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Abstract. Smooth projective planes are projective planes defined on smooth manifolds (i.e. the set
of points and the set of lines are smooth manifolds) such that the geometric operations of join and
intersection are smooth. A systematic study of such planes and of their collineation groups can be
found in previous works of the author. We prove in this paper that a 16-dimensional smooth projective
plane which admits a collineation group of dimensiond > 39 is isomorphic to the octonion projective
planeP2O . For topological compact projective planes this is true ifd > 41. Note that there are
nonclassical topological planes with a collineation group of dimension 40.
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1. Introduction

The theory of compact projective planes is presented in the recent book of Salz-
mann et al. [29]. A main theme of this theory is the classification ofsufficiently
homogeneouscompact planes, i.e. planes that admit a collineation group of suffi-
ciently large dimension. For 16-dimensional compact projective planes, we have
the following theorem ([29], 85.16):

THEOREM. LetP be a16-dimensional compact projective plane. Ifdim AutP >

40, thenP is isomorphic to the Cayley projective planeP2O andAut P ∼= E6(−26).

Note that the dimension bound of 40 is sharp, since there exist nonclassical
compact planes with a 40-dimensional (Lie) group of collineations, [29], 82.27. In
this paper, we will studysmoothprojective planes and prove a similar result (see
the Main Theorem at the end of this section).

DEFINITION 1.1. A projective planeP = (P,L) is calledsmoothif the setP of
points and the setL of lines are smooth (= C∞) manifolds such that the geometric
operations∨ of join and∧ of intersection are smooth mappings.
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It is convenient to identify every lineL ∈ L with the set of points incident with
L. The setLp of all lines through some pointp is called aline pencil. The integer
n = dimP which is called thedimensionof the projective planeP is always a
power 2k, wherek = 1, 2, 3, 4, see [29], Section 54. Moreover, forn = 2l we have
dim L = dimLp = l for any lineL and any line pencilLp.

By [1], for any pointp ∈ P the tangent space TpP together with thetangent
spreadSp = {TpK|K ∈ Lp} induced by the line pencilLp forms a locally com-
pact affine translation planeAp. These affine planes are calledtangent translation
planes. Their projective closures are denoted byPp and we putL∞ as the line at
infinity (which is also the translation line). We denote byA2F the classical affine
translation plane over the division ringF ∈ {R, C , H ,O } and we putP2F as the
projective closure ofA2F. According to [2], (2.3), every continuous collineation
of a smooth projective planeP is in fact smooth. This enables us to compare the
results in the topological situation with the results in the smooth case, see the
remark after the Main Theorem. The group0 of continuous (or, equivalently, of
smooth) collineationsγ of P is a Lie transformation group (with respect to the
compact-open topology) on both the setP of points and the setL of lines, see [2],
(2.4). In particular, any collineationγ is a diffeomorphism ofP ontoP and ofL
ontoL. The stabilizer0p of some pointp ∈ P induces an action on the tangent
translation planeAp via thederivation mapping

Dp:0p → 6o := Aut(Ap)o 6 GL(TpP ): γ 7→ Dγ (p),

where Aut(Ap)o is the stabilizer of Aut(Ap) at the origino. By [2], (3.3) and
(3.9), the map Dp is a continuous homomorphism and ker Dp = 0[p,p] is the
subgroup of all elations of0 havingp as their center. If a groupG acts on a set
X, we denote byGX the kernel of this action and we putGX := G/GX. For
x ∈ X the stabilizer ofx in G is abbreviated byGx . For a subsetY of X we set
GY = {g ∈ G|∀y ∈ Y : yg = y}. The connected component of the identity of a
topological groupG is written asG1.

Our aim is to prove the following result.

MAIN THEOREM. Let P be a16-dimensional smooth projective plane which
has a locally compact collineation group1 of dimension at least39. ThenP is
isomorphic (as a smooth projective plane) to the classical Moufang planeP2O .

Remark. There are nonclassicaltopological16-dimensional projective planes
admitting a 40-dimensional group of collineations, see [29], 82.26–82.29. Such
planes are always translation planes. It is not known, whether there exist
nontranslation planes with a collineation group of dimension 39. Compared to the
theorem given at the beginning of this paper the Main Theorem shows that nonclas-
sical smooth 16-dimensional planes are less homogeneous than in the topological
situation.
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2. Auxiliary Results

Throughout, letP = (P,L) be a smooth 16-dimensional projective plane with a
closed connected subgroup1 6 0. We shall always assume that 396 dim1 6 40.
We putF1 := {x ∈ P ∪L|∀δ ∈ 1: xδ = x} as the set of fixed elements of1.

Very often we implicitely shall make use of Halder’s dimension formula for
locally compact groups, [7], which is formulated below for convenience.

2.1. HALDER’ S DIMENSION FORMULA

If a locally compact Lindelöf groupG acts on a separable metric spaceM, then
dimG = dimGa + dimaG for every pointa ∈M.

Note that dim denotes the covering dimension. Another useful dimension formula
is proved in [3], Lemma (1.2).

LEMMA 2.2. If 1 is a locally compact connected collineation group of a smooth
projective planeP which fixes some pointp ∈ P , thendim1 = dim ker Dp +
dim Dp1 and dim Dp1 6 dim Aut(Ap)o, whereDp:1 → Aut(Ap)o is the
derivation map andAut(Ap)o is the stabilizer ofAut(Ap) at the origino. More-
over, we haveker Dp = 1[p,p].

Tangent translation planes ofP . For the investigation of the collineation group
1 we utilize results of H. Hähl, see [10], (4.2). LetA = (A,G) be a locally
compact affine translation plane of dimensionn = 2l. We choose some pointo in
A as well as three distinct linesW,S,X ∈ Go througho. Fixing a ‘unit point’ e in
X\{o}, the affine translation planeA is coordinatized by some quasifieldQ whose
additive group(Q,+) is isomorphic toRl . Hence, the kernel of the quasifieldQ
contains the real numbers as a subfield. In particular, the group(Q,+) can be
viewed as anl-dimensional real vector space. In this setting, the setA of points
can be written asA = Q ×Q ∼= R2l , the origino has coordinates(0, 0), and we
haveW = Q × {0}, S = {0} × Q, andX = diag(Q × Q). The automorphism
group6 of A is a semi-direct product6 = 6on T, where T∼= R

2l is the group of
translations and6o is the stabilizer of the origino. Moreover, the stabilizer6W,S

can be expressed in terms ofR-linear mappings of the real vector spaceQ, namely

6W,S 6 {(B,C):Q2→ Q2: (x, y) 7→ (Bx,Cy) | B,C ∈ GL(Q)}.
Since we haveX = diag(Q×Q), the stabilizer of the three linesS, W andX can
be written as

6W,S,X 6 {(B,B):Q2→ Q2: (x, y) 7→ (Bx,By) | B ∈ GL(Q)}.
Now we can formulate a theorem by Hähl (see [8], 2.1 or [29], 81.8), which turns
out to be a very effective tool in our proofs.
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THEOREM 2.3.LetA be an affine locally compact translation plane of dimension
n = 2l and letW , S andX be three different lines ofA through the origino. Let
61

o be the connected component of the stabilizer6o.

(a) The group

M := {(A,B) ∈ 61
o | |detA| = |detB| = 1} 6 SOlR × SOlR

is the largest compact subgroup of the stabilizer�2 := (61)W,S and dim
�2/M 6 2. If dim�2/M = 2, then there is a closed noncompact one-
parameter subgroupP of �2 such that�1

2 can be decomposed as�1
2 =

M · P ·6[o,L∞].
(b) The group

N := {(A,A) ∈ 61
o | |det|, A| = 1} 6 SOlR

is the largest compact subgroup of the stabilizer�3 := (61)W,S,X anddim
�3/N 6 1. If dim�3/N = 1, then there is a closed noncompact one-para-
meter subgroupP of �3 such that�1

3 = N× P.

We will also use the following strong result of J. Otte, [20] and [21], on smooth
translation planes.

OTTE’S THEOREM. 2.4.Every smooth projective translation plane is isomorphic
(as a smooth projective plane) to one of the classical projective planesPF defined
over an alternative fieldF ∈ {R, C , H ,O }.

Suppose now that1 has some fixed flag(p,L). We are going to determine the
tangent translation planeAp = (TpP,Sp) of P at the fixed pointp. In order to do
that, we consider the derivation map

Dp:1→ Aut(Ap)o,TpL: δ 7→ Dpδ,

whereo is the origin of the point set TpP . Note that Dp1 fixes the subspace TpL,
because1 fixesL. Since a smooth projective translation plane is classical by Otte’s
Theorem, we may assume that dim1[p,p] 6 15. BecausePp is a compact 16-
dimensional translation plane, we obtain from Lemma (2.2)

dim6 = dim6o + 16> dim Dp1+ 16

= dim1− dim1[p,p] + 16> dim1+ 1> 40.

The compact translation planes with a collineation group of dimension at least
40 are completely classified. This classification is due to H. Hähl, see [12], [13],
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and compare [29], 82.26(5), 82.27, and 82.21. The following theorem collects the
relevant information.

THEOREM 2.5.LetA be a topological16-dimensional compact projective trans-
lation plane with collineation groupA. Assume thatdimA > 40. Then the following
assertions hold.

(i) EitherA ∼= P2O anddimA = 78, or A is isomorphic to some projective plane
defined over the mutationsO α (see[6], XI.14 or [29], 82.27) anddimA = 40.

(ii) Let L∞ be a translation axis ofA and letR, S be two lines such that their
intersectiono = R ∧ S is not incident withL∞. Let B denote the connected
component of the stabilizerAR,S,L∞. ThenB contains a largest compact sub-
group M, B = M · P · B[o,L∞] for some closed noncompact one-parameter
subgroupP of B, andB[o,L∞] ∼= R>0. If A ∼= P2O thenM ∼= Spin8R, and we
haveM ∼= G2(−14) in the case ofdimA = 40.

The dimension of the stabilizer of two lines. Let K 6= L be another line ofP
through the pointp. We denote by8 the connected component of the stabilizer
0K,L and by9 a Levi subgroup of8. We are going to consider the derivation map
Dp:8→ �, where� is the connected component of the stabilizer Aut(Ap)TpK,TpL

and Ap is the affine tangent translation plane ofP at the pointp. We want to
determine upper bounds for the possible dimensions of8. The next lemma will be
the key result for this task.

LEMMA 2.6. If dim9 > 14, then the derivation mapDp:8 → � is a closed
mapping.

We prove Lemma (2.6) in several steps. We start with a lemma on subgroups of
Lie groups. Ananalytic subgroupH of a Lie groupG is a subgroup ofG which
admits a Lie group structure such that the inclusion mapι:H ↪→ G is a Lie group
homomorphism, cp. [18], Section 2, Chap. 9; note that in [18] analytic subgroups
are calledvirtual Lie subgroups. A virtual Lie subgroup of a Lie group may not be
a closed subgroup. In contrast, a Lie subgroupH of G is a Lie group with respect
to the induced smooth structure ofG. A subgroup ofG is a Lie subgroup if and
only if it is closed inG. We introduce a few abbreviations. The torus rank of a Lie
groupG, i.e. the dimension of a maximal torus subgroup, is written by rkG. The
centralizer ofH in G is denoted by CGH .

LEMMA 2.7. Let H be an analytic subgroup of a Lie groupG, and letT be a
torus subgroup ofH of rankr. If r > rk G− 1, then the centralizer CHT is closed
in G. In particular, CHT is a Lie subgroup ofG.

Proof. A subgroupU of G is closed if and only if every closed one-parameter
subgroup ofU is closed inG, see Hochschild [14], XVI, Th. 2.4. Assume that
there is a closed one-parameter subgroupP of CHT which is not closed inG.
ThenP ∩ T = 11, becauseP is not compact, otherwise it would be closed inG.
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Moreover, the closureP of P in G is compact and connected, [14], XVI, 2.3. Since
P is commutative, the closureP is commutative as well. The dimension ofP is
greater than dimP = 1, because a subgroup of maximal dimension of a connected
Lie group coincides with the whole group. The productB = P · T is a direct
product, i.e. we haveB = P × T , sinceP commutes withT by hypothesis andP
intersectsT trivially. SinceP is closed in CHT , we getP ∩ CHT = P , whence
P ∩ T = P ∩ T = 11. Thus we conclude thatB = P × T = P × T is a compact
Abelian Lie subgroup with dimB > dimB. In particular, we haveB ∼= Tr+k ,
wherek > 2. This, however, contradicts the fact that the torus rank ofG is at most
r + 1. This proves the Lemma.

LEMMA 2.8. Let9 be a Levi subgroup of8, and let
√

8 denote the solvable rad-
ical of 8. Then

√
Dp8 = Dp

√
8, Dp8 = Dp9 · Dp

√
8 is a Levi decomposition

of Dp8, and the inequality

dim
√

Dp8 6 6− rk 9

holds.
Proof.By the Levi decomposition we write8 = 9 ·√8 with dim (9∩√8) =

0, see [19], Chap. 1, 4.1. By Nagami [17], (2.1), this yields dim8 = dim9 +
dim
√

8. The derivation map Dp is a Lie isomorphism between the Lie groups
9 and Dp9, see [4], Proposition (3.1). Clearly, the image Dp

√
8 is a solvable

normal subgroup with dim(Dp9 ∩ Dp

√
8) = 0. Since Dp9 is semisimple and

8 is connected, this shows that Dp8 = Dp9 · Dp

√
8 is a Levi decomposition of

Dp8. This proves the first equation. By [3], Theorem (1.6) and [2] Corollary (3.9),
the maximal dimension of a closed solvable subgroup of Aut(Ap)TpK,TpL is 6. A
maximal solvable subgroup of Dp8 is conjugate to some subgroup ofT ·√Dp8,
whereT is a maximal torus subgroup of9. Using Nagami [17], (2.1) once again,
this proves the inequality.

We will need some information about subgroups of the orthogonal group SO8R,
cp. Hähl [11], 2.8, and [29], 95.12.

LEMMA. 2.9. Let K be a closed connected subgroup ofSO8R which does not
contain a subgroup isomorphic toSO5R. Then eitherK is isomorphic to one of the
groupsSpin7R, U4C , SU4C , or G2(−14), or dimK 6 13 holds. Moreover, we have
K 6∼= U4C , if rk K 6 3.

Proof. By hypothesis, the group SO8R is not contained inK. In particular, we
have dimK < dim SO8R. Since dim SO8R = 28, this implies that dim SO8R/K >
7, or, equivalently, that dimK 6 21 holds, see Mongomery, Zippin [16], Chap. VI,
Th. 2. Thus we have to check which compact groups of dimension at most 21 are
subgroups of SO8R. According to the Levi decomposition we may writeK = 9 ·T,
where9 is a semi-simple compact group andT ∼= Tr is a central torus subgroup.
We assume first thatK is quasi-simple. Using the classification of quasi-simple Lie
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groups, see for example [29], Section 95, J. Tits, [30], and recalling thatK does not
contain a subgroup isomorphic to SO5R, we infer thatK is isomorphic to one of
the groups

Spin7R, SU4C , G2(−14) , Spin5R, PSU3C , SU3C , SU2C , SO3R.

Note that a group which is locally isomorphic to SU3H has dimension 21, but
such a group does not have a faithful representation of dimension less than 12 and
hence is not a subgroup of SO8R. The same argument excludes the group PSU4C

from being a subgroup of SO8R. Since the groups that appear on the right hand
side of G2(−14) have dimension at most 10, the lemma is proved in the case of a
quasi-simple groupK. The following table shows the dimensions of real irreducible
representations of dimension at most 8, together with their centralizers, see again
[29], Section 95, J. Tits, [30].

group Spin7R SU4C G2(−14) Spin5R PSU3C SU3C SU2C SO3R

dimension 8 8 7 8 8 6 4,8 3,5,7

centralizer R C R H R C H R

Since a semi-simple Lie group is completely reducible, we get the following cen-
tralizers in GL8R

Spin7R SU4C G2(−14) Spin5R PSU3C SU3C SU2C SO3R

R C R × R× H R C ×GL2R H ×GL4R or H R ×GLmR

where the possible values ofm are 1, 3, 5.
This shows that a closed subgroup of SO8R of dimension at least 14 which does

not contain a group of type SO5R is isomorphic to one of the groups Spin7R, U4C ,
SU4C , G2(−14). Noting that the torus rank of U4C is 4, this proves the lemma.

Proof of Lemma2.6. We use the Levi decomposition8 = 9 · √8 of 8.
By [4], Proposition (3.1), the Levi subgroup9 is compact and the restriction of
the derivation map Dp to 9 is injective. By Lemma (2.8), Dp8 = Dp9 · Dp

√
8

is a Levi decomposition of Dp8, where Dp9 is compact and isomorphic to9.
Thus, in order to prove Lemma (2.6), it is sufficient to verify that the radical5 :=√

Dp8 = Dp

√
8 is closed in�. If dim 9 > 14, every closed solvable subgroup

of 9 of maximal dimension (which, of course, is a maximal torus subgroup) is
at least 2-dimensional according to the classification of quasi-simple Lie groups,
see the tables of J. Tits [30]. Hence, we conclude by Lemma (2.8) that dim5 6

6− 2 = 4. A quasi-simple compact Lie group9 of dimension at least 14 cannot
act on a manifold of dimensionn less than 5, otherwise dim9 6 1

2n(n+ 1) 6 10
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holds by Montgomery–Zippin [16], Chap. VI, Th. 2. Thus, the Levi subgroup Dp9

commutes with the radical5.
According to [4], Theorem (3.8), the group9 is locally isomorphic to some

subgroup of Spin8R. Consider the two-sheeted covering mapπ :Spin8R → SO8R.
Any subgroup2 of Spin8R is mapped viaπ onto a subgroupπ(2), and2 is an at
most two-sheeted covering group ofπ(2). Hence, the torus ranks ofπ(2) and2

coincide. Recalling that SO5R cannot act on a compact connected projective plane
by M. Lüneburg [15], II, Korollar 1 or [29], 55.40, we may apply Lemma (4.9) of
[4] in order to obtain thatπ(Dp9) is isomorphic to one of the groups

Spin8R, Spin7R, SU4C , G2(−14). (*)

The first three groups Spin8R, Spin7R and SU4C have torus rank at least 3. By
M. Lüneburg [15], II, Satz 2 (see also [29], 55.37), the torus rank of� is at most
4. Thus the assumptions of Lemma (2.7) are satisfied forG = �, H = Dp8 and
some maximal torus subgroupT of Dp9. Hence the centralizer CDp8T is closed in
�. By what we have shown above, the radical5 of Dp8 is a subgroup of CDp8T.
Since Dp9 is semi-simple, the torus groupT is a solvable subgroup of Dp9 of
maximal dimension, and thus5 is also the radical of CDp8T. In particular, the
group5 is closed in CDp8T. Since CDp8T is closed in�, this shows that5 is
closed in�, too. This proves Lemma (2.6) in the case, where9 is isomorphic to
one of the groups Spin8R, Spin7R or SU4C .

Now let us consider the remaining case9 ∼= G2(−14). According to Theorem
(2.5), a maximal compact subgroupM of � is isomorphic to either Spin8R or
G2(−14). We will show that the centralizer of Dp9 in M is trivial. This is obvious
if M ∼= G2(−14). Hence, we may assume thatM ∼= Spin8R, and consequently,
it is sufficient to verify that the centralizer of Dp9 in GL8R has no nontrivial
compact subgroup, see [2], (3.13). Using the second table of Lemma (2.9), we
get CGL8R(Dp9) ∼= R2. This implies that CDp8(Dp9) is closed in�. As before
5 = √Dp8 is a (closed) subgroup of CDp8(Dp9), whence the group5 is closed
in �. This finishes the proof of Lemma (2.6).

STABILIZER THEOREM 2.10. Let P be a smooth16-dimensional projective
plane. Let8 be a connected closed subgroup of the collineation group ofP which
fixes two distinct linesK andL. Let9 be a Levi subgroup of8. Then exactly one
of the following statements is true:

(i) P is isomorphic (as a smooth projective plane) to the octonion planeP2O ,
(ii) 9 ∼= Spin8R anddim8 6 38,
(iii) dim 9 6 14anddim8 6 31.

Proof.Let us assume thatP is not isomorphic to the octonion plane. ThenP is
neither a translation plane nor a dual one according to Otte’s Theorem (2.4). Thus
we have dim8[p,p] < 16, wherep = K ∧ L. Consequently, we may assume that,
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say, dim8[p,K] < 8 holds. We have mentioned already that the group9 is compact
and locally isomorphic to some subgroup of Spin8R. We continue our proof with a
case by case study depending on the size of dim9.

(1) dim 9 = dim Spin8R = 28. Then9 ∼= Spin8R, because the group
(P) SO8R cannot act on the tangent planeAp, see M. Lüneburg [15], II, Korol-
lar 1 or [29], 55.40. Any nontrivial irreducible real representation of Spin8R has
dimension at least 8. Thus, the group9 acts trivially on the elation group8[p,K],
since we have dim8[p,K] < 8. The center of Spin8R is isomorphic toZ2× Z2.
These involutions cannot act as Baer involutions onAp, since Spin8R neither acts
trivially on some Baer subplane nor acts nontrivially (as the group SO8R) on a Baer
subplane. Hence, the center of9 contains a central involutionω with centerp. By
Corollary (4.10) of [2], this involution is not an elation and we may apply Lemma
(4.4) of [4] in order to get8[p,K] = 11. Thus we obtain

dim8[p,p] 6 dim8[p,K] + 8= 8

by Salzmann [28], (F). According to Theorem (2.5), the group Dp9 is a maximal
compact subgroup of�, and Lemma (2.2) together with Theorem (2.3) yields

dim8 = dim Dp8+ dim ker Dp

= dim Dp8+ dim8[p,p] 6 (dim9 + 2)+ 8= 38.

(2) 146 dim9 < dim Spin8R = 28. By Lemma (2.6), the map Dp:8 → �

is closed. LetK be a maximal compact subgroup of8 that contains the (compact)
Levi subgroup9. By [4], (3.8), the groupK is locally isomorphic to some closed
subgroup of Spin8R. Thus we may apply Lemma (2.9) which shows thatK is
isomorphic to one of the groups Spin7R, SU4C ×T/〈−11〉, U4C , SU4C , or G2(−14).
Let us first consider the last group. Then dimK = 14, and we get

dim8 6 dimK+ 2+ dim8[p,p] 6 14+ 2+ 15= 31.

The groups Spin7R and SU4C both have unique nontrivial 8-dimensional irre-
ducible real representations which map their central involutionsα onto−11. Since
K is compact and fixes the linesK andL throughp, the derivation map Dp maps
K bijectively into GL8R × GL8R if we identify the point space ofAp with the
product TpK × TpL. If DpK acts trivially on one of the subspaces TpK or TpL,
then DpK is a homology group with axis, say, TpK (note: since DpK is compact, it
cannot contain an elation with axis TpK). According to T. Buchanan and H. Hähl
[5], a homology group of a locally compact connected translation plane is a closed
subgroup of the multiplicative group of the quaternions. Thus, the derivative Dp

maps the central involutionα onto−11 of GL16R. In particular, this proves that
Dpα is a homology with centero and soα is a homology with centerp. Since we
have dim8[p,K] < 8, the groupK acts trivially on the elation group8[p,K]. Now
Lemma (4.4) of [4] applies and we get8[p,K] = 11. This provides the inequality

dim8 6 dimK+ 2+ dim8[p,p] 6 21+ 2+ 8= 31.
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(3) 116 dim9 6 13. Then9 is not quasi-simple and we conclude by using
the classification of quasi-simple Lie groups that the torus rank of9 is at least 3.
This yields dim

√
Dp8 6 6− 3 = 3, and as before we end up with dim8 6

(13+ 3)+ 15= 31.
(4) dim 9 6 10. Then dim Dp8 = dim9 + dim

√
Dp8 6 10+ 6 = 16, and

hence we get dim8 = dim Dp8 + dim8[p,p] 6 16+ 15= 31. This proves the
Theorem.

3. Proof of the Main Theorem

We continue with a reduction result that shows that we may restrict our attention
to the case, where the setF1 of fixed elements of1 is given byF1 = {p,L} for
some flag(p,L), and a Levi subgroup9 of 1 is isomorphic to the simple compact
group G2(−14).

PROPOSITION 3.1.Let dim1 > 39. If F1 6= {p,L}, where(p,L) is a flag, or
if a Levi subgroup9 of 1 is not isomorphic to the compact exceptional Lie group
G2(−14), thenP ∼= P2O .

Proof.If 1 has more than four fixed elements, then up to duality we may assume
that1 fixes three pointso, u, v. Then1 fixes the two lineso ∨ u ando ∨ v, and
we getP ∼= P2O by Theorem (2.10). The same is true if1 fixes two points or two
lines. Hence, we may assume that1 has at most two fixed elements. If1 fixes an
anti-flag, we haveP ∼= P2O according to Salzmann [25], (2.2). If1 fixes exactly
one element, thenP ∼= P2O due to Salzmann [27], (C). If1 contains a normal
torus subgroupT, thenT is contained in the center of1 and we can apply [26],
(2.1) which shows that if1 has no fixed elements at all, then1 is a semi-simple
group. Since dim1 > 39, we have once moreP ∼= P2O by [25], Theorem. Thus
we have proved the first part of the proposition.

Now let 9 6∼= G2(−14). According to the first part we may assume thatF1 =
{p,L} for some flag(p,L). ThenP or its dual plane is a translation plane by
M. Lüneburg, [15], V, Satz, and Otte’s Theorem (2.4) on smooth translation planes
givesP ∼= P2O . This proves the proposition.

According to the last proposition we may assume thatP is a 16-dimensional
smooth projective plane, that the group1 is a closed connected subgroup of Aut(P )

with dim1 > 39 which fixes exactly one flag(p,L), and that a Levi subgroup9
of 1 is isomorphic to the compact exceptional Lie group G2(−14). We proceed by
verifying a series of small lemmas. We will always omit the proofs of the dual
statements.

(A) We havedim1 = 39, dim1K = 31 for every lineK ∈ Lp \ {L}, and9

is a maximal compact subgroup of1. Moreover, the group1 acts transitively on
bothLp \ {L} andL \ {p}.
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Since9 ∼= G2(−14), we obtain from Theorem (2.10) that dim1K 6 31 holds.
This gives

396 dim1 = dim1K + dimK1
6 31+ 8= 39,

whence we have dim1 = 39 and dim1K = 31. The second statement follows
immediately from the proof of Theorem (2.10). Let us turn to the last assertion.
SinceLp \ {L} ∼= R8 is connected and because every orbit of1 on Lp \ {L} is
8-dimensional and hence is open inLp \ {L}, we conclude that1 acts transitively
onLp \ {L}.
Using the tables of J. Tits [30], we get the following list.

(B) A compact semi-simple Lie groupϒ of torus rank at most two is locally
isomorphic to one of the groupsSOkR, SU3C , or G2(−14), where36 k 6 5.

(C) A proper closed semi-simple subgroupϒ of G2(−14) has dimension at
most8.

If ϒ is a proper closed subgroup of G2(−14), then dimϒ 6 9 holds according to
Theorem 2 of Chapt. VI of [16]. This excludes the group SO5R from the list in (B)
and hence assertion (C) is proved.

(D) For every lineK ∈ Lp \ {L} a Levi subgroup of the stabilizer11
K is

isomorphic toG2(−14). In particular, any two Levi subgroups of the stabilizers1K

are conjugate in1.
Fix some stabilizer1K and letϒ be a Levi subgroup of11

K . Assume that
ϒ 6∼= G2(−14). Using (C), we obtain dimϒ 6 8, and we infer from Lemma (2.2)
and Lemma (2.8) that

dim1K = dim Dp1K + dim(1K)[p,p]

6 (dimϒ − rk ϒ + 6)+ 156 14+ 15= 29

holds which is a contradiction to (A). Hence assertion (D) is proved.

(E) dim1[p,p] = 15,and dually, dim 1[L,L] = 15.
The derivation map Dp:1K → � is closed by Lemma (2.6) and (D). Using the

Stabilizer Theorem (2.10), we infer from (A) and (D) that

31 = dim Dp1K + dim ker Dp

6 (dim9 + 2)+ dim1[p,p] = 16+ dim1[p,p] 6 31

holds for every lineK ∈ Lp \ {L}. This shows that dim1[p,p] = 15.

Furthermore, the inequality above is in fact an equality, whence assertion

(F) dim Dp1K = dim9 + 2

is true for every lineK ∈ Lp \ {L}.
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(G) We havedim q1K > 7 anddim K1q > 7 for every pointq ∈ L \ {p} and
every lineK ∈ Lp \ {L}.

Fix some pointq ∈ L \ {p} and some lineK ∈ Lp \ {L}. Then, from (A),
Lemma (2.8) and the Stabilizer Theorem (2.10), we obtain the inequality

31 = dim1K = dim1K,q + dimq1K

6 dim Dp1K,q + dim ker Dp|1K,q
+ dimq1K

6 dim Dp1K + dim(1[p,p])q + dimq1K

6 dim9 + 2+ dim(1[p,p])q + dimq1K

6 14+ 2+ 8+ dimq1K

= 24+ dimq1K ,

which gives dimq1K > 7.

(H) dim 1[p,L] = 8.
Since1 acts transitively onL \ {p} by (A), we know that dim1[q,L] is inde-

pendent of the pointq ∈ L \ {p}. According to Salzmann [28], Section 0, (G),
this implies that1[p,L] is transitive onK \ {p} for every lineK ∈ Lp \ {L}. In
particular, we have dim1[p,L] = dimK = 8.

(I) dim 1[q,L] = 7 and, dually,dim1[p,K] = 7 holds for every pointq ∈ L\{p}
and every lineK ∈ Lp \ {L}.

According to Salzmann [28], (F), we have dim1[L,L] 6 dim1[q,L] + 8 for any
point q ∈ L. Thus, we infer from dim1[L,L] = 15 that dim1[q,L] > 7. If dim
1[q,L] = 8 for q 6= p, then dim1[L,L] = 16 follows, a contradiction to (E).

PROPOSITION 3.2.There exists a non-trivial homologyω ∈ 1[p].
Proof.We have dim1K = 31 for any lineK ∈ Lp \ {L} by (A). Assertion (D)

says that every Levi subgroup9 of 11
K is isomorphic to G2(−14). The group9 is

a maximal compact subgroup of1 (and hence of11
K as well), and dim Dp1K =

dim9+2 holds by (F). Hence we may apply Theorem (2.3) in order to obtain that
H = (Dp1K)1

[o,L∞] is isomorphic toR>0. SinceH fixes every tangent space TpG

for G ∈ Lp, every collineation of the inverse image2 = D−1
p H fixes every line

through the pointp. Conversely, Dp maps every central collineation of11
[p] into H.

This shows that11
[p] = 2. By [3], Proposition (1.4), the group11

[p] can be written
as a semi-direct product11

[p] = 11
[p,A] n11

[p,p] for some lineA 6∈ Lp.
In particular, the group1[p,A] is not trivial, because of1[p,p] = ker Dp and

H 6= {11}. This proves the Proposition.

Fix K ∈ Lp \ {L} and choose a lineM ∈ L \Lp such thatM1 6= {M}. Such
a line exists because ofF1 = {p,L}. Due to Proposition (3.2) we can apply a
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theorem of H. Hähl [9], Corollary 1.3, which yieldsM1 = M1[p,p] . Using (E) we
get

dimM1 = dimM1[p,p] = dim1[p,p] = 15

and

dim1M = dim1− dimM1 = 39− 15= 24.

The stabilizer1M fixes the antiflag(p,M). Thus we have(1M)[p,p] = {11} and
from Lemma (2.2) we conclude that

dim Dp1K,M = dim1K,M − dim(1K,M)[p,p]

= dim1K − dimM1K − 0> 24− 8= 16.

Since ker Dp|1K,M = (1K,M)[p,p] = {11}, the restriction Dp|1K,M
is an injection.

LEMMA 3.3. Every Levi subgroupϒ of 11
K,M is isomorphic toG2(−14).

Proof.Since9 ∼= G2(−14), the groupϒ is a subgroup of G2(−14). If ϒ 6∼= G2(−14),
then dimϒ 6 8 by (C) and

dim Dp1K,M 6 dimϒ + 6− rk ϒ 6 8+ 6= 14

follows, which is a contradiction. Thus we haveϒ ∼= G2(−14).

According to Lemma (3.3) and the remarks preceding this lemma, we can argue
as in Proposition (3.2) in order to get the following corollary. Note that a homology
of 1K,M with centerq = M ∧ L hasK as its axis.

COROLLARY 3.4. There exists a nontrivial homologyω∗ ∈ 1[q,K].

COROLLARY 3.5. The stabilizers11
q and11

K can be decomposed in the follow-
ing way:11

q
∼= 11

q,K n11
[q,L] and11

K
∼= 11

q,K n11
[p,K].

Proof. Proposition (3.2) enables to apply Corollary 1.3 of [9] which yields
K11

q = K
11[q,q] . In particular, this gives dim1q/1q,K = dim1[q,q]. Since11

[q,q] =
11
[q,L] is a normal subgroup of11

q that intersects1q,K trivially, the first decompo-
sition is proved. The second decomposition is proved dually.

Now we have collected all the information we need to prove the Main Theorem.
Our proof is inspired by the proof of Satz 4 in Chap. VI of [15].

Proof of Main Theorem.By Lemma (3.3), we may assume that the Levi sub-
group9 of 1 is contained in11

K,M . Let Z be the connected component of the

180479.tex; 13/11/1998; 12:51; p.13



296 RICHARD BÖDI

centralizer C19. Since9 fixes bothq andK, the subgroups11
q , 11

K and11
q,K are

normalized by9. Using [5], VI, Lemma, we thus get

dimZq ≡ dim1q(mod 7), dimZK ≡ dim1K(mod 7),

dimZq,K ≡ dim1q,K(mod 7).

The fixed setF9 of 9 is a 2-dimensional subplane ofP , the centralizerZ acts
almost effectively onF9 , see [15], VII, Satz 5(iv), andp, q,K,L are contained in
F9 . Hence we have

1> dimqZ = dimZ− dimZq and 1> dimKZ = dimZ− dimZK,

becauseZ fixesp as well asL, andq ∈ L ∩ F9 , K ∈ Lp ∩ F9 . If the orbitqZK is
one-dimensional, we use Corollary (3.5) and (I) to get the contradiction

7 = dim1[p,K] = dim1K − dim1q,K

≡ dimZK − dimZq,K = dimqZK = 1(mod 7).

Hence we may assume that the orbitqZK (and, dually, the orbitKZq ) is zero-
dimensional. ThenZ1

K fixesq and, dually,Z1
q fixesK. The stabilizer of any quad-

rangle of a 2-dimensional compact projective plane is trivial, [22], 4.1, whence we
have dimZq 6 3 and dimZK 6 3. From [15], VI, Lemma, we have dimZ ≡ dim
1(mod 7), which implies that dimZ = 4. In particular, we haveZ 6= Zq ∪ ZK .
Choose a collineationζ ∈ Z \ (Zq ∪ ZK). Select some pointu ∈ K ∩ F9 distinct
from p.

Figure 1.

FromZ1
Kζ = (Z1

K)ζ we infer that

(ZK,Kζ )1
6 Z1

K ∩ Z1
Kζ = Z1

K ∩ (Z1
K)ζ = Z1

q,K ∩ (Z1
q,K)ζ

6 Zq,qζ ,K,Kζ ,
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whenceZu,K,Kζ fixes the quadrangle{q, qζ , (u∨q)∧Kζ , (u∨qζ )∧Kζ }. However,
dim ZK,Kζ > 2 holds, because ofK,Kζ ∈ Lp∩F9 and dimZ = 4. Consequently,
we have dimZu,K,Kζ > 1, which is a contradiction to Salzmann [22], 4.1. This
finishes the proof of the Theorem.
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