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Abstract. We propose and evaluate a deep reinforcement learning con-
trol paradigm for building energy systems. In comparison to other ad-
vanced control techniques, namely Model Predictive Control, the rein-
forcement learning paradigm avoids the costs and uncertainties asso-
ciated with the requirement for a control-oriented model. We apply a
mixed agent for the Proximal Policy Optimization algorithm, similar to
the algorithm proposed in [7] as well as a non-discounted finite horizon
optimization scheme.
We investigate the capabilities of the proposed reinforcement learning
controller regarding energy efficiency, comparing it against the most
widely used rule-based control paradigm as a baseline controller. We ver-
ify our proposed paradigm in a simulation study with building models
implemented in Dymola.
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1 Introduction

The transition from fossil fuels to renewable energy sources entails increased
complexity in energy management, due to varying availability and the difficul-
ties of storing electrical and thermal energy. Building energy systems (BES),
representing an important share of overall energy consumption, offer significant
potential in reducing the carbon footprint, provided that an optimized energy
management adapted to both availability and usage patterns can be realized.

Prior work has established that advanced control techniques such as Model
Predictive Control (MPC) can yield substantial energy savings in BES [3,5,12].
However, despite intensive research, especially in MPC for BES, most buildings
still rely on simple rule-based controllers (RBC). A possible reason for this is
the high computational complexity associated with online MPC, along with the
need for an accurate, control-oriented model to describe the physical system in
a way amenable to real-time optimization. For many applications, this restricts
the model to being essentially linear. Creating this control-oriented model is
⋆ Funded by Innosuisse 31326.1 IP-EE.
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often the most time-consuming part of MPC design and can result in a compro-
mise between prediction accuracy and computational complexity that leads to
suboptimal controller performance.

This work is motivated by the idea that Deep Machine Learning (ML) holds
promise in solving the energy management problem. ML, as a data-driven tech-
nique, has gained traction as a powerful paradigm across various application
domains, including building control [11, 15]. Particularly in an engineering con-
text [1], ML can complement the model-driven methodologies. We explore the
potential advantages of a control system based on deep reinforcement learn-
ing (Reinforcement Learning Control, RLC) in the context of BES. We investi-
gate various RLC variants and compare them to conventional controllers. No-
tably, the investigated RLC schemes do not necessitate a control-oriented model,
potentially reducing development time and enhancing controller performance.
However, they do require a numerical model of the BES to gather training
data—often spanning several simulated years.

We apply a mixed agent for the Proximal Policy Optimization algorithm
(PPO) [9], capable of handling the mixed continuous and discrete action space in-
herent to our problem (see Section 3.2) and a finite horizon optimization scheme
to replace the traditional infinite horizon discounting scheme (see Section 3.3).
This change is driven by the observation that the discounting scheme made de-
laying the import of energy appear cheaper to the controller, whereas in reality,
it led to increased costs due to energy import becoming an urgent need at an
ill-suited moment.

2 Building energy system (BES)

The investigated system is a simplified version of the one used by the authors
in [3], which is based on a real application scenario. It integrates a small-scale,
grid-connected photovoltaic collector (PV), one heat pump (HP) charging one
thermal storage and supplying energy to a low-temperature surface heating. The
consumer is a single-family house modeled as a second-order Lumped Parameter
Model, consisting of two resistors and two capacitors. Fig. 1a shows the schematic
of the installation which integrates

– Ice storage (IceSt) 84 m3

– Room heating storage (RhSt) 500 liter
– Photovoltaic (PV) collector, 30 m2, south-facing
– Brine to water HP with nominal heat output 3.93 kW at B0/W35 with a

Coefficient of Performance (COP) of 4.65

The heat pump has a variable speed compressor, allowing it to adjust its op-
erating electrical power (power modulation). Ice storage is a low-temperature
storage with a very long time constant and a high capacity. The room heating
storage is a high-temperature storage with low capacity.
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Fig. 1: a) Scheme of the HVAC system simulated with Dymola. Heating storage
tank (RhSt), heat pump (HP), ice storage (IceSt), and photovoltaics (PV). b)
Hierarchical control architecture. P: Plant to be controlled, C:continuous (PI)
controllers, Cd: discrete HP controller of the inner loop, and E : Environment,
constituting the inner closed-loop system. The RL module establishes setpoints
for room temperature and HP electrical power, and handles the on/off operation
of the HP.

3 Control Architecture

We employ the hierarchical architecture depicted in Fig. 1b. Proportional-Integral
(PI) controllers are used in the inner loop to achieve system stabilization for the
fast dynamics. The outer loop is a reference governor (RG) [2] for the inner
loop. The RG’s objective is to minimize the energy consumption of the inner
loop while adhering to setpoints and system limitations.

3.1 The reinforcement learning controller

Fig. 2: Markov Decision Process with states st, actions at and rewards rt

We formulate the control problem as a Markov Decision Process as depicted
in Fig. 2 within the environment E [13]. The control episode starts a state s0.
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The controller then successively chooses actions at from a set of possible actions
A according to the control policy π(a, s) which is the probability of choosing
the action a in the state s. Due to the applied actions and the dynamics of
the environment, the states st will evolve over time. The performance of the
controller is measured by the reward rt which is a function of st and the action
at.

In most RL applications the return Rt is defined as the discounted sum of
all future rewards in the control episode of length n

Rt =
n−t∑
l=0

γlrt+l (1)

where γ ∈ (0, 1] is the discount factor, which must be tuned during the
training process. A value of γ < 1 means that rewards count less, the further they
lie in the future, reflecting the fact that increased temporal distance introduces
more uncertainties. Consequently, smaller yet more assured rewards in the near
future are preferred over potentially larger but riskier rewards further from the
present.

The return can be used to define a quality measure of the chosen actions,
namely the Action-Value Function (Q-function):

Qπ,γ(st, at) := E[Rt+1 | st, at] (2)

The Q-function represents the expected return when starting from state st, tak-
ing action at, following policy π thereafter, and using the discount factor γ.
Similarly, the State-Value Function (V-function) is defined as the expected re-
turn when starting from state st, following policy π thereafter.

V π,γ(st) := E[Rt+1 | st] (3)

The function A(st, at)
π,γ is called advantage and specifies how much better or

worse the value of the action at is compared to the π-weighed average of all
possible actions in the state st. It is given by

A(st, at)
π,γ = Qπ,γ(st, at)− V π,γ(st) (4)

In our research, we predominantly utilized the Proximal Policy Optimiza-
tion (PPO) algorithm as outlined in [9]. PPO is a state-of-the-art reinforcement
learning algorithm that combines policy gradient techniques with a clever clip-
ping mechanism. This clipping approach is employed to mitigate the risk of
excessively aggressive policy updates that could lead to instability in the learn-
ing process. Another advantage of PPO is its ability to engage with multiple
environments in parallel, significantly expediting the training process. As de-
scribed in [10], we approximately maximize the following objective during PPO
training:

L = Ê[LA − cV LV + cSLS ] (5)
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Here, cV and cS are non-negative weighting factors, and LS contributes to en-
tropy loss for enhanced exploration. Despite the potential benefits of promoting
exploration through the entropy term (e.g. [10]), our experimentation did not re-
veal any notable improvements. Therefore, we set the weighting factor cS to zero.
LV corresponds to the aggregation of squared deviations between the learned
value function Vθ—represented by the neural network’s parameters θ—and the
estimated returns V̂ = Rt+1 derived from interactions with the environments.

The first and most important term is given by

Ê[LA] =
m∑

k=1

n∑
t=0

Aθ0(s
k
t , a

k
t )

πθ(a
k
t , s

k
t )

πθ0(a
k
t , s

k
t )

(6)

where θ0 denotes the parameter set of the neural network that was used when
interacting with the environment and generating the data set {skt , akt , rkt }k=1,...,m

for the m parallel episodes. When optimizing the loss (equation 6), we employ
the following estimate Â for A [9]:

Â(st, at) = rt + γ Vθ0(st+1)− Vθ0(st) (7)

The optimization of LA can be understood as follows: For θ = θ0, the quotient
λ = πθ/πθ0 is equal to 1. Starting from θ = θ0, the parameters of the neural
network are optimized such that λ will be increased for positive advantages
(actions with better-than-average action-value) and decreased for actions with
negative advantages. Therefore, actions with positive advantages will have a
higher probability of being chosen in the next iteration.

In our application, the environment comprises the sub-controllers C and the
Building Energy System P (see Fig. 1b). The possible actions applied every hour
are as follows:

(i) Heat pump on/off
(ii) Heat pump power modulation 60− 100%
(iii) Indoor temperature setpoint 20− 23◦C

From a BES perspective, if necessary, we can easily convert (ii) and (iii) into
discrete actions, provided that the discretization has a fine enough granularity.
Concerning (i), the operation of the HP can be approached either discretely by
switching the HP on or off every hour or continuously by turning it on or off for
a duration between 0s and 3600s.

The state information comprises the current supply and return flow tem-
peratures, the flow rates of the heating circuit, the room temperature of the
building, as well as the room heating storage temperature and the power pro-
duced by the photovoltaic collector. Additionally, the state includes a 12-hour
forecast of outdoor temperature and solar irradiation, updated every hour.

The reward consists of two terms: (i) a deviation of the room temperature
from the tolerance band 20−23◦C results in a linearly increasing negative reward
(a penalty), and (ii) an energy penalty proportional to the energy drawn from
the grid. The use of electricity from the PV collector incurs no penalties.
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3.2 Mixed Agent

In practice, even actions that are naturally continuous, such as temperature set
points, are often discretized and handled by a discrete agent. However, if high
resolution is required, the number of discretized actions can become large and it’s
uncertain whether the same performance can be achieved as with a continuous
agent. The mixed Agent is analogous to the one proposed in [7] for the Maximum
a Posteriori Policy Optimization (MPO) agent.

In the case of continuous action spaces, the Gaussian policy is commonly
used. Here, actions ac = {ac,i} are drawn from a parameterized uncorrelated
normal distribution represented by the equation:

πc(ac | s) =
∏
i

e
−

(ac,i−µθ,i(s,ac,i))
2

2σ2
θ,i

√
2πσθ,i

(8)

The functions µθ,i(s, a) and σθ,i(s, a) are approximated by a neural network.
For discrete action spaces with actions ad , the softmax policy is used. It

is defined by the equation:

πd(ad | s) = eϕθ(s,ad)∑
a′
d∈A eϕθ(s,a′

d)
(9)

Here, the function ϕθ(s, ad) is represented by a neural network, and πd(ad | s)
calculates the probability of taking the action ad given state s. The softmax
policy ensures that the probabilities of all possible actions sum up to 1.

For the mixed agent with actions a = {ac, ad} we used the combined dis-
tribution given by the product

π(a, s) = πc(ac | s) πd(ad | s) (10)

The functions µθ,i(s, a), σθ,i(s, a), and ϕθ(s, ad) as well as Vθ(s) are all approx-
imated by the same neural network with parameters θ, which are found by
optimizing the loss given by equation 5.

Exploration in the case of a continuous action space is accomplished by
sampling actions according to the latest version of the policy network µθ and
then adding Gaussian noise. This results in the action ac = µθ+N (0, σθ), which
is subsequently applied within the environment.

For the scenario of a discrete action space, we generate samples from the
categorical distribution πd(ad | s). In this case, the most recent iteration of the
policy network ϕθ is perturbed according to: ad = argmax(ϕθ − log(− log(u))),
with u ∼ Uniform(0, 1), and the resulting action is applied to the environment.

3.3 Finite horizon optimal control problem

Discounting future rewards (see equation 1) suffers from three disadvantages in
our application.
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The first one arises from the fact that future energy draws from the grid
are discounted which means that the HP seems to need less energy the more
the action "HP on" lies in the future. This is briefly illustrated by the following
example: Let us assume that we have a sunny winter afternoon and in order to
maintain the required room temperature we need to run the HP for one hour
in the coming 6 hours. Currently, the PV system provides about 20% of the
power the HP needs and therefore 80% must be taken from the grid. Thus, it
seems to make sense to immediately switch on the HP and make use of the free
PV power. However, if γ = 0.95 the return, which is always negative in our
application, is higher if the power-up of the HP is delayed for the maximum of 5
hours because γ5 = 0.77. But running the HP after sunset would certainly cost
more grid energy.

This underweighting of future grid energy draws can be reduced by choosing
a discount factor very close to one. But then the second disadvantage becomes
apparent. Due to the very slow decay of the weighing factor γl if γ ≈ 1 rewards
that will be generated far in the future with almost no causality to the current
action will be taken into account. Furthermore, the long optimization horizon
increases the complexity exponentially, resulting in longer comutation time and
higher variance in training performance.

The authors of [14] discuss how different values of γ would influence the
behavior of an RL controller for a heat pump. They compare results with γ =
0.25 and γ = 0.75 (both strongly discounted) and observe the following: (i) higher
values assign greater importance to achieve long-term rewards and accordingly
lead to more frequent operation of the heat pump when the outdoor temperature
is high (higher coefficient of performance (COP)). Pre-heating during periods
with a high COP consumes more energy at the current time step while saving
energy for upcoming time steps. If γ is small, the discounted future savings could
not justify the current costs.

Because of these shortcomings we introduced a finite non-discounted op-
timization window for PPO which favors achieving long-term rewards over a
reasonable time horizon without increasing the complexity of the optimization
problem too much. The return is given by

Rt =

Nh∑
l=0

rt+l + VF (11)

The prediction horizon Nh replaces the discounting factor γ. VF accounts for the
return value of the final state, reached after Nh steps. We obtained our results
by simply setting VF = 0. This can be justified by the fact that the planning
horizon is sufficiently long in comparison with the time constants of the system
that the final cost term is negligible for the determination of at. Additional work
may be needed to fully understand the behaviour with respect to this term. A
reasonable value for Nh can be estimated based on the time constants present in
the system. In our case, the time constants of two thermal heat storages, RhSt
and building capacity, are relevant. Equations 2 to 10 remain applicable without
modification to this new return formulation.
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In the following chapter, we present and compare results for various config-
urations of the PPO algorithm using both discounted and finite non-discounted
reward windows. In addition, we also present results we obtained using the Soft
Actor-Critic (SAC) [6] algorithm to find an optimal control strategy. Table 1
lists the investigated configurations.

# algorithm action 1 action 2 action 3 γ Nh

1 PPOd:γ=0.95 on/off {60, 65, ..., 100}% {20, 21, 22, 23}◦C 0.95 -

2 PPOd:γ=0.99 on/off {60, 65, ..., 100}% {20, 21, 22, 23}◦C 0.99 -

3 PPOd:Nh=12 on/off {60, 65, ..., 100}% {20, 21, 22, 23}◦C - 12

4 PPOm:γ=0.95 on/off [60, 100]% [20, 23]◦C 0.95 -

5 PPOm:γ=0.99 on/off [60, 100]% [20, 23]◦C 0.99 -

6 PPOm:Nh=12 on/off [60, 100]% [20, 23]◦C - 12

7 SAC rt. var. [60, 100]% [20, 23]◦C
Table 1: Evaluated parameter sets and discrete or continuous actions of PPO and
SAC. Actions: (1) Heatpump turned on/off every hour or in case of the SAC the
controller can choose a variable runtime ("var.rt.") between 0s and 3600s every
hour, (2) Heatpump power modulation in percentage of maximum power, (3)
Indoor temperature setpoint.

4 Simulation Results

The RLCs were trained in co-simulation with a BES modeled in Dymola [4].
For the implementation of the RLCs, we employed the OpenAI framework [8].
Our optimization approach for the RLCs aimed at achieving two primary goals:
(i) minimizing electricity consumption from the grid and (ii) maintaining room
temperature within the range of 20 − 23◦C. The range enables the RLC to ef-
fectively utilize the building mass as an additional heat storage mechanism (see
Fig. 5b). Leveraging the building’s mass roughly doubles the short-term stor-
age capacity of the system. In the upper plot of Fig. 5b, it is evident that the
RLC capitalizes on this by activating the heat pump during periods of available
surplus PV electricity. Throughout the investigation, only a negligible number
of small constraint violations were observed. To assess and compare the perfor-
mance of the RLCs, we have included a baseline RBC and an improved RBC
in our evaluation. The baseline RBC uses a heat pump with fixed operating
power (no power modulation) and a constant setpoint for the room tempera-
ture of 20◦C. Furthermore, the heat pump is turned on and off according to a
constant threshold temperature in the RhSt. In the improved RBC, both the
heatpump power and the room heating storage setpoint were decreased until
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there was just enough energy left to cover the requirement. Moreover, a time-
dependent threshold temperature in the RhSt was introduced, which increases
if PV electricity is available. This adjustment results in significantly higher self-
consumption of PV electricity. It is only possible with prior knowledge of the
energy requirement and availability of PV-energy, therefore it demonstrates the
quasi-upper-performance limit achievable with the used RBC structure. Fig. 3
shows, that this dramatically reduces the RBC’s grid electricity consumption.

4.1 Performance Comparison and Training Speed

Fig. 3 illustrates the electricity export versus import from the grid. The con-
trollers minimize electricity import, while export is neither optimized nor con-
strained. The RLCs demonstrate remarkable energy efficiency results. Among
the top-performing RLCs, PPOd with a prediction horizon of Nh = 12 hours
consumed an average of 940kWh

a of energy from the electricity grid. A improved
RBC, also utilizing the building as a heat storage, required 1280kWh

a , while a
simple RBC required 2060kWh

a . Furthermore, PPOd exported more electrical
energy to the grid than the improved RBC. Overall, RLCs with non-discounted
finite windows, specifically PPOd and PPOm, exhibit outstanding performance
with significantly lower variance compared to RLCs with discounted infinite win-
dows. All simulations were conducted under identical circumstances.

Table 2 shows the number of samples required to achieve 85%, 90%, 95%,
and 99% of the maximum reward. The mixed agents achieve high rewards more
quickly. For instance, to reach 90% of the maximum performance, PPOm:Nh=12

requires 1.8× 106 samples, while PPOd:Nh=12 requires 3.7× 106 samples.

% of max reward
PPO parameters

d:Nh=12 d:γ=0.99 d:γ=0.95 m:Nh=12 m:γ=0.99 m:γ=0.95

85% 2.0 3.1 2.0 1.0 1.8 1.6
90% 3.7 3.9 2.9 1.8 2.7 1.8
95% 4.3 4.9 3.1 3.7 3.3 5.1
99% 9.8 8.8 9.2 9.2 7.1 6.9
yearly electricity consumption kWh 951 1022 1032 939 957 928
mean ± std ±17 ±55 ±20 ±11 ±33 ±121

Table 2: Number of samples in millions required to reach 85%, 90%, 95%, and
99% of the maximum reward of each agent for the first time.

4.2 Discounted versus Non-discounted Windows

We conducted an empirical investigation to examine the impact of different
types of optimization windows. The proposed non-discounted window consis-
tently matches or surpasses the discounted versions in all scenarios, resulting in
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Fig. 3: a) Energy efficiency comparison among different controllers optimized to
minimize grid electricity consumption (kWh) while maintaining room temper-
ature within 20 − 23◦C. The vertical axis: surplus energy produced by the PV
system and supplied to the grid. Subscripts denote specific properties of the PPO
Controller: PPOd indicates discrete actions, PPOm indicates mixed actions. The
parameter γ represents the discount factor used in the optimization window, if a
discounted window was employed. All simulations were run under identical (en-
vironmental) conditions. The variance over different runs is due to the stochastic
nature of the sampling inherent to reinforcement learning. Fig. b) Zoomed-in
View of Fig. 3a.

not only lower mean energy consumption but also reduced energy consumption
variance. The outcomes are depicted in Fig. 3, where various RLCs with different
windows were tested with identical environments.

Optimization becomes more challenging when there’s a limited availability
of surplus PV electricity. In Fig. 4, we reduced the PV area from 30m2 to 15m2.
Notably, in this scenario, the non-discounted PPOd outperforms the discounted
PPOd:γ=0.95 by approximately 13% in grid electricity consumption reduction.
Concurrently, the exported electricity increases by over 30%.

5 Conclusion and Outlook

We have shown that an RLC has a great potential for saving primary energy.
In contrast to MPC the RLC approach avoids the expenses and compromises
associated with developing a control-oriented model.

The use of a mixed agent has significantly accelerated the learning process,
achieving performance that is at least comparable to, if not superior to, a stan-
dard PPO agent. Nevertheless, the amount of data required remains impractical
for online learning applications. In fact, we would need a reduction of several
orders of magnitude to eliminate the dependency on building simulations.
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Fig. 5: a) Evolution of reward during training. Solid lines: mean performance.
The shaded regions: lower 10th and upper 90th percentiles over 6 trials. Note
the significant variation in the initial phase. b) Top: Electricity production with
PV and the actively modulated power consumption of the heat pump. Bottom:
Room temperature within the target range of 20− 23◦C.

While deep RL provides a comprehensive framework for deriving optimal con-
trol strategies directly from data, further progress is needed to effectively apply
RL to real-world BES. Within the current range of RL methods, two intriguing
paths for exploration emerge: One involves initiating the learning process with a
RBC as the initial policy, rather than starting with a randomly initialized neural
network. This approach would facilitate the learning process with a reasonable
performance baseline. Alternatively, we could leverage pre-trained models and
adapt them, either with or without additional training, for applications in BES.
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