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Abstract—Passive Intermodulation (PIM) is a physical layer

Radio Access Network (RAN) problem observed in both 4G

and 5G networks. It is caused by internal physical processes

such as inferior cabling or rusting, and external factors such as

metallic obstacles in the radio propagation path. PIM degrades

the user experience and radio resource efficiency while leading

to an operation overhead for detecting and mitigating it on the

operator side. Nevertheless, current solutions for PIM typically

rely on costly hardware and site visit-based investigation by

technicians. This work proposes a Machine Learning (ML)

based PIM detection scheme for identifying PIM problems in

RAN sites. Our approach relies on network KPI data already

collected in the infrastructure for various purposes, including

network monitoring, performance control, and maintenance. We

investigate the performance of our proposed technique using

empirical data collected from actual network cells.

I. INTRODUCTION

Wireless and mobile networks have become the backbone
of our civilization with the emergence of anytime-anywhere
connected services and advances in end-user devices. This
phenomenon was also starkly evident during the COVID-19
pandemic when ubiquitous broadband access and applications
like remote working were critical for our daily lives [1].
Accordingly, the cellular network infrastructure has been ex-
panding with more base stations and radio access nodes to
facilitate sufficient connectivity and capacity. This trend is
accompanied by more complex radio technologies and diverse
radio environments for network devices with the deployment
of 5G networks. As a result, new challenges regarding RAN
management, maintenance, and user-experienced signal qual-
ity have arisen. A fundamental technical problem in that regard
is the Passive Inter-Modulation (PIM) problem, which has
been in effect since 4G networks, adversely impacting network
coverage and signal quality in current wireless systems [2].

PIM occurs due to the nonlinearity of RF antennas or
passive network elements such as connectors and cables,
leading to an inferior signal quality caused by impairment
of Quality of Service (QoS) and spectral efficiency [3]. In
such scenario, the nonlinear function of the passive device
can be characterized by the power series y = ⌃1

k=1akx
k

where x and y represent instantaneous input and output signals,
respectively. The coefficient ak depends on the nonlinear
characteristics of the device, with k being the order of the
power series. For instance, when the input signal is composed

of two frequencies f1 and f2, there will be intermodulation
signals in the output signal in addition to harmonic ones due
to the combination of these two frequencies as shown in
Fig. 1. These intermodulation signals around the fundamental
frequency lead to the PIM issue. If this problem is caused by
the physical conditions of network equipment degrading over
time, it is called Internal PIM. Occasionally, the root cause
of the PIM is an external factor unrelated to the base station
itself. This so-called External PIM can occur when metallic
objects such as a fence, billboard, or roof material are around
the signal path. Unlike Internal PIM, typically emerging and
showing its symptoms gradually over time, External PIM
causes an abrupt degradation in signal and connection quality.
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Fig. 1: Intermodulation products for two signals at f1 and f2
in PIM.

Several methods have been proposed in the past to detect
and cancel PIM in base stations. However, such methods
usually depend on manual work and incur further operational
costs [4]. For instance, one of the most widely used methods
for PIM detection is to generate an artificial load on the
network cell to draw out the problematic branch or component.
However, this is an undesirable approach due to deteriora-
tion in the network coverage during tests. Instead of such
methods, digital and remote solutions for PIM detection have
emerged recently [5]. Several methods have been studied for
computer-aided PIM detection, utilizing various data-driven
approaches, including machine learning (ML), statistics, and
rule-based techniques. Although machine learning approaches
for PIM detection usually use supervised learning models such
as neural networks [6], some studies introduce novel ideas
[7] as potential solutions. These methods usually work well
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under the assumption that a site is either healthy or not for
the entire monitoring process. For scenarios where the PIM
issue slowly develops on a site, anomaly detection techniques
using time-series data [8] along with other classifiers such
as random forests [9] seem to provide better results. In that
vein, using data analytics approaches for anomaly detection
[10] is promising for detecting PIM issues since PIM can be
considered an anomaly in the network site.

Data analytics is already a key element for network man-
agement and maintenance in wireless systems. In that regard,
data collection and processing in near real-time for anomalies,
optimization, modeling, and performance monitoring essen-
tially lend themselves to PIM problems. However, the surge
in mobile devices such as IoT and more heterogeneous systems
has made it increasingly difficult to identify and troubleshoot
network issues promptly. The evolution of wireless technology
and the development of next-generation networks, such as
Beyond 5G or 6G, is expected to exacerbate this problem
due to more complex radio environments, more stringent
QoS requirements, and massive connectivity. Therefore, more
advanced PIM solutions relying on data analytics and remote
monitoring are an essential research topic. As such, novel
anomaly detection techniques for PIM are crucial for ensuring
mobile networks’ efficient and secure operation.

To address this PIM detection challenge in wireless net-
works, we provide the following contributions in our work:
• We propose a novel data analytics technique, namely PIM
Detection via One-class SVM (The P-DOS), for detecting
cellular base stations with PIM problems. To this end, we
frame the PIM detection as an inherent anomaly detec-
tion problem and exploit machine learning to enable this
function. P-DOS processes temporal data of network Key
Performance Indicators (KPIs) fetched from base stations.

• We investigate and identify the dominant KPIs relevant for
the PIM detection objective based on our dataset.

• We provide an empirical performance characterization of
P-DOS by evaluating its performance on a dataset entailing
hourly KPI data of 1348 sites over two weeks. This examina-
tion is accompanied by a comparison of P-DOS performance
to a baseline method using Random Forest models.
The rest of our paper is structured as follows. In Section II,

we introduce our PIM detection model P-DOS. Next, we
describe the Random Forest based approach, which we use for
benchmarking our proposal in Section III. In Section IV, we
present the data analysis of the collected KPI dataset followed
by model details in Section V. We provide and discuss
our experimental results in Section VI. Finally, Section VII
concludes the paper and outlines future work.

II. PIM DETECTION VIA ONE-CLASS SVM (P-DOS)
A promising approach, which could potentially be an

accurate PIM detection approach, is using one-class SVM
models [11] due to the unbalanced data set nature. In this
work, we propose the PIM Detection via One-Class SVM (P-
DOS) method, which relies on one-class SVM, as the name
suggests.
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Fig. 2: High-level block diagram of the P-DOS approach

A. Rationale

Among various classification methods, a different approach
is presented by the concept of one-class classification (OCC),
which is a specific type of binary classification [12]. In OCC,
the aim is to differentiate the instances of a particular class
and eliminate any data that does not belong to that class. Thus,
the learning process only utilizes the samples of this one class
to learn its characteristics so that any foreign data can be
filtered out. Due to its nature, OCC is a good candidate, hence
commonly used, for anomaly detection and outlier detection
problems where collected data samples tend to contain a large
number of samples of the expected case and rare samples
of unusual cases. In other words, OCC is a well-established
approach for classification tasks with imbalanced datasets.

One-Class SVM is a widely used implementation of OCC,
utilizing SVMs as the underlying model. Unlike regular SVM,
a one-class SVM is an unsupervised machine learning model
trained on data belonging to a single class and mainly used
for anomaly/outlier detection problems. Considering a healthy
cellular network, we can assume that the existence of PIM
is an anomaly that should not occur in the usual operation
of a base station. This rationale allows us to treat the PIM
issue as an outlier detection problem that can be solved with



a one-class SVM model.

B. Architecture

A high-level view of the P-DOS approach is shown in Fig. 2.
As one can observe from the diagram, we use a collected
dataset of healthy (no-PIM) sites that do not exhibit PIM
effects and some unhealthy (PIM) sites that suffer from PIM
problems. A subset of the healthy sites is used for training our
one-class SVM model to allow the model to learn what kind
of KPI values a non-PIM network site is supposed to manifest.
The remaining healthy sites and all unhealthy sites are used
in the testing step to evaluate the accuracy of the developed
detection model.

III. BASELINE APPROACH: RANDOM FOREST

For evaluating and benchmarking the P-DOS proposal,
we compare it to a conventional binary classification-based
approach. For the baseline method, we train a random forest
classifier. Random forest [13] is a popular ensemble algorithm
for classification tasks. The basic idea behind the random
forest algorithm is to ensemble several decision trees. By ag-
gregating multiple decision trees, the robustness and accuracy
of the model increase. The predictions made by each tree in
the random forest are combined to produce the final prediction.

There are many hyper-parameters available for the random
forest model. In this work, we investigate two of them, namely
n_estimators andmax_depth. The parameter n_estimators
represents the number of trees in the forest. Increasing the
number of trees in the forest generally leads to a decrease
in the variance of the model and an increase in its over-
all performance. However, a larger number of trees also
increases the computational cost of training and prediction.
The parameter max_depth represents the maximum depth
of each decision tree in the forest. Increasing the value of
max_depth will improve the model’s performance; however,
increasing it excessively causes the overfitting problem that
limits the generalization of the model to new and unseen data.
In summary, there is an implicit trade-off: a good balance
between n_estimators and max_depth is vital for achieving
good performance with random forest models.

IV. DATA ANALYSIS

In our collected dataset, we have 1288 healthy and 60
unhealthy sites, with two weeks of hourly KPI data per site.
Among the healthy 1288 sites, 1200 sites are used for training,
and 88 healthy sites along with 60 unhealthy sites are used
for testing the model, as shown in Table I. Two weeks of KPI
data are available for each site in the dataset. For identifying
the salient KPIs, we followed a two-pronged methodology.
First, during this study, we manually investigated different
KPIs to understand which KPIs differ the most between
healthy and unhealthy sites. For each KPI we have in our
dataset, we plotted the values of that KPI for a healthy site
and an unhealthy site, both selected randomly, in the same
graph for manually detecting the differences. We repeated this
combinatorial process for multiple sites and for each KPI to

TABLE I: Experimental Dataset

Label\Phase Training Test
Healthy (no-PIM) 1200 88
Unhealthy (PIM) - 60

Fig. 3: Each plot displays the RSSI_UL_INTERFERENCE_PUCCH
values for a pair of unhealthy (orange) and healthy (blue) sites.

increase our confidence in making a decision on KPI relevance
for the PIM phenomenon.

After checking plots for multiple sites for each
KPI, the most noticeable differences in values were
observed in RSSI_UL_INTERFERENCE_PUCCH and
RSSI_UL_INTERFERENCE_PUSCH KPIs (PUCCH and PUSCH,
in short). They entail RSSI (Received Signal Strength
Indicator) values for interference in the Uplink Control
Channel (UCCH) and Uplink Shared Channel (USCH) in
LTE networks. We illustrate their plots for nine example
sites in Fig. 3 and Fig. 4, respectively. In addition to the
manual investigation of KPIs via plots, the Mean Decrease
in Impurity (MDI) method was also utilized as a feature
selection technique [14] for verification of relevant KPIs.
MDI allows us to detect the features that a classifier benefits
the most when making predictions. The values obtained per
KPI from the MDI analysis are provided in Fig. 5. One can
observe that Feature 1 and Feature 2 have the biggest MDI
value among other KPIs, which correspond to PUCCH and
PUSCH, respectively. Since MDI results are consistent with
our manual investigation, we proceed with these two KPIs
and train one-class SVM models.



Fig. 4: Each plot displays the RSSI_UL_INTERFERENCE_PUSCH
values for a pair of unhealthy (orange) and healthy (blue) sites.

Fig. 5: MDI analysis on network site KPIs.

V. CONFIGURATION OF ML MODELS

In this section, we provide details regarding the training and
hyper-parameter selection of our models.

A. Random Forest

For the random forest model, two hyper-parameters,
n_estimators and max_depth, were investigated. Several
different values have been tried for both hyper-parameters to
obtain the optimum result. Table III shows all the parameter
values we have investigated for training the model. In our case,
the best result has been observed with the parameter values
n_estimators = 10, max_depth = 2.

TABLE II: One-class SVM Parameters

Name Range Step
⌫ 0.01 - 0.20 0.01
� 0.01 - 0.10 0.01

kernel "Linear" | "RBF" | "Poly" | "Sigmoid" -

TABLE III: Random Forest Parameters

Name Range Step
n_estimators 10 - 100 10
max_depth 2 - 20 2

B. The P-DOS Scheme

While training our one-class SVM models, we use a variety
of values for each of the model parameters. One-class SVM
algorithm has three main parameters: nu (⌫), gamma (�), and
kernel. These parameters are fine-tuned, as given in Table II,
to provide a more accurate prediction for the trained model.
Based on the results of our training and validation phases,
the optimal values for the parameters are obtained as ⌫ =
0.01, � = 0.05, and kernel = "rbf". We train two one-class
SVM models based on PUCCH and PUSCH signals using
these parameter values.

VI. EXPERIMENT RESULTS

In this section, we present detailed performance metrics for
the P-DOS models. Also, as a baseline method to compare
the success of our models, we train two Random Forest (RF)
models based on PUCCH and PUSCH values. We apply our
test dataset to each of the four models for a comprehensive
study.

A. Performance Results

For evaluating the performance of the trained models, we
use the following performance metrics: Precision, Recall,
Accuracy, and F1 score. Results of our experiments for both
the P-DOS and RF models are given in Table IV. We deduce
from the experiment results that the performance of one of the
P-DOS models is quite similar to the results obtained from the
other model. Both models achieve at least a score of 70% for
each performance metric, which can be considered a success.
We also observe that the model for PUCCH performs slightly
better than the model for PUSCH. This minor performance
difference is consistent with our previous study since both
the MDI analysis and manual investigation show that PUCCH
is more relevant than PUSCH for the PIM problem. We
also compare the success of our models with the trained RF
models. Based on the results, one can observe that although
each P-DOS model has a lower precision score than their
RF counterparts, each P-DOS model achieves a vastly greater
recall score than both RF models. Moreover, when we consider
F1 scores, the P-DOS models significantly outperform RF



TABLE IV: Performance Results

OC-SVM
PUCCH

OC-SVM
PUSCH

RF
PUCCH

RF
PUSCH

Precision 0.75 0.72 0.80 1.0
Recall 0.87 0.82 0.20 0.11

Accuracy 0.83 0.80 0.65 0.64
F1 Score 0.81 0.77 0.32 0.21

(a) The P-DOS Confusion Ma-
trix (PUCCH-based model)

(b) The P-DOS Confusion Ma-
trix (PUSCH-based model)

(c) RF Confusion Matrix
(PUCCH-based model)

(d) RF Confusion Matrix
(PUSCH-based model)

Fig. 6: Confusion matrix for the P-DOS and RF with different
KPIs.

models. Regarding accuracy, the P-DOS models still perform
better than RF models; however, the difference between their
scores is less significant compared to recall or F1 scores.
Overall, the better-performing RF model only achieves a 32%
F1 score and 65% accuracy, while the better-performing P-
DOS model achieves an 81% F1 score and 83% accuracy.

Along with our performance metrics, we also plot the
confusion matrix for the PUCCH-based and PUSCH-based
models, as shown in Fig. 6a and Fig. 6b, respectively. In
both matrices, 0 represents the healthy case, and 1 represents
the PIM case. One can observe from these matrices that the
PUCCH-based and PUSCH-based models successfully detect
PIM issues for 52 and 49 sites, respectively, out of all the
60 unhealthy sites. Moreover, out of all the 88 healthy sites,
PUCCH-based and PUSCH-based models successfully mark
71 and 69 of them as healthy sites, respectively. Overall,
the PUCCH-based model has 17 false positives and eight
false negatives, while the PUSCH-based model has 19 false

TABLE V: F1 scores with changing hyperparameters using
PUSCH.

⌫=0.01 ⌫=0.05 ⌫=0.1 ⌫=0.2
�=0.01 0.54 0.54 0.60 0.69
�=0.02 0.67 0.67 0.67 0.69
�=0.05 0.77 0.77 0.77 0.77
�=0.1 0.76 0.76 0.76 0.76

TABLE VI: F1 scores with changing hyperparameters using
PUCCH.

⌫=0.01 ⌫=0.05 ⌫=0.1 ⌫=0.2
�=0.01 0.58 0.58 0.60 0.72
�=0.02 0.71 0.71 0.71 0.74
�=0.05 0.81 0.81 0.81 0.81
�=0.1 0.80 0.80 0.80 0.80

positives and 11 false negatives.
In addition to one-class SVM models, we also provide the

confusion matrices for the results of RF models, based on
PUCCH (in Fig. 6c) and PUSCH (in Fig. 6d). Results show
that PUCCH-based and PUSCH-based RF models correctly
identify 85 and 88, respectively, sites out of all 88 healthy
sites. However, the PUCCH-based model only detects 12, and
the PUSCH-based model only detects 7 unhealthy sites out of
all 60 sites with PIM problems. Therefore, the PUCCH-based
RF model contains three false positives and 48 false negatives,
while the PUSCH-based RF model contains 0 false positives
and 53 false negatives. Although these models have a very high
precision score, especially the PUSCH-based model, the recall
score is much lower than an acceptable value, significantly
decreasing the accuracy and F1 score. Overall, with such a
high number of false negatives, these RF models are not well
suited for a successful PIM detection task.

B. Effects of Hyper-Parameters
During our study, we find the optimal values for the hyper-

parameters of the P-DOS, � and ⌫, as 0.05 and 0.01, respec-
tively. To provide an insight into how the hyper-parameter
values affect PIM detection results, the obtained F1 scores
using different � and ⌫ values are given in Table V and
Table VI. The reason for choosing the F1 score for this
analysis, instead of other metrics such as accuracy, precision,
or recall, is that the PIM detection problem usually relies on
an unbalanced training set, with a much higher number of
healthy sites compared to sites that are actually suffering from
a PIM problem. Thus, choosing the F1 score as the main metric
allows us to make a healthier interpretation.

According to the data in Table V, selecting low values for
both ⌫ and � results in a visible decrease in F1 score on the
PUSCH-based model. Increasing ⌫ from 0.01 to 0.2 seems to
improve the results when � = 0.01. Furthermore, increasing �



from 0.01 to 0.1 seem to improve the result, although � = 0.05
produces a slightly better score than � = 0.10. Also, note that
the effect of ⌫ on the F1 score seems to diminish when � has
large values. For instance, when � = 0.01, increasing ⌫ from
0.01 to 0.2 allows F1 score to increase by 15%. On the other
hand, when � = 0.02, changing ⌫ from 0.01 to 0.2 increases
F1 score by only 2%. In fact, when � = 0.05 or � = 0.1,
changing ⌫ does not have any effect on the F1 score at all.
From the analysis, we observe that � has a more direct effect
on the results than ⌫, which shows its effect when we provide
low values for �.

A similar analysis can also be performed for the PUCCH-
based model, using the data in Table VI. Again, ⌫ affects the
F1 score more when � has lower values. When � = 0.01,
increasing ⌫ from 0.01 to 0.2 improves the F1 score by 14%.
Similarly, a 3% change is observed for the same adjustment
for ⌫ when � = 0.02. As seen in the analysis of the PUSCH-
based model, changing ⌫ when � = 0.05 or � = 0.1 does
not have any effect on the F1 score for the PUCCH-based
model either. Increasing � from 0.01 to 0.10, on the other
hand, seems to improve the results significantly, except when
� = 0.05, which produces the optimal result.

VII. CONCLUSION

In this work, we have proposed a novel PIM detection
technique based on an anomaly detection approach, denoted
as the P-DOS. We compared its performance to a baseline
method that adopts an alternative ML model. For this purpose,
the proposed approach was tested on a KPI data set collected
over two weeks from operational wireless network cells. We
have also identified the optimum configuration of the P-DOS
(i.e., hyperparameters) by investigating different parameter
values. The P-DOS has outperformed the baseline method and
provided favorable detection results.

In future research, we would like to test our proposal
with different datasets from different network locations and
frequency bands for a more comprehensive performance eval-
uation.
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