and a Levi subgroug of A is isomorphic to the simple compact

group G(_14).

PROPOSITION 3.1.LetdimA > 39. If Fy # {p, L}, where(p, L) is aflag, or
if a Levi subgroup¥ of A is not isomorphic to the compact exceptional Lie group
Gz(_14), then®? = 2,0.

Proof.If A has more than four fixed elements, then up to duality we may assume
that A fixes three point®, u, v. ThenA fixes the two lines v u ando Vv v, and
we gety = $,0 by Theorem (2.10). The same is true\iffixes two points or two
lines. Hence, we may assume tiaathas at most two fixed elements.Affixes an
anti-flag, we have? = 2,0 according to Salzmann [25], (2.2). X fixes exactly
one element, ther? = £,0 due to Salzmann [27], (C). IA contains a normal
torus subgroug, thenT is contained in the center &f and we can apply [26],
(2.1) which shows that i\ has no fixed elements at all, thenis a semi-simple
group. Since dimA > 39, we have once mor® = 2,0 by [25], Theorem. Thus
we have proved the first part of the proposition.

Now let W 2 Gy_14. According to the first part we may assume tifat =
{p, L} for some flag(p, L). Then & or its dual plane is a translation plane by
M. Lineburg, [15], V, Satz, and Otte’s Theorem (2.4) on smooth translation planes
givesP = $,0. This proves the proposition.

According to the last proposition we may assume tiais a 16-dimensional
smooth projective plane, that the grosips a closed connected subgroup of ABY)
with dim A > 39 which fixes exactly one flagp, L), and that a Levi subgrouyy
of A is isomorphic to the compact exceptional Lie groug_Gs. We proceed by
verifying a series of small lemmas. We will always omit the proofs of the dual
statements.

(A) We havedim A = 39, dimAg = 31for every linekK € £, \ {L}, andW¥
is a maximal compact subgroup af. Moreover, the group\ acts transitively on
both.L, \ {L}andL \ {p}.
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SinceV¥ = Gy_14, We obtain from Theorem (2.10) that dirng < 31 holds.
This gives

39< dimA =dimAg +dimK® < 31+ 8= 39,

whence we have dimh = 39 and dimAg = 31. The second statement follows
immediately from the proof of Theorem (2.10). Let us turn to the last assertion.
SinceL, \ {L} = R® is connected and because every orbit\obn £L,\{L}is
8-dimensional and hence is opendn \ {L}, we conclude thah acts transitively
onL, \ {L}.

Using the tables of J. Tits [30], we get the following list.

(B) A compact semi-simple Lie group of torus rank at most two is locally
isomorphic to one of the grouf®0O,R, SUsC, or Gy_14), Wwhere3 < k < 5.

(C) A proper closed semi-simple subgroap of G_14 has dimension at
most8.

If Y is a proper closed subgroup 0$Gi4), then dimY < 9 holds according to
Theorem 2 of Chapt. VI of [16]. This excludes the groupsB@om the list in (B)
and hence assertion (C) is proved.

(D) For every linekK € £, \ {L} a Levi subgroup of the stabilizet} is
isomorphic toGy_14). In particular, any two Levi subgroups of the stabilizexg
are conjugate inA.

Fix some stabilizerAx and letY be a Levi subgroup ofA%. Assume that
T Z Gy_14. Using (C), we obtain diml’ < 8, and we infer from Lemma (2.2)
and Lemma (2.8) that

dlmAK = dim DPAK‘Fdim(AK)[p,p]
< (dimY — kT +6) + 15 < 14+ 15= 29

holds which is a contradiction to (A). Hence assertion (D) is proved.

(E) dim Ay, ,; = 15,and dually dim A, ;; = 15.
The derivation map Px Ay — Qs closed by Lemma (2.6) and (D). Using the
Stabilizer Theorem (2.10), we infer from (A) and (D) that

31 = dim D,Ag + dim ker D,
< (dlm\IJ +2) + dim A[[,,p] =16+ dimA[[,,p] <31

holds for every linekK € £, \ {L}. This shows that dina\, ,; = 15.

Furthermore, the inequality above is in fact an equality, whence assertion
(F)dm D,Agx = dimW + 2

is true for every linek € £, \ {L}.
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(G) We havedim g%¢ > 7 anddim K2« > 7 for every pointy € L\ {p} and
every lineK € £, \ {L}.

Fix some pointy € L \ {p} and some line&kK € £, \ {L}. Then, from (A),
Lemma (2.8) and the Stabilizer Theorem (2.10), we obtain the inequality

31 = dimAg = dimAg , +dimg”«

< dim D, Ak, + dim ker D, |5, + dimg®¥

N

dim D, Ak + dim(A, 1), + dimg®¥

N

dim ¥ + 2 + dim(Ap, ), + dimg®~

N

14+ 2+ 8+ dimg~¥
244 dimg®x,

which gives dimg2x > 7.

(H) dim A[[,,L] = 8.

Since A acts transitively or. \ {p} by (A), we know that dimA, ;; is inde-
pendent of the poing € L \ {p}. According to Salzmann [28], Section 0, (G),
this implies thatA;, ;; is transitive onk \ {p} for every lineK € £, \ {L}. In
particular, we have dim\, ;; = dimK = 8.

() dim Ay, ) = 7 and, duallydim A, x; = 7 holds for every poing € L\ {p}
and every linek € £, \ {L}.

According to Salzmann [28], (F), we have difyj; ;; < dim A, ., + 8 for any
pointg € L. Thus, we infer from dimA(, ;; = 15 that dimA, ,; > 7. If dim
A1) = 8forg # p, thendimA, ;; = 16 follows, a contradiction to (E).

PROPOSITION 3.2.There exists a non-trivial homology € A(,,;.

Proof. We have dimAx = 31 forany lineK € &£, \ {L} by (A). Assertion (D)
says that every Levi subgroup of A% is isomorphic to G_14. The group¥ is
a maximal compact subgroup af (and hence ofA} as well), and dim DAk =
dim W + 2 holds by (F). Hence we may apply Theorem (2.3) in order to obtain that
H= (DPAK)[lo,Loo] is isomorphic taR. . SinceH fixes every tangent space, &
for G € «£,, every collineation of the inverse image = D;lH fixes every line
through the poinp. Conversely, ) maps every central collineation m‘[lp] into H.
This shows than|, = ©. By [3], Proposition (1.4), the group/, can be written
as a semi-direct produet{, = A{, ,, x Al for some lineA ¢ .£,,.

In particular, the group\, 4; Is not trivial, because o\, ,; = ker D, and
H £ {11}. This proves the Proposition.

Fix K € &£, \ {L} and choose alind/ € £\ £, such thatM* # {M}. Such
a line exists because &, = {p, L}. Due to Proposition (3.2) we can apply a
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theorem of H. Hahl [9], Corollary 1.3, which yieldg® = M2»»1, Using (E) we
get

dimM* = dim M2 =dimA, , = 15
and
dimA, = dimA —dimM? = 39— 15=24.

The stabilizerA y, fixes the antiflag p, M). Thus we haveA ), ,; = {11} and
from Lemma (2.2) we conclude that

dim DpAK,M = dim AK,M — dim(AK,M)[,,,,,]
= dimAgx —dimM2% —0> 24— 8= 16.
Since ker D|Ag y = (Ak.m)ip,p) = {1}, the restriction D4, ,, is an injection.

LEMMA 3.3. Every Levi subgroufy” of AL, is isomorphic toGy—_14.
Proof.SinceWw = Gy_14), the groupY is a subgroup of G_14. If T Z Gy(_14),
then dimY < 8 by (C) and

follows, which is a contradiction. Thus we ha¥e= Gy(_14).

According to Lemma (3.3) and the remarks preceding this lemma, we can argue
as in Proposition (3.2) in order to get the following corollary. Note that a homology
of Ak ) with centerg = M A L hask as its axis.

COROLLARY 3.4. There exists a nontrivial homology* € Ay, ;.

COROLLARY 3.5. The stabilizersA} and A} can be decomposed in the follow-

. Al ~ 1 1 1 ~ 1 1
INg way: Ay = A g X Agg ) and Ay = Agk X Ay

Proof. Proposition (3.2) enables to apply Corollary 1.3 of [9] which yields

K1 = K*ia1. In particular, this gives dima, /A, x = dim Ay, ). SinceAl | =
A[lq, 11 Is @ normal subgroup oi; that intersects\, ¢ trivially, the first decompo-
sition is proved. The second decomposition is proved dually.

Now we have collected all the information we need to prove the Main Theorem.

Our proof is inspired by the proof of Satz 4 in Chap. VI of [15].

Proof of Main Theorem.By Lemma (3.3), we may assume that the Levi sub-
group ¥ of A is contained inA% .. Let Z be the connected component of the
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centralizer G V. SinceV fixes bothy andK, the subgroupa!, Ax andA]  are
normalized by . Using [5], VI, Lemma, we thus get

dimz, = dimA,(mod 7), dimzZx = dimAgx(mod 7,

dimz, x = dimA, x(mod 7).

The fixed setfy of W is a 2-dimensional subplane &f, the centralizez acts
almost effectively orFy, see [15], VII, Satz 5(iv), ang, g, K, L are contained in
Fy. Hence we have

1>dimg* =dimz—dimz, and 1>dimK*=dmz— dimz,

because fixesp as well asL, andg € L N Fy, K € £, N Fy. If the orbitg*~ is
one-dimensional, we use Corollary (3.5) and (1) to get the contradiction

7 = dim A[p,KJ = dim Ag — dim Aq,K
= dimzg — dimz, x = dimg** = 1(mod 7.

Hence we may assume that the orpft (and, dually, the orbitk%) is zero-
dimensional. Thez} fixesg and, dually,Z; fixes K. The stabilizer of any quad-
rangle of a 2-dimensional compact projective plane is trivial, [22], 4.1, whence we
have dimz, < 3 and dimzx < 3. From [15], VI, Lemma, we have dih = dim
A(mod 7, which implies that dinz = 4. In particular, we havg& # Z, U Zg.
Choose a collineation € Z \ (zZ, U Zg). Select some point € K N Fy distinct

from p.

Figure 1.

Fromz}, = (Z})¢ we infer that

Zi ko) S Zg NZge =Zg N (ZR) =24 N (ZE )F < Zy e kokes
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whencez, ¢ x: fixes the quadranglgy, ¢¢, (uvg) AK*, (uVvg®) AK®}. However,
dimZg xc > 2 holds, because &, K¢ € £, N Fy and dimz = 4. Consequently,
we have dimz, x xc > 1, which is a contradiction to Salzmann [22], 4.1. This
finishes the proof of the Theorem.

References

1. BA&di, R.: Smooth stable pland®esults Math31(1997), 300-321.
2. Bd&di, R.: Collineations of smooth stable planes, to appeBoinm Math
3. Bddi, R.: Solvable collineation groups of smooth projective plaBeirage Algebra Geon39
(1998), 121-133.
4. Bddi, R.: Stabilizers of collineation groups of smooth stable planes, to appeaiaipn Math
5. Buchanan, T. and Hahl, H.: On the kernel and the nuclei of 8-dimensional locally compact
quasifieldsArch. Math.29 (1977), 472—-480
6. Grundhofer, T. and Salzmann, H.: Locally compact double loops and ternary fields, in: O.
Chein, H. D. Pflugfelder and J. D. H. Smith (ed§uasigroups and Loops: Theory and
Applications Heldermann, Berlin: 1990.
7. Halder, H.R.: Dimension der Bahn lokal kompakter Gruppenh. Math.22 (1971), 302-303.
8. Hahl, H.: Lokalkompakte zusammenhangende Translationsgruppen mit gro3en Spharenbahnen
auf der Translationsachdeesults Math2 (1979), 62—-87.
9. Hahl, H.: Homologies and elations in compact, connected projective pleogspgy Appll12
(1981), 49-63.
10. Hahl, H.: Automorphismengruppen von lokalkompakten zusammenhéngenden Quasikorpern
und TranslationsebeneGeom. Dedicatd (1975), 305-321.
11. Hahl, H.: Zur Klassifikation von 8- und 16-dimensionalen lokalkompakten Translationsebenen
nach ihren KollineationsgruppeMath. Z.159(1978), 259-294.
12. Hahl, H.: Die Oktavenebene als Translationsebene mit groRer Kollineationsgkiqupegsh.
Math. 106 (1988), 265—-299.
13. Hahl, H.: Sechzehndimensionale lokalkompakte Translationsebenen, deren Kollineations-
gruppe G enthalt,Geom. Dedicat®6 (1990), 181-197.
14. Hochschild, G.The Structure of Lie Groupsiolden-Day, San Francisco, 1965.
15. Luneburg, M.: Involutionen, auflésbare Gruppen und die Klassifikation topologischer Ebenen,
Mitt. Math. SemGiesser209(1992), 1-113.
16. Montgomery, D. and Zippin, LTopological Transformation Groupiterscience, New York:
1955.
17. Nagami, K.: Dimension-theoretical structure of locally compact gralipslath. Soc. Japan
14(1962), 379-390.
18. Onishchik, A.L. and Vinberg, E.BLie Groups and Algebraic GroupSpringer-Verlag, Berlin,
1990.
19. Onishchik, A.L. and Vinberg, E.BLie Groups and Lie Algebras lIEncyclopaedia of Math.
Sci. Vol. 41, Springer-Verlag, Berlin, 1994.
20. Otte, J.Differenzierbare Ebenemissertation Kiel 1992.
21. Otte, J.: Smooth Projective Translation Plagsom. Dedicat®8 (1995), 203-212.
22. Salzmann, H.: Kollineationsgruppen kompakter, vierdimensionaler Ebémath, Z. 117
(1970), 112-124.
23. Salzmann, H.: Homogene kompakte projektive EbeRadaific J. Math60 (1975), 217-235.
24. Salzmann, H.: Automorphismengruppen 8-dimensionaler Ternarkdpér, Z.166 (1979),
265-275.
25. Salzmann, H.: Compact 16-dimensional projective planes with large collineation gvtatps,
Ann.261(1982), 447-454.



298
26.
27.
28.
29.

30.

RICHARD BODI

Salzmann, H.: Compact 16-dimensional projective planes with large collineation groups. II,
Monatsh. Math95 (1983), 311-319.

Salzmann, H.: Compact 16-dimensional projective planes with large collineation groups. IlI,
Math. Z.185(1984), 185-190.

Salzmann, H.: Compact 16-dimensional projective planes with large collineation groups. IV,
Canad. J. Math39 (1987), 908-919.

Salzmann, H., Betten, D., Grundhéfer, T., Hahl, H., Léwen, R. and StroppelCdfxpact
Projective PlanesDe Gruyter, Berlin, 1995.

Tits, J.Tabellen zu den einfachen Liegruppen und ihren Darstellunigecture Notes in Math.

40, Springer-Verlag, Berlin, 1967.



