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Food and nutrition are a steadfast essential to all living organisms. With specific 
reference to humans, the sufficient and efficient supply of food is a challenge 
as the world population continues to grow. Artificial Intelligence (AI) could 
be identified as a plausible technology in this 5th industrial revolution in bringing 
us closer to achieving zero hunger by 2030—Goal 2 of the United Nations 
Sustainable Development Goals (UNSDG). This goal cannot be achieved unless 
the digital divide among developed and underdeveloped countries is addressed. 
Nevertheless, developing and underdeveloped regions fall behind in economic 
resources; however, they harbor untapped potential to effectively address the 
impending demands posed by the soaring world population. Therefore, this study 
explores the in-depth potential of AI in the agriculture sector for developing and 
under-developed countries. Similarly, it aims to emphasize the proven efficiency 
and spin-off applications of AI in the advancement of agriculture. Currently, AI is 
being utilized in various spheres of agriculture, including but not limited to crop 
surveillance, irrigation management, disease identification, fertilization practices, 
task automation, image manipulation, data processing, yield forecasting, supply 
chain optimization, implementation of decision support system (DSS), weed 
control, and the enhancement of resource utilization. Whereas AI supports 
food safety and security by ensuring higher crop yields that are acquired by 
harnessing the potential of multi-temporal remote sensing (RS) techniques 
to accurately discern diverse crop phenotypes, monitor land cover dynamics, 
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assess variations in soil organic matter, predict soil moisture levels, conduct 
plant biomass modeling, and enable comprehensive crop monitoring. The 
present study identifies various challenges, including financial, infrastructure, 
experts, data availability, customization, regulatory framework, cultural norms 
and attitudes, access to market, and interdisciplinary collaboration, in the 
adoption of AI for developing nations with their subsequent remedies. The 
identification of challenges and opportunities in the implementation of AI 
could ignite further research and actions in these regions; thereby supporting 
sustainable development.
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1 Introduction

At present, the practical applications of Artificial Intelligence (AI) 
in the field of agriculture are somewhat limited to the developed 
countries (Goralski and Tan, 2020). While the swift progress within 
the AI domain might instill concerns about job displacement in more 
developed nations, it holds the potential to be viewed as a promising 
opportunity for developing countries (Lohr, 2018). However, the 
importance of AI in the agriculture sector cannot be overlooked given 
its potential in augmenting crop production, disease monitoring, 
fertilizer and irrigation management, optimized harvesting, and post-
harvest managerial efficiencies (Dharmaraj and Vijayanand, 2018; 
Eli-Chukwu, 2019; Lioutas et al., 2021; Shen et al., 2022). While the 
presence of the digital divide within the agriculture sector has been 
documented in previous reports along with its prospective solutions 
(Rotz et al., 2019; Lioutas et al., 2021), there is still a significant scope 
for enhancement. Therefore, there is a great need to adopt a holistic 
approach to overcome the digital divide for an equal implementation 
of AI in developed and developing countries so as to support the 
United Nations Sustainable Development Goals (UNSDG) of zero 
hunger by ensuring food safety and security.

American psychologist Maslow (1974) first postulated “Maslow’s 
Hierarchy of Needs” outlining the theory of psychological health 
which included food as its essential element (Maslow, 1974; 
Numonjonovich, 2022). This was categorized as a physiological need. 
Maslow’s pyramid (Figure 1) illustrates this need located at its base. 
This theory remains pertinent to a great extent as it highlights the 
essential element of survival for all living beings. Fast forward to 2020, 
a pandemic era affecting the global population where the vast 
inequality between the have and have-nots was experienced by many, 
the wealthy and the needy, and those barely surviving due to the 
unequal distribution of wealth; situation stemming from disparities in 
opportunities and development potential (Bayati et al., 2022). The 
provision of food and nutrition in the developing world could 
be approximated as an analogous scenario to the inequal distribution 
of COVID-19 vaccines (Tatar et al., 2021; Bayati et al., 2022).

Most advanced economies have a well-established ministry 
overlooking the development of scientific innovation and engineering, 
this includes the advancements in the fields of AI and Machine 
Learning (ML). These technologies were pioneered in the areas of 
military, defense and space exploration with their spin-offs applied to 
the primary sector such as agriculture (Arakpogun et  al., 2021). 

However, one of the main objectives of these technologies is to ensure 
higher crop production to meet the internal and external demands. 
These technologies have the potential to improve livelihoods in the 
developing world. An example would be the identification of suitable 
farmlands to meet and harvest the agricultural demands of these 
populations. AI applications in agriculture increase the efficiency of 
crop production through the identification of ideal farmlands and 
terrains, efficient water management, early disease detection, and 
optimal use of input resources, thus eliminating the lag-time that 
otherwise would have encountered a trial-and-error approach 
(Dharmaraj and Vijayanand, 2018; Eli-Chukwu, 2019; Sharma 
et al., 2023).

The economic gains due to the implementation of AI could 
further expand its potential. For instance, it has been predicted that 
AI would result in 10.3% higher Gross Domestic Product (GDP) for 
United Kingdom, thus accounting for an extra 232 billion pounds 
(approximately $317 billion USD) (PWC, 2022). Similarly, according 
to World Economic Forum (WEF), investment by worldwide 
corporations in AI surged by 40% from 2019 to 2020, reaching a total 
of $67.9 billion (Forum, 2022). Whereas AI investments are expected 
to reach €22.4 billion (approximately $26.5 billion) in the European 
Union by 2025 (Alliance, 2020). On the contrary, developing countries 

FIGURE 1

Abraham Maslow’s hierarchy of needs.
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struggle to secure funding. AI related initiatives are either minimal or 
completely absent in developing nations (Pro, 2018; Loucks et al., 
2019). For instance, in African countries the process of securing loans 
for digitalization is quite cumbersome leading to its abandonment by 
the farmer or small agriculture firms (Aguera et al., 2020). It has been 
reported that a total of $140 million of seed-funding across the whole 
of Africa for AI startups was secured (Hamdan et  al., 2021). The 
significant differences indicate that developing countries are behind 
by a substantial percentage in terms of funding and gains for AI 
initiatives compared to more developed regions.

The focus of the current study centers on fundamental inquiries 
concerning the identification of adoption barriers to AI technologies 
in developing countries along with their subsequent mitigation and 
tailoring strategies. This would ultimately strengthen sustainable 
food production. Whereas the objective of this review is to explore 
the in-depth potential of AI in the agriculture sector. Similarly, it 
aims to emphasize the proven efficiency and spin-off applications 
of AI in the advancement of agriculture for the developing and 
under-developed countries (For reader convenience, we  will 
subsequently refer to developing and under-developed countries as 
“developing countries”). The identification of challenges and 
opportunities in the implementation of AI could ignite further 
research and actions in these regions. Furthermore, this review also 
details the available technologies, and identifies plausible methods 
that could enable efficient agriculture production and management 
as we  progress in achieving food and nutrition equality in the 
21st century.

This study is organized into ten distinct sections. The second 
section details the methodology, the third addresses the necessity of 
AI technologies in agriculture. The fourth section systematically 
examines plausible AI applications, drawing insights from previous 
research. Subsequently, the fifth section scrutinizes the paradigm of 
edge intelligence, specifically within the agricultural context, followed 
by an analytical discourse on the economic and tangible merits of 
AI. Following that, the study discusses solutions for enhancing food 

safety and security. The eighth section outlines challenges in AI 
adoption along with their potential solutions. The ninth section 
underscores an integrative approach, focusing on Agriculture 5.0. 
Finally, a concise summary of the study is provided.

2 Methodology

This study was driven by the imperative to address four pivotal 
inquiries at the intersection of AI, agriculture, and sustainability. To 
systematically investigate these questions, an extensive examination 
of scholarly materials was conducted, utilizing reputable databases 
such as Web of Science (WOS), Scopus, and Google Scholar. The 
formulated research questions are as follows:

 • What are the prevailing imperatives propelling the incorporation 
of AI technologies in agricultural practices?

 • What insights can be gleaned from previous studies regarding 
potential AI applications in agriculture?

 • In what ways can AI contribute to advancing food safety and 
security in the agricultural sector?

 • What challenges influence the adoption of AI for agricultural 
operations, particularly in developing countries?

To conduct the research, specific keywords including “Agricultural 
Technology,” “Agriculture 5.0,” “AI in Agriculture,” “Digital Divide,” 
and “Food Safety and Security” were employed. The initial search 
results revealed a significant abundance of records for the keyword 
“Digital Divide,” followed by “Agricultural Technology” on Scopus and 
WOS databases (Figure  2). Conversely, “Agriculture 5.0” yielded 
minimal documents in both databases. Google Scholar, while 
presenting millions of documents for each keyword, was excluded 
from further analysis due to its lower precision and generality.

In terms of document types, Scopus exhibited a higher number of 
research articles, review papers, and books compared to WOS. For 

FIGURE 2

Summary of records for each keyword found on Scopus, Web of Science (WOS), and Google Scholar databases.
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FIGURE 4

Summary of research articles, review papers, and books pertaining to specific keywords across different time periods, where (A) represents data 
retrieved from Web of Science (WOS) and (B) represents data retrieved from SCOPUS.

example, the keyword “AI in Agriculture” yielded 17 research articles 
in Scopus versus 6 in WOS. The document types were categorized into 
“Others” for materials not falling into the research article, review 
paper, or book categories (Figure 3). An exploration of publication 
volumes across three distinct periods—before 2000, between 2000 and 
2019, and from 2020 to 2023—highlighted a notable surge in interest 
and research output in AI, food safety and security, agriculture 5.0, 
and agricultural technology (Figure  4). This trend indicates an 
escalating focus on these keywords over the last decade.

Following the comprehensive collection of pertinent studies, a 
rigorous filtration process was employed to ensure the relevance and 
depth of the investigation. Research articles, review papers, and books 
that directly addressed the posed research questions in the agricultural 
domain were considered. Given the innovative nature of concepts 
such as “Agriculture 5.0” and “AI in Agriculture,” particular emphasis 
was placed on studies conducted over the last five years, with 
additional attention given to those published within the past decade. 
Additionally, valuable insights from reputable sources, such as the 
World Health Organization (WHO) and Food and Agriculture 

Organization (FAO) websites, were incorporated. The citation of 
specific studies was conducted impartially, aiming to support the 
narrative on the utilization of AI in agriculture for enhancing food 
safety and security, particularly in developing nations, without 
implying endorsement or validation of specific information.

3 The need for AI

AI in agriculture is a crucial factor in bridging the hunger gap in 
the developing world. The developing region recorded 780 million 
(12.9%) of undernourished people as compared to 795 million (10.8%) 
worldwide in a longitudinal study over the period of 2014–2016 
(United Nations Sustainable Development Goals Report, 2016). These 
figures illustrate that over 98% of the undernourished population is 
from developing regions (Figure 5). This is corroborated with the 
number of malnourished children in these regions as demonstrated in 
Figure 6. This data indicates the lack of resources to meet the basic 
needs of the population. These disparities are owing to various factors, 

FIGURE 3

Summary of research articles, review papers, and books for corresponding keywords, where (A) represents data retrieved from Web of Science (WOS) 
and (B) represents data retrieved from SCOPUS.
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chief among them are remote locations, level of economic development 
and poor infrastructure.

The preemptive measures to the existential threats manifested as 
climate change and environmental regression have resulted in a 
pivotal initiative that envisions a modern, resource-efficient, and 
competitive economy ensuring the achievement of the triad of core 
tenets of the European Green Deal: no net emissions of greenhouse 
gasses by 2050, economic growth decoupled from resource utilization, 
and that no individual or location is left out (Commission, E, 2021a). 
Reports from various agencies including the FAO emphasize the 
greater need of enhancing food production to meet the augmenting 

grain consumption needs considering the global population growth 
(Singh and Kaur, 2022). This challenge might not be addressed by 
merely increasing the production land or snowballing the breeding 
programs. Rather, a holistic approach for an integrated management 
of agriculture production is needed. Likewise, AI’s potential in 
agriculture extends to predictive analytics, genomics, phenomics, 
plant breeding, virtual assistance, DSS, and the integration with 
blockchain technology. Predictive analytics aids in risk management, 
productivity enhancement, and precision farming. In genomics and 
phenomics, AI contributes to transformative advancements, 
facilitating tasks such as tissue-specific gene expression prediction and 

FIGURE 5

The proportion of undernourished people worldwide between the study periods of 2000–2002 and 2014–2016 (percentages). Data retrieved from the 
United Nations Sustainable Development Goals Report (2016).

FIGURE 6

The proportion of children under age five with stunted growth, 2000 and 2014 (percentages). Data retrieved from the United Nations Sustainable 
Development Goals Report (2016).
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cultivar selection. Virtual assistance through AI-powered chat bots 
and the use of DSS for data-driven decision-making are rising trends. 
The integration of AI with blockchain technology enhances 
traceability and data management, addressing challenges in supply 
chain management. Moreover, AI plays a supplementary role in 
various domains, including weed identification, forestry and livestock 
management, farm robotics, agricultural remote sensing, mechanical 
pollination, and crop insurance, contributing to increased agricultural 
production and meeting the demands of vulnerable populations 
(Singh and Singh, 2020; Ahmad et al., 2022b). In this regard, AI holds 
a vast potential.

The deployment of AI-enabled agriculture could greatly aid in 
narrowing the gap and meet the essential nutritional needs. These can 
be viewed through a two-pronged approach. One is collaboration 
between wealthier nations using AI to improve their own agriculture 
or using AI extensively in developed nations to boost productivity and 
export surplus to developing regions. The second approach involves a 
combination of both strategies. Through these advanced technologies, 
it is projected that agricultural productivity can be augmented by 70 
percent by 2050 (Research, B, 2015; Martos et al., 2021).

Undeniably, Agriculture 5.0 is present in most developing and 
developed nations such as China, Argentina and Israel through 
various stages of implementation, and its use is projected to increase 
in the near future through the multitude of methods in cultivating 
food supplies (Review, 2020). The application of Agriculture 5.0 ranges 
from small scale indoor cultivation to large-scale commercial 
farmland. The ingenuity of these technologies allows for the 
monitoring of vital statistics of essential crops. For example, VineScout 
is a mobile robot that monitors moisture levels of soil and detects 
diseases in vineyards (Saiz-Rubio and Rovira-Más, 2020). These were 
achieved through a variety of devices including handheld devices and 
mobile robots (Saiz-Rubio and Rovira-Más, 2020; AgriFarming, 
2022). The application of AI in agriculture offers numerous benefits, 
particularly in the development of efficient and intelligent irrigation 
systems. The use of Artificial Neural Network (ANN) models, such as 
those employed by Hinnell et al. (2010) and Arif et al. (2013) for soil 
moisture detection and intelligent irrigation, showcases the potential 
to ensure precise and optimal watering of crops. Additionally, the 
integration of Internet of Things (IoT) and ML, as demonstrated in 
the smart irrigation system by Tace et al. (2022), further enhances 
agricultural practices. These advancements not only facilitate timely 
irrigation but also contribute to water conservation, paving the way 
for sustainable agriculture.

Taking into consideration the broader context of malnutrition and 
hunger, developing countries such as in Sub-Saharan African region, 
emerge as regions endemic with chronic hunger. The World Food 
Program’s longitudinal study between the years of 2018 and 2020 is 
strongly corroborated by the trend published by the UN study between 
the years of 2014 and 2016 (United Nations Sustainable Development 
Goals Report, 2016; Programme, 2021). However, the COVID-19 
pandemic resulted in a spike of the population prevalent to hunger 
and undernourishment with 1  in 10 (811 million) of the global 
population experiencing a short supply of food (Programme, 2021). 
This requires the urgency of remedial action in this region. These 
arduous circumstances provide an opportunity for the application of 
AI in agriculture.

Climate change is posing severe challenges of water scarcity across 
the globe. AI could efficiently be  applied to mitigate such abiotic 

stresses. The use of AI could help devise efficient and smart irrigation 
systems along with precise and optimum irrigation of crops. 
For instance, implementation of ANN based models could be used for 
crop-irrigation monitoring, thereby contributing toward efficient 
water use (Arif et al., 2013). Furthermore, AI supports digital farming 
that aims to limit carbon footprint and contribute toward 
environmental sustainability. Similarly, incorporation of AI into 
agriculture sector could gain higher economic gains (Ryan et  al., 
2023). It has been reported that a higher tendency of firms adopting 
AI was witnessed during the last decade (Davenport et al., 2020). 
Consequently, envisaging the agriculture sector with AI technologies 
would create novel economic opportunities locally and globally. 
Additionally, Agricultural AI concentrating on external elements 
employs data related to crop values, market patterns, consumer 
preferences, needs, and visual aspects (Dharmaraj and Vijayanand, 
2018). This has the potential to enable farmers to take market-savvy 
actions more effectively.

4 Applications of AI in agriculture

AI could play a crucial role in modern day agriculture. The 
developed nations are leading the way of AI applications in agricultural 
domain, which could be used as an example by developing regions. 
Currently, AI is being applied for crop monitoring, irrigation, disease 
detection, fertilization, task execution, automation, image processing, 
data processing, yield simulations, DSS, weeds management, and 
optimizing input resources among others (Table 1). However, it is 
imperative to acknowledge the constrained efficacy of AI within these 
contexts. This disparity could be addressed by increasing research and 
experimentation, particularly at national and international level.

AI’s diverse applications in agriculture could contribute to the 
development of efficient and intelligent irrigation systems, ensuring 
precise and optimal watering of crops. For instance, ANN based 
model was used to detect the soil moisture level with subsequent alert 
for irrigation (Arif et al., 2013). Similarly, a novel approach, named 
Neuro-Drip, to visualize the spatial and temporal subsurface water, 
using ANN and statistical analysis was reported by Hinnell et  al. 
(2010). Likewise, a support system for intelligent irrigation to estimate 
the irrigation need for one week using AI was also reported (Sinwar 
et al., 2020). This could not only facilitate the timely irrigation but also 
facilitate the means to save water. Recently, a highly sophisticated 
smart irrigation system was developed using IoT and ML (Tace et al., 
2022). Authors collected data through humidity, temperature, and rain 
sensors and after proper analysis presented it in the form of a web 
application. Apart from these, there are numerous studies involving 
AI aimed at smart irrigation to save water and improve the efficiency 
of irrigation systems; thereby paving the way to sustainable agriculture.

Plant diseases and pests are a big constraint to higher crop 
yields and sustainable crop production. Every year the agriculture 
sector encounters billions of dollars loss due to plant diseases 
(Ahmad et  al., 2023). One of the possible ways to address this 
problem is the timely identification of crop diseases. The diagnostic 
feature of AI, through images of a leaves, has been shown to provide 
an accuracy of 75% as opposed to alternative diagnostic methods 
(Barbedo, 2019; Martos et  al., 2021). AI has been shown to 
be efficient in this task of disease identification. For example, an 
agriculture expert system “Agpest” was developed for wheat and 
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rice crop pest management by employing ANN, genetic algorithm 
(GA) and computer vision system (Balleda et  al., 2014). An 
accuracy of 99.53% in disease detection using a convolutional 
neural network (CNN) for 25 different plants was reported by 
(Ferentinos, 2018). Likewise, a remarkable system for 
non-destructive and visual disease detection was developed for 13 
plant species and was named as “PlantDoc” (Singh et al., 2020). 
Equally, the use of ResNet-50 with an accuracy of 95.61% in plant 
disease and pest detection has also been reported (Fang et al., 2020). 
Numerous techniques exist based on AI techniques for plant disease 
and pest identification (Pandey et al., 2022; Zheng et al., 2022; Singh 

et al., 2023) (Nagasubramanian et al., 2019; Thenmozhi and Reddy, 
2019; Liu and Wang, 2021; Xu et al., 2022).

Nonetheless, the utilization of AI techniques for plant disease 
detection necessitates extensive datasets encompassing both diseased 
and healthy plants. Despite the existence of various datasets like the 
PlantVillage dataset (PVD), there remains a requirement to expand 
the creation of more accessible datasets with diverse parameters. 
Similarly, notable limitations in deploying AI techniques for disease 
detection include the demand for increased computational resources, 
substantial financial investment, ongoing maintenance expenditures, 
and the availability of adequately trained personnel.

TABLE 1 Summary of Artificial Intelligence (AI) applications in agriculture along with corresponding methodology, findings, and challenges.

Applications of 
AI in Agriculture

Key Findings Methodology Key Outcomes Limitations and 
Challenges

References

Crop monitoring and 

irrigation

AI enhances irrigation 

systems.

Smart irrigation systems 

use ANN and IoT.

ANN based models for 

soil moisture.

Use of IoT for smart 

irrigation.

Efficient irrigation and 

water savings.

Smart irrigation through 

IoT and ML.

Need for extensive 

datasets and 

computational 

resources.

Arif et al. (2013), Sinwar 

et al. (2020), Tace et al. 

(2022)

Disease detection

AI aids timely 

identification of diseases.

High accuracy in disease 

detection through AI.

Image based diagnostics 

using AI.

Agriculture expert 

systems using ANN and 

computer vision.

Timely disease 

identification.

High accuracy in disease 

detection.

Challenges include 

dataset requirements 

and computational 

resources.

Balleda et al. (2014), 

Ferentinos (2018), Barbedo 

(2019), Fang et al. (2020), 

Singh et al. (2020)

Predictive analytics

Supports risk management 

and precision farming. 

Application in crop yield 

estimation.

Integration of predictive 

analytics in agriculture.

Improved risk 

management and 

precision farming.

Challenges in data 

complexity and adoption.

Need for substantial 

data and limited 

farmer adoption.

Vijayabaskar et al. (2017), 

Kolipaka (2020), 

Yoosefzadeh-Najafabadi et al. 

(2021), Kumar et al. (2022)

Genomics and plant 

breeding

AI enhances gene 

expression and cultivar 

selection.

ML models for gene 

expression and cultivar 

prediction.

ML models for gene 

expression and pattern 

identification.

CNN for crop trait 

classification.

Improved gene expression 

and cultivar selection.

CNN for crop trait 

classification.

Challenges include 

complex algorithms 

and data resistance 

from breeders.

Pound et al. (2017)Koirala 

et al. (2019), Washburn et al. 

(2019), Cho et al. (2022), 

Jafari et al. (2022), Pallante 

et al. (2022)

Chat bots and virtual 

assistance

AI powered chat bots for 

disease identification.

Virtual assistance for 

agronomic inquiries.

Natural language 

conversation algorithms.

Speeds up disease 

identification and 

provides personalized 

conversation.

Prone to errors, 

requiring continuous 

ML model training.

Conesa-Muñoz et al. (2016), 

Talaviya et al. (2020), Singh 

and Kaur (2022)

Decision support 

systems (DSS)

AI based DSS for 

optimized task execution.

DSS for herbicide 

treatment and farm 

operations.

Implementation of DSS 

for task allocation.

Integrated DSS for disease 

identification.

Optimal task allocation 

and precise disease 

identification.

Challenges include 

farmer knowledge gaps 

and DSS limitations.

Navarro-Hellín et al. (2016), 

Alsalam et al. (2017), Kukar 

et al. (2019), Li et al. (2020), 

Zhai et al. (2020)

Blockchain for 

traceability

Blockchain ensures 

traceability of agricultural 

produce.

Data integrity and 

transparency in the supply 

chain.

Integration of blockchain 

with AI for traceability.

Ensures traceability and 

data integrity in the 

supply chain.

Limited integration of 

blockchain with AI 

and IoT in agriculture.

Kshetri (2019), Singh and 

Singh (2020), Jabbar et al. 

(2021), Bermejo et al. (2022)

Edge intelligence

Combining AI and edge 

computing for crop 

monitoring.

Applications in real time 

weed mapping.

Use of edge computing for 

crop monitoring.

Detection of pine wilt 

disease using edge 

computing.

Shows promise in crop 

monitoring and disease 

detection.

Challenges in processing 

power and scalability.

Constraints in 

processing power, 

scalability, and 

integration 

complexities.

Shekhar et al. (2017), Deng 

et al. (2020), Kawai and 

Mineno (2020), Li et al. 

(2021), Liu et al. (2021), Rani 

et al. (2023)
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Predictive analytics is another promising domain of AI for 
agriculture. Predictive analytics support planning for risk 
management, gaining apex productivity, improving farmers’ 
performance, fulfilling customer demands, and improving crop 
management (Vijayabaskar et al., 2017; Gupta and Malik, 2022). In 
addition to this, predictive analytics finds its application in precision 
farming, soil nutrients level estimation, predictions of crop yields, 
inventory management, and the facilitation of DSS (Kolipaka, 2020; 
Chandraprabha and Dhanaraj, 2021; Kumar et  al., 2022). Mostly 
agricultural firms from developed countries are exploring this domain 
of AI for increased gains and better supply chain management. 
However, its direct use by the farmers is still in its nascent phase. Huge 
amounts of data, complicated data processing, and lack of training are 
a few of the prominent challenges of adopting predictive analytics in 
agriculture, particularly for developing nations. In addition, lack of 
historical data and heterogeneity of agricultural data impede the use 
of predictive analytics in agriculture.

Cultivars characterized by increased yield potential, enhanced 
quality attributes, and resilience to adverse climatic conditions are 
desired globally. In pursuit of these objectives, high-throughput 
genomics, plant breeding methodologies, and high-throughput 
phenotyping techniques emerge as relevant technological avenues. 
The application of AI has brought about transformative advancements 
across each of these domains. For example, tissue-specific gene 
expression, in maize, based on protein sequences and deoxyribose 
nucleic acid (DNA) promoter was achieved through ML models with 
an accuracy of up to 95% (Cho et al., 2022). Similarly, ML models of 
“ortholog contrasts” and “gene-family guided splitting” have also been 
reported for predicting the messenger ribonucleic acid (mRNA) 
expression (Washburn et  al., 2019). Furthermore, ML approaches 
facilitate the pattern identification in the selection of cultivars with 
desired characteristics. For example, genetic algorithm (GA) along 
with a hybrid generalized regression neural network (GRNN) was 
successfully devised for predicting and optimizing the complex, 
difficult, and non-linear in vitro adventitious rooting of Bluecrown 
Passionflower (Jafari et al., 2022). Another example is the use of CNN 
to classify and detect wheat spikes and spikelets for crop development 
with up to 95.91 and 99.66% accuracy, respectively, (Pound et al., 
2017). Crop production traits have also been investigated using deep 
learning methodologies for the detection of fruits and consequently 
for estimating yield (Koirala et al., 2019). Additionally, deep neural 
network (DNN) and ensemble-bagging algorithms were used to 
predict yield and biomass of soybean (Yoosefzadeh-Najafabadi et al., 
2021). As well, ML algorithms are developed and applied for detecting 
food taste; thus serving as an electronic tongue (Pallante et al., 2022). 
In short, AI has found its application from genomics to phenomics for 
devising appropriate data analytics (van Dijk et al., 2021), which could 
be  further exploited for ensuring higher crop yields and 
sustainable agriculture.

In spite of the manifold advantages, AI encounters several 
limitations in its application to genomics, phenomics, and plant 
breeding. An illustrative instance is the intricate nature of ML 
algorithms. Geneticists and breeders might not necessarily be experts 
in data analysis techniques for devising relevant breeding strategies. 
Lack of historical data and the necessity of huge sets of data for model 
training could be another limitation. Moreover, many breeders could 
be reluctant to use AI for a trait of interest due to socio-economic or 

personal preferences. Also, AI algorithms could not be suitable for all 
or generalized for all scenarios.

The use of virtual assistance or chat bots to answer the simple 
questions of farmers is also on the rise. The AI powered chat bots use 
natural language conversation algorithms to provide more 
personalized conversation. The use of chat bots includes but not 
limited to disease identification via image analysis, retail, media, and 
general inquiries related to agronomic practices (Talaviya et al., 2020; 
Momaya et al., 2021; Ong et al., 2021; Chandolikar et al., 2022). This 
could speed up the management process on farmers’ end. For instance, 
identification of an infection could help farmers with the timely use 
of perspective insecticide. However, the chat bots are prone to errors 
and sometimes could produce inaccurate results of queries. Therefore, 
further training of ML models is needed.

Traditionally, agricultural experts are sought after for making 
important decisions for agricultural management. However, due to 
time, expertise, and personnel availability constraints data-based 
decisions using AI are on the rise. In this regard, DSS is an AI based 
platform that assists in precise and evidence-based decisions for 
agricultural operations. For example, the implementation of DSS to 
optimize task execution through ground and aerial vehicles, aimed at 
enhancing crop production has been reported previously (Conesa-
Muñoz et al., 2016). The system was found efficient in generating 
optimal task allocation for site-specific herbicide treatment missions. 
Likewise, an integrated DSS was developed to accurately identify the 
precise location of disease occurrence in a crop field with the 
subsequent action of herbicide spray (Alsalam et  al., 2017). In 
addition, several DSS have been devised for providing guidance for 
farm operations, herbicide treatment, fertilizer and irrigation 
management, yield estimations, designing agricultural machinery 
travel paths, and planning routes for drones (Navarro-Hellín et al., 
2016; Kukar et al., 2019; Li et al., 2020; Zhai et al., 2020; Saqib, 2021). 
Nonetheless, farmers lack of knowledge about DSS, variable input 
needs of farmers, limited connectivity, interoperability, and 
performance limitation of DSS to specific task are some critical 
challenges for employing DSS.

With the advancement in AI, the application of QR codes can 
significantly support the sustainability of agricultural produce through the 
use of blockchain technology. For example, elemental data on the 
concentration of carbon dioxide (CO2) can be identified from the QR 
codes imprinted on food labels, enabling the best before date to 
be identified (Bermejo et al., 2022). Blockchain enables the traceability of 
agricultural produce, from farm to fork, in a literal sense. The aggregate 
elements of the agricultural produce such as the location, weather, date of 
harvest, transport, and best by dates are cryptographically secured and 
well documented through this form of information storage (Jabbar et al., 
2021; Bermejo et al., 2022; Noor et al., 2022). Such applications enable 
data integrity and traceability of the supply chain to ensure the safety of 
consumers (Kshetri, 2019; Durrant et al., 2021; Jabbar et al., 2021). The 
onset of the COVID-19 pandemic has accelerated the application of 
blockchain technology in a multitude of areas. These applications are well-
adept in addressing the challenges of future pandemics. Through these 
tactical approaches in the management during a pandemic, the multi-
robot collaboration is designed in a heterogeneous and homogeneous 
fashion for specific non-contact tasks to be performed (Alsamhi and Lee, 
2020). These include the monitoring of temperature, the delivery of goods 
and medical equipment both in an enclosed and open setting. This 
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application can be extended to cover dual roles in the monitoring of food 
and crop supplies as well as the provision of them during a pandemic.

Blockchain technology further provides support for AI by 
facilitating integrated data management in a secure and fast manner, 
specifically when there is a data drive from multiple farm resources 
like underground sensors, weather stations, drones, irrigations 
systems, and related platforms. Supply chain management resources 
could be substantially supported by blockchain in agricultural context 
(Singh and Singh, 2020; Ordóñez et al., 2023). Promising results on 
Indian diary supply chain management were reported in a study 
where authors investigated the role of blockchain, distribution, and 
inventory management (Kumar and Kumar, 2023). Likewise, a 
Midwestern United  States of America (USA) based company 
employed blockchain technology to enhance the production and 
supply chain of eggs, tracking their journey from farm to consumer 
tables (Bumblauskas et  al., 2020). Nevertheless, the application of 
these technologies is somewhat limited in agriculture field. A review 
study published in 2020 revealed that only 20% of the published 
articles integrate blockchain with IoT and AI (Singh and Singh, 2020).

Besides, AI could be considered as a supplementary technology 
in weed identification, management of forestry and livestock, farm 
robotics, agricultural remote sensing (RS), wireless sensor networks 
for agriculture, mechanical pollination, and crop insurance for 
boosting agriculture production to meet the demands of the 
populations vulnerable to hunger. The advantage of agricultural RS is 
that it has been extensively researched in crop cultivation, monitoring, 
disease detection, and crucial areas of plant stress (DeChant et al., 
2017; Fuentes et al., 2017; Liu et al., 2017; Lu et al., 2017; Ramcharan 
et al., 2017; Ghosal et al., 2018; Jin et al., 2018; Rançon et al., 2018; An 
et al., 2019; Barbedo, 2019; Brahimi et al., 2019; Cruz et al., 2019; 
Liang et al., 2019; Too et al., 2019; Ahmad et al., 2020; Esgario et al., 
2020; Krishnaswamy Rangarajan and Purushothaman, 2020; Martos 
et al., 2021; Ahmad et al., 2022b).

5 Edge intelligence

In this section, we delve into the transformative realm of edge 
intelligence within the context of agriculture, exploring its 
applications, technological foundations, and the challenges it poses. 
The discussion unfolds with an insight into the emergence of edge 
intelligence as a dynamic AI application, strategically positioned at the 
network edge to meet the evolving demands of Beyond fifth 
Generation (B5G) networks. The primary focus lies on its pivotal role 
in enhancing agricultural practices, particularly in the optimization of 
food supply sustainability through efficient crop monitoring.

Emerging technologies such as edge intelligence have gained 
traction in the application of AI closer to the network edge in support 
of B5G needs. Edge intelligence is an alternative AI application that 
can be effectively employed in the monitoring of crops enabling a 
more efficient and sustainable food supply. Edge intelligence 
represents the convergence of AI and edge computing. Currently, a 
pivotal and widely employed methodology in this domain involves 
model compression, with a particular focus on techniques such as 
parameter pruning and quantization. The resources often used for 
edge intelligence include Central Processing Units (CPUs), Graphics 
Processing Units (GPUs), and Field Programmable Gate Arrays 
(FPGAs) (Liu et al., 2021). Edge intelligence facilitates the execution 

of AI analytics on intelligent edge devices closer to the source. 
Recently, pine wilt disease was detected using edge computing (Li 
et al., 2021). Likewise, applications like real-time weed mapping and 
immensely fast image processing have also been reported (Deng et al., 
2020; de Camargo et al., 2021; Liu and Wang, 2021).

The arising concept of edge AI, involving the execution of AI 
models on edge computing devices, is instrumental in reducing the 
volume of data transmitted to the cloud (Gia et al., 2019). Notably, 
Shekhar et al. (2017) proposed a method utilizing a Raspberry Pi 
equipped with an AI model for automatic irrigation in agricultural 
fields. However, this approach lacks consideration for operations in 
elevated-temperature environments, such as the exceptionally high 
temperatures experienced during the summer in a greenhouse 
dedicated to tomato cultivation. The assessment of the automatic 
irrigation system revealed that the Jetson Nano, functioning as an edge 
node, exhibited viability for both image processing and irrigation 
judgment processing, showcasing resilience in environments with 
temperatures reaching up to 50°C (Kawai and Mineno, 2020). 
Consistent with these findings, previous studies have highlighted the 
applicability of Jetson Nano in plant stress detection and decision-
making for subsequent spray operations (De Oliveira et al., 2022). 
Notably, recent research demonstrated an effective implementation of 
edge computing, employing a wireless sensor network to regulate 
micro-climatic parameters—such as temperature, soil moisture, light, 
pH, and salinity—within a greenhouse setting. The authors 
underscored that the integration of edge computing resulted in a 
substantial reduction in latency and diminished reliance on 
continuous cloud connectivity, thereby augmenting the overall 
responsiveness of the system (Rani et  al., 2023). These outcomes 
collectively emphasize the versatility and efficacy of edge computing, 
particularly utilizing Jetson Nano, in diverse agricultural applications, 
ranging from irrigation management to plant stress detection and 
environmental parameter control within greenhouses. One of the 
prospectives use of edge intelligence could be for retrieving analyzed 
data statistics on mobile application from wireless sensor networks for 
extremely huge farms.

The use of edge intelligence in the context of Agriculture 5.0 is 
projected to take the form of data gathering (Alsamhi et al., 2021). On 
the other hand, Federated Learning (FL) enables decentralized 
collaborative learning through the development of localized models 
with the common use of model parameters within close proximity and 
the centralized unit in the improvement of accurate models (Alsamhi 
et al., 2021). In the context of our discussion, this will apply to the 
large area of crops across vast regions and countries. Nevertheless, 
drone edge intelligence presents its challenges particularly in security 
and a decentralized management which in turn results in limitations 
to its intended functions. Alternatively, blockchain technology allows 
for data sharing while maintaining its privacy and traceability 
(Durrant et al., 2021).

Despite the manifold advantages that edge computing brings to 
agriculture, its application is not without limitations. One noteworthy 
constraint lies in the constrained processing power of microcomputers 
when juxtaposed with robust cloud servers, potentially influencing 
the intricacy of locally executable algorithms. Furthermore, the 
scalability of edge computing systems may encounter challenges, 
particularly in the deployment and management of numerous edge 
devices across expansive agricultural landscapes. The integration of 
edge computing solutions with existing agricultural systems and 
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machinery presents complexity, marked by potential compatibility 
issues when interfacing various sensors, machines, and edge devices. 
Additionally, the deployment and maintenance costs associated with 
edge computing infrastructure demand careful consideration, 
particularly in the context of small-scale or resource-constrained 
agricultural operations.

For a better comprehension of these challenges, consider a 
scenario where a wireless sensor network, leveraging edge 
computing in a vast agriculture field, confronts limitations in both 
processing power and storage capacity. This becomes particularly 
evident when grappling with extensive datasets generated by 
multiple sensors. The ramifications are tangible, affecting the real-
time processing, and analytical capabilities of the deployed edge 
devices. Consequently, such limitations have the potential to 
impede the efficiency of decision-making processes, particularly in 
precision agriculture applications.

6 Quantifiable and measured benefits 
of AI

This section of the manuscript delves into the tangible and 
measurable advantages brought about by the integration of AI within 
the agricultural sector, with a specific focus on the economic potentials 
under the umbrella of Agriculture 5.0.

Beneficial outcomes remain at the core of each initiative in the 
progress of Agriculture 5.0. However, the COVID-19 pandemic has 
dampened progress in this area. As highlighted earlier (see Section 3), 
the European Green Deal might be  the way out of such arduous 
circumstances. To quantify this viewpoint, the European Union has 
committed a third of the €1.8 trillion (approximately $2.1 trillion) 
investment from the NextGenerationEU Plan, and its seven-year 
budget to finance the European Green Deal (Commission, E, 2021a). 
This commitment will witness a reduction in net greenhouse gas 
emissions at a minimum threshold of 55% by 2030 with 1990 levels as 
the benchmark (Commission, E, 2021b). Whereas, by the year 2030, 
the projection of economic benefits from AI for Asia, including China, 
and North America is nearly 70% of the estimated $15.7 trillion 
(Arakpogun et al., 2021). In an analogous economic projection, the 
integration of AI technologies is anticipated to propel Brazil’s gross 
value added to $3,884 billion by the year 2035 (Kshetri, 2020).

How does this translate into the tangible benefits in the 
Agricultural sector? Consumers will experience healthy food that is 
affordable. This aligns with the objectives outlined in “A healthy food 
system for people and the planet” action plan (Commission, E, 2021c). 
The essence of the European Green Deal establishes a strong link 
between healthy people, societies, and the planet, enabling the 
European Union’s sustainable and inclusive growth strategy. The 
Common Agricultural Policy, a global standard in terms of safety, 
security of supply, nutrition, and quality is a pillar of the European 
agriculture and food system. Increasingly, this is being proposed as a 
standard for sustainability, having a positive effect on a sustainable 
food system. This will set the stage for balance, ensuring 
environmental-, health-, and social- benefits and economic 
profitability. For instance, analysis of data derived from crop 
production has the potential to enhance the annual global profit of 
significant agribusiness entities by an approximate sum of $20 billion 
(Bunge, 2014).

7 Addressing food safety and security 
through AI

A continuous and pathogen-free food supply, in other words food 
safety and security, is part of UNSDG. However, it remains a global 
concern and climate change is a notorious adversary to this goal. The 
WHO’s 2015 report indicated that on an annual basis, one in every 10 
individuals falls ill due to the consumption of food tainted with 
microbial or chemical agents. This could lead to approximately 600 
million instances of illnesses, causing around 420,000 fatalities and a 
collective loss of 33 million years of healthy life worldwide (WHO, 
2022). Nevertheless, it has been documented that the African region 
bears the highest burden of foodborne diseases. To be more precise, 
the incidence of foodborne illnesses resulted in 1,200–1,300 Disability-
Adjusted Life Years (DALYs), a public health metric for estimating the 
burden of disease, per 100,000 inhabitants in the year 2010, which is 
in stark contrast to the range of 35–711 observed in other regions 
(Pires et al., 2021). Soil is another natural resource that is important 
for food security, accounting for approximately 98.8% of our food 
supply. Nevertheless, climate change, loss of organic matter, 
greenhouse gasses emissions, intensification of agriculture, 
salinization, acidification, over application of fertilizers, and loss of 
biotic diversity are few of the most important threats to the food 
security (Kopittke et  al., 2019; Ahmad et  al., 2022a). Inadequate 
infrastructure, poverty and inequality, the impact of climate change, 
conflicts, and insufficient investment could be the primary factors 
contributing to the disparity between developing nations and 
developed nations in their efforts to ensure food security.

The use of AI could pave the way for ensuring food safety and 
security not only in developing countries but also in developed 
nations. Among various AI applications are early warning of 
outbreaks, risk predictions, monitoring and characterization of 
foodborne pathogens using computer vision, ML, and natural 
language processing (Qian et  al., 2023). Nevertheless, substantial 
research and development endeavors persist within this domain. 
A majority of AI applications either exist in a state of partial 
development or are entirely nascent in their conception.

Furthermore, the application of AI among the solutions to food 
security involves the adoption of regenerative agriculture and 
permaculture (McLennon et al., 2021). McLennon et al. (2021) 
illustrated that specialized monoculture cropping systems, though 
meeting immediate food and fiber requirements, exhibit adverse 
impacts on natural resources, particularly affecting the 
sustainability of production agriculture. Focusing on regenerative 
agriculture, permaculture, and smart technology, the study 
advocated a holistic approach aimed at reducing dependence on 
external inputs, such as agrochemicals and machinery, to restore 
and maintain natural systems. Authors indicated that the proposed 
adoption of modern regenerative agriculture and integrated 
permaculture is anticipated to enhance soil health, biodiversity, 
land and resource conservation, agricultural sustainability, and 
global food security. The integration of digital agriculture and 
sustainable agricultural management, supported by contemporary 
agricultural technologies and data science (AI or ML), is deemed 
crucial for achieving these objectives.

Another aspect of supporting food safety and security could 
be the higher food production by increasing crop yields through 
AI technologies. The increase in crop yield through the 
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application of AI has been widely applied. This application 
through the use of Earth Observation (EO) technology allows for 
large scale crop monitoring as frequently as once a day 
(Castillejo-González et al., 2009; Heupel et al., 2018; Potgieter 
et al., 2021). This application is ideal for the identification of the 
phenological stage of the crop (Potgieter et  al., 2021). Of 
particular note is the use of single-date RS imagery that has been 
found to be efficient (Langley et al., 2001; Potgieter et al., 2017; 
Saini and Ghosh, 2018; Saini and Ghosh, 2021). Consequently, 
this could lead to the earlier identification of biotic and abiotic 
stresses in plants, which would help in decision-making. Crop 
monitoring and a timely identification of disease could contribute 
to saving on input costs, fertilizers applications, postharvest 
management; thereby increasing crop yield.

Additionally, multiple investigations have documented the 
utilization of multi-temporal RS techniques in discerning crop 
phenotypes, land cover, monitoring soil organic matter, predicting soil 
moisture, plant biomass modeling, and crop monitoring (McNairn 
et al., 2002; Upadhyay et al., 2008; Masjedi, 2020; Masjedi et al., 2020; 
Fathololoumi et al., 2021; Martos et al., 2021; Potgieter et al., 2021; Ma 
et al., 2023). These techniques facilitate precise prognostications to 
achieve predefined yield objectives by undertaking appropriate 
management approach subjected to analysis using AI algorithms, 
particularly deep learning methods such as CNN, as well as a feature 
fusion network. Such methods are commonly employed to extract 
meaningful information and patterns from complex and high-
dimensional RS data.

In summation, the effectiveness of AI algorithms in the realms of 
precision agriculture, crop monitoring, pest and disease identification, 
input resources optimization, data analytics, and crop yield simulation 
has been substantiated through empirical evidence. Specifically, the 
integration of AI methodologies into areas such as supply chain 
optimization, food quality assessment, DSS, detection of specific food 
contaminants, sustainable land use planning, and simulations for food 
crises holds the potential to significantly elevate food safety and 
security levels in developed nations while concurrently providing 
substantial support to developing countries.

8 Challenges in the adoption of AI

Several factors influence the adoption of AI for agricultural 
operations in developing countries. Although the developed nations 
have not explored or reached the maximum potential of AI 
technologies, they certainly lead the industry. Several studies have 
discussed the technical challenges in the adoption of AI technologies 
in agricultural domains (Aly, 2020; Goralski and Tan, 2020; Zha, 2020; 
Bhat and Huang, 2021; Dwivedi et al., 2021; Smuha, 2021; Williamson 
et al., 2021; Ahmad and Núñez, 2022; Qazi et al., 2022; Whig, 2023). 
However, the complexities faced by developing nations in the 
assimilation of AI for agricultural purposes are multifaceted, deriving 
influence from socio-cultural, religious, ethical, economic, and 
cultural considerations. Therefore, considering the scope of present 
study, we  highlighted the challenges faced in the adoption of AI 
technologies by dwelling on the previous studies, with their 
prospective solutions. These challenges concurrently encompass a 
subset of the constraints experienced by farmers in developed 
countries (Table 2).

 • Financial challenges pose a significant hurdle in adoption of not 
only AI technology but also other farm technologies for 
developing nations. Implementation of AI technology, in 
particular, requires heavy upfront investment in software and 
hardware resources. Small scale farmers cannot afford these 
heavy costs without any subsidy program from local or 
international authorities. Likewise, the ongoing management and 
customization costs for local agricultural firms may involve 
additional costs. Besides, AI could be considered a quiet new 
technology for the farmers in developing countries, consequently, 
they might be hesitant to invest due to uncertainties about return 
on investment and potential risks. The possible solutions to these 
challenges include educating investors and farmers about the 
potential returns on investment from AI. On the other hand, 
government, and non-governmental organizations (NGOs) 
could also provide subsidies and microloans tailored to 
technology adoption. Similarly, establishing community centers 
where farmers could access AI tools and resources could save 
them from immense individual costs. In a similar manner, AI 
technology could be offered on rental or subscription basis to 
reduce the upfront costs.

 • Infrastructure presents a huge challenge in the adoption of 
AI. Limited access to electricity hinders the execution of 
AI-driven devices. The lack of high-speed and stable internet 
connection prevents data transmission and cloud computing 
access. Similarly, the limited availability of hardware resources, 
i.e., computers, drones, servers, and sensors also impede the 
implementation of AI technologies. Besides, the absence of local 
support infrastructure could result in maintenance delays. 
Similarly, budget constraints for maintenance costs are another 
limiting factor. Nonetheless, initiatives involving international 
agencies, local governments, NGOs, and private sector entities to 
improve electricity and internet access, training and awareness 
could help tackle this challenge.

 • Shortage of professionals poses a tremendous barrier to the 
adoption of AI in the agriculture sector. Agricultural 
communities often lack people with expertise in agricultural AI, 
which poses a barrier to developing, implementing, and 
maintaining AI systems. Likewise, deprivation of adequate 
training and capacity building programs along with non-AI-
focused courses leave potential users without opportunities to 
equip themselves with essential knowledge. Language barriers 
and lack of local technical experts in AI makes it difficult to 
customize AI systems as per local needs. However, these 
challenges could be addressed in a number of ways including skill 
development and knowledge dissemination. Similarly, 
collaboration with renowned institutions and companies working 
in the domain of AI could help gain some training and support. 
Likewise, the translation of available literature on AI resources to 
the local language would also encourage people to further explore 
and learn about this technology.

 • Absence of historical data, data scarcity and insufficient data 
availability poses a significant challenge in the adoption of AI 
technology for agriculture. Most of the AI systems need 
historical and real-time data about soil condition, crop growth, 
weather, and other relevant parameters for AI-driven 
processes. Existing data might not be available in the integrated 
or centralized form due to lack of cooperation among public 

https://doi.org/10.3389/frai.2024.1328530
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Ahmad et al. 10.3389/frai.2024.1328530

Frontiers in Artificial Intelligence 12 frontiersin.org

TABLE 2 Summary of significant challenges in the adoption of Artificial Intelligence (AI) in developing and under-developed regions.

Challenge Description Recommendations

Financial challenges  • Heavy upfront investment in software, hardware, and sensors.

 • No subsidy program from local or international authorities.

 • Additional management and customization costs.

 • Lack of funding by investors due to uncertainties about return on investment.

 • Educating investors about the potential returns on investment 

from AI.

 • Government and non-governmental organizations (NGOs) 

based initiatives for technology adoption.

 • Collective acquisition of technology tools through 

community centers.

 • Rental or subscription services to reduce the upfront costs.

Infrastructure  • Inadequate access to electricity along with the lack of high-speed and 

stable internet.

 • Limited availability of AI hardware resources, e.g., servers, sensors, etc.

 • The absence of local support due to budget constraints.

 • Initiatives involving international agencies, local governments, 

NGOs, and private sector entities to improve electricity and 

internet access.

 • Training and awareness creation.

Field experts  • Lack people with expertise in agricultural AI, which poses a barrier to 

developing, implementing, and maintaining AI systems.

 • Deprivation of adequate training.

 • Language barriers to customize AI systems as per local needs.

 • Skill development and knowledge dissemination.

 • Training support through collaboration with renowned 

institutes and companies.

 • Translation of available literature on AI resources to the local 

language.

Data availability  • Absence of historical data about soil condition, crop growth, weather, and 

other relevant parameters.

 • Data scarcity and insufficient centralized data.

 • Incomplete data could result in flawed insights.

 • Encouraging data recording according to established standards 

and protocols.

 • Incomplete data should be improved by techniques like data 

synthesis and imputation to avoid flawed AI-decisions.

Customization  • Inapplicability of AI model due to diversity in crops, agronomic practices, 

crops diseases, and pests across regions.

 • Lack of integration of indigenous knowledge about farming.

 • Incompliance of AI solutions to local policies and regulations.

 • Devising AI solutions by the involvement of local farmers, 

extension workers, agronomists, agricultural researchers, 

economists, policy makers, and AI experts.

 • Designing user-centered AI interfaces with region specific 

information.

Regulatory framework  • Lack of specific regulations creates uncertainties for stakeholders.

 • Regulatory gaps and challenges due to the continuously evolving and 

complex nature of AI technologies.

 • Concerns about data sharing, privacy, ownership, and 

copyrights infringement.

 • Ethical apprehensions regarding bias in transparency of algorithms, decision-

making and potential impacts on labor market.

 • Lack of expertise of the governing bodies in devising regulatory framework 

for AI technology adoption.

 • Establishment of a capable governing body.

 • Creation of comprehensive regulations keeping in mind 

industry, academia, and civil society.

 • Encouraging international cooperation and harmonization

 • Formulation of ethical guidelines for responsible use of AI.

Cultural norms and 

attitudes

 • Perceived threat to the generation long beliefs and farming practices.

 • Fear of negative impacts or job displacement.

 • Perception of technology as distant from the immediate concerns.

 • Customized AI solutions respecting local traditions and values.

 • Communication of AI benefits in the local language and 

narrating near to close examples or use cases.

 • Encouraging participation of community leaders or influential 

people for technology comprehension.

Access to market  • Lack of infrastructure for transportation, storage, and distribution facilities.

 • Dearth of market knowledge to make informed decision on cultivation of 

specific crops and use of appropriate technology for higher revenue.

 • Severe digital divide in rural areas hindering access to e-commerce platforms, 

online marketing, and financial services.

 • Lack of networking and marketing skills among small-scale farmers.

 • Creation of information platforms with real-time market prices 

and demand for facilitating decision-making.

 • Development of mobile applications in local language for 

facilitating access to local and cross-border buyers.

 • Devising policy support to enhance trust, security, and access 

for buyers and sellers alike.

 • Organizing microlearning or small training sessions with 

practical examples to elevate the literacy rate and market 

negotiation skills among small-scale farmers.

Interdisciplinary 

collaboration

 • Absence of cooperation among experts in data science, economics, 

agronomy, engineering, policy, social science, and AI.

 • Lack of cross-training leads to difficulties in identifying potential synergies.

 • Diverged perspectives due to different priorities, goals, values, and 

cultural norms.

 • Bureaucratic organizational structures, time, and resources constraints.

 • Organization of interdisciplinary seminars to foster a 

collaborative environment.

 • Incentivizing interdisciplinary cooperation.

 • Setting up well-defined project objectives.

 • Establishing clear communication channels to overcome the 

collaboration challenges.
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and private sector. In addition, unstructured, inaccurate, 
outdated, and incomplete data could result in flawed insights. 
A possible remedy to encounter such challenges would 
be  encouraging collaboration between farmers, local 
agricultural ministry, and research institutions to share and 
record data according to the established data standards and 
protocols. The small volume of incomplete data could 
be improved by techniques like data synthesis and imputation 
to avoid flawed AI-decisions.

 • Customization is another challenge in the adoption of AI 
technology, revolving around the need to personalize AI 
systems according to the languages, agricultural practices, and 
contexts of specific regions. Crops, agronomic practices, crops 
diseases, and pests vary a great deal across regions, which 
means a universal AI model fit for all purposes cannot 
be devised. Besides, traditional agricultural practices could 
be vital for the success of a particular crop, which necessitates 
the integration of indigenous knowledge into AI solutions. 
Local policies and regulations might also require customization 
of AI systems. A holistic approach might be needed to address 
customization challenges. Devising AI solutions by the 
involvement of local farmers, extension workers, agronomists, 
agricultural researchers, economists, policy makers, and AI 
experts could ensure effective solutions effectively addressing 
farmers’ needs and contributing to improved productivity and 
sustainability in farming practices. Additionally, designing 
user-centered AI interfaces with region specific information 
could enhance the adoption rates and relevance of AI models.

 • Absence of proper regulatory framework is a significant 
challenge both for developed and developing countries. 
However, developed countries are swiftly taking actions in this 
regard. Developing nations face severe challenges related to 
policies, standards, and laws that may govern the deployment 
and use of AI technologies. Lack of specific regulations creates 
uncertainties for stakeholders regarding liabilities, obligations, 
and ethical considerations. Similarly, the continuously evolving 
and complex nature of AI technologies causes regulatory 
gaps and challenges in ensuring compliance for regulatory 
bodies. Besides, local data storage and processing of sensitive 
agricultural data could lead to concerns about data sharing, 
privacy, ownership, and infringement of farmer’s rights. AI 
applications raise several ethical questions regarding bias in 
transparency of algorithms, decision-making, and potential 
impacts on labor market. Apart from these challenges, 
compliance costs could be prohibitive for start-ups and small-
scale farmers. Lack of expertise of the governing bodies is also 
a tremendous problem for devising regulatory framework for 
AI technology adoption. The potential solutions to address 
these challenges could involve a capable governing body 
establishment; creation of comprehensive regulations 
considering industry, academia, and civil society; the 
encouragement of international cooperation and 
harmonization; and developing ethical guidelines for the 
responsible use of AI.

 • Cultural norms and attitudes could also pose skepticism 
toward AI adoption. Introduction of AI technology could 
threaten the generational long beliefs and farming practices in 
various developing regions. The fear of negative impacts or job 

displacement could also hinder the adoption of AI technology. 
Most of the time, farmers perceive technology as distant from 
their immediate concerns due to lack of awareness and low 
literacy levels. In order to resolve these challenges, solutions 
respecting local traditions and values could contribute toward 
trusting the new technology. Likewise, communicating AI 
benefits in the local language and narrating near to close 
examples or use cases could also contribute to AI technology 
acceptance. Encouraging participation of community leaders 
or influential people for technology comprehension with 
practical demonstrations could also result in greater acceptance 
and adoption.

 • Access to market is another substantial challenge in the adoption 
of AI technology. Various developing regions encounter problems 
of lack of infrastructure for transportation, storage, and 
distribution facilities. Lack of market knowledge hinders farmers 
from making informed decisions on cultivation of specific crops 
and use of appropriate technology for higher revenue. Rural areas 
often face digital divide due to which it becomes impossible to 
access e-commerce platforms, online marketing, and financial 
services. Dearth of desired skills for marketing and networking 
could also keep some farmers from technology adoption. 
Nonetheless, strategic approaches could be adopted to address 
these challenges. Information platforms with real-time market 
prices and demand can be  created for facilitating decision-
making. Mobile applications development in local language for 
facilitating access to local and cross-border buyers could also be a 
possible solution. Furthermore, developing policy support by 
regulatory bodies could enhance trust, security, and access for 
buyers and sellers alike. Additionally, microlearning or small 
training sessions with practical examples could elevate the literacy 
rate and market negotiation skills among small-scale farmers.

 • Lastly, lack of interdisciplinary collaboration could be another 
significant challenge in AI adoption for agriculture. Generally, 
AI implementation for agriculture requires cooperation among 
experts in data science, economics, agronomy, engineering, 
policy making, social science, and AI, which often lacks in 
developing countries. Lack of cross-training could lead to 
difficulties in identifying potential synergies. In addition, 
people from diverse backgrounds could have different 
priorities, goals, values, and cultural norms that could cause 
challenges in aligning respective perspectives. Bureaucratic 
organizational structures, time, and resource constraints, and 
linguistic barrier also pose sever hindrance in AI adoption. 
Considering the potential solutions, organization of 
interdisciplinary seminars with basic knowledge sharing of 
various fields could foster a collaborative environment. In this 
regard, incentivizing interdisciplinary cooperation could also 
motivate experts to work together. Defined project objectives 
and clear communication channels could also overcome the 
collaboration challenges.

9 Agriculture 5.0─the way forward

The fifth industrial revolution holds immense potential for the 
agriculture sector. The applications of Agriculture 5.0 are wide and 
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have been researched and deployed in fields, farmlands, vineyards 
across continents. Especially, AI like emerging technologies is 
increasing the efficiency of current and traditional farming systems. 
Considering the scientific reports discussed earlier in this study, it 
would be safe to argue the manifold benefit of AI. AI could bridge 
the hunger gap by efficient use of resources and increasing crop 
yield. Developing regions, in particular, could contribute a great 
deal to future food demand. Since Agriculture 5.0 is about resilient 
crop cultivation programs where an integrated approach for farm 
technology is suggested, therefore employment of AI is of prime 
importance for execution, management, processing, and 
coordination tasks. In this integrated approach, AI assumes a 
pivotal role by enabling task allocation and conducting data 
analytics, culminating in the production of outcomes presented 
through a mobile application or a user-friendly interface (Figure 7).

Given the unique challenges faced by developing countries, 
initiating small-scale projects, such as community-based 
agricultural programs or local cooperative efforts, could 
significantly contribute to advancing their journey toward building 
sustainable and resilient agricultural systems. In this regard, the 

feasible way would be to employ the technologies that have been 
developed and used in advanced economies through collaborative 
partnerships or as pilot programs. The optimization of these 
technologies could enhance and uplift current food production in 
the developing world for domestic consumption and for trade in the 
global food market. Leveraging Agriculture 5.0 with the capabilities 
of AI is certain to bridge the deficiency of food supplies in regions 
where malnourishment remains persistent.

In the context of Sub-Saharan African region, staple crops 
reported for this region include plantains, cassava, corn, maize, 
millet, and sugarcane (Fatema et  al., 2019). A comprehensive 
depiction of the geographical distribution of crop types in relation 
to regions that experience chronic hunger had been reported 
previously (Programme, 2021). Notably, the two major crops, i.e., 
maize and cassava, are prevalent in the countries most afflicted by 
hunger in Sub-Saharan Africa. This suggests that a targeted approach 
utilizing a limited number of technologies could potentially yield the 
desired outcomes of ensuring ample food supplies for the 
malnourished population. In light of identifying regions most 
susceptible to hunger, the imperative consideration for these 

FIGURE 7

Conceptual illustration of AI-driven Agricultural Technology Strategy. The sequential flow, from (A) user control center to (B) servers, cloud, and 
associated storage devices, followed by (C) deployment of entities such as satellites, remotely piloted aircraft (RPAs), autonomous robots, 
meteorological stations, etc., for data acquisition. Subsequently, (D) involves data processing utilizing machine learning and associated platforms, 
ultimately yielding (E) infographics and pertinent information. The directional progression is from left to right.
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vulnerable areas lies in the implementation of extensive Agriculture 
5.0, harnessing artificial intelligence technologies. These staple 
crops, which were a subset of those studied by several researchers 
(DeChant et al., 2017; Liu et al., 2017; Lu et al., 2017; Ramcharan 
et al., 2017; Ghosal et al., 2018; Rançon et al., 2018; Barbedo, 2019; 
Brahimi et  al., 2019; Too et  al., 2019; Esgario et  al., 2020; 
Krishnaswamy Rangarajan and Purushothaman, 2020) have paved 
the way for the implementation of RS on a large scale within this 
region taking into account various factors, including weather 
conditions, climate variations, specific crop types, and production 
goals, to optimize the selection of appropriate systems 
and technologies.

In line with the insights from Sections 4–6, the proposed AI 
technologies have undergone comprehensive research, establishing 
a promising use case for Sub-Saharan Africa. These technologies, 
along with their corresponding execution models, can be further 
developed and disseminated globally following successful 
implementation in these regions. Given the extensive agricultural 
landmass, this approach offers the potential to amass substantial 
data, enhancing efforts to refine and expand AI applications both 
within Sub-Saharan Africa and beyond.

10 Conclusion

The objective of this study was to explore the in-depth potential of 
AI in the agriculture sector for developing and under-developed 
countries. Similarly, it aimed to emphasize the proven efficiency and 
spin-off applications of AI in the advancement of agriculture. 
Considering the soaring world population, increasing food demand, 
and climate change, AI could be identified as a plausible technology in 
this 5th industrial revolution in bringing us closer to achieving zero 
hunger by 2030—Goal 2 of the UNSDG. At present, AI is being utilized 
in various spheres of agriculture, including but not limited to crop 
surveillance, irrigation management, disease identification, fertilization 
practices, task automation, image manipulation, data processing, yield 
forecasting, supply chain optimization, implementation of DSS, weed 
control, and enhancement of resource utilization, among a multitude 
of other applications. In a similar manner, AI supports food safety and 
security by ensuring higher crop yields.

Furthermore, various challenges in the adoption of AI for 
developing nations have been identified with their subsequent 
remedies. These include constraints like financial, infrastructure, 
expertise, data availability, customization, regulatory framework, 
cultural norms and attitudes, access to market, and 
interdisciplinary collaboration. To effectively address the 
challenges encountered by developing countries in the integration 
of AI within the agricultural sector, a comprehensive approach 
involves the strategic formulation of policies, targeted investment 
initiatives, the enhancement of existing infrastructure, fostering 
skill development and training programs, promoting widespread 
awareness, and tailoring AI solutions to cater to user needs. 
Moreover, the establishment of ethical guidelines to govern AI 
implementation, alongside fostering international collaboration 
and knowledge exchange, emerges as crucial component to 
combat these challenges. The identification of challenges and 
opportunities in the implementation of AI could ignite further 
research and actions in these regions.
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