
Vol.:(0123456789)1 3

Requirements Engineering (2023) 28:619–637
https://doi.org/10.1007/s00766-023-00408-9

ORIGINAL ARTICLE

Why don’t we trace? A study on the barriers to software traceability
in practice

Marcela Ruiz1 · Jin Yang Hu2 · Fabiano Dalpiaz2

Received: 22 June 2022 / Accepted: 24 October 2023 / Published online: 30 November 2023
© The Author(s) 2023

Abstract
Researchers have proposed numerous tools, methods, and techniques for establishing and maintaining software traceability.
Despite its acknowledged importance, researchers argue that traceability is still “a sought-after, yet often elusive quality in
software-intensive systems”. We have little evidence regarding how creating, managing, and using traceability links vary
depending on factors such as organizational contexts, software development practices, and project types. We conduct an
empirical study where software development practitioners express their perception regarding the value of software trace-
ability. Via an online survey, 55 participants provided information related to their current traceability practices and needs.
Furthermore, we interviewed 14 practitioners to gain a more in-depth understanding. Our study investigates the effect of two
independent variables: the software development paradigm and the type of developed software system. Among the several
identified findings, our analysis reveals that, although the traceability costs are an inhibitor for adopting more mature trace-
ability practices, the respondents believe that the expected benefits still outweigh envisioned costs. Traceability is mainly
performed manually: not only are automated trace retrieval tools scarce, but their offered automation is not expected to
replace human involvement.

Keywords Software traceability · Exploratory study · Agile development · Safety-critical systems

1 Introduction

Academia has dedicated significant attention to software
traceability over the past decades. Traceability research-
ers have identified several challenges that, if solved, are
expected to make traceability as effortless as possible (ubiq-
uitous traceability) for software engineers to establish and
maintain [1, 16, 17].

Much of the traceability research focuses on the construc-
tion and evaluation of automated techniques for the estab-
lishment, maintenance, and recovery of trace links between
requirements, code, and other software artifacts [9, 12, 20,
37]. One of the primary reasons for this focus on automa-
tion is that manual traceability requires considerable human

effort, which often leads to trace links that quickly become
outdated [23].

In their roadmap paper, Cleland-Huang et al. [10] argue
that traceability receives more attention in regulated and
safety-critical domains, while in other areas practitioners
use it less often or are even unaware of the term. Moreover,
Gotel et al. observe the prominence of ad-hoc traceability
methods, which are however unable to fully support the
evolving stakeholders’ needs [16, 17]. Regarding develop-
ment teams that adopt Agile methods, there is little evidence
of use cases and challenges, despite the call for studies to
investigate this setting [7].

As such, there is still a need to expand the body of knowl-
edge on the usage of software traceability in the software
industry and the benefits and limitations that practition-
ers face when implementing and maintaining traceability.
This imbalance between theoretical and empirical research
defines our main research goal (MRG): gaining contempo-
rary empirical knowledge on software traceability in terms
of stakeholder perceptions, their current practice, their chal-
lenges, and their needs. Specifically, we wish to uncover
whether the perceived benefits and challenges regarding

 * Marcela Ruiz
 marcela.ruiz@zhaw.ch

1 Zürich University of Applied Sciences, Switzerland,
Technikumstrasse 9, Winterthur 8401, Switzerland

2 Utrecht University, Utrecht 3584 CC, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-023-00408-9&domain=pdf
http://orcid.org/0000-0002-0592-1779

620 Requirements Engineering (2023) 28:619–637

1 3

software traceability are affected by (i) the software devel-
opment paradigm (agile vs. traditional development) and (ii)
the safety-critical nature of the systems under design. These
two variables were not examined by previous studies on how
traceability is perceived in practice.

We investigate the perceived cost-benefit ratio: in
domains where software traceability is not mandated by reg-
ulations, the reasons behind the adoption of traceability and
the selection of a specific method are dependent on whether
practitioners perceive traceability to deliver value [2] and
whether the perceived benefits outweigh the expected costs
[5].

To gain contemporary knowledge on these topics, we
started from existing literature and we assembled a ques-
tionnaire that we distributed through an online survey. We
received answers from 55 participants from 13 different
countries that provide information regarding their current
traceability practices and their needs. We complemented
and contextualized the results of the survey by conducting
in-depth interviews with 14 practitioners (8 of them were
respondents to the survey), which allowed us to obtain a
more nuanced understanding of their practices and percep-
tion on traceability.

Our analysis results into a set of findings (9 from the
survey, 8 from the interviews) that support both researchers
and practitioners by delivering an updated picture of soft-
ware traceability practices and needs. Researchers can use
our results to better direct their research efforts into meth-
ods that can actually support practitioners. Practitioners can
relate their own situation with that of their peers and decide
whether adopting different practices could be beneficial.

Paper organization. After reviewing related work in
Sect. 2, we describe the research method in Sect. 3. Sec-
tion 4 presents the results from the survey, while Sect. 5
details the findings from the interviews. Section 6 presents
conclusions, discussed validity threats, and outlines future
work.

2 Studies on traceability in practice

While the community keeps proposing new, intelligent
approaches for establishing and maintaining traceability
[15, 21, 24, 30, 32, 37], fewer studies address traceability
from the perspective of practitioners. However, the results
of these studies are of paramount importance, for much of
the traceability research is driven by practitioners’ needs and
their involvement [3, 17, 22].

A precursory study was conducted by Gotel and Fin-
kelstein in the mid-1990s [18]. Through focus groups and
a survey, they investigated the underlying nature of the
requirements traceability problem. Their work introduces
the distinction between pre-requirements specification

traceability and the post-requirements specification trace-
ability. Their results show that poor traceability practices
are often due to tool limitations and to weak collaboration
between end-users and providers. Another identified issue
is the inability to locate and access the sources of require-
ments. This problem is worsened when the end-users are
split across multiple teams; factors that reduce the problem,
instead, include small teams, clear separation of responsibili-
ties, team commitment and ownership.

In the late 1990s, Ramesh [31] studied how environmen-
tal, organizational, and system development factors influ-
ence the adoption and use of requirements traceability. An
important distinction that emerged was between low-end
and high-end users. The former see traceability as a man-
date and implement simple traceability tactics. High-end
users, instead, see traceability as an important component
of their development and use more advanced tactics. Ramesh
found an alignment between end users and their managers:
the managers of low-end users claim that little benefit is
obtained and see traceability as ‘necessary evil’. In contrast,
the managers of high-end users are committed to traceability
and see strategic benefits of incorporating traceability prac-
tices, even when not mandated.

In 2005, Arkley and Riddle surveyed nine software
projects of varying complexity [2], and their findings are
aligned with those from previous studies. They argue that
poor traceability practices are due to the traceability benefit
problem: the lack of direct, tangible benefits, which con-
tribute to seeing traceability as an overhead. They explicitly
list perceived benefit as an important cause for the lack of
adoption. These findings align with the conclusions from the
case study reported by Maro et al. [28] pointing out at the
lack of explicit traceability return of investment as a major
barrier for using traceability in practice.

Blaauboer et al. conducted a case study in a large IT
company to identify factors that affect traceability adop-
tion in information systems development projects [5]. Five
dominant factors emerged: development organization aware-
ness, customer awareness, return on investment, stakeholder
preferences, and process flow. When project leaders were
unaware of the notion of traceability, trace links were not
even considered.

In 2009, Mäder et al. conducted a practitioner survey
to obtain up-to-date evidence on traceability practices and
problems [26]. Their major findings included that traceabil-
ity is necessary, but almost no guidance was available, espe-
cially for trace links that span across project, organizational,
and regional boundaries. The role of tools was observed to
have become more important in practice, probably due to the
increasing complexity of the systems under design.

Bouillon et al.’s survey [6] identified a number of fre-
quent usage scenarios in practice, which included find-
ing origin and rationale of requirements, documenting a

621Requirements Engineering (2023) 28:619–637

1 3

requirement’s history, and tracking requirement or task
implementation state. Nonetheless, the authors empha-
sized that very little is known about practitioners’ uses
and needs, and they called for more studies to shed light
on the traceability benefit problem.

Wohlrab et al. conducted a multiple case study across
15 industrial projects [39]. They analyzed the collabo-
rative aspects of traceability from the perspectives of
organization, process, and culture. The findings show that
practitioners struggled with (1) collaboration across team
and tool boundaries, (2) conveying the benefits, and (3)
traceability maintenance.

These studies reveal many factors that influence the
adoption and use of software traceability. Regan et al. [33]
organized these factors into a taxonomy of the barriers
of traceability in practice and their potential solutions.
Although their study dates back to 2012, recent studies
show a significant overlap (see, e.g., [39]). Because of its
structure and general perspective on traceability, which
encompasses managerial, social, and technical issues, we
employ their taxonomy of barriers (see Table 1) as the
baseline for our investigation.

Traceability was shown to have benefits: the experiment
of Mäder and Egyed [25], for example, evidences how it
can positively impact software engineering tasks. Their
controlled experiment with over 50 subjects performing
maintenance tasks shows that a simple trace navigation
tool has a positive effect on the performance, quality, and
workflow of how change tasks are performed. Our research
aims to shed some light on the value (benefit minus cost)
and barriers that practitioners perceive. Aligned with the
observations by prominent researchers in the field [8, 17],
we include not only the ‘usual’ safety-critical and heavy
regulated industries, but focus also on more recent para-
digms such as agile.

3 Study definition and planning

The following sub-section describe our study setting
according to the guidelines by Wohlin and colleagues [38].

3.1 Main research goal

Our main research goal, stated in the introduction, focuses
on gaining contemporary knowledge on software trace-
ability from practitioners, and to analyze the effect of
contextual factors such as the used software development
paradigm, and whether the developed software is safety
critical. To achieve this goal, we have conducted an online
questionnaire, followed by semi-structured interviews to
gain deeper insights. We applied the protocols described
by Robson et al. [34].

Both questionnaire and interviews are designed to gather
practitioners’ perceptions about the categories presented in
Table 1 [33]: management, social, and technical. We have
derived statements that encourage practitioners to express
their perceptions in a free manner, without any bias induced
by the researchers’ opinion (in favor or against certain
aspects of traceability). Each category is investigated in
terms of practitioners’ perceived barriers accounting both
practitioners’ current traceability practices and needs.
Finally, during the interviews, we also examine the role of
traceability in the software development life cycle (SLDC).

3.2 Research questions and variables

The research questions we have formulated to study the
perceived relevance of the barriers to software traceability
in practice are as follows:

RQ1: Which is the perceived importance of the barriers
to software traceability in practice?
To answer this research question, we gather practitioners’
perceptions according to the categories identified by [33].
RQ2: Is the software development paradigm influenc-
ing the perceived importance of barriers to software
traceability?
RQ3: Is the type of software system influencing the per-
ceived importance of barriers to software traceability?

The second and third research questions relate to the fol-
lowing two independent variables:

Software development paradigm. The paradigm that
guides the way practitioners develop software. This
variable has two values:

Table 1 Barriers of traceability by Regan et al. [33]

Category Barriers

Management Cost
Lack of guidance
Return on investment
Traceability decay
Data collection

Social Different stakeholder viewpoints
Internal politics
Lack of communication/understanding

Technical Issues with tools
Storage and versioning
Complexity

622 Requirements Engineering (2023) 28:619–637

1 3

– Agile. This value groups methods that build on the
agile manifesto [4].

– Traditional. Methods that build mostly on traditional
software development paradigms, e.g., the V-model
[13].

Type of software system. The type of software system
that practitioners work on can assume two values:

– Safety-critical. Systems whose failure may harm
human or environmental safety [36].

– Non-safety-critical. Systems whose malfunctions are
not critical.

We consider the following dependent variables, which are
expected to be influenced by the independent variables. We
made use of the categories stated for the barriers of trace-
ability identified by Regan and colleagues [33] to structure
the way the dependent variable is measured. In this way, the
perceived importance of the barriers to software traceability
is measured by evaluating practitioners’ current traceability
practices and needs to establishing traceability (see Fig. 1).

Perceived barriers in current traceability practices.
The degree to which practitioners agree with the barri-
ers to software traceability by considering their current
software traceability practices. This variable is measured
in the context of the management, social, and techni-
cal aspects suggested by the categories of traceability

by Regan et al. [33]. We measure their agreement with
the corresponding statements via Likert-type answers:
“Strongly disagree”, “somewhat disagree”, “somewhat
agree”, and “strongly agree”.
Perceived needs to establishing traceability practices.
The practitioners’ priority on the need for software trace-
ability for management, social, and technical aspects sug-
gested by the categories of traceability by Regan et al.
[33]. Their priority for the corresponding statements is
measured via Likert-type answers: “not needed”, “nice
to have”, “should have”, and “must have”.

3.3 Study design

Questionnaire. We created questions and statements that
would allow us to answer RQ1–RQ3. After a pilot with six
master’s students in computer science, we interacted with
a native UK English speaker to validate the formulation
of the questions and with a software developer to validate
the content further. The pilot led to some clarifications and
an improved layout. The pilot also helped us to ensure the
questionnaire could be quickly filled in by the participants
(10–15 min).

The participants are first presented with the front page
which explains the goal of the questionnaire. After that, to
establish a common ground, an illustrative figure is shown to
provide a general definition of software traceability. The first
questions gather demographic data about the participants,
their organization, and their project characteristics. Then, 13
statements are shown regarding their current or most recent
practices using the Likert-type answers to measure the first
dependent variable. The following 13 statements focus on
prioritizing their needs, and allow us to measure the second
dependent variable. Finally, the last page allows to provide
additional feedback about the questionnaire or the topic,
and to describe more of their rationale where needed. The
questionnaire is included in our online appendix [35], and
the main questions are listed in Table 2. All the statements
about the current practices, except for one, are written in
such a way that strong agreement indicates that an obstacle
is perceived as very important. The exception is C6-S: to
facilitate reading, the obstacle of “low perceived importance
of traceability” is reversed into the statement “Traceability is
of high importance for the software development process”.
Therefore, the responses are inverted in our analysis: strong
agreement with the statement indicates strong disagreement
with the importance of the obstacle.

Semi-structured interviews. In order to gain more
in-depth, contextual information, we conduct interviews
with practitioners: the interview protocol follows the same
questions of the questionnaire, but it encourages partici-
pants to explain the rationale behind each answer. Moreo-
ver, we include one additional question on which software

Fig. 1 Structure of the independent and dependent variables in our
research

623Requirements Engineering (2023) 28:619–637

1 3

development life cycle phase is the one where software
traceability gives the highest value. The interviewer first
introduces the goal of the interview, then makes questions
on the professional background and the organizational back-
ground. The same flow of the questionnaire is followed (to
explore current traceability practices, needs), with the differ-
ence that the focus is on uncovering the rationale and that, to
keep a natural flow, we allow covering the answers without
rigidly imposing the flow. The results from the interview
were analyzed following the questions of the questionnaire.
The topic of the questions allowed for identification of find-
ings. We explored the interview transcripts in order to show
evidence on the findings and conclusions. Further details on

the results can be found in Sect. 5, and the interview protocol
can be accessed in the online appendix.

3.4 Selection of participants and demographics

Our target participants consist of a broad range of prac-
titioners with experience in software development with
various roles, including product owner, requirements ana-
lyst, developer, and tester. Considering it is mainly and
opinion-based study, we did not exclude participants who
do not perform traceability in their projects. The partici-
pants were mainly contacted via LinkedIn, Reddit, and
e-mail. In total, our study is based on data from 61 practi-
tioners located in 15 different countries. In particular, 55

Table 2 Statements from our questionnaire, inquiring about the current situation and the needs from the managerial, social, and technical per-
spective

The perspective is indicated by the suffix: e.g., ‘C1-M’ is a managerial challenge. Question Q6-S has a reversed scale compared to the other
questions: the higher, the fewer obstacles

Current Situation (strongly disagree, somewhat disagree, somewhat agree, strongly agree)

C1-M Traceability costs in money, time, and effort are the main inhibitor for adopting (more mature) traceability practices
C2-M There is insufficient guidance within the company on how to establish traceability
C3-M Traceability costs outweigh the expected benefits
C4-M It is difficult to access and obtain information sources (people and artifacts) to be able to establish traceability
C5-M Traceability is mostly performed in an ad-hoc and non-managed fashion

C6-S∗ Traceability is of high importance for the software development process
C7-S The allocation of time, staff and resources are often insufficient to be able to properly establish and maintain traceability
C8-S There is a lack of collaboration between involved stakeholder teams in regards to establishing and maintaining traceability
C9-S It is unclear which roles are responsible for traceability

C10-T Traceability tools do not satisfy our traceability needs
C11-T It is difficult to establish traceability because development artifacts are stored in multiple locations/repositories
C12-T The tools used for traceability are too complex to use effectively and to integrate with our existing tools
C13-T Traceability is mostly performed manually

Needs (not needed, nice to have, should have, must have)

There is a need ...
N1-M . . . to reduce the costs of traceability
N2-M ...for more guidance in the company regarding traceability
N3-M ...to have a more clear overview of the costs and benefits regarding traceability
N4-M ...to have easier access to information sources to be able to establish and maintain traceability
N5-M ...to perform traceability in a more managed fashion

N6-S ...to increase the awareness of the importance of traceability
N7-S ...for more staff, time, and resources to properly establish and maintain traceability
N8-S ...for more collaboration between involved stakeholder teams regarding traceability
N9-S ...for more communication about who are responsible for traceability

N10-T ...for better traceability tools
N11-T ...for a more centralized development artifact repository to establish traceability more easily
N12-T ...for less complex traceability tools and easier integration with our existing tools
N13-T ...for more traceability automation

624 Requirements Engineering (2023) 28:619–637

1 3

practitioners participated in the questionnaire, 8 of which
volunteered to be interviewed. Also, we interviewed 6
additional practitioners to obtain a richer landscape, reach-
ing a total of 14 interviews (circa 1-h each). The question-
naire data from the 6 extra interviews are not included in
the survey results to avoid construct validity threats caused
by the possible bias introduced by the interaction with
the researchers during the interviews. An overview of the
demographic data is shown in Fig. 2.

4 Survey results

In the following three sub-sections, we report our results
per each research question (RQ1–RQ3). In particular, we
present key findings and we elaborate on the correspond-
ing evidence.

Before analyzing the barriers, we first investigate the rea-
sons expressed by the practitioners for adopting traceabil-
ity. This was a multiple choice question based on Bouillon
et al.’s study [6]. Four non-exclusive choices were offered
to practitioners, as shown in Table 3: expected benefit, man-
date, customer request, or other. From the original taxonomy,
we removed the choice ‘precondition for applied method or
tool’, since it is partially linked to our independent variable
‘software development paradigm’. The data in Table 3 are
based on the 47 out of 55 respondents who said they use
traceability sometimes or always: the participants who said
they are currently not employing traceability were not asked
for the reasons for adopting traceability. The columns of the
table indicate the reason, the percentage of respondents who
selected a reason, a split-down of the responses depending
on whether the participants indicated they follow agile meth-
ods, a similar split-down based on the self-reported safety-
criticality, and the results from Bouillon’s study.

Then, we ran Pearson’s �2 test, which is appropriate to
analyze differences between groups of categorical data,
between the results from our study and those in Bouillon’s
[6]. We also tested whether the differences between groups
(agile vs. non-agile, safety-critical vs. non-safety-critical)
are statistically significant. The results from the statistical
tests are shown in Table 4.

Finding S1. The reasons for adopting traceability are similar to
those in Bouillon et al.’s study [6]. However, fewer respondents
indicated the expected benefits as a reason for embracing trace-
ability.

Evidence for S1. The results in Table 3 show that
expected benefit and mandate are by far the prevalent rea-
sons: 57% and 48%, respectively. The percentage for the
benefit, however, decreased considerably from Bouillon’s
study, where 80% of the practitioners indicated that as a

Fig. 2 Distribution of the 61 practitioners by a organization size, b
continent, c role, d team size, e software development paradigm, f
type of software system, g highly regulated, h frequency traceability
is performed

Table 3 Reasons for adopting
traceability; the respondents
could express multiple options,
as per the original study [6]

The numbers are percentages

Reason Our study 2013 [6]

Total Agile Safety-critical

Yes No Yes No

Expected benefit 57.4 51.6 68.7 47.0 66.3 80
Mandate 48.9 45.1 56.2 64.7 40.0 39
Customer request 27.7 22.5 37.5 47.0 16.6 30
Other reasons 19.2 19.3 18.7 17.6 20.0 2

625Requirements Engineering (2023) 28:619–637

1 3

reason. Such a difference is statistically significant with a p
value < 0.05 resulting from the �2 test. In our sample, the
expected benefit is a more common reason for the practition-
ers who use non-agile development paradigms (68.7% vs.
51.6%). Additionally, we have analyzed if there is significant
difference in the results between the groups in our study:
Traditional versus Agile, Safety-Critical versus Non-Safety-
Critical for each of the reasons (Table 4). In the context
of safety-critical systems, there is a significant difference
between the groups who applied traceability because of cus-
tomer request versus the group in the context of non-safety-
critical systems. This result highlights the value of trace-
ability demanded by customer request given the criticality of
the software system under development. This outcome may
lead to further research regarding the reasons for adopting
traceability.

4.1 General analysis of the obstacles (RQ1)

To answer RQ1, we present findings that can be derived
from the aggregate answers to the statements listed in
Table 2, before splitting the data according to the independ-
ent variables. Our investigation focuses on the two main
dependent variables of perceived barriers of software trace-
ability: current practices and needs.

Figures 3 and 4 depict the results of the statements regard-
ing the respondents’ current traceability practices and their
needs. The short labels in the figures can be traced back to
the actual questions in Table 2 via the unique identifier (e.g.,
C1-M, N10-T, ...). We use divergent stacked bar charts for
visualizing the results from our Likert-type questions. These

charts provide a quick overview of the trends and differences
between groups based on the percentage of the participants
who chose a certain answer. Each bar is evenly sized and
represents the entire population; a single bar relates to one
statement, and it is divided into portions, each denoting the
percentage of one answer, like a typical bar chart. The bars
are centered around a zero line, which separates the ‘posi-
tive’ from the ‘negative’ answers.

As explained in Sect. 3, C6-S is formulated in positive
terms (“traceability is of high importance”), rather than as
an obstacle (“traceability is of low importance”); therefore,
the results are reversed in the charts, for consistency with
the other statements.

Figure 3 shows the statements regarding the current prac-
tices (C1-M through C13-T, from Table 2), each answered
by a subset of the 55 respondents. While for some state-
ments a key prevalence is visible (e.g., C6-S on the high
importance of traceability), for others no clear divergence
is visible (e.g., C10-T: tools do not satisfy our needs). Nev-
ertheless, both situations are interesting, given that each
of our statements represents one of the barriers to trace-
ability identified by Regan et al. [33], listed in Table 1.

Table 4 Testing for the existence of statistically significant dif-
ferences between groups: (i) our study versus Bouillon’s, total
responses; (ii) our study, traditional versus agile; and (iii) our study,
safety-critical versus non-safety-critical

Reason Pearson �2 Test

�
2 p

Our study versus Bouillon
Expected benefit 6.375 0.012
Mandate 0.967 0.325
Customer request 0.090 0.764
Tradit versus Agile
Expected benefit 1.268 0.260
Mandate 0.519 0.471
Customer request 1.174 0.279
Safety-crit versus Non-SC
Expected benefit 1.176 0.278
Mandate 2.651 0.104
Customer request 5.009 0.025

Fig. 3 Results regarding the statements on the current practices,
including the number of responses per question. The results for
C6-S are shown reversed because of the question’s formulation, as
explained in the text

626 Requirements Engineering (2023) 28:619–637

1 3

Finding S2. Although costs seem to be a key inhibitor to trace-
ability, the respondents do not find these costs to outweigh the
benefits.

Evidence for S2. The answers to C1-M indicate that
80% of the respondents perceive costs as the main inhibitor
to traceability (see Fig. 3). Nevertheless, when we cross-
check this with the answers to C3-M, we see that only 37%
of the respondents believe that costs outweigh the benefits
(with only 9% of them strongly agreeing with the statement).

Finding S3. Traceability is of high importance for the software
development life cycle.

Evidence for S3. The answers to C6-S (reversed in the
figure) on the high importance of traceability are aligned:
86% of the respondents agree, either strongly or weakly,
with an even distribution of these two levels of agreement
(see Fig. 3). This sentiment is confirmed by the answers to
C3-M: the costs of traceability do not outweigh the benefits.

Finding S4. Contrary to prior evidence, tool complexity and difficult
access to information sources seem to not represent a challenge.

Evidence for S4. Two of the challenges from Regan
et al.’s study [33] do not seem to hold, according to our
respondents. These challenges are the difficult access to
information sources (see Fig. 3, C4-M, 61% disagreement,
only 11% strongly agree), and the complexity of current
tools (see Fig. 3, C12-T, 58% disagree, with 77% of the

responses being either somewhat negative or somewhat
positive). We say ‘seem’ to denote that this finding requires
additional exploration, which we report through our inter-
views analysis in Sect. 5.

Figure 4 presents the results for the statements regard-
ing the needs to change (N1-M through N13-T in Table 2).
Due to the different type of scale, which is based on the
priority of the need, we have decided to group ‘not needed’
and ‘nice to have’ as a negative sentiment, for ‘nice to
have’ also indicates a weak necessity that is unlikely to
lead to changes in the traceability practices.

Finding S5. Traceability has to be better embedded in the organiza-

tion by improving on awareness, cost/benefit overview, roles and
responsibilities, and managed practices.

Evidence for S5. Several of the statements that are
often indicated as ‘must have’ or ‘should have’ relate to
the embedding of traceability within the organization, i.e.,
they concern mostly managerial aspects. N3-M and N6-S
denote how the respondents seem to want a better over-
view of benefits/costs (68%) and an increased awareness
(64%). Furthermore, N5-M and N9-S call for better organi-
zational practices by showing the need of more managed
practices (65%) and of clear communication about roles
and responsibilities (63%) (see Fig. 4).

We have also compared the three main categories of
barriers (Managerial, Social, and Technical), with the aim
of identifying whether a statistically significant difference
would exist across the categories. Such a difference could
indicate that certain types of barriers are perceived as
more important (for the current practices), or that certain
needs are more urgent. To do so, since we employ Likert-
type data, we ran a nonparametric test that compares the
population by their ranks (rather than the absolute values):
we opted for Mann–Whitney’s U test. We tested the three
combinations: M-S, M-T, and S-T. In no case we obtained
statistically significant results: the p values for the current
practice are 0.14 (M-S), 0.87 (M-T), and 0.12 (S-T), while
those for the needs are 0.60 (M-S), 0.43 (M-T), and 0.21
(S-T). The full results can be found in our online appendix
(https:// zenodo. org/ recor ds/ 80217 23).

Finding S6. There does not seem to be a difference between the

categories defined by Bouillon (managerial, social, technical), nei-
ther in terms of the current situation, nor of the perceived needs.

Evidence for S6. The statistical results listed above
do not exhibit any statistically significant difference. This
makes us conclude that, provided that the list of obsta-
cles by Bouillon et al. [6] is representative for each of the
categories, there is no high-level perspective from which
traceability is more problematic. See the threats to validity
for further discussion on this finding.

Fig. 4 Results for the statements on the expressed needs

https://zenodo.org/records/8021723

627Requirements Engineering (2023) 28:619–637

1 3

4.2 Development paradigm—RQ2

Figure 5a compares the current practices by showing side-
by-side the responses of the practitioners who reported to
employ traditional methods (T) and those who use agile
methods (A), and Fig. 5b shows respondents opinions from
the perspectives on their needs to change.

In order to test whether the differences are statistically
significant, since the answers are ordinal, we employ non-
parametric methods that are based on ranks and that do
not require the data to be roughly normally distributed. In
particular, we use Mann–Whitney’s U test [27] to assess
whether the difference is significant. Furthermore, we
report the estimated effect size from U’s test, as suggested
by Fritz et al. [14], by calculating Cohen’s r via the equation
r = z∕

√

N . For the qualitative interpretation of effect size,
we follow Cohen’s guidelines [11]: r ∈ [0.1, 0.3) indicates

a small effect, r ∈ [0.1, 0.5) denotes an intermediate effect,
and r ≥ 0.5 represents a large effect.

The outcomes of the statistical analysis for the traditional
versus agile development comparison are shown in Table 5.
The results allow us to derive one additional finding, based
on the statement that gained statistical significance and
medium effect size: C6-S.

Finding S7. Although of high importance in both cases, traceability

is perceived of higher importance in traditional environments than
in agile developments.

Evidence for S7. All of the respondents to C6-S in the
traditional development group answered that traceability
is of high importance, either by somewhat agreeing (39%)
or by strongly agreeing (61%). For agile development, this
percentage drops to 78%. This figure is still one of the high-
est ones among all statements, thereby demonstrating that,

Fig. 5 Comparison of the results, splitting by the ‘Software development paradigm’ independent variable: Traditional (n = 18) versus Agile
(n = 37)

628 Requirements Engineering (2023) 28:619–637

1 3

although to a lesser extent, traceability is perceived of high
importance also in agile development (see Table 5).

No other statistically significant difference can be found
regarding the other statements. Nevertheless, the responses
to C4-M show a visually noticeable difference between the
two development paradigms: for traditional development,
50% of the respondents found access to information sources
to be a difficulty; for agile development, this percentage
dropped to 31%, with only 6% strongly agreeing. In other
words, 69% of the respondents do not find this an obstacle in
agile development. This aligns well with the principles from
the agile manifesto [4], in which communication between
team members is emphasized.

Even weaker differences in Fig. 5a exist on the cost/ben-
efit ratio (C3-M): traditional practitioners more strongly
disagree that the costs outweigh the benefits; the high
importance of traceability (C6-S): all traditional practition-
ers agreed, either weakly or strongly; the lack of time and
resources as an obstacle (C7-S): less of a problem for agile
practitioners; and that traceability is mostly manual (C13-T):

stronger agreement for agile practitioners. However, the
divergence is not so evident for us to identify a finding.

Finding S8. Although not perceived as an issue in the current

practices, agile practitioners state that they need an easier access
to information sources.

Evidence for S8. The responses to N4-M show a large
divergence between the two groups. 77% of the agile practi-
tioners find that having easier access to information sources
is either a must have (25%) or a should have (42%). Quite
interestingly, the corresponding statement regarding prac-
tices (C4-M in Fig. 5a) shows that only 31% of them found
that it is difficult to access these sources.

When examining the needs, we cannot find statistically
significant differences. We make, however, some observa-
tions that do not lead to findings. Increasing awareness of
traceability seems to be more important for practitioners
who rely on traditional development. Indeed, 78% of the
practitioners who use traditional methods find that increas-
ing awareness (N6-S in Fig. 5a) is a must have (39%) or a

Table 5 Statistical significance
and effect size for the traditional
versus agile comparison

The columns indicate the statement identifier, Mann–Whitney’s U value, the z value, the number of
responses N, the p value, the effect size r, and its qualitative interpretation. The rows denoting statements
with statistical significance (p < 0.05) between groups are colored in bold

Stat. U z N p r Effect

C1-M 292 − 0.63 54 0.528 − 0.086 –
C2-M 258 − 0.139 49 0.889 − 0.02 –
C3-M 267 − 0.946 53 0.344 − 0.13 Small
C4-M 236 − 1.737 54 0.082 − 0.236 Small
C5-M 254.5 − 0.54 51 0.589 − 0.076 –
C6-S 218.5 − 2.237 55 0.025 − 0.302 Med
C7-S 247 − 0.884 51 0.377 − 0.124 Small
C8-S 290.5 − 0.144 52 0.885 − 0.02 –
C9-S 224.5 − 1.03 50 0.303 − 0.146 Small
C10-T 221 − 0.278 45 0.781 − 0.042 –
C11-T 277.5 − 0.401 51 0.689 − 0.056 –
C12-T 210.5 − 0.713 47 0.476 − 0.104 Small
C13-T 291.5 − 0.124 52 0.901 − 0.017 –
N1-M 287 − 0.377 53 0.707 − 0.052 –
N2-M 220 − 1.396 52 0.163 − 0.194 Small
N3-M 294 − 0.422 53 0.673 − 0.058 –
N4-M 244.5 − 1.22 53 0.223 − 0.168 Small
N5-M 320 − 0.077 54 0.939 − 0.01 –
N6-S 279.5 − 1.001 55 0.317 − 0.135 Small
N7-S 237.5 − 1.357 53 0.175 − 0.186 Small
N8-S 294.5 − 0.061 52 0.951 − 0.009 –
N9-S 276.5 − 0.428 52 0.668 − 0.059 –
N10-T 293 − 0.427 53 0.669 − 0.059 –
N11-T 283 − 0.931 55 0.352 − 0.125 Small
N12-T 278.5 − 0.717 53 0.473 − 0.099 –
N13-T 311 − 0.413 55 0.68 − 0.056 –

629Requirements Engineering (2023) 28:619–637

1 3

should have (39%). In contrast, only 56% of agile practition-
ers rank this as should or must have. Moreover, practitioners
who use traditional development methods demand increased
guidance for traceability. When looking at statement N2-M
in Fig. 5a, 75% of the traditional practitioners argue that
additional guidance is either a must have (31%) or a should
have (44%), while for agile practitioners, their ‘should have’
and ‘must have’ sum up to 44% only.

4.3 Type of software system—RQ3

We analyze RQ3 (safety-critical vs. non-safety-critical sys-
tems) in a similar way to what we did for RQ2.

Figure 6a reveals some differences in the perception about
the current practices: the costs outweigh benefits (C3-M)
- 32% say this as a problem for safety critical versus 48%;
ad-hoc traceability practices (C5-M)—66% for safety critical

versus 48%; low stakeholder collaboration (C8-S)—(63% for
safety critical vs. 45%; and unclear roles and responsibilities
(C9-S): 65% safety critical versus 50%. However, when we
test these differences using Mann–Whitney’s U (analogously
to Table 5), we do not find statistical significance: the p
value is always higher than 0.05. The results are in Table 6.

When comparing the needs (Fig. 6b), the differences are
even more marginal: we cannot observe any difference in the
figure, nor in the statistical analysis.

Finding S9. The type of software system does not seem to have

any influence on the perceived challenges, nor on the needs for
traceability.

Evidence for S9. As shown earlier in this section, no
statistically significant difference could be identified when
splitting the current practices and the needs according to the
‘Type of software system’ independent variable.

Fig. 6 Comparison of the results, splitting by the ‘Type of software system’ independent variable: Safety-Critical (n = 20) versus Non-Safety-
Critical (n = 35)

630 Requirements Engineering (2023) 28:619–637

1 3

5 Key findings from the interviews

We conducted interviews in order to obtain more nuanced
information regarding the survey findings, by allowing the
interviewees to explain the rationale behind their percep-
tion. Since the large majority of survey respondents works
in Europe (Fig. 2b), we interviewed practitioners in Europe.
The demographic data are presented in Table 7; the partici-
pant IDs marked with a ∗ denote participants who did not
take part in the survey, which we reached out in order to
obtain a more representative sample.

We can see that the sample in Table 7 comprises a
heterogeneous set of respondents. They cover a wide
spectrum of work experience, from 6 months to 30 years
(mean 9.73 years); various work functions (e.g., 5 soft-
ware developers, 3 product owners, 2 project managers,
2 requirements analysts/engineers, etc.); organizations of
different size (8 large = 200+ people, 3 medium = 50–249
people, 3 small = 10–49 people); they work in 6 differ-
ent countries (5 Netherlands, 4 Germany, 2 Switzerland, 1
Norway, 1 Spain, 1 United Kingdom); they follow different
development methods (3 traditional, 6 agile, 5 mixed); 4

belong to the safety-critical domain, and 6 state they are
in a highly regulated domain; 6 always use traceability, 6
do it sometimes, 2 never; most employ traceability for its
benefits (10), in line with the demographics for the survey
of Table 7; the respondents are distributed across a variety
of industry domains.

In the following, we present our findings and relate those
explicitly with the survey findings by adding an identifier
between square brackets (e.g., [S3,S4]) that traces back
to the corresponding survey findings. The findings were
derived from the topics of the questionnaire, which were
as well used to tag the transcript from the interviews using
the Nvivo software. Once the tagging was fully performed,
we investigated the topics and search for evidence that can
support the finding. Evidence is presented as quote citations
from the interviewees. We looked for the evidence in the
interviews to clearly present that there is an agreement on
perceptions for each topic. We highlight omitted text with
[...], and clarifications between parentheses: ().

Table 6 Statistical significance
and effect size for the safety-
critical versus non-safety-
critical comparison

Legend as per Table 5

Stat U z N p r Effect

C1-M 327.5 − 0.24 54 0.81 − 0.033 –
C2-M 255 − 0.671 49 0.502 − 0.096 –
C3-M 284.5 − 0.749 53 0.454 − 0.103 Small
C4-M 274 − 1.272 54 0.203 − 0.173 Small
C5-M 220 − 1.706 51 0.088 − 0.239 Small
C6-S 307 − 0.819 55 0.413 − 0.11 Small
C7-S 269.5 − 0.571 51 0.568 − 0.08 –
C8-S 281.5 − 0.766 52 0.444 − 0.106 Small
C9-S 206.5 − 1.718 50 0.086 − 0.243 Small
C10-T 231.5 − 0.284 45 0.776 − 0.042 –
C11-T 271 − 0.375 51 0.708 − 0.053 –
C12-T 245.5 − 0.359 47 0.719 − 0.052 –
C13-T 264 − 0.857 52 0.392 − 0.119 Small
N1-M 281 − 0.664 53 0.507 − 0.091 –
N2-M 298 − 0.159 52 0.873 − 0.022 –
N3-M 304 − 0.221 53 0.825 − 0.03 –
N4-M 302.5 − 0.396 53 0.692 − 0.054 –
N5-M 292 − 0.767 54 0.443 − 0.104 –
N6-S 338.5 − 0.21 55 0.834 − 0.028 –
N7-S 251 − 1.508 53 0.132 − 0.207 Small
N8-S 309 − 0.217 52 0.828 − 0.03 –
N9-S 307.5 − 0.246 52 0.806 − 0.034 –
N10-T 309.5 − 0.389 53 0.697 − 0.053 –
N11-T 308 − 0.763 55 0.446 − 0.103 Small
N12-T 292 − 0.73 53 0.466 − 0.1 Small
N13-T 346 − 0.073 55 0.942 − 0.01 –

631Requirements Engineering (2023) 28:619–637

1 3

Finding I1 [S2,S5]. Tangible benefits outweighing costs are needed

to observe the return of investment from implementing traceabil-
ity.

Evidence for I1. In line with previous research [2], sev-
eral practitioners stated that the return of investment (S2) is
not evident for managers and software development teams.
As argued by P5: “Exactly, what are the expected benefits
of traceability? [...] I want to know that this work that I
am doing with traceability is going to give some benefit or
improvement of quality or transparency in how everything is
related to each other. The expected benefits are like minimal,
or unknown right now. And costs are much more apparent.”
In this line of reasoning, practitioner P11 states: “It is not
about that much money and time. [...] Many people just do
not see the benefits and for that reason they just do not do
it.” Even if the benefits are clear, the organization should be
able to afford it. For small companies, this is not simple, as
stated by P13: “We develop cheap and small-scale software,
and our clients don’t even know what traceability is. They
will never pay for it.” P2 adds: “The benefits do outweigh the
costs. But as a company we are not in the position to make
these costs and it costs you a lot of effort to convince people
to do so.” Moreover, those experiencing the benefits are not
the ones paying for the cost; P2 states: “The people who
experience the benefits are not the people who pay the costs
most of the time. So, as a product owner I am actually one
of the only employees who experience both the costs and the
benefits.” Finally, the benefits depend on the individual per-
spective since traceability is not always enforced, as argued
by P1: “There is nothing imposed from externally that we
have to do this but it is more let’s say self-understanding that
it makes sense, so nobody really complains about the costs.”
This supports the need for better embedding in organiza-
tional practices (S5).

Finding I2 [S4,S8.] Traceability practices and tools are not mature

enough to cope with distributed software artefacts, but engineers
fill the gaps.

Evidence for I2. According to the survey, access to
distributed information was shown to not represent a big
problem in general (S4), with agile practitioners demand-
ing easier access (S8). Our interviewees elaborate on these
aspects. In some cases, there is simply no need for easier
access since most artifacts are already stored centrally or
are easily accessible: P1 states “Well, I am the expert for
this component. There is no other person in the world who
knows the system better than me. So, there is no need to
access other people and the artifacts that I am dealing with,
well, both the requirements and test cases are written by
me.” However, the need for easier access arises when there
are multiple tools, as stated by P3: “In general, information
is all over the place. That was also my experience in the Ta

bl
e

7
 D

em
og

ra
ph

ic
s o

f t
he

 in
te

rv
ie

w
ed

 p
ra

ct
iti

on
er

s

ID
W

or
k

ex
p.

C
ur

re
nt

 fu
nc

tio
n

O
rg

an
is

. s
iz

e
C

ou
nt

ry
D

ev
. m

et
ho

d
Sa

fe
ty

 c
rit

ic
al

H
ig

hl
y

re
gu

l
U

se
Re

as
on

s
C

ur
re

nt
 in

du
str

y

P1
20

y
Pr

oj
ec

t m
an

ag
er

La
rg

e
D

E
Tr

ad
✓

✓
A

lw
ay

s
A

ll
(M

, C
, B

)
A

ut
om

ot
iv

e
P2

9
m

Pr
od

uc
t o

w
ne

r
Sm

al
l

N
L

A
gi

le
×

×
So

m
et

im
es

B
en

efi
ts

Re
ta

il
so

ftw
ar

e
P3

1y
Pr

od
uc

t o
w

ne
r

Sm
al

l
N

L
A

gi
le

×
✓

So
m

et
im

es
N

on
e

Fi
na

nc
ia

l
P4

6
m

Re
q.

 a
na

ly
st

La
rg

e
N

L
M

ix
ed

×
✓

A
lw

ay
s

M
an

da
te

, B
en

efi
t

A
ss

et
 m

an
ag

em
en

t
P5

5y
SW

 d
ev

el
op

er
La

rg
e

N
L

A
gi

le
×

×
So

m
et

im
es

M
an

da
te

W
eb

 d
ev

 so
ftw

ar
e

P6
18

y
SW

 d
ev

el
op

er
La

rg
e

N
O

A
gi

le
×

×
N

ev
er

N
on

e
C

om
pu

te
r s

of
tw

ar
e

P7
3y

SW
 d

ev
el

op
er

M
ed

iu
m

U
K

A
gi

le
×

×
So

m
et

im
es

B
en

efi
ts

V
id

eo
 g

am
es

 (e
du

ca
tio

na
l)

P8
9y

Pr
od

uc
t o

w
ne

r
La

rg
e

D
E

M
ix

ed
✓

×
So

m
et

im
es

B
en

efi
ts

Lo
gi

sti
cs

P9
∗

23
y

Se
rv

ic
e

m
an

ag
er

La
rg

e
D

E
Tr

ad
×

✓
A

lw
ay

s
B

en
efi

ts
C

or
po

ra
te

 IT
 in

 sa
te

lli
te

 o
rg

P1
0∗

5y
D

ev
 te

am
 le

ad
La

rg
e

N
L

A
gi

le
×

×
A

lw
ay

s
B

en
efi

ts
Lo

w
-c

od
e

pl
at

fo
rm

P1
1∗

6y
Re

q.
 E

ng
in

ee
r

M
ed

iu
m

D
E

M
ix

ed
✓

×
A

lw
ay

s
B

en
efi

ts
Se

rv
ic

e
pr

ov
id

er
P1

2∗
30

y
Pr

oj
ec

t m
an

ag
er

Sm
al

l
C

H
Tr

ad
×

×
N

ev
er

N
A

ER
P

sy
ste

m
s d

ev
el

op
m

en
t

P1
3∗

10
y

SW
 d

ev
el

op
er

La
rg

e
C

H
M

ix
ed

×
✓

A
lw

ay
s

B
en

efi
ts

Se
rv

ic
e

pr
ov

id
er

P1
4∗

5y
SW

 d
ev

el
op

er
M

ed
iu

m
ES

M
ix

ed
✓

✓
So

m
et

im
es

B
en

efi
ts

Te
le

co
m

m
un

ic
at

io
ns

632 Requirements Engineering (2023) 28:619–637

1 3

other startup I worked at. Where things come from different
sources, like different people requesting stuff”. For larger
organizations, external information sources are a factor, as
exemplified by P8: “The problem is (that) all the different
artifacts are related to different user rights. I have just two
product owners in training that I am guiding through the
process. And they started one month ago, and every day we
are having the situation where they cannot do their work if
they do not have the access rights.” The problem of access
rights relates to tools, as indicated by P14: “The more cen-
tralized the software artefacts, the better. Unfortunately, in
the real world, we need to trace towards external documen-
tation. For this, our current tools cannot support us because
we are lacking permits.” Sometimes, security mechanisms
introduce concerns, as stated by P13: “Most of the time it is
security problems. Some firewalls, and some strange net-
works problems. They are different tools, and they have to
communicate.” Conversely, P10 argues that smart people are
a possible solution: “We talked about code, merge requests,
ticket support systems, stories, Jira. They are different sys-
tems, obviously, this takes effort, but we’re 300 engineers
here!” These quotes allow us to conclude that there is a
need for contextualizing the use cases for traceability tools.
Highly distributed organizations and larger project sizes
seem to have an influence on the role of the tools and the
needs for providing features to support traceability among
artefacts. However, further studies need to be conducted
to determine with higher precision which project size and
scope play an important role for defining traceability tools.

Finding I3 [S5.] No silver bullet: deciding between managed vs.

ad-hoc traceability practices depends on artifacts, organizational
culture, and tools.

Evidence for I3. The need for better organizational
embedding (S5), in terms of guidance, is clarified by our
interviewees. The bottom line is that there is no win-win
situation as to the degree of management: many factors
influence the decision. For small and medium organiza-
tions, management practices and organizational culture are
key. For example, P5 states “When I think of managed,
then you have either this software that ensures it is being
done, or you have this hierarchy, this manager making
sure that it is being done. And for most of how I know of
my current company, it is done per team. So pretty ad-
hoc.” P11 has a similar perception: “Yes, because people
will put these links when they need them. You know, you
have this technical documentation so you put the link. And
for me I try to do it always: this high-level requirement is
related to this low-level requirement. But developers know
they need to simply put the link to corresponding require-
ments.” The type of software system matters too, as stated
by P1: “If you decide in your project to skip traceabil-
ity there would not be at the first glance a manager who

blames you. Maybe, if you have a highly safety-critical
system, there will be a safety assessment at some point
in time and then it would become obvious that you would
miss traceability.” P3 explains how the level of manage-
ment is affected by development phase and artifacts: “If
you are talking about features that were planned and kinda
went through this process of refinement and estimation and
everything. Then I think it is easier to trace back to where
it came from. Whereas, if its more like ad-hoc require-
ments, or things that popped up because we figured out
that we needed to fix something. Then, zero traceability.”
Finally, some practitioners mentioned tools; e.g., P13
states “Yes, well, it is managed, managers have an idea.
But traceability just does not work, because there are no
tools.”

Finding I4 [S2.] Implementing traceability does not require further

resources: it is about benefits, commitment, and team collabora-
tion.

Evidence for I4. The positive cost/benefit ratio (S2) is
elaborated by our interviewees. Having sufficient staff and
resources does not mean good traceability practices will be
implemented. That mainly depends on organizational cul-
ture and motivations. P11, for instance, stated that “Time is
not the issue, because I need to put the link anyway. [...] It
is not how many people you have, maybe it is more: do we
have to do it if we are three people, if we are 10, or 15 peo-
ple, and we are located in different offices, cities or coun-
tries? So in the latter cases, it makes better sense to do it.
P3 refers to commitment as a main enabler: “But I am also
not sure that if we had more people, we would have more
traceability. [...] I think it is a part of your product, or
part of your role. [...] But I think for many people it is just
not a priority and they just end up not doing it.” The case
of startups is exemplified by P7: “The developers are left
to almost maintain their traceability themselves, so I felt
like it uses up a lot of our time. [...] It definitely does take
up more effort and time.” In some smaller organizations,
verbal communication seems a key factor, as stated by P3:
“And also, because it is such a small company, verbal col-
laboration kind of replaces this traceability.”. P10 stresses
the importance of teams over rigid processes: “Team leads
are responsible for educating new team members and for
reminding people of what to do. Responsibility may not be
explicit, but there is organic checking.”

Finding I5 [S5.] There is no single role who is responsible for

traceability.

Evidence for I5. Better embedding of traceability prac-
tices in the organizations (S5) does not imply, according to
our interviewees, that a single responsible can or should
be defined. This is extremely clear in startups, as stated by

633Requirements Engineering (2023) 28:619–637

1 3

P7: ‘The roles are very flexible. My role is currently Unity
(a game engine) developer. But I have done a bunch of
other things. [...] It is very unclear on what our roles are.”
A similar situation applies to large companies that use
agile approaches; for example, P5 stated: “That is some-
thing for each developer, or what the project manager is
more interested in it, or who should be responsible for it.
Should it be everyone? Should it just be managers? Does
the developer need to care, or know about the stuff or is it
more the manager who cares about how the backlog and
the code itself are related to each other?” Organizational
culture has a big impact too, as explained by P8: “Maybe
it is also related to our company, what I see is there is a
cultural difference in general. Young people tend to plan
everything, [...] ‘Country A’ people, yeah, they are plan-
ning to a specific amount of degree. But at the end they are
just doing. If ‘Country B’ people are in our setup, they are
planning a lot: they are even defining what is a role. [...]
So, there is also an intercultural aspect and within here it
is the same. In ‘Country C’ you need to define what some-
one is allowed to do. If you don’t define it, nobody will do
it.” P9 explains how, although no single role exists, what
matters is reaching a clear agreement: “We do not have a
specific role always responsible, but there is always an
agreement on who is the one who is responsible for defin-
ing the requirements: the vendor, the developer, etc. No
unclarity at that time.”

Finding I6 [S4.] A dedicated traceability tool? No, thanks: we re-
purpose and customize for the user.

Evidence for I6. A major reason why tools are not
found to be complex (S4) is that dedicated traceabil-
ity tools may not be used that extensively: most of our
respondents explained that they re-purposed their current
tooling for supporting traceability.

For instance, practitioner P1 has experienced the fol-
lowing: “If you ever have to use DOORS, working with
traceability is okay. But of course, it could be better. If
you think about drag and drop activities, on visualiza-
tion and so on. Well, usually it is not that easy to see at
one glance what is the overall traceability picture. [...]
The individual traces are there, and you can jump forth
and backwards. [...] But if you, for instance, would like to
annotate something to this trace, it is nothing that is let’s
say, treated or considered as fun.” Re-purposing current
tools does not mean that all traceability needs are satis-
fied, and heavy manual work is necessary to make the re-
purposed tools work properly. For example, P2 stated: “I
mean, the Atlassian suite does what it needs to do right. It
allows you to create every link you could possibly dream
of. The only thing is that you still need to do it manually.
And I don’t think they (the developers) consider that their

responsibility.” The effort required for re-purposing is also
highlighted by P13: “There should be a strong team that is
taking care of all these tools. But what I have heard from
managers is that ‘the tools are not important, the process
is important, we (managers) are important’. But, this is
wrong, the tools are enabling the work, in my opinion. But
they (managers) do not see it. For them (managers), tools
are just toys for engineers.” Some practitioners argue that
re-purposing needs customization. For example, P11: “If I
am responsible for code, and then I put comments on Bit-
Bucket, where all is easily accessible. Those are the tools
that I use. If I, as a programmer, need to find a requirement
and put some traceability, then it is complicated. But if we
have different tools for different people, and they use them
in a way to establish traceability, then it works. Everything
is customized.”

Finding I7. Traceability automation is desired, but automation
won’t replace us.

Evidence for I7. The interviewees expressed a need for
more traceability automation to reduce boring, repetitive
tasks that require high effort, e.g., trace creation and main-
tenance, as exemplified by P3: “One of the things I strug-
gle with, using Trello, is linking stuff together. You typically
have epics and user stories. Where one epic might be bro-
ken down in different user stories. [...] All those different
things are different cards. So, I have one card for the epic,
and one card for the user story, and then each user story
has a number of tasks to implement the user stories. And
tasks are also different cards. So, if you want to link them
all together, what you need to do, is basically, literally like
copy paste the Trello card URL, and go card by card, link-
ing that.” Although most participants would like more auto-
mation, they think any automated system would require a
person to check for correctness. P1 said “Some years ago,
I had a PhD student who was working on deriving trace
links between requirements and test cases automatically.
[...] Although he made significant progress, in the end, the
precision and recall values were at a level [...] it does not
make sense to use them because of the number of false posi-
tives.” P7 reinforced this experience and said that “Automa-
tion is definitely nice for the small things, like attaching the
ID, putting it on the board, etc. But I personally believe
having a human eye to look at it as well to maybe iron
out certain things that the automation may have missed.”

Finding I8. The phase in which traceability gives the most depends
on practitioners’ role.

Evidence for I8. Our interviewees gave diverse opinions
on the phase in the software development life-cycle in which
traceability offers the highest benefits. In summary, their
perception is highly aligned with their roles. P2, who is a

634 Requirements Engineering (2023) 28:619–637

1 3

product owner stated: “Definitely in deployment and mainte-
nance. Yeah that is where you find out and stuff is not work-
ing and you want to know why. [...] Of course, the develop-
ment and implementation would be the next part, but, the
biggest benefit is with the operations and the support depart-
ment.” On the other hand, P9, a service manager with clear
RE responsibilities, argues that “Design to requirements.
If you start with the wrong design, the development will be
wrong, etc. Also test cases to code and test cases to require-
ments matter. But the central aspect is design.” People who
are highly involved in development point out code-related
trace links; for example, P6 says “I think that my answers
are kinda reflected that it is from code to requirements. But
from bug to code and or from bug and code to pull requests/
commit that is valuable.” P5, another developer, strengthens
this perspective: “When there is a bug, we can determine if
this is something that we overlooked or is this something,
we made a code change, and that introduced this bug.” and
also highlighting lack of knowledge regarding earlier phases:
“Requirements gathering, yeah I guess I don’t know enough
of what is involved in that aspect.”

6 Discussion

Our study provides empirical data on the barriers to soft-
ware traceability in terms of current practices and needs
as expressed by software engineering practitioners. The
information gained from an online survey with 55 practi-
tioners is complemented by in-depth, qualitative data from
14 practitioners.

In the following, we first present our conclusions by
addressing the research questions in Sect. 6.1. Then, we
discuss the threats to validity in Sect. 6.2, and we outline
future directions in Sect. 6.3.

6.1 Conclusions

Before answering our research questions, we shall make
the premise that various reasons exist for adopting trace-
ability (S1 and Table 7), with the expected benefits being
the prevalent one. Since multiple roles within the software
development lifecycle have to do with traceability (I5), it is
unsurprising that practitioners’ perception of the phase in
which traceability gives its best depends on their role (I8).

Regarding the perceived significance of the barriers
to software traceability in practice (RQ1), we found that
although costs are an inhibitors, the respondents do not find
those to outweigh the benefits (S2, I4), as traceability is
regarded of high importance (S3). However, better embed-
ding in the organizations is necessary for the stakeholders
to see the benefit of traceability (S5), as those benefits are
hardly tangible (I1). Interestingly, our results contradict prior

evidence [19, 26, 26, 39] by showing that tool complexity
and difficult access to information sources do not seem to
be a challenge (S4). One possible explanation is that people
(“engineers” in I2) are able to fill the gaps, even when the
tools are not optimal.

Regarding how the software development paradigm
affects the perceived importance of barriers to software
traceability (RQ2), the survey did not reveal striking differ-
ences between the two groups: agile and traditional. Nev-
ertheless, some differences could be identified concerning
some aspects of traceability. Team collaboration, a key trait
of agile development, seems to be an enabler for implement-
ing traceability practices (I5). Such result confirms prior evi-
dence as reported by other authors [3, 17, 22]. Nevertheless,
agile practitioners more strongly demand for easier access
to those sources (S8). On the other hand, traditional practi-
tioners stress the need of a better organizational embedding:
they demand more awareness of the benefits and increased
guidance (S7). The results from (S7) reinforce the evidence
presented in earlier studies [5, 28, 39].

The impact of whether the software is safety critical
(RQ3) is minimal. Our study reveals that this factor seems
to affect less strongly the perceived barriers (S9). Neverthe-
less, further research should be conducted to confirm or dis-
prove the lack of notable differences and evaluate the extend
the evidence presented by [31] holds for these two types of
software systems by characterizing low-end and high-end
traceability users.

When we consider our major research goal (MRG) of
obtaining contemporary empirical knowledge on the field,
we see that traceability is of high importance for the soft-
ware development lifecycle (S3), and the practitioners’ per-
ception is that the costs, although a key inhibitor for more
mature practices, do not outweigh the benefits (S2). Our
interviews helped us better understand these notions of
benefit and cost. The practitioners pointed out that tangible
benefits are essential (I2), especially when communicating
with colleagues and managers. On the other hand, costs
mostly amount to the effort that is necessary to establish
and maintain trace links (I1); obviously, such effort needs
to be balanced by the benefits. To enable this, traceability
practices need a better embedding within organizations (S5),
but how? According to our study, there is no silver bullet and
the degree of traceability management depends on artifacts,
organizational culture, and tools (I4). Also, there is no single
role that is responsible for traceability (I6), but individual
commitment and team collaboration are the key enablers
(I5). Dedicated tools for traceability do not seem necessary:
our interviewees clarified that their preference is to re-pur-
pose and customize the tools they use for their daily tasks
(I7), and that automation could represent a useful aid, but
they challenge the effectiveness of current automation (I8).

635Requirements Engineering (2023) 28:619–637

1 3

6.2 Threats to validity

We analyze the threats to validity according to the categori-
zation proposed by Wohlin et al. [38].

Conclusion validity. Random heterogeneity of respond-
ents applies, as we reached them via an online survey. Thus,
our conclusions might not reflect certain subsets of popula-
tion. Also, most of our respondents are located in Europe.
Furthermore, our sample size (55) requires care when split-
ting the responses into multiple groups, due to the limited
size, especially for the minority groups. Despite the efforts
of increasing the sample size by leaving the questionnaire
online for a longer time and the direct invitation of circa
50 people through personal e-mails, we have to acknowl-
edge the threat of low statistical power. To mitigate this risk,
our analyses include a transparent reporting that includes
divergent stacked bar charts, significance values, and effect
size. The adoption of an online questionnaire may question
the reliability of measures in terms of proper wording and
instrument layout. To minimize this threat, we conducted
pilots that tested both language formulation and content.

Internal validity. A threat with surveys is finding a rep-
resentative group. This problem is limited in our case, for
our target audience is rather broad and we did not mean
to specify strict constraints. To avoid bias, in our advertis-
ing and personal e-mails, we tried to be inclusive by indi-
cating we were looking for participants with an opinion or
experience on traceability, without expressing a polarity
(e.g., traceability enthusiast or detractor). Regarding the
interviews, bias exists in the sense that only people who
expressed their interest in participating through the ques-
tionnaire were invited, besides the 6 additional participants.
However, this threat is minimized given the pretty diverse
distribution of our interviewees (see Table 7) in terms of
development method, safety critical, organization size.
Another possible risk is that some of the respondents indi-
cated that they currently do not use traceability; we decided
to retain them in our sample as they indicated experience in
the field and because of the perception-based formulation of
our questions (Table 2).

Construct validity. By conducting a questionnaire-based
survey, we tried to minimize the influence of the researchers
on the participants. We opted for simple language to reduce
ambiguity, and we conducted pilots that tested both language
formulation and content. We would have liked to test the sur-
vey with additional practitioners, but this was not possible
due to time and resource constraints. Despite these efforts,
some statements probably suffer from ambiguity and could
still be improved. For example, the results from findings S4,
I2, and I6 might seem controversial regarding the complex-
ity and role of tools for traceability. The participants might
not have the same understanding regarding needs and use of
traceability tools in different software projects. Despite the

participants did not indicate problems regarding terminol-
ogy in the final page of the questionnaire, we consider there
is a threat regarding the contextualization since it seems it
was not explicit enough for the participants. These experi-
ence should be consider for further replications and similar
studies. To mitigate the influence of the researchers in the
interviews, we followed the structure of the questionnaire
and paid attention to letting interviewees express their opin-
ions freely. The interview, however, allowed for additional
clarifications that the survey did not support: the participants
could ask clarifying questions. Therefore, we excluded the
results from the 6 additional interviews in the survey results,
although the participants expressed their sentiment and pri-
ority about the statements. The classification of the state-
ments into the Managerial, Social, and Technical categories
proposed by Bouillon et al. [6] is at the basis of finding S6.
This finding, which shows no difference in the perceived
importance across these categories, assumes that the state-
ments within these categories are a truthful representation
of each category. To minimize bias, we used the very classi-
fication introduced [6], without introducing additional state-
ments or removing statements: each statement corresponds
to one of the obstacles that that work identified. With dif-
ferent statements, however, the results could be different.

External validity. Our sample consisted of 55 partici-
pants. We were able to gather data from a diverse group of
participants. Nonetheless, we do see that most of that par-
ticipants are from Europe, work for large companies, and 2/3
work with agile methods. Therefore, we need to be cautious
on the generalizability of the results. Regarding the inter-
views, although we succeeded in attracting different roles,
we shall note that all of them work in Europe. On the one
hand, the opinions are expected to reflect the results of the
majority of the population that participated in the question-
naire (82% of the participants were from Europe). On the
other hand, we acknowledge that another sample involving
participants from different geographical areas may lead to
different results. Similarly, the interviewees we approached
may not exactly represent the 55 participants (or the entire
population) when it comes to their experience with trace-
ability tools: dedicated studies may be necessary regarding
this specific aspect.

6.3 Future work

Our study contributes to updating and strengthening the
body of knowledge regarding software traceability in prac-
tice. We hope our results pave the way for additional studies
and can be employed to direct the research efforts toward the
actual practices and needs of the practitioners.

Our questionnaire, which is available in the online appen-
dix (https:// zenodo. org/ recor ds/ 80217 23), can be re-used for
additional studies to increase the sample size or to focus

https://zenodo.org/records/8021723

636 Requirements Engineering (2023) 28:619–637

1 3

on other regions of the world: our results mostly hold for
Europe. Since practitioners do not seem eager to change their
working tools, it is urgent to explore how existing solutions
could be effectively embedded within the tools that are used
in practice, e.g., Jira. Also, there is still space to investigate
how automation may help human analysts and other roles in
software development, like some studies started exploring
[29]. An important factor to study is collaboration; existing
studies such as Wohlrab et al.’s [39] need to be conducted in
diverse development contexts to shed light on which prac-
tices may be adopted to effectively enable traceability.

Funding Open access funding provided by ZHAW Zurich University
of Applied Sciences.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Antoniol G, Cleland-Huang J, Hayes JH, Vierhauser M (2017)
Grand challenges of traceability: the next ten years. arXiv: 1710.
03129

 2. Arkley P, Riddle S (2005) Overcoming the traceability benefit
problem. In: Proceedings of the IEEE international requirements
engineering conference (RE), pp 385–389

 3. Batot ER, Gérard S, Cabot J (2022) A survey-driven feature model
for software traceability approaches. In: Johnsen EB, Wimmer M
(eds) Fundamental approaches to software engineering. Springer,
Cham, pp 23–48

 4. Beck K, Beedle M, Van Bennekum A, Cockburn A, Cunningham
W, Fowler M, Grenning J, Highsmith J, Hunt A, Jeffries R, et al
(2001) Manifesto for agile software development

 5. Blaauboer F, Sikkel K, Aydin MN (2007) Deciding to adopt
requirements traceability in practice. In: Proceedings of the inter-
national conference on advanced information systems engineering
(CAiSE), pp. 294–308

 6. Bouillon E, Mäder P, Philippow I (2013) A survey on usage sce-
narios for requirements traceability in practice. In: Proceedings of
the international working conference on requirements engineer-
ing: foundation for software quality (REFSQ), pp 158–173

 7. Cleland-Huang J (2006) Just enough requirements traceability. In:
Proceedings of the international computer software and applica-
tions conference (COMPSAC), pp 41–42. https:// doi. org/ 10. 1109/
COMPS AC. 2006. 57

 8. Cleland-Huang J (2012) Traceability in agile projects. In: Soft-
ware and systems traceability. Springer, pp 265–275

 9. Cleland-Huang J, Berenbach B, Clark S, Settimi R, Romanova
E (2007) Best practices for automated traceability. Computer
40(6):27–35

 10. Cleland-Huang J, Gotel OOC, Huffman Hayes J, Mäder P, Zis-
man A, Hayes JH, Mäder P, Keyes M, Zisman A (2014) Software
traceability: trends and future directions. In: Proceedings of the
session on the future of software engineering (FOSE), pp 55–69

 11. Cohen J (2013) Statistical power analysis for the behavioral sci-
ences. Academic Press

 12. De Lucia A, Marcus A, Oliveto R, Poshyvanyk D (2012) Infor-
mation retrieval methods for automated traceability recovery. In:
Software and systems traceability. Springer, pp 71–98

 13. Forsberg K, Mooz H (1992) The relationship of systems engineer-
ing to the project cycle. Eng Manag J 4(3):36–43

 14. Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates:
current use, calculations, and interpretation. J Exp Psychol Gen
141(1):2

 15. Furtado F, Zisman A (2016) Trace++: a traceability approach
to support transitioning to agile software engineering. In: IEEE
international requirements engineering conference (RE), pp 66–75

 16. Gotel O, Cleland-Huang J, Hayes JH, Zisman A, Egyed A, Grun-
bacher P, Antoniol G (2012) The quest for ubiquity: a roadmap for
software and systems traceability research. In: Proceedings of the
IEEE international requirements engineering conference (RE), pp
71–80

 17. Gotel O, Cleland-Huang J, Hayes JH, Zisman A, Egyed A, Grün-
bacher P, Dekhtyar A, Antoniol G, Maletic J (2012) The grand
challenge of traceability (v1.0). In: Software and systems trace-
ability, pp 343–409

 18. Gotel O, Finkelstein A (1994) An analysis of the requirements
traceability problem. In: Proceedings of the IEEE international
conference on requirements engineering (RE), pp 94–101

 19. Gotel O, Finkelstein C (1994) An analysis of the requirements
traceability problem. In: Proceedings of IEEE international con-
ference on requirements engineering, pp 94–101. https:// doi. org/
10. 1109/ ICRE. 1994. 292398

 20. Guo J, Cheng J, Cleland-Huang J (2017) Semantically enhanced
software traceability using deep learning techniques. In: Pro-
ceedings of the IEEE/ACM international conference on soft-
ware engineering (ICSE), pp 3–14. https:// doi. org/ 10. 1109/
ICSE. 2017.9

 21. Guo J, Monaikul N, Cleland-Huang J (2015) Trace links
explained: an automated approach for generating rationales. In:
IEEE international requirements engineering conference (RE), pp
202–207

 22. Hernández R, Moros B, Nicolás J (2023) Requirements man-
agement in DevOps environments: a multivocal mapping study.
Requir Eng. https:// doi. org/ 10. 1007/ s00766- 023- 00396-w

 23. Ingram C, Riddle S (2013) Cost-benefits of traceability. In: Soft-
ware and systems traceability, pp 23–42

 24. Kuang H, Nie J, Hu H, Rempel P, Lü J, Egyed A, Mäder P (2017)
Analyzing closeness of code dependencies for improving IR-based
traceability recovery. In: IEEE international conference on soft-
ware analysis, evolution and reengineering (SANER), pp 68–78

 25. Mäder P, Egyed A (2015) Do developers benefit from require-
ments traceability when evolving and maintaining a software sys-
tem? Empir Softw Eng 20(2):413–441. https:// doi. org/ 10. 1007/
s10664- 014- 9314-z

 26. Mäder P, Gotel O, Philippow I (2009) Motivation matters in the
traceability trenches. In: Proceedings of the IEEE international
requirements engineering conference (RE) pp 143–148. https://
doi. org/ 10. 1109/ RE. 2009. 23

 27. Mann HB, Whitney DR (1947) On a test of whether one of two
random variables is stochastically larger than the other. Ann Math
Stat 18:50–60

 28. Maro S, Steghöfer JP, Bozzelli P, Muccini H (2022) Tracimo:
a traceability introduction methodology and its evaluation in an
agile development team. Requir Eng 27(1):53–81. https:// doi. org/
10. 1007/ s00766- 021- 00361-5

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1710.03129
http://arxiv.org/abs/1710.03129
https://doi.org/10.1109/COMPSAC.2006.57
https://doi.org/10.1109/COMPSAC.2006.57
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1007/s00766-023-00396-w
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1109/RE.2009.23
https://doi.org/10.1109/RE.2009.23
https://doi.org/10.1007/s00766-021-00361-5
https://doi.org/10.1007/s00766-021-00361-5

637Requirements Engineering (2023) 28:619–637

1 3

 29. Maro S, Steghöfer JP, Hayes J, Cleland-Huang J, Staron M (2018)
Vetting automatically generated trace links: what information is
useful to human analysts? In: Proceedings of the IEEE interna-
tional requirements engineering conference (RE), pp 52–63

 30. Rahimi M, Cleland-Huang J (2018) Evolving software trace
links between requirements and source code. Empir Softw Eng
23(4):2198–2231

 31. Ramesh B (1998) Factors influencing requirements traceability
practice. Commun ACM 41(12):37–44. https:// doi. org/ 10. 1145/
290133. 290147

 32. Rath M, Rendall J, Guo JL, Cleland-Huang J, Mäder P (2018)
Traceability in the wild: automatically augmenting incomplete
trace links. In: Proceedings of the IEEE/ACM international con-
ference on software engineering (ICSE), pp 834–845

 33. Regan G, McCaffery F, McDaid K, Flood D (2012) The barriers
to traceability and their potential solutions: Towards a reference
framework. In: Proceedings of the EUROMICRO conference
on software engineering and advanced applications (SEAA), pp
319–322. https:// doi. org/ 10. 1109/ SEAA. 2012. 80

 34. Robson C (2002) Real world research—a resource for social scien-
tists and practitioner-researchers, 2nd edn. Blackwell Publishing,
Malden

 35. Ruiz M, Hu J, Dalpiaz F (2023) Online appendix of “Why Don’t
We Trace? A Study on the Barriers to Software Traceability in
Practice”. https:// doi. org/ 10. 5281/ zenodo. 80217 23

 36. Sommerville I (2015) Software engineering, 10th edn.
Addison-Wesley

 37. Wang W, Niu N, Liu H, Niu Z (2018) Enhancing automated
requirements traceability by resolving polysemy. In: Proceedings
of the of the IEEE international requirements engineering confer-
ence (RE), pp 40–51

 38. Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A
(2012) Experimentation in software engineering. Springer

 39. Wohlrab R, Knauss E, Steghöfer JP, Maro S, Anjorin A, Pellic-
cione P (2018) Collaborative traceability management: a multiple
case study from the perspectives of organization, process, and
culture. Requir Eng. https:// doi. org/ 10. 1007/ s00766- 018- 0306-1

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/290133.290147
https://doi.org/10.1145/290133.290147
https://doi.org/10.1109/SEAA.2012.80
https://doi.org/10.5281/zenodo.8021723
https://doi.org/10.1007/s00766-018-0306-1

	Why don’t we trace? A study on the barriers to software traceability in practice
	Abstract
	1 Introduction
	2 Studies on traceability in practice
	3 Study definition and planning
	3.1 Main research goal
	3.2 Research questions and variables
	3.3 Study design
	3.4 Selection of participants and demographics

	4 Survey results
	4.1 General analysis of the obstacles (RQ1)
	4.2 Development paradigm—RQ2
	4.3 Type of software system—RQ3

	5 Key findings from the interviews
	6 Discussion
	6.1 Conclusions
	6.2 Threats to validity
	6.3 Future work

	References

