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Building an investment portfolio is a problem that numerous researchers have

addressed for many years. The key goal has always been to balance risk and

reward by optimally allocating assets such as stocks, bonds, and cash. In general,

the portfolio management process is based on three steps: planning, execution,

and feedback, each of which has its objectives and methods to be employed.

Starting from Markowitz’s mean-variance portfolio theory, different frameworks

have been widely accepted, which considerably renewed how asset allocation

is being solved. Recent advances in artificial intelligence provide methodological

and technological capabilities to solve highly complex problems, and investment

portfolio is no exception. For this reason, the paper reviews the current state-of-

the-art approaches by answering the core question of how artificial intelligence

is transforming portfolio management steps. Moreover, as the use of artificial

intelligence in finance is challenged by transparency, fairness and explainability

requirements, the case study of post-hoc explanations for asset allocation

is demonstrated. Finally, we discuss recent regulatory developments in the

European investment business and highlight specific aspects of this business

where explainable artificial intelligence could advance transparency of the

investment process.

KEYWORDS
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1 Introduction

Portfolio management is a continuous process of creating portfolios based on an
investor’s preferred level of risk and reward and then adjusting it over time to maximize
returns. This process includes three subsequent layers, namely planning, execution, and
feedback (see Figure 1) (Baker and Filbeck, 2013). The first layer of the process is the
planning layer. The asset owner—an institutional client like a pension fund or a wealth
management client—mandates an asset manager to manage a specific portfolio according
to an investment policy. The investment policy defines this mandate. It contains the client’s
needs, circumstances, and constraints to achieve a particular reward goal at a given risk
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level. Strategic asset allocation (SAA) is part of this investment
policy. Typically, the SAA is defined as upper and lower
boundaries for the asset class allocation. The risk tolerance and
risk capacity also need to be defined. The second layer of
the portfolio management process is the execution layer. The
execution starts with determining the overall macroeconomic
conditions across countries and asset classes, exploring the risk-
and-return characteristics of asset classes. This analysis determines
the capital allocation across countries and asset classes (“tactical
asset allocation”). Security analysis enables the cross-sectional
selection of single securities within each asset class to construct
the overall portfolio and execute the necessary trades. Finally, after
the portfolio experienced the market dynamics of an investment
period, the feedback layer evaluates past performance, updates the
market conditions, checks if the investment policy still holds or
needs to be adjusted, and finally rebalances the portfolio (Bailey
et al., 2007; Horn and Oehler, 2020).

Portfolio construction has been a significant task since 1952
whenMarkowitz introduced the mean-variance model. This model
inspired many researchers, leading to numerous research papers
proposing its extensions to overcome the shortcomings that
neglected real-life problems. However, the continuously changing
market environment, globalization, and integration of financial
markets have generated new challenges in portfolio management,
such as high systemic risk, spillover effect, contagion channels, and
geopolitics risk.

In recent years, artificial intelligence (AI) has disrupted most
industries, including the financial sector. AI techniques can
contribute to portfolio management in many ways, improving
the shortcomings of classical portfolio construction techniques
and extending the opportunities to generate additional alpha. For
instance, machine learning (ML) can create systems that learn from
experience and be used for asset price prediction. Reinforcement
learning (RL) is one of the most promising tools for developing a
sequential and dynamic portfolio optimization theory. Text mining
and sentiment analysis can enhance portfolio management with
fresh news from themarket. Dimensionality reductionmethods can
detect latent factors of a broad range of asset prices, which improves
the construction of a well-diversified portfolio. Deep learning can
optimize an investment portfolio directly or establish a portfolio
that mimics an index with a small set of assets.

AI can produce better asset return and risk estimates and
solve portfolio optimization problems under complex constraints,
resulting in better out-of-sample AI-based portfolio performance
than traditional approaches. From a technical point of view, the
key players in the financial sector are embracing AI as a tool
for automating and enhancing operational efficiency, processing
vast amounts of data, improving risk management, and suggesting
solutions that better suit investors’ needs and accommodate risk.
On the other hand, AI-based portfolio management often means
that the decision is generated from a black-box model instead
of mathematical equations trained on some database. This raises
additional challenges in explaining and interpreting the decisions
made by AI to earn the trust of various stakeholders, such as
shareholders, investors, or portfolio managers.

The principal goal is to identify and evaluate published papers
that propose AI-based methods for portfolio construction. To
accomplish this, we focus on key considerations within this

field, focusing on three main portfolio management steps (see
Figure 1). The strengths and limitations of popular approaches
used for portfolio construction are reviewed during the analysis,
addressing these considerations. Moreover, to emphasize the need
for transparency and fairness of decisions, laminable artificial
intelligence (XAI) area approaches are briefly reviewed, and a
case study of post-hoc explanations for portfolio construction is
presented. Notably, the current review extends the most recent
survey (Bartram et al., 2021) that focused on ML approaches and
empirical results relevant to active portfolio management. In their
paper, the authors considered using ML for signal generation, NLP
applications, and several applications of reinforcement learning.
Additionally, active AI-driven ETFs could be an excellent example
of growing investor interest. However, the questions concerning
portfolio optimization, portfolio evaluation and rebalancing, and
post-hoc explainability of portfolio performance have not been
addressed. Another review (Bartram et al., 2020) recently published
by CFA mainly focuses on AI applications for asset classification
and forecasting. Additionally, the use of NLP for automatic analysis
of corporate annual reports, news articles and Twitter posts
is presented. Examples of evolutionary algorithms and artificial
neural networks are provided for portfolio optimization tasks,
accommodating the flexibility to solve complex multi-objective
asset allocation problems. Another example of a literature review
(Nuzzo and Morone, 2017) outlined the main advances in using
experimental techniques to study financial markets. Their work
is not directly related to portfolio management but presents the
relevant issues about information release and market structure,
explores some stylized facts of the distribution of returns, and
considers the role of market institutions in trading activity.
Comparatively, the extensions of a mean-variance framework have
long been an area of particular interest to many researchers, based
on which some reviews (Elton and Gruber, 1997; Steinbach, 2001)
have been published.

2 Investment portfolio management
in a nutshell

Hally, we could distinguish some famous frameworks and
theories that remarkably impacted the way of thinking and
modeling how to construct an investment portfolio and initiated
the literature strands accordingly (see Figure 2).

Markowitz (1952, 1959) marks the birth of modern portfolio
theory (MPT) by introducing the mean-variance efficient frontier
framework. As the name suggests, the mean and variance have
been employed to measure a portfolio’s expected return and
risk. The main message was that the investments should not be
selected by combiningmultiple individual securities with preferable
risk and return characteristics but by determining how they
contribute to the overall portfolio. The efficient frontier concept
was formulated based on two distributional measures, namely
mean and variance, from which the investor could choose the
preferred asset allocation. Notably, the derivation of the mean-
variance framework was based on several essential assumptions
(Elton and Gruber, 1997; Wilford, 2012). Despite criticism, the
mean-variance theory remains crucial. Like other breakthroughs,
it has been extended in various directions.
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FIGURE 1

Portfolio management process.

FIGURE 2

Advancements in investment portfolio management.

Inspired by Markowitz work, Treynor (1962), Sharpe (1964),
and Lintner (1965) independently introduced a factor model,
named as Capital Asset PricingModel (CAPM). Specifically, CAPM
is the instance of the one-factor model, which describes the relation
between systematic risk and expected returns. Technically, CAPM
decomposes an asset’s return into factors common to all assets
and factors specific to a particular asset. However, one factor is
not enough to quantify risk and returns adequately. This resulted
in so-called multi-factor models generalized by Ross (1976); Roll
and Ross (1980), known as Arbitrage Pricing Theory (APT). The
primary difference between CAPM and APT is how a systematic
investment risk is defined. CAPM includes a single, market-wide
risk factor, while APT advocates several factors which capture
market-wide risks.

The efficient market hypothesis (EMH) is one of the milestones
in theMPT development (Vamvakaris et al., 2017). Its roots go back
to the period of 1963–1965, with the appearance of some works
published by Fama (1963), Fama (1965), and Samuelson (1965).
According to the Delce (2019) and Lo (2017b), Fama suggested the
concept of an efficient market known for its best formulation: “A

market in which prices always fully reflect available information
is called efficient” (Fama, 1970). Comparatively, Samuelson’s
contribution to the development of EMH is less well-known, but
his role is no less important as he provided a solid theoretical basis
for this hypothesis. Since then, many studies have been published
on examining whether the EMH is valid in different markets,
for example, stock market (Lee et al., 2010; Sánchez-Granero
et al., 2020), energy market (Lee and Lee, 2009; Liu et al., 2020),
currency market (Potì et al., 2020). The idea behind testing EMH
is to measure whether a random market walk is related to price
predictability. For this purpose, different kinds of tests for market
efficiency have been proposed addressing the concept of random
walk (Frunza, 2016). However, there exists enough evidence to infer
that the existence of an efficient market seems to be a utopia in
practice. Instead, it is more realistic to anticipate relative efficiency,
identifying periods with varying degrees of efficiency influenced by
changing market conditions over time (Campbell et al., 1998; Kim
et al., 2011; Alvarez-Ramirez et al., 2012).

The main alternative to CAPM is the three-factor model (Fama
and French, 1993), which become widely used by academics and
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practitioners. This model included two additional factors, proxy
size and value, for estimating cross-sectional equity returns. Two
decades later, this model has been extended to the five-factor
model (Fama and French, 2015), which includes profitability and
investment of the firm in addition to market factor, firm size
and value, aiming to describe better the variation in equity prices
that the three-factor model does not capture. Over a considerable
time, these models have been extensively tested empirically by
numerous studies aiming to adequately price the equity returns in
both developed and emergingmarkets (Kubota and Takehara, 2018;
Lalwani and Chakraborty, 2019; Mosoeu and Kodongo, 2020). The
evidence shows, for example, (Mohanty, 2019), that each market is
unique in its composition and trend even over a long time horizon,
and hence, a generalized asset pricing model cannot be adopted
across all the markets.

The other stream entails the problems arising from the
assumptions of “homo economicus”. The field of behavioral finance
occurred in the late 1970s as a response to emerging failures
of the core pricing models to explain anomalies in financial
markets (Kahneman and Tversky, 1979; Kumar, 2016). Behavioral
finance indicates that when making decisions like investing, people
are not nearly as rational as traditional finance theory assumes.
Similarly, Shiller (2003) provides an insight into the changes in
the approaches and focuses on the weaknesses of the efficient
market hypothesis, trying to explain the financial markets better by
understanding and incorporating the inefficiencies and biases in the
models. Later, Thaler (1999) extends the idea of behavioral finance
of incorporating psychological components to be included in all
financial models in the future, as otherwise would be irrational.
Lo (2004) and Lo (2017a) suggest that behavioral aspects in
the portfolio decision-making process align with an evolutionary
model with a perspective of adaptation, and this new approach
combining economy and psychology is called the “AdaptiveMarket
Hypothesis”.

In the past decade, there has been a surge in work exploring
AI applications across various domains, including investment
portfolio management. However, there is no widely acknowledged
what could have been the first attempts of AI employment for
asset allocation tasks. Considering the current taxonomy of AI
approaches, for example, (Schmid et al., 2021), we believe that
the Black-Litterman model (Black and Litterman, 1991) could
be a potential candidate. In particular, their model suggests a
framework for combining market equilibrium information with
subjective investors’ views by exploiting a Bayesian methodology.
The computational evidence shows that the Black-Littermanmodel
produces more stable and better-diversified portfolios than those
constructed under Markowitz framework (Rebonato and Denev,
2014).

An alternative to address estimation uncertainty parametrically
is Monte Carlo resampling (Michaud, 1998), a procedure to
determine portfolio weights as average weights from MPT results
derived from bootstrapped market returns. In institutional active
portfolio management, leveraged risk-based multi-asset allocations
without return estimations are popular, namely Risk Parity (Qian,
2005; López de Prado, 2016; Dalio, 2004), Equal Risk Contribution
(Maillard et al., 2010), and inverse-volatility weighting (Asness
et al., 2012). A significant milestone is the Hierarchical Risk Parity
(HRP) approach (López de Prado, 2016) aimed to improve the

robustness of Risk Parity schemes in markets with fluctuating
covariances. In the first step, HRP sorts markets via a single-
linkage clustering procedure. In the second step, market weights
are allocated using a bisection of the covariance matrix.

Environmental, social and governance (ESG) factors and
socially responsible investments (SRI) examine how conscious the
companies invested are in these areas. Another angle of portfolio
optimization in recent years is ESG and SRI evaluation. They
become more critical and create a new perspective for investors
as the maximization of shareholder value is changing to the
maximization of welfare (Fama, 2021). For example, a recent paper
Pedersen et al. (2020) designed an ESG-efficient frontier with the
highest Sharpe ratio for the ESG-adjusted CAPM, where the choice
may lead to a positive, negative or neutral outcome.

3 Artificial intelligence approaches for
signal generation

AI techniques can be considered decision tools with a
straightforward application to the different stages of portfolio
execution (see Figure 3). The ability to describe underlying
market structures, process vast amounts of structural and non-
structural information, or capture the non-linearity between
different variables makes AI a key role in handling market
complexity. AI tools guide the portfolio manager through the
entire process, from visualizing the market to identifying assets,
constructing the portfolio, executing trades, and interpreting
results. This contributes toward achieving trust in AI-driven
portfolio management systems. This section introduces AI
techniques beneficial for various subtasks in portfoliomanagement,
contributing to trust in AI-driven systems.

3.1 High-dimensional forecasting and
predictors selection based on linear models

Two conventional dimensionality reduction techniques that
help the portfolio manager tackle the market complexity are
Principal Component Regression (PCR) and Partial Least Square
(PLS), regression-based procedures designed to forecast time
series parsimoniously. The first is a two-step procedure that
involves constructing the principal components using Principal
Components Analysis (PCA) and then using these components as
the predictors explaining most of the variance in a linear regression
model. The first principal component can be taken as a proxy
of the market factor. The study in Stock and Watson (2002)
provides a notable example of simplifying a high-dimensional
forecasting problem with numerous predictors by modeling time
series variability using a small number of latent factors. Feasible
forecasts are asymptotically efficient, and, more importantly, the
estimated factors remain consistent, even in the presence of
time variation in the factor model. The link between portfolio
optimization models and PCA is straightforward, as explained in
Meucci (2009); Partovi andCaputo (2004). Themore natural choice
of uncorrelated risk for a portfolio is by a PCA decomposition of the
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FIGURE 3

AI, ML, NN, and DL relationship diagram.

return covariance 6, i.e.,

E′6E ≡ 3, (1)

where the diagonal matrix 3 ≡ diag(λ1, ..., λN) contains the
eigenvalues of 6, sorted in decreasing order. In this way, the
complexity of portfolio selection is reduced if there are no
correlations among the assets.

Comparatively, PLS regression reduces dimensionality by
incorporating the forecasting objective or response. The linear
combinations maximize the covariance between the target variable
and each standard component obtained from the predictors (Groen
and Kapetanios, 2016). Kelly and Pruitt (2013) is one of the first
attempts to apply PLS regression to finance. In Kelly and Pruitt
(2015), the three-pass regression filter (3PRF) was proposed, which
has been proven to be consistent for the infeasible best forecast
when both the time dimension and cross-section dimension
become large. Unlike PLS, the 3PRF enables the selection of
additional disciplining variables based on economic theory.

PCR and PLS are techniques that merge the set of predictors
from dimension D to a much smaller number of L linear
combinations. Comparatively, Ridge, LASSO and Elastic net
methods focus more on shrinkage, moving the model coefficients
to zero. Ridge penalizes the square sum of coefficients called l2,
reducing the variance compared with Ordinary Least Square (OLS).
LASSO regularization penalizes the absolute sum of coefficients
called l1 shrunk toward zero, achieving a selection of the predictors,
which outperforms OLS as well (Messmer and Audrino, 2020).
Elastic net includes a regularization that combines l1 and l2,
handling the weight of each by a hyper-parameter. Specifically,
LASSO, a form of regularized regression, combines variable
selection and regularization to improve prediction accuracy. It
automatically selects the most predictive input factors from a set
(Feng et al., 2017; Freyberger et al., 2018), enabling the exploration
of lead-lag relationships between asset groups. This approach is
crucial in determining influential predictors, such as industry
or market output, preventing overfitting, and controlling model
complexity in machine learning methods (Li, 2015; Gu et al., 2020).

Table 1 gives good examples of selecting significant predictors.

3.2 Time series forecasting

Time series forecasting is important in any portfolio
management task. AI algorithms have performed significantly
better than traditional methods, especially in recent years with
the introduction of deep learning methods. For example, one
algorithm that could be considered traditional for this matter
is Autoregressive Integrated Moving Average (ARIMA), which
has already been outperformed by a large margin by LSTM
(Siami-Namini et al., 2018). Other approaches used for forecasting
that give state-of-the-art results are Gated Recurrent Unit (GRU)
(Sadon et al., 2021), Seq2Seq (Mootha et al., 2020; Dash et al., 2023)
combined with other deep learning approaches such as LSTM.
Other deep learning-based forecasting methods have also prevailed
in recent literature. One example is Generative Adversarial
Networks combined with Gramian Angular Fields (Ghasemieh
and Kashef, 2023). Convolutional Neural Networks (CNNs),
traditionally employed for images and videos, find application in
forecasting financial time series data (Kirisci and Cagcag Yolcu,
2022). They demonstrate superior performance compared to older,
non-neural network-based methods. Deep learning-based methods
for time series forecasting are prevalent in the literature and will
continue to give state-of-the-art results in the foreseeable future.

3.3 Correlations, clustering, and network
analysis

The multitude of market constituents and their
interrelationships, coupled with specific structures, motivate
the application of unsupervised machine learning techniques.
These methods reveal underlying structures, simplify visualization,
and introduce a form of ordering in the market space. While
traditional market representation often relies on the risk-return
relation for different asset classes, data-mining techniques,
including complex information filtering, clustering, and graph
theory supported by various machine learning methods, offer new
approaches for diversification.
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TABLE 1 Forecasting with a high number of potential predictors.

Application purpose Method Description References

Combined index Dynamic factor model Development of new indexes to represent leading
and coincident economic indicators

Stock and Watson, 1989, 1998

Feature selection Double-selection estimation procedure Framework for systematically evaluating the
contribution of individual factors relative to
existing factors

Feng et al., 2020

Feature selection Adaptive Group LASSO Non-parametric method to determine variables
that provide incremental information for the
cross-section of expected returns

Freyberger et al., 2020

Volatility forecasting PCA, PLS Forecasting models for achieving information
integration improving the accuracy of volatility
predictions

Poncela et al., 2011; Asgharian
et al., 2013; Cepni et al., 2019; Li X.
et al., 2022

Volatility forecasting MIDAS-RV-PLS, MIDAS-RV-PCA Forecast combination methods for information
integration methods

Yan et al., 2022

Volatility forecasting MIDAS-LASSO Forecasting stock market volatility Marsilli, 2014; Lu et al., 2020; Li R.
et al., 2022

Path algorithm Generalized LASSO They investigate the generalized penalty problems
using lasso penalties focused on computational
aspects

Tibshirani and Taylor, 2011;
Arnold and Tibshirani, 2016

In the classical Mean-Variance approach to portfolio allocation,
the optimal portfolio seeks to minimize the variance (σP)
while maintaining a specified portfolio return. Reliable empirical
determination of a correlation matrix becomes challenging for
financial markets when T < N or T approaches N, where the
correlation matrix can become ill-conditioned and random to a
large extent. As a result, the out-of-sample risk of an optimized
portfolio exceeds the in-sample risk. Random Matrix Theory
(RMT) (Mantegna and Stanley, 1999; Bouchaud and Potters, 2003;
Kwapień and Drożdż, 2012) is a mathematical tool that allows us to
analyze the dispersion of correlation matrix when applied to the
financial market. The objective is to mitigate bias in future risk
estimates (Potters et al., 2005) by simplifying the large correlation
matrices (Bun et al., 2017). This is achieved by extracting the
systematic part of a signal hidden in the correlation data. Giudici
et al. (2022) extended the application of RMT, aminimum spanning
tree (MST), and portfolio optimization techniques to ETF markets,
assisted by robot advisors as a FinTech innovation.

Cluster analysis, a well-established unsupervised classification
method, has proven valuable across various fields, including
finance. It aids in visually positioning assets by revealing underlying
similarities. From a different perspective, clustering simplifies
markets by reducing dimensionality and complexity, facilitating
portfolio optimization. Two main clustering algorithms are
hierarchical and partitional, with hierarchical identifying nested
clusters and partitional finding clusters simultaneously. However,
a common challenge lies in the need for cluster validation and the
lack of cluster stability (Tan et al., 2005).

The grouping methods used in the partitional clustering
process are the classical K-means and the PAM (Partitioning
Around Medoids) algorithm, which picks one stock from each
cluster with the highest Sharpe ratio. Duarte and De Castro
(2020) segment the assets into clusters of correlated assets, allocate
resources for each cluster and then within each cluster by different
partitional clustering algorithms (K-medoids PAM and Fuzzy
clustering). Khedmati and Azin (2020) include K-means and

K-medoids but also spectral and hierarchical clustering considering
transaction costs for different data sets. Soleymani and Vasighi
(2020) addresses a large portfolio dataset to find the most and
least riskiest K-means clusters of stocks based on VaR and CVaR
measures and working only on financial returns. In unsupervised
learning, specifically within partitional clustering and using diverse
time-series representations, a significant research direction involves
applying fuzzy clustering to economic time series. For instance,
D’Urso et al. (2013) and D’Urso et al. (2016) utilized a model-
based approach with various fuzzy cluster variations and different
distance metrics in financial markets. As an alternative to
ultrametric spaces clustering methods, the Self-Organized Map
(SOM) method was employed to cluster DJIA and NASDAQ100
portfolios, focusing on non-linear correlations between stocks
(Zherebtsov and Kuperin, 2003). The authors concluded that the
SOM method is more relevant and promising for clustering large,
ill-structured databases requiring nonlinear processing.

The correlation matrix of financial time series can be used
to arise hierarchical tree structures, taking the correlations
ρij as similarity measurement. The correlation-based clustering
represented by network graphs allows for easy market visualization.
On the standard methodology to build trees, for each pair i, j of
assets, the distance d

di,j =
√

2(1− ρij) (2)

is computed, where ρij describes the correlation between log-return
time-series. Having di,j, we can compute MST or, equivalently,
the Single Linkage Clustering Algorithms (SLCA) by using, for
instance, Kruskal’s algorithm. Such clustering analysis for portfolio
optimization was explored by Tola et al. (2008). Marti et al. (2017)
provides an in-depth overview of the state-of-the-art hierarchical
clustering of financial time series. The hierarchical tree structure
corresponds to diversification aspects in portfolio optimization
models, where assets in the classic Markowitz portfolio are
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consistently located on the outer leaves of the tree (Onnela et al.,
2002).

Network representation of complex financial markets offers
a profound understanding of the underlying processes in the
economic system, enhancing the information available to decision-
makers. Analyzing stock market dynamics through network
analysis can yield valuable insights and sound indicators for
portfolio management (Battiston et al., 2016; Niu et al., 2021).
The pioneering work on representing stocks as networks was
published by Mantegna R (1999) where an MST was constructed
based on the correlation among the stock prices for the DJIA
and S&P 500 indices. Subsequent studies by the same group,
summarized in Bonanno et al. (2004), extended MST applications
to various stock markets and indices, exploring correlations
with different time horizons. The concept of MST was further
developed into dynamic MSTs in Onnela et al. (2002, 2003),
revealing a scale-free property. During market crises, two network
properties, normalized tree length and mean occupation layer from
a central node (highest degree), decreased, indicating increased
centralization. Additionally, stocks in optimal portfolios with
minimal risks, as per the Markowitz model, tended to be in the
network periphery, suggesting using network peripherality as an
optimality indicator.

An alternative filtering approach for creating correlation-based
Planar Maximally Filtered Graph (PMFG) was introduced in
Tumminello et al. (2005), which produced graphs with a richer
structure than MST, and further studied in Tumminello et al.
(2006). The Directed Bubble Hierarchical Tree (DBHT) approach
(Song et al., 2012) was explored in financial markets in Nicolo
Musmeci and Tomaso (2014) and compared with MST and PMFG.
Lower risk and better returns for more peripheral portfolios were
demonstrated in Pozzi et al. (2013) using both MSTs and PMFG.
This conclusion was reaffirmed more systematically in Peralta
and Zareei (2016), introducing a ρ-based strategy for portfolio
management that balances between the systematic (centrality) and
individual properties of assets, confirming the performance of
diversified portfolios with more considerable network distances.
In Ren et al. (2017), peripheral portfolios perform better in stable
periods with a drawdown in the investment horizon. In contrast,
centrality-based portfolios are better for situations with a drawup
in the selection horizon.

A particular case of applications is using network science and
machine learning to build an HRP model (López de Prado, 2016).
HRPmodels, part of the hierarchical approach, demonstrate robust
out-of-sample properties without requiring a positive-definite
return covariance matrix—a notable weakness in mean-variance-
based portfolios. Different variants of this approach are proposed
by Alipour et al. (2016); Raffinot (2017) improving the original
HRP. Conceptually, HRP computes inverse-variance weights for
groups of similar assets using an iterative process involving a
correlation matrix. Additional steps include quasi-diagonalization,
a rearrangement of the covariance matrix, and recursive bisection.

Recent stock market data analyses have employed Graph
Neural Networks (GNN), enabling time-series data to be processed
in a networked form within a deep learning pipeline. In Pacreau
et al. (2021), portfolio management is formulated as a supervised
learning problem using a multi-relational graph representation
with sector, correlation, and supply-chain information. The authors

employ various graph neural network architectures to solve this
problem. A general framework for combinatorial optimization
using graph neural networks is presented in Schuetz et al. (2022),
which discusses its application to portfolio management. In works
like Matsunaga et al. (2019); Chen Y. et al. (2018), graph neural
networks are employed to incorporate companies’ relationship data
for stock price prediction, contributing to more informed decisions
in portfolio management.

Additional applications for different purposes within this topic
are described in Table 2.

3.4 Exploring the risk-and-return
characteristics of asset classes

Asset allocation strategy involves forecasting risk-and-return
characteristics for different asset classes or risk premiums. It
includes determining the allocation percentages for each asset class
in the portfolio. ML techniques offer a more efficient means for
portfolio managers to handle expected values based on various
forecasting models for risk and returns, considering for each case
different risk measurements that distinguish downside from upside
risk (Kuan et al., 2009; Harris et al., 2019; Liu and Wang, 2021;
Mariani et al., 2022). The predictive models should be adapted
depending on the target group of assets, considering traditional
stocks, bonds or alternative investments (Fu et al., 2018). At this
point, we mention the controversy in the literature about the
evidence that there are real out-of-sample benefits to investors
when relay on predictive models (Welch and Goyal, 2007; Johannes
et al., 2014).

ML methods, with their high-dimensional nature, encompass
diverse techniques, from traditional statistical learning methods
like Gradient-Boosted Trees and Random Forest (RF) to the latest
and popular algorithms such as Deep Learning (DL) or Deep
Neural Networks (DNN). These methods use learning algorithms
to identify the best-performing assets based on profitability and
risk for a specific period. The goal of all of these methods is to
approximate best the conditional expectation E(ri,t+1|Ft), where
ri,t+1 is an asset’s return over the risk-free, and Ft is the actual
and observable information set of market participants. Portfolio
efficiency, gauged in profitability, is enhanced when assets are
preselected based on return predictability, with the prominent
application of ML techniques (Ballings et al., 2015; Kaczmarek
and Perez, 2021). The most promising ML applications focus
on finding predictive signals among the noise and capturing the
alphas (Mirete-Ferrer et al., 2022). So, the goal is to achieve good
indicators proven to detect successful companies in terms of stock-
level signals combining different scores. In this way, the high
amount of potentially good factors as signal makes ML effective for
various reasons:

• ML is specially designed for forecasting purposes;
• It can cope with a large number of predictors and overcome

the high dimensionality of the problem by combining many
weak sources of information;

• Detection of nonlinear and complex relations and specially
designed to mitigate overfitting;
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TABLE 2 Applications of correlations, clustering, and network analysis.

Application
purpose

Method Description References

Robust covariance
matrix estimation

RMT Analysis of the statistical structure of the empirical correlations and
signal-noise separation based on the density of eigenvalues

Laloux et al., 2000; Frahm and
Jaekel, 2005

Clustering-based stock
selection

K-means, SOM, Fuzzy
C-means

The clustering approach categorizes stocks listed in the Bombay Stock
Exchange on specific investment criteria. The selected stocks from the
clusters are used to construct a portfolio, aiming to minimize portfolio
risk

Nanda et al., 2010

Clustering-based stock
selection

K-means, PAM A technique of portfolio construction based on establishing several
portfolio positions are proposed, as well as choosing cluster
representatives for the Warsaw Stock Exchange

Korzeniewski, 2018

Identifying market
structures

Fuzzy PAM clustering,
DTW distance

The proposed clustering method exploits dynamic time warping (DTW)
distance to identify common time patterns for stocks composing the FTSE
MIB index

D’Urso et al., 2021

Stock clustering Cepstral-based fuzzy
PAM clustering

Cepstral representation considers dynamic features in the clustering
process. The approach efficiently clusters stocks based on the Sharpe ratio
for each security

D’Urso et al., 2020

Industrial networks Symbolic time series,
hierarchical clustering,
MST,

Symbolic representation reduce market dimensionality, and a hierarchical
organization of DJIA companies is derived. The resulting clusters can be
utilized to explore sector relationships and construct financial portfolios.

Brida and Risso, 2009

Stock network Hierarchical clustering,
MST

MST was established to represent the stock market by cross-correlations
as a network

Mantegna R, 1999

Dependency modeling Hierarchical clustering,
MST

MST were constructed with links calculated using Pearson correlation for
linear dependencies and mutual information for nonlinear dependencies.
Utilizing the distance matrix and network measures from Onnela et al.
(2002), the study revealed significant nonlinear correlations emerging
during financial crises

Haluszczynski et al., 2017

Correlation regimes Hierarchical clustering,
MST

In a multi-asset futures portfolio, the framework establishes a
macro-to-micro connection, classifying regimes at the macro level and
characterizing individual markets based on their location within a
network or cluster at the micro level

Papenbrock and Schwendner,
2015

Portfolio optimization Networks, centrality
measures,

Networks were created from the full cross-correlation and global-motion
matrix. The study found that portfolios with more peripheral assets
outperformed those with central assets. The beneficial role of eigenvalue
decomposition of the system into market modes was demonstrated

Li Y. et al., 2019

• High sensitivity to low signal-to-noise ratios on the data;
• Avoiding crowded trades for highly correlated signals on

different investors.

Deep Learning or deep neural networks algorithms refer to
models represented in Figure 4 that consist of L layers or stages of
nonlinear information. Each hidden layer takes the output from the
previous layers and transforms it into an output as follows using
the standard terminology stated in Lee et al. (2017); Hayou et al.
(2019) for a fully connected random neural network of depth L,

widths (Nl)1≤l≤L, weightsW
l
ij

iid
∼N (0, σ 2

b
). For some input a ∈ R

d,
the propagation of this input through the network is given for an
activation function φ :R → R:

y1i (a) =

d
∑

j=1

W1
ijaj + B1i ,

yli(a) =

Nl−1
∑

j=1

W l
ijφ(y

l−1
j (a))+ Bli, for l ≥ 2.

Indeed, an activation function φ decides whether a neuron
should be activated and whether the input is important. Typically
φ takes the rectified linear form 8(x) = ReLU(xk) = max(xk, 0).

The more common activation functions besides ReLU are the
following:

ReLU :φ(x) = max(0, x),

Sigmoid :φ(x) =
1

1+ e−x
,

Tanh :φ(x) =
1− e−2x

1+ e−2x
,

LeakyReLU :φ(x) =

{

x if x > 0
0.01x otherwise

,

and they have shown their utility in complex non-linear
associations and, more generally, in selection problems.

These algorithms have demonstrated the potential to improve
the implementation of different portfolio management strategies
(Heaton et al., 2016; Grace, 2017) mapping data into the value
of returns outperforming very different benchmark index, we
can see an excellent example in Huang (2022) applying which is
called Multitask Learning (MTL) for value extraction of hundreds
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FIGURE 4

Multilayer neural network with forward and backpropagation and two hidden layers. Source: LeCun et al. (2015).

TABLE 3 Picking attractive securities.

Application
purpose

Method/data Performance criteria References

Measuring asset price
premiums

Boosted RT, RF and NN The higher gain of ML methods compared with leading
regression-based strategies for return prediction is shown

Gu et al., 2020

Risk price estimation and
dimensionality reduction

Bayesian approach Building of a robust stochastic discount factor from a large
set of stock characteristics

Kozak et al., 2020

Return estimation RT RTs were built to determine which firm characteristics out of
30 attributes are likely to drive future returns

Coqueret and Guida, 2018

Feature extraction Restricted Boltzmann Machine Proposes an encoder to extract features from stock prices
and pass them to a feedforward NN

Takeuchi and Lee, 2013

Prediction of stock
markets

RF Method designed to predict price trends in the stock market Kamble, 2017; Zhang et al., 2018

Cross-section prediction
of exceed return

RF Select stocks in S&P500 and STOXX600 with the highest
monthly predictions

Kaczmarek and Perez, 2021

Benchmarking of ML
techniques

RF, GBT, DL Ensembles of different ML methods in the context of
statistical arbitrage for S&P500

Krauss et al., 2017

Building ML signals for
long-short strategies

GBT Boosted Trees to more than 200 features clustered in six
families, building an ML signal that outperforms the
benchmarks for long-short strategies

Guida and Coqueret, 2018

Distinguish “good”
stocks from “bad” stocks

LR, DNN, RF Effectiveness of the stock selection strategy is validated in the
Chinese stock market in both statistical and practical aspects
where stacking outperforms other models

Fu et al., 2018

of accounting terms in financial statement. The family of DL
algorithms applied for portfolio construction is broad (Emerson
et al., 2019; Ozbayoglu et al., 2020), and they are used in different
stages of portfolio management.

We anticipate that Deep Learning, Reinforcement
Learning, and Deep Reinforcement Learning
applications in portfolio optimization will be

specifically treated when we explain optimal portfolio
construction techniques.

Random Forest (RF) is an ensemble ML algorithm introduced
by Breiman (2001), employing a majority vote across individual
decision tree learners. These non-metric models make no
assumptions about data distribution and have fewer parameters
to optimize compared to many other ML models. RF effectively
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handles complex signals like excess returns or risk premia,
providing a good variance-bias trade-off and being reported as
highly accurate learning algorithms. Additionally, RF models
mitigate the impact of noise and changing relationships in past
data between predictors and target variables, such as excess returns.
Another popular approach is Gradient Boosting Trees (GBT),
which builds trees sequentially, with each new tree aiming to
correct the errors of the combined ensemble of the previous trees.
GBT is typically applied to construct portfolios by leveraging their
ability to predict asset returns and optimizing the portfolio based
on those predictions. More examples of ML used for portfolio
construction are displayed in Table 3.

3.5 Enriching feature set by natural
language processing

Natural Language Processing (NLP) coupled with Sentiment
Analysis (SA) can assess the polarity of market signals in
textual content from social media platforms—indicating whether
sentiment is positive, negative, or neutral. Sentiment is used
qualitatively and quantitatively to reflect opinions, attitudes,
moods, or emotions toward securities, assets, companies, or the
market. Some studies leverage existing sentiment indicators, while
others calculate sentiment indexes. Data sources for sentiment
analysis include news channels and social media, and approaches
range from text representation methods to artificial intelligence
classifiers (Mishev et al., 2020).

Microblogging services, like StockTwits, have become popular
as investor-based social networks where users share investment
opinions through microblogs. Evidence suggests that these
opinions influence stock price movements, contributing to
collective market sentiment. Additional sentiment analysis data
sources include StockFluence sentiment data, aggregating opinions
from various media channels, and Glassdoor, offering business
outlook ratings from employee reviews. Twitter and Google are
commonly used sentiment analysis data sources, with alternatives
including sentiments extracted from Intrinio, Thompson Reuters,
and Bloomberg news articles.

Another strand of literature covers the use of cutting-
edge NLP approaches to process and distill the public mood,
which may include polarity detection, micro text analysis, aspect
extraction or sarcasm detection in different levels of granularity
like entity level, sentence, document or context. In general, NLP-
based sentiment analysis methods could be divided into two
categories. First, NLP combined with traditional machine learning
like SVM (Long et al., 2019), LightGBM (Wu et al., 2020),
XGBoost and RF (Jourovski et al., 2020; Petropoulos and Siakoulis,
2021). Evidence supports that financial news or social media
information can provide an additional advantage in predicting
price or market turbulence trends. This approach often entails
constructing numerous features before inputting them into the
ML model. Alternatively, some studies explore DL techniques,
which can automatically extract features from news or social media.
For instance, a self-regulated generative adversarial network was
proposed to enhance generalization and overcome stochasticity in
predicting stock movements based on financial news and historical

price data (Xu et al., 2022). Comparatively, a hybrid data analytics
framework, integrating CNN and bidirectional LSTM, was created
to predict stock trends by estimating the impact of news events and
sentiment trends converging with historical financial data. Unlike
other studies, LSTM was trained to automatically generate an asset
allocation strategy using historical lagged data and public mood
(Malandri et al., 2018). Similarly, in Xing et al. (2018), sentiment
information is mapped to market views using a neural network
design based on an ensemble of evolving clustering and LSTM.
These views are integrated into modern portfolio theory through a
Bayesian approach, and the portfolio’s performance is analyzed for
aspects like portfolio stability, sentiment time series computation,
and profitability in simulations.

Financial sentiment analysis faces challenges due to specialized
language and a lack of labeled data. The advent of ULMFit (Howard
and Ruder, 2018) has facilitated effective transfer learning in NLP.
For example, Feinberg (Bidirectional Encoder Representations
from Transformers for financial data) is a pre-trained NLP model
designed explicitly for sentiment analysis in financial text (Araci,
2019). Comparatively, Zhao et al. (2020) proposed a RoBERTa as a
pre-trainedmodel, which exploits different fine-tuningmethods for
sentiment analysis and critical entity detection in online financial
texts. SEntFiN 1.0 is the most recent publicly available example of
a human-annotated dataset of news headlines containing multiple
entities (Sinha et al., 2022). The authors concluded that deep
bidirectional pre-trained language models such as domain-specific
BERT fine-tuned to SEntFiN outperform state-of-the-art learning
schemes significantly.

Table 4 provides examples of papers focusing on sentiment
signal generation for asset allocation.

3.6 Examining the interrelation between
ML and market efficiency

In classical economic theory, economists explore models with
market frictions, where price competition may be dampened,
leading to potential unemployment of resources. AI holds
significant potential to enhance efficiency by reducing search
frictions (Milgrom and Tadelis, 2018). AI aids in understanding
market environments, identifying patterns that enhance customer
experience, and improving forecasting to promote more efficient
market operations. Indeed, determining evolving market
conditions is mainly linked to capturing market inefficiencies
to identify future performance. This is where the usefulness of the
application of AI arises. Many studies demonstrate the superiority
of AI over traditional ones. However, the question is how the
massive use of information-based systems, for instance, supported
by cloud services, can change the price discovery process. Unequal
access to AI technology among financial actors may lead to smaller
providers’ limited participation, posing a concentration risk among
more prominent players (Duan et al., 2019).

AI, particularly in High-Frequency Trading (HFT), generally
introduces greater complexity to conventional algorithmic trading,
notably in highly automated markets such as equities and FX.
AI and HFT contribute to enhanced liquidity provision and
enable the execution of large orders with low market impact.
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TABLE 4 The use of sentiment signals for asset allocation.

Application purpose Method Description References

Stock portfolio construction RNN, LSTM, RF, MLP,
StockFluence sentiment

The study explores whether public mood collected from social
media and online news is correlated or predictive of portfolio
returns by constructing five portfolios from 15 NYSE stocks

Malandri et al., 2018

Stock portfolio construction Deep RL, market
sentiment

Sentiment-aware deep deterministic policy gradients approach
learns from historical stock price trends and market sentiments
perceived from Google News and Twitter about 30 Dow Jones
companies

Koratamaddi et al., 2021

Stock portfolio construction Sentiment extraction,
ML, weblogs

Ontology-guided and rule-based web information extraction
based on domain expertise and linguistic knowledge with a focus
on weblogs

Klein et al., 2011

Stock portfolio construction Hierarchical Clustering,
regime-switching, ML,
market sentiment,

Regime-Based asset allocation models are proposed, where
investors’ mood swings interpret the regime. Then, the
Black-Litterman asset allocation model is used to construct a
portfolio

Zhang et al., 2020

Stock portfolio construction Spectral Clustering,
stochastic NN, beliefs,

Asymmetric investors’ sentiments reflect market participants’
beliefs about future cash flows. These sentiments, combined with
investor results and previous sentiments, inform a dynamic
investor sentiment-adjusted multi-period portfolio selection
model

Wei et al., 2021

Stock market prediction Kalman Filter, ML,
microblogs, survey
indices

The prediction model employs sentiment and attention indicators
extracted from microblogs and survey indices (AAII and II,
USMC and Sentix), the use of a Kalman Filter to merge microblog
and survey sources, and then several ML methods

Oliveira et al., 2017

Stock selection LR, LightGBM, analyst
reports, reviews,

The study explores the impacts of analyst attitude and crowd
sentiment on stock prices, indicating that crowd wisdom is more
valuable than expert wisdom in shaping investment strategies.

Wu et al., 2020

Stock beta forecasting LASSO, RF, XGBoost,
news volume, stock
sentiment,

Beta are estimated using sentiment-embedded machine learning
models. Market-neutral long-short portfolios are then
constructed, and feature importance is determined using the
Shapley value.

Jourovski et al., 2020

Stock return prediction Employee sentiment
from Glassdoor

A proposed aggregate measure of employee sentiment, derived
from millions of employee online reviews, is identified as a robust
predictor of market returns

Symitsi and Stamolampros, 2021

Investment recommendation Factor model, LR,
StockTwist

To predict the quality of an investment opinion, various factors
derived from author information, opinion content, and the
characteristics of referenced stocks are employed

Tu et al., 2018

Feature extraction Text representation
methods, NLP, ML,
SemEval-2017,

The study utilizes lexicon-based feature extraction methods, word
and sentence encoders, and state-of-the-art NLP transformers. A
deep-learning and transfer-learning-based sentiment analysis
model, coupled with machine learning models, is applied for
portfolio construction

Mishev et al., 2020

From a risk perspective, AI allows order flow management,
reducing inefficiencies. HFT serves as a significant source of
liquidity, so any disruption in their operation results in liquidity
being pulled out, especially when AI techniques are widely
deployed. At this point, we have to distinguish two significant
impacts of the massive application of AI on the financial markets
that result in two sides of the same coin. First, AI impacts
information efficiency by reducing themarginal cost of information
acquisition and processing for portfolio managers. Second, the
question is how AI is going to replace human decision, as
the machines process much more information faster, making
the markets more efficient (Barbopoulos et al., 2021), but at
the same time with a higher risk of market manipulation by
using spoofing schemes as 2010 Flash Crash (U.S. Department
of Justice Office of Public Affairs, 2015) being a source of non-
financial risk.

In particular, analyzing the interrelation between AI and
market conditions and how this relation changes sophisticated
investors’ behavior has just begun (Chen Y. et al., 2020). Regarding
the first point, consider the quarterly annual reports for the
Russell 3000 Index, which includes around 3000 of the largest
U.S. companies, resulting in ∼12,000 documents in a fiscal year.
Managing such a vast amount of information is challenging for
humans. An important distinction between humans and machines
is that humans tend to pay more attention to large and value firms,
whereas AI accesses information more uniformly (Barbopoulos
et al., 2021). The studies on the interaction between information
and potential impacts on market efficiency have to rely on accurate
metrics. For instance, the Security and Exchange Commission’s
(SEC) Electronic Data Gathering and Retrieval (EDGAR) website
allows researchers to measure with automatic algorithms how the
stock market responds at the time of earning announcements.
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TABLE 5 Interrelation between AI and market efficiency.

Application purpose Method Performance criteria References

Analysis of SEC reports and
investor attention

SEC’s EDGAR The attention of sophisticated investors for the earning
announcement impacting on portfolio performance is measured

Li R. et al., 2019

Analysis of endogenous
information acquisition

SEC’s EDGAR A long-short portfolio based on different measures of information
acquisition activity generates a monthly abnormal return of 80
basis points that is not reversed in the long-run

Li and Sun, 2022

Arbitrage trading strategy
based on machine learning

LR, RF, Gradient Boosting
Classifier

Volume-Weighted Average Prices (VWAP), ML models
outperform the general market by far, which poses a clear
challenge to the semi-strong form of market efficiency in futures
markets

Waldow et al., 2021

ML algorithms to find
profitable technical trading
rules using past prices

Genetic algorithm, KNN, RF The out-of-sample profitability
decreases through time, becoming the markets more efficient over
time

Brogaard and Zareei, 2021

Analysis of cryptocurrency
market efficiency

RNN applied to XBTEUR
time series bitcoin market

Applying F-measures authors show that Bitcoin market is
partially efficient

Hirano et al., 2018

Testing the weak-form
efficient market

SVM and LR Randomness of a sequence of rising/falling states of stock prices Khoa and Huynh, 2021

All internet search traffic of the EDGAR system is accessible
to researchers, including the user’s IP addresses and the user
requesting the information. The impact of our trading decisions on
the market and queries made through the SEC exchange requesting
information from companies is observable. Table 5 provides the
examples of paper, where the interrelation between AI and market
efficiency was analyzed.

3.7 Selection of particular assets using
multiple criteria

Modern portfolio theory initially consideredmean and variance
as the sole criteria for portfolio selection. However, over the past
60 years, more sophisticated methodologies and techniques have
been proposed, incorporating utility/desirability functions (Scott
and Horvath, 1980; Neves et al., 2017), expectation-risk (Konno
and Yamazaki, 1991; Speranza, 1993), requirements for higher
moments of portfolio (Cvitanić et al., 2008), stochastic dominance
(McNamara, 1998), etc. Furthermore, fundamental analysis (Greig,
1992; Mukherji et al., 1997) and technical analysis (Pinches, 1970;
Austin, 1986; Chou et al., 1997; Yao et al., 1999), followed by factor
analysis (Hui and Kwan, 1994) and attribute clustering (Huang
and Jane, 2009), are sources for multi-criteria decision making
(MCDM) (Colson, 1985).

One notable paper on multi-criteria portfolio selection is
by Zopounidis (1999), where the author reviews decision-aid
methods, their structure, and processes existing at that time.
The paper also briefly explains how MCDM works in financial
management. Comparatively, a significant analysis was presented
by Aouni (2009), where the author linked portfolio optimization
with multiattribute portfolio selection. In his further research
(Aouni, 2010; Aouni et al., 2008), the author gave more examples
of how goal programming can be used in portfolio selection. A
comprehensive review of MCDM techniques was presented in the
study Mardani et al. (2015), where a list of publications (more
than 460) with different applications in many fields of science,
engineering and management was provided. Among them are

such techniques as AHP (Forman and Gass, 2001), PROMETHEE
(Brans, 1982), ELECTRE (Roy, 1968), TOPSIS (Hwang and
Yoon, 1981), ANP (Saaty, 1996), VIKOR (Yu, 1973), and hybrid
MCDM (Shyur and Shih, 2006). However, they found only one
publication, namely (Vetschera and Almeida, 2012), related to the
portfolio selection problem. Later, Munhoz Arantes and Cesar
Ribeiro Carpinetti (2019) published a review (with more than 110
papers cited) of how MCDM can be used for risk assessment. It
has been emphasized that MCDM, coupled with the generalization
of fuzzy sets, is gaining popularity among decision-makers and
researchers. Specifically, Mohagheghi et al. (2019) suggested how
MCDM should deal with uncertainty-related issues and which
optimization techniques could be useful for project portfolio
construction. Moreover, they reviewed real-world applications and
case studies, excluding the financial portfolio selection problem.
However, Liesiö et al. (2021) linked general project portfolios
to financial portfolio selection and introduced so-called portfolio
decision analysis techniques.

The abovementioned methods and techniques can help
solve financial portfolio selection problems as alternatives to
AI black-box techniques. Furthermore, Galankashi et al. (2020)
provided a list of potentially attractive criteria and reviewed related
works. Moreover, they applied fuzzy ANP and showed the entire
decision-making process. Such a technique could be helpful in
ANN’s training phase.

Optimization-based approaches traditionally use technical
and fundamental indicators to determine portfolio composition.
Demand and supply of stock shares andmarket patterns are studied
using technical analysis (Achelis, 2000). The basic indicators are
based on information from each company’s financial reports.
Silva et al. (2015) applied evolutionary algorithms using several
fundamental indicators [debt ratio, ROE (return on equity)
and P/E ratio] together with technical indicators to generate
optimal portfolios.

The repeatability of data patterns, the visual signals of
indicators and oscillators, and the graphical representation of
the evolution of assets are the sources for financial technical
analysis (Turcaßs et al., 2016). Portfolio selection based on
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TABLE 6 MCDM techniques used for portfolio selection.

Method Criteria used Description References

PROMETHEE outranking
method

Outranking-based approaches A new formulation of the PROMETHEE V method was
proposed, and several alternative methods based on the concepts
of marginal and c-optimal portfolios were developed. The
methods provide a good approximation of the PROMETHEE
ranking of all portfolios, and their application requires only a
small computational effort even for significant problems

Vetschera and Almeida, 2012

MCDM, DEA, Entropy,
MABAC

Risk and return parameters The performance of the funds is analyzed using Data
Envelopment Analysis (DEA) to allow an initial selection of
funds. Then, the Multi-Attribute Border Approximation Area
Comparisons (MABAC) is applied, where the weights are
calculated using the entropy to rank the funds according to risk
and return

Biswas et al., 2019

Bayesian decision problem,
multivariate skewness, utility
function maximization

The mean, standard deviation
and cubed-root of skewness

The skew-normal distribution were employed in a method for
optimal portfolio selection using a Bayesian decision theoretical
framework that addresses two significant shortcomings of the
traditional Markowitz approach: the ability to handle higher
moments and parameter uncertainty

Harvey et al., 2010

Multi-criteria utility
functions, Multiple Criterion,
Stochastic Programming

Portfolio return, dividends,
growth in sales, social
responsibility, liquidity, etc.

It summarizes multi-criteria portfolio selection approaches,
answering the question of how to incorporate additional criteria
beyond risk and return into the portfolio selection process

Steuer et al., 2008

ELECTRE, MCDM Return on assets; Return on
equity; Net profit margin;
turnover; Cash liquidity; etc.

The ELECTRE Tri outranking method is used to provide a
multi-criteria methodology to select stocks based on financial
analysis

Xidonas et al., 2009

Multiple criteria, linear
programming,

Mean-risk The multi-criteria linear programming model for the portfolio
choice problem is based on risk preferences. It enables standard
multi-criteria techniques to analyze the portfolio choice problem.
It is also demonstrated that the classical mean-risk methods used
in linear programming models are consistent with the specific
solutions applied to multi-criteria model

Ogryczak, 2000

Fuzzy analytic network
process (FANP)

Profitability, growth, market,
and risk

A fuzzy analytical network process (FANP) and specific criteria
were developed to evaluate and select the stock portfolios

Galankashi et al., 2020

technical analysis implies the idea that prices move up (i.e.,
bullish), down (i.e., bearish), and sideways (i.e., trading) in a
trend and that these trends ultimately influence the movement of
financial assets.

Table 6 summarizes papers on MCDM and emphasizes the
method, criteria used and application field.

Table 7 emphasizes the purpose of the MCDM application.
However, the method and criteria also are indicated.

In general, MCDMs are transparent decision-making
tools compared to most AI techniques. However,
it is heavily dependent on the decision-makers and
pre-selected criteria.

4 Constructing the optimal portfolio

The most popular criteria in academic literature for
constructing optimal portfolios are mean and variance of returns.
However, such an approach leads to a quadratic optimization
problem if constraints are no more complex than quadratic. Some
authors suggested maximizing skewness (e.g., Konno and Suzuki,
1995) together with maximizing means and minimizing variance,
which resulted in the optimization problem becoming much
more complex as the utility function became cubic. Furthermore,
some authors suggest using a utility function of even higher order
(see Harvey et al., 2010 or Levy and Hanoch, 1970). The other
approach is related to multi-criteria utility functions (see Steuer

et al., 2008 or Ogryczak, 2000). Such types of utility functions lead
to linear optimization problems. However, preparations require
much more decision-maker involvement as criteria weighting
is time-consuming. Moreover, the result is very subjective and
may be biased as every decision maker may assign different
weights (see Steuer et al., 2008, Galankashi et al., 2020). It is worth
mentioning that many authors recommend including historical
portfolio return, various security and systematic risk measures,
dividends, liquidity, turnover, P/E, P/B, ROA, ROE, workforce,
etc. Unsurprisingly, the factors mentioned above come from
fundamental and technical analysis.

The following subsections discuss metaheuristics and ML
optimization techniques used in portfolio optimization.

4.1 Metaheuristics for portfolio
optimization

Portfolio construction, optimization, and management
challenges have been extensively tackled using various
metaheuristics, offering more flexibility in problem formulation
than classical optimization approaches. Unlike the mean-variance
model (Markowitz, 1959), these models can have a richer structure,

and the optimization problem may be non-convex. While heuristic
methods may compromise solution optimality, they often optimize
more efficiently than classical methods. However, their effectiveness

is problem-dependent, and formulating a more realistic model
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TABLE 7 MCDM approaches used for particular purpose.

Purpose of
application

Method/data Criteria used Description References

Ranking of Stocks MADMMethods, Financial
Ratios, p-TOPSIS Method,
p-VIKORMethod

Total Income (TI), Net Profit (NP),
Net Worth (NW), Return on Net
worth (RON), Stock Price (SP),
Promoter Holding (PH), FII + DII
Holding (FII), Operating Prof-it
Margin (OPM), Net Profit Margin
(NPM), Dividend Payout Ratio
(DPR)

The model proposed in the study can
provide more information on the overall
performance of a particular share
compared to other shares. The results
obtained by the different methods
clearly distinguish good companies
from poorer ones, although the exact
ranking varies slightly

Hwang and Yoon, 1981

Hybrid model for
MCDM

TOPSIS, ANP, NGT, Multiple
criteria analysis

Price/cost; On-time delivery;
Product quality; Facility and
technology; Responsiveness to
customer needs; Professionalism of
salesperson; Quality of relationship
with vendor

The five-step hybrid process and the
Analytical Network Process (ANP)
method allow the relative weights of
several assessment criteria to be
determined using the Nominal Group
Method (NGT)

Shyur and Shih, 2006

Decision making Multi-Objective
Programming (SMOP); Goal
Programming (GP); ten
stocks return rate of the
Tunisian stock exchange

Return rate; the level of risk To get the best solutions in
decision-making situations a model of
goal programming is formulated and a
deterministic equivalent formulation of
stochastic multi-objective optimization
programs is considered

Aouni et al., 2008

Decision making Analytic Hierarchy Process
(AHP)

Theoretical background Discuss why AHP is a standard
methodology for a wide range of
solutions and other applications and
develop academic discussions regarding
the effectiveness and applicability of
AHP compared to competing methods
by providing brief descriptions of
successful applications of AHP

Forman and Gass, 2001

Asset allocation Gray MCDM, gray-ANP,
gray-DEMATEL, Shanghai
Stock Exchange, China

Return, financial ratios, dividends,
risk

This study uses a hybrid MCDM
approach consisting of an integrated
analytical network process (ANP) and a
decision-making test and evaluation
laboratory (DEMATEL) in a gray
environment to select an optimal
portfolio to provide decision-makers
with both ranking and weighting
information

Mills et al., 2020

with numerous constraints, such as limiting the total number
of assets or specifying bounds on each asset’s quantity, can be
relatively complex. An extensive survey of classical and heuristic
optimization methods for portfolio optimization can be found in
Mansini et al. (2014). Conversely, metaheuristic algorithms have a
general problem-independent structure, although they may require
tailoring to specific problems. Advances in parallel computing
over the last decade have facilitated practical implementations of
computationally intensive metaheuristic methods for large-scale
complex problems. Metaheuristic algorithms can be categorized
based on various aspects, including population-based or single-

solution, naturally inspired, mimic evolution (evolutionary
algorithm—EA), utilize swarm intelligence, involve global or local

search, etc. These categories may overlap, and some algorithms are
hybrid, incorporating techniques from multiple algorithm types.
A broad introduction to various metaheuristic algorithms can be

found in Talbi (2009). We will consider many of the metaheuristic
algorithms, such as genetic algorithms (GA), evolutionary strategy
(ES), differential evolution (DE), particle swarm optimization
(PSO), ant colony optimization (ACO), artificial bee colony
(ABC), simulated annealing (SA), quantum annealing (QA),
and tabu search (TS). Some models have a single objective,

like minimizing the variance, while others have multiple, like
minimizing variance and maximizing return, which require an
application of multi-objective evolutionary algorithms (MOEAs).

Table 8 summarizes some of the most critical applications
of metaheuristic methods in portfolio optimization. For a
comprehensive overview of MOEAs applied in portfolio
management before 2012, the reader can refer to Metaxiotis
and Liagkouras (2012). A recent survey on swarm intelligence
techniques in portfolio optimization is available in Ertenlice and
Kalayci (2018). Additionally, Doering et al. (2019) offers a broad
survey covering various types of metaheuristic methods for both
portfolio optimization and risk management.

4.2 Deep learning, reinforcement learning,
and deep reinforcement learning in
portfolio optimization

DL concept has been used lately to manage portfolios in
diverse conditions based on neural networks (Becker et al., 2019;
Andersson and Oosterlee, 2021). Thus, numerous variants of DNN
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TABLE 8 Applications of metaheuristic methods for portfolio optimization.

Methods Description, novelty and data References

GA, SA, TS Application of cardinality constraints, examining GA and for the first time SA and TS, using data
from 5-SMI which are later used in many other subsequent papers

Chang et al., 2000

TS Including cardinality and bounding constraints on stocks from USA, UK, JP, DE and HK Schaerf, 2002

SA Incorporating cardinality, bounding, trading and turnover constraints on a dataset of 151 US stocks Crama and Schyns, 2003

SA/ES A hybrid model combining SA and ES examined with data from DAX 30 and FTSE 100 Kellerer and Maringer, 2003

ES Multiobjective optimization using (1+1) ES on data from S&P 100 and some emerging markets Fieldsend et al., 2004

GA, ES MOEAs with cardinality constraints, buy-in thresholds and round lots on the HSI dataset of 31 assets Streichert et al., 2004

GA, SA, TS Multi-criteria model including individual preferences using multiattribute utility theory and S&P data Ehrgott et al., 2004

GA Replication of KOSPI 200 and TOPIX using a small number of stocks. Orito et al., 2003; Oh et al., 2005

ACO, SA Comparison of multiobjective optimization with ACO, SA and greedy search using data from 5-SMI Armananzas and Lozano, 2005

E-MOEA Envelope-based MOEA, a hybrid with parametric quadratic programming embedded among genetic
operations tested on HSI, S&P 100 and Nikkei 225

Branke et al., 2009

GA Besides cardinality constraints and bounding, incorporate transaction lots and market capitalization Soleimani et al., 2009

DE DE algorithm for Multiobjective Portfolio Optimization tested vs. NSGAII on Italian stock exchange Krink and Paterlini, 2011

PSO Cardinality constraints, bounding, transaction lots and market capitalization compared against GA Golmakani and Fazel, 2011

PSO Sharpe ratio as a fitness function and a comparison with GA using data from SSE 50 Zhu et al., 2011

ABC/FA ABC algorithm hybridized with FA (ABC-FA) tested against NSGAII using 5-SMI data Tuba and Bacanin, 2014

MODEwAwL Learning-guided multi-objective evolutionary algorithm with external archive (MODEwAwL)
compared with NSGAII, SPEA2, PESAII, PAES over I5 plus S&P 500 and Russell 2000

Lwin et al., 2014

MOEA/D MOEA based on decomposition incorporating interval analysis examined using DJIA data Solares et al., 2019

Multiple Preselection procedures based on risk, return and correlation followed by optimization with
NMOEA/D, MODE-SS, MODE-NDS, MOCLPSO, and NSGAII with data from Chinese stock
exchange

Qu et al., 2017

TDMEA 3D encoding multiobjective EA (TDMEA) for large-scale problems tested on different model
formulations using Nikkei 225, S&P 500, Russell 2000, and FTSE 100 data against NSGAII and SPEA2

Liagkouras, 2019

Reverse QA Reverse QA with greedy search generated candidate solution is compared with forward QA and GA Venturelli and Kondratyev, 2019

DE Incorporating decision maker subjectivity in selection from solutions in a Pareto-front tested on DJIA Fernandez et al., 2019

GA Incorporating implicitly inferred decision-maker preferences and is tested with DJIA data Fernandez et al., 2020

These five stock market indices (5-SMI), HSI, DAX 100, FTSE 100, S&P 100, and Nikkei 225, are used most often.

may function as independent evaluators to optimize the algorithm.
The cryptocurrency market is often used in this type of research to
evaluate the effectiveness of the DNN-based strategy compared to
traditional portfolio management strategies (Sun et al., 2021). Some
authors add fuzzy neural networks to the market forecasting when
conditions change (Ghahtarani, 2021) dramatically. In other recent
papers, a finite-time q-power RNN applied to solve the uncertain
portfolio model is considered an improvement of classic NN (Ma
and Yang, 2021).

Another solution to overcome the limitations of traditional and
generic portfolio strategies considered in the recent literature is
reinforcement learning (RL) using neural networks. This research
direction argues for implementing RNN and conventional NN
in reinforcement learning architecture to support investment
decisions. The main element in this theory is the connection
between agents and the environment (Sutton and Barto, 2018).
As a fundamental component of the ML process, in RL theory,
the agents are supported by NN to memorize and predict optimal
decisions based on present information for an infinite number
of actions and states (Wu et al., 2021). The environment then

estimates the rewards from these actions to help agents learn
for future decisions. This process can define specific models
to gradually improve overall performance based on experiences
gained with several trial and error steps.

In addition to this research direction, some authors claim
that deep reinforcement learning (DRL) can be successfully
used to capture the dependencies between the main features of
some financial indicators, such as risk aversion, portfolio-specific
characteristics and previous portfolio allocations (Benhamou et al.,
2021b). At the same time, in deep consolidation learning, network
composition and appropriate rewards significantly influence
learning transactions in financial time series, using high-frequency
data decomposed as input (Lee et al., 2021). A previous paper
stipulated that portfolio management requires prior decisions as
input to consider the effects of transaction costs, market impact or
taxes, and this temporal dependence on the system’s state involves
reinforcement versions of standard recurrent learning algorithms
(Moody et al., 1998). In another approach, DRL deals with low,
high, and close prices through a designed depth convolution for
these three characteristics. The classic methods cannot accurately
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estimate the critical time, so a three-dimensional warning gating
network is used, giving greater importance to rising moments.
Thus, deep-reinforcement learning tools obtain more substantial
returns and improve profit indicators while reducing risk (Weng
et al., 2020).

In other research, recurrent consolidation learning has
successfully optimized portfolios. It memorizes up-to-date market
conditions and constantly rebalances the portfolio’s content based
on classic performance indicators (Aboussalah and Lee, 2020). In
some models, a compromise parameter is introduced to adjust
the portfolio’s optimism level, and learning algorithms evaluate
market fluctuations and provide information to generate forecast
hyperparameters. Themain advantage of using thesemore complex
methods is that the effectiveness and robustness of the portfolios
obtained with their help significantly exceed the return and risk
indicators obtained with the classical techniques (Min et al.,
2021). Other methods study the relationships between financial
instruments, which are considered to vary over time. These
relationships are studied with the help of CNN, in which the
market operator learns and applies an investment behavior that is
constantly re-evaluated. Thus, the permanent reallocation of the
assets from the portfolio is ensured to optimize the yield indicators
(Soleymani and Paquet, 2021).

Recently, a new research direction has combined reinforcement
learning and its applications with Python or similar programming
languages coding to support understanding portfolio optimization
mechanisms. These codes use dedicated open-source software as
data processing media for programming (Graesser and Keng,
2019; Dixon et al., 2020). These research methods can integrate
portfolio selection with portfolio optimization using multicriteria
algorithms. The advanced programming languages with dynamic
semantics allow every optimization step to be followed in
detail, from the data entry to the extraction of the results
(Sarmas et al., 2020). A significant advantage of using these
methods is that free cloud-based platforms for programming
effectively run the necessary programs (Rather, 2021). Thus,
according to an increasing number of authors, Python or other
programming languages can be used to build an efficient portfolio
based on multiple optimization techniques to improve portfolio
performance. Numerous results showed that the prediction models
efficiently obtained high accuracy and enhanced yields (Ta et al.,
2020).

As seen from the above, regardless of the method proposed
for research, most papers cited conclude that optimizing portfolios
based on DL, RL, or DRL have significantly better results than
traditional algorithms. The generally accepted assertion is that
these modern tools are superior to even the most advanced
methods based on classical instruments. Moreover, using advanced
programming languages, such as Python, supported by powerful
open-source software and free cloud-based platforms, leads to
superior results in optimizing portfolios, increasing returns and
reducing risk.

5 Portfolio execution

This section focuses on executing portfolio orders and aligning
them with investor objectives while considering market impact
and asset price dynamics. Execution orders are a crucial element

in portfolio management, closely linked to preceding portfolio
rebalancing decisions. This integrated approach involves two
interconnected facets. The application of established machine
learning techniques, such as supervised and unsupervised
learning (e.g., clustering, LASSO, Bayesian networks, and SVMs),
becomes increasingly relevant. These techniques apply to portfolio
execution, managing multiple variables such as order size,
trade-quote relationships, order book imbalances, and spreads.

5.1 Rebalancing technique

Rebalancing, a crucial aspect of portfolio management, entails
adjusting asset weights to maintain desired allocations or manage
risk levels. This involves diverse strategies, from widely adopted to
less conventional approaches. This comprehensive review explores
these strategies, analyzing their characteristics, advantages, and
limitations. The term “rebalancing” emphasizes adjusting asset
weights to realign with chosen allocations or risk levels over time,
without the necessity of adhering to a 50/50 stock and bond
split (Tokat and Wicas, 2007; Kitces, 2015; Hong, 2021). Whether
targeting a 50/50, 70/30, or 40/60 allocation, portfolio rebalancing
involves reshuffling assets to achieve a predefined composition
(Chen J. et al., 2020). Recognizing the diversity of rebalancing
methods is crucial; some strategies are well-documented for their
simplicity and effectiveness, while others, though less familiar,
offer innovative perspectives. The table below summarizes and
categorizes these types.

Assessing risk and return within a target asset allocation
often relies on a rebalancing strategy. This approach considers
the frequency of portfolio reviews, acknowledging it as a factor
influencing whether the portfolio’s actual performance aligns with
its intended asset allocation. The core objective of rebalancing is to
manage risk concerning the target asset allocation, prioritizing risk
management over solely maximizing returns. Investors typically
choose a rebalancing strategy based on their risk tolerance about
expected returns, factoring in rebalancing costs (Zilbering et al.,
2015). There isn’t a universally optimal rebalancing frequency
or threshold, as risk-adjusted returns tend to exhibit minimal
differences among various rebalancing strategies (Tsai, 2001; Eakins
and Stansell, 2007; Zilbering et al., 2015; Gruszka and Szwabiński,
2020).

Acknowledging the diversity of rebalancing methods is crucial;
some strategies are well-documented in the literature for their
simplicity and effectiveness, while others, though less familiar, offer
innovative perspectives. Table 9 summarizes and categorizes these
types.

Rebalancing strategies have been a subject of interest in
various studies and research efforts. Perold and Sharpe (1988)
categorized these strategies into four distinct approaches: buy-
and-hold, constant mix, constant-proportion portfolio insurance
(CPPI), and option-based portfolio insurance (OBPI). CPPI
gained widespread adoption due to its ability to align asset
allocation decisions with predetermined minimum dollar values
(Zandieh and Mohaddesi, 2019). Moving ahead, Daryanani (2008);
Zilbering et al. (2015); Dayanandan and Lam (2015) emphasized
fundamental strategies, which included: (i) time rebalancing, (ii)
threshold rebalancing, and (iii) a time-threshold rebalancing. These
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TABLE 9 Summary and categorization of rebalancing strategies.

Strategy type Description Nature Focus References

Buy-and-hold strategies Maintaining initial allocation over the investment
horizon, relying on market recovery

Static Strategic Perold and Sharpe, 1988; Feldman et al.,
2015; Hilliard and Hilliard, 2015

Calendar-time Rebalancing Rebalancing at fixed time intervals, aiming to
maintain desired allocation

Static Strategic Dayanandan and Lam, 2015; Lee et al.,
2017; Chen J. et al., 2020; Lim et al., 2022

Risk-Parity Strategies Allocating based on risk contributions for
balanced risk exposure across asset classes

Dynamic Tactical Chaves et al., 2011; Roncalli, 2013; Costa
and Kwon, 2019

Portfolio-insurance-based strategies Protecting the portfolio from losses during
downturns include constant-proportion Portfolio
Insurance (CPPI), Option-Based Portfolio
Insurance (OBPI)

Dynamic Tactical Zhu and Kavee, 1988; Bertrand and
Prigent, 2005; Hong, 2021

Constant Mix Rebalancing Maintaining a fixed allocation, rebalancing when
deviations occur, buying low and selling high

Dynamic Tactical Jones and Stine, 2005; Cesari, 2011;
Bertrand and Prigent, 2022

Threshold Strategy Rebalancing when allocations exceed specified
thresholds

Dynamic Tactical Zilbering et al., 2015; Lim et al., 2022

Time-Threshold Strategy Combining time-based intervals and threshold
triggers for rebalancing

Dynamic Tactical Daryanani, 2008; Dayanandan and Lam,
2015

Tactical Asset Allocation (TAA) Making dynamic adjustments based on the market
outlook for short-term opportunities and risk
mitigation

Dynamic Tactical Weigel, 1991; Lee, 2000; Kanuri et al.,
2021

studies collectively underscored the significance of maintaining
simplicity and consistency in portfolio maintenance.

Recently, Chen J. et al. (2020) introduced a structured
framework categorizing rebalancing strategies into three
primary approaches: calendar rebalancing, constant-mix
strategy with bands, and CPPI. Calendar rebalancing
involves periodic adjustments at fixed intervals, such as
monthly or quarterly, regardless of market conditions. In
contrast, corridor strategies set thresholds or bands around
target allocations, prompting rebalancing when assets
deviate beyond these bounds. Additionally, more recent
research by Lim et al. (2022) has expanded the discussion
by considering transaction costs, identifying two distinct
approaches: complete portfolio rebalancing and gradual portfolio
rebalancing. Complete portfolio rebalancing targets swift
asset reallocation within a single trading day, while gradual
rebalancing spreads adjustments across multiple trading days to
minimize costs.

Customizing rebalancing strategies to consider specific
factors like time constraints, transaction costs, and allowable
deviations is vital. One adaptable method is threshold rebalancing,
using range-based mechanisms to reallocate assets when they
exceed predefined thresholds swiftly. Combining periodic and
threshold strategies results in a hybrid approach that selectively
rebalances portfolios when predetermined thresholds are
breached. In the context of range rebalancing applied to portfolio
benchmarks, asset classes are returned to their target allocations
when they fall outside rebalancing bands. This approach
underscores the importance of regular portfolio review and
rebalancing only when asset allocations surpass a predetermined
minimum rebalancing threshold. Moreover, rebalancing can
also respond to tactical tail-risk models, highlighting the need
for flexible portfolio management approaches (Packham et al.,
2017).

5.2 Dynamic portfolio rebalancing with the
help of AI/ML

The term “dynamic” denotes a strategy’s ability to adapt swiftly
to changing market conditions, asset performance, or specific
triggers, diverging from predetermined time intervals (Perold and
Sharpe, 1988, 1995; Bansal et al., 2004). Dynamic rebalancing, as
articulated by Ilmanen andMaloney (2015), is an active investment
approach where investors adjust their portfolios not confined
to fixed schedules or specific percentage deviations. Instead,
they realign portfolios with desired risk levels based on real-
time market conditions. Diverging from traditional rebalancing
methods, dynamic rebalancing is flexible and responsive, utilizing
monthly market trends to dictate when and howmuch to rebalance
while emphasizing exceptional signals in different asset classes.
This approach aims to optimize investment performance while
effectively managing risk (Gaivoronski et al., 2005).

There are both established and emerging techniques in
dynamic portfolio rebalancing. Well-established methods include
CPPI, OBPI, time-Threshold Strategy, and TAA, which have
demonstrated their ability to enhance portfolio performance
regarding risk-adjusted returns over many years.

The advent of AI/ML tools has ushered in a new era
of dynamic portfolio rebalancing strategies. These emerging
techniques harness the power of artificial intelligence and
machine learning, offering innovative solutions. They encompass
dynamic portfolio rebalancing through reinforcement learning
(RL), utilizing its algorithms to maximize portfolio returns, and
applying lag-optimized trading indicators in conjunction with
genetic algorithms. To provide a practical glimpse into dynamic
rebalancing, Jiang et al. (2020) developed a framework that
integrates machine learning models into portfolio rebalancing,
focusing on risk-aversion adjustment. This approach outperformed
benchmarks in terms of returns and risk. Lim et al. (2022)

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2024.1371502
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Sutiene et al. 10.3389/frai.2024.1371502

employed an RL agent, introducing four distinct combinations of
portfolio adjustments and price prediction models: (1) complete
portfolio balancing without the Long Short-TermMemory (LSTM)
prediction model, (2) complete portfolio balancing with the LSTM
prediction model, (3) gradual portfolio balancing without the
LSTM prediction model, and (4) gradual portfolio balancing with
the LSTM prediction. Therefore, portfolio rebalancing utilizing the
Recurrent RL (RRL) method and an adjusted objective function
considering transaction costs and market risk aligns to develop
efficient learning algorithms in RL, as discussed by Szepesvári
(2010). Furthermore, RL has diverse applications in finance,
including optimizing insurance pricing, bank marketing, portfolio
management, and trading, as highlighted by Lim et al. (2022).
Additionally, Jiang et al. (2020) integrated machine learning
models into a portfolio rebalancing framework, adapting risk levels
based on market trend predictions and consistently surpassing
benchmark performance.

Nonetheless, it’s essential to note that the effectiveness of these
strategies may vary depending on factors such as portfolio size,
investment objectives, and prevailing market conditions. Among
the most recent and relevant studies Yeo et al. (2023) introduced
two rule-based dynamic portfolio rebalancing algorithms: Tactical
Buy and Hold (TBH), utilizing the forecasted Moving Average
Convergence Divergence Histogram (fMACDH) indicator and risk
differences and Rule-Based Business Cycle (RBBC), leveraging
market sector performance variations across business cycles.

6 Portfolio evaluation: measurement,
attribution, and appraisal techniques

6.1 Measurement

While the early literature on portfolio performance evaluation
dates back to the 1960s, recent decades have witnessed a
proliferation of novel methodologies, techniques, and empirical
research in this field. These metrics effectively gauge the returns
generated by a managed portfolio compared to the performance
of a designated benchmark portfolio over a specific assessment
period. Consequently, the benchmark portfolio must serve as a
viable investment alternative for the managed portfolio under
scrutiny (Brinson et al., 1995; Aragon and Ferson, 2006). However,
Grinblatt and Titman (1989) introduces a comprehensive model
designed to offer a nuanced perspective on diverse aspects of
portfolio performance measurement. Within this model, a critical
examination of various performance metrics unfolds, shedding
light on their multiple criticisms. These criticisms encompass
challenges like selecting an appropriate benchmark portfolio, the
potential overestimation of risk due to market-timing skills, and
the paradox of informed investors not realizing positive risk-
adjusted returns due to growing risk aversion. Notably, the article
contends that these significant issues should not be considered
insurmountable obstacles in performance evaluation.

Portfolio performance evaluation assesses how a managed
portfolio has performed compared to a specified benchmark. The
methods for performance evaluation can be broadly categorized
into conventional and risk-adjusted methods. Benchmark
comparison and style comparison are prominent traditional
methods, while risk-adjusted methods, including the Sharpe

ratio, Treynor ratio, Jensen’s alpha, Modigliani and Modigliani,
and Treynor Squared, adjust returns to consider variations in
risk levels between the managed portfolio and the benchmark
portfolio. Preference is often given to risk-adjusted methods over
conventional ones (Modigliani and Modigliani, 1997; Samarakoon
and Hasan, 2013, 2022; Tamplin, 2023).

The conventional method, encompassing benchmark and style
comparisons, assesses investment portfolio performance against
a broader market index. Outperformance is determined if the
portfolio’s return exceeds that of the benchmark index over the
same periods (Brinson et al., 1991; Samarakoon and Hasan, 2022).
However, Aragon and Ferson (2006); Dor and Jagannathan (2002)
have emphasized limitations, pointing out that this method may
not consider variations in risk levels between the two portfolios.
The portfolio might seem superior due to higher risk, leading to
potential validity issues in a straightforward comparison.

Risk-adjusted approaches commonly alter returns to account
for variations in risk levels between the managed and benchmark
portfolios. As previously mentioned, we distinct, in the following,
the most known and used approaches (see Table 10).

6.2 Attribution

The field of performance attribution provides valuable
insights for delineating investment responsibilities and measuring
the contributions of various activities within the investment
management process. Performance attribution seeks to clarify
portfolio performance relative to a benchmark and pinpoint the
origins of excess returns attributable to active decisions made
by the portfolio manager. Bacon (2019) traces its evolution,
beginning with Fama decomposition in the 1970s and progressing
through subsequent developments, including multiperiod and
multicurrency attribution in the 1990s, to contemporary models
focused on fixed-income and risk-adjusted attribution. Bacon’s
comprehensive examination encompasses various attribution
methods, such as returns-based, holdings-based, and transaction-
based approaches, alongside considerations of money-weighted
attribution and advancements related to notional funds.

In this historical context, Brinson and Fachler (1985) along
with Brinson et al. (1995) established the basis for equity
performance attribution, distinguishing excess returns into asset
allocation, security selection, and interaction elements, ensuring
they collectively constitute the active return. Extending this
framework, Ankrim and Hensel (1994) incorporated currency
management effects, introducing terms for currency forward
premiums and surprise effects. These decomposition models
remain relevant, as exemplified in Chen F. et al. (2018) examination
of managerial skills.

Moreover, Fisher and DAlessandro (2019) introduced a novel
risk-adjusted performance attribution analysis that integrates risk
measures with Brinson models. This approach decomposes excess
portfolio return into risk, allocation, and net selection components,
ensuring additivity and consistency with financial theory. The risk
adjustment can utilize either the traditional beta for Jensen’s alpha
calculation or Fama’s beta, incorporating unsystematic risk while
relying on relative standard deviations for risk adjustment in the
Brinson attribution analysis.
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TABLE 10 Summary of risk-adjusted performance measures.

Application purpose Method/data Description Paper

Portfolio performance Sharpe ratio Sharpe analyzed mutual fund performance, introducing the Sharpe
ratio as a fundamental risk-adjusted performance metric. The Sharpe
ratio continues to be crucial for assessing portfolio performance and
plays a significant role in empirical asset pricing

Ferruz and Vicente, 2005;
Aragon and Ferson, 2006;
Samarakoon and Hasan, 2013

Portfolio performance Treynor ratio Treynor employed the market risk represented by beta stock. The
Treynor ratio emphasizes systematic risk, ranks portfolio performance,
and assesses diversification adequacy. Grounded in the Security
Market Line, it compares the expected total return of a security or
portfolio with that of a market portfolio

Hübner, 2005; Beer et al.,
2011; Verma and Hirpara,
2016; Robiyanto, 2018

Portfolio performance Jensen’s Alpha ratio Alpha are considered one of the most widely used traditional measures
of investment performance. Thus, Jensen’s Alpha is unique and
considers systematic risks. A tool used for assessing the relative
performance of a portfolio in comparison to benchmarks

Jensen, 1968; Hübner, 2005;
Samarakoon and Hasan, 2013

Portfolio performance Modigliani and
Modigliani ratio

This metric presents an alternative risk measure, utilizing return
volatility within the CAPM framework. The adjusted portfolio is
constructed and managed as a blend of the managed portfolio and a
risk-free asset, ensuring it matches the total risk of the market portfolio

Modigliani and Modigliani,
1997; Samarakoon and Hasan,
2022.

Portfolio performance Multibeta Models Multibeta models emerge when investors ideally hold combinations of
a mean–variance efficient portfolio plus hedge portfolios for the other
relevant risks. Most asset-pricing models describe the cross-section of
expected returns regarding risk factor exposures, or betas

Sharpe, 1977; Velu and Zhou,
1999; Balduzzi and Robotti,
2008.

Portfolio performance Weight-Based
Performance
Measures

A manager with investment ability raises the fund’s exposure to
securities or asset class before it performs well, or who expects and
avoids losers

Aragon and Ferson, 2006;
Ferson, 2013.

Appraisal ratio Treynor–Black
Appraisal Ratio

In this scenario, Treynor and Black (1973) calculate the mean–variance
optimum portfolio and show that the optimal deviations from the
benchmark holdings for each security are affected by the “Appraisal
Ratio”. The ideal portfolio should include covered securities and index
funds

Treynor and Black, 1973;
Kahneman and Tversky, 2013.

Market Timing Merton-Henriksson
Market Timing
Measure

This model allows the manager to monitor a private signal about the
market’s future performance. It changes the portfolio’s market
exposure or beta at the start of the period. However, the resulting
convexity can be described with put or call options

Henriksson and Merton,
1981; Henriksson, 1984;
Ferson, 2013.

6.3 Appraisal techniques

AI-based portfolio appraisal techniques offer several

advantages, including optimizing trade timing, project
performance evaluation, cognitive bias reduction, and improved
decision-making. Some specific methods encompass Equal
Weighted Portfolio (EWP), which assigns equal weight to each

stock in a portfolio, irrespective of its company size, to reduce
concentration risk and increase diversification (Malladi and
Fabozzi, 2017; Lee, 2020). Inverse Volatility Portfolio (IVP)

is another technique that helps in risk-adjusted allocations,
performance evaluation using extensive data analysis, real-time
detection and mitigation of decision-making biases, and the
analysis of fundamental and alternative datasets to identify fresh

investment prospects (Hallerbach, 2015; Rao, 2021).
Moreover, Thethi et al. (2021) recommends using LSTM

for stock market prediction, surpassing traditional methods in
performance. Shukla et al. (2022) focuses on improving financial
portfolios through machine learning, considering the user’s risk
profile and employingML for stock selection and capital allocation.
Boudabsa and Filipović (2022) introduces a simulation approach
for dynamic portfolio valuation and risk management, leveraging
machine learning with kernels, demonstrating favorable outcomes
in extensive dimensions. Kaczmarek and Perez (2021) illustrates

that portfolio optimization techniques, such as Markowitz
mean-variance and HRP optimizers, can enhance the risk-adjusted
return of portfolios constructed with stocks preselected using ML.

In the context of real estate portfolio appraisal, Viriato
(2019); Kok et al. (2017) exemplifies how Automated Valuation
Models (AVM) have garnered substantial technological investment.
These models can swiftly appraise many assets, streamline
processes like property selection, expand investor access, facilitate
efficient tax assessments, and improve understanding of value
determinants. With the ongoing advancement of ML techniques,
as demonstrated by Conway (2018), investors can leverage
more precise valuation algorithms, effectively navigating a broad
spectrum of opportunities.

7 Post-hoc explanations using XAI to
build trust for portfolio management

7.1 Transparency and explainable AI on
financial markets

The transparency and clarity of models using artificial
intelligence are hotly debated. It is crucial for financial institutions,
banks, governments or any other body that uses AI to trust the
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tools provided by researchers (Dwivedi et al., 2021; Ng et al.,
2021). The AI tools and methods are not yet widely known to
the general public, leading to a lack of confidence in the results
obtained. Thus, it is trying to reach the concept of Responsible
Artificial Intelligence as a methodology for the widespread
implementation of AI methods in real life with correctness,
explainability and responsibility (Arrieta et al., 2020). Deep
reinforcement learning has recently been introduced to support
socially responsible investments and portfolio optimization to
achieve superior financial performance and a significant social
impact (Vo et al., 2019). It is increasingly clear that the development
of research in this area is closely linked to the capacity to ensure the
transparency and explainability of the proposed models.

The increasing application of ML techniques to build portfolios
and the concern in parallel on the ethical dimension of AI increases
the interest in understanding how the different features interact and
impact themodel portfolio performance. At this point, XAI ensures
the acceptance and adoption of AI-driven services and products.
Still, it is only one of the four categories of trustworthiness
technologies for machine learning, namely Fairness, Explainability,
Auditability and Safety (FAES) (Toreini et al., 2020). At this stage,
the starting point is the map of social sciences concepts such as
ability, benevolence, integrity or predictability and linking these
with AI framework showing their behavior in understandable terms
for humans (Doshi-Velez and Kim, 2017). In this way, XAI helps
compare different models and create rules for decision-making in
which the underlying model can be explained to the users.

The concept of Shapley value introduced in cooperative game
theory tells us how much each feature contributes to a specific
result of the ML model (Lundberg and Lee, 2017; Lundberg et al.,
2018). SHapley Additive exPlanation (SHAP) methodology allows
us to quantify a model in an agnostic way, and we can see two
approaches to address the interpretability issue of ML (Joseph,
2020): variable attributions via the decomposition of individual
predictions (local attribution) and importance scores for the model
as a whole (global attribution). Shapley values are the contributions
of each feature to the overall crash logit probability. From the
methodological perspective, the interpretation approaches for deep
learning also have twomain categories: surrogatemodel and feature
importance extraction. Surrogate models use an explainable model,
such as a decision tree, rule sets, linear models or generalized
additive models, to proxy the neural network to be interpreted
(Cong et al., 2020). Following are some examples of the application
of the SHAP methodology. For instance, Jaeger et al. (2021) regress
the Calmar ratio spread of HRP vs. Equal Risk Contribution
(ERC) against statistical bootstrapped features applying Shapley
framework showing insightful explanations. Schwendner et al.
(2021) present a conceptual framework namedAdaptive Seriational
Risk Parity (ASRP) to extend HRP as an asset allocation heuristic
using the SHAP framework to explain the resulting performance
with features of synthetic market data. Also, referring to synthetic
data, Papenbrock et al. (2021) evaluates three competing machine
learning methods to regress the portfolio risk spread between
both allocation methods against statistical features of the synthetic
correlation matrices and then discusses the local and global feature
importance using the SHAP framework. Benhamou et al. (2021a)
apply Shapley values to provide a global understanding and local

explanations of a proposed gradient boosting decision tree (GBDT)
to plan regime changes of S&P 500 from a set of 150 technical,
fundamental and macroeconomic features.

At this stage, it is interesting to bring here the debate of the
dichotomy between the accurate Black Box and the not-so-accurate
transparent model where Rudin and Radin (2019) referred to as
complexity bias. We tend to find the complex more appealing
than the simple. The belief that accuracy must be sacrificed for
interpretability is inaccurate, and it explains the problems that
have resulted from the use of black box models for high-stakes
decisions throughout society, mainly in the finance domain. Going
further, trusting a black box model means trusting the model’s
equations and the entire database from which it was built. In this
way, for instance, Philps et al. (2021) proposes a symbolic artificial
intelligence (SAI) for stock selection, a form of satisfying, provides
an alternative to factor investing and overcomes the interpretability
issues of many machine learning (ML) approaches by applying
learns simple, interpretable investment rules using the non-linear
power of a simple ML approach.

XAI, as an extension of ML techniques, is directly applicable to
another use-case on finance linked to the automated management
of the asset portfolio allocation. This leads us to the concept of
Robo-Advisors (RAs) who offer automated online portfolios, which
are currently one of the significant parts of the Fintech Revolution
and likely one of the most disruptive trends in wealth and asset
management nowadays (Beketov et al., 2018). The takeover of the
robots-assets under management in the RA segment is projected
to reach US$1,427,650m in 2021 with an annual growth rate
2021 of 34.8% and foreseen 18.78% yearly growth in 2021–2025,
resulting in a projected total amount of US$2,842,101 m by 2025
Statista (2021). Two parts of the process operated by RA are
crucial: (1) client profiling and (2) asset allocation. There is an
abundance of research that demonstrates the interest in the subject
and others that shows how RA improves portfolio performance
(D’Acunto and Rossi, 2020; Hong et al., 2020; Rossi and Utkus,
2020; Bianchi and Briere, 2021a,b). The counterpart of this new
trend is the increased opacity, missing accountability, transparency
and financial inclusion. At his point, it becomes essential to design
and implement trusted AI-based systems (Toreini et al., 2020) and
again, XAI emerges as one of the most critical contributions from
the ML landscape.

XAI has developed processes that explain already trained neural
networks based on generating synthetic data in another research
direction. It is a complex discussion about which XAI method
gives the best results and whether the explanations can be reliable
(Arras et al., 2022). A comprehensive approach to generating
synthetic data uses a Generative Adversarial Network (GAN).
Some authors have explored the possibilities of overcoming the
difficulties of establishing the correct set of hyperparameters in
the case of GAN by using reinforcement learning and Bayesian
optimizations. They combine the Multi-Model-based Hybrid
Prediction Algorithm with the GAN-based Hybrid Prediction
Algorithm. Further, they obtained an improved model named
Multi-Model Generative Adversarial Network Hybrid Prediction
Algorithm for stock market prices prediction (Polamuri et al.,
2021). The learning process approach based on a predictive
probabilistic neural network corresponds to a different way of
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using training in the Conditional Generative Adversarial Networks
(cGAN) as a predictive model in portfolio optimization, stock
market prediction and trade execution (Zhang et al., 2019; Lee and
Seok, 2021).

Summarizing XAI subject, there is no doubt how ML is
becoming mainstream for investment management (Table 11), but
the debate that has only just begun is how most ML approaches
suffer from black-box problem, which is part of the agenda in
increasing finance group discussions arising XAI as a key tool for
Customers, Regulators, Practitioners and Risk Managers.

7.2 Case study of XAI application to
portfolio management

XAI has emerged as a crucial component in the field
of portfolio management. Given the complexity of financial
markets and the myriad factors affecting asset prices, investment
decisions are increasingly informed by sophisticated machine
learning models often seen as “black boxes” due to their inherent
complexity and lack of interpretability. This lack of transparency
can be problematic in a portfolio management context where
understanding the reasons behind predictions is vital for risk
management and strategic decision-making. XAI comes into play
here by providing insights into what themodel has learned and how
it makes decisions. It provides a way to unravel the complex web
of calculations machine learning models perform, intense learning
ones.

Specifically, XAI techniques are essential for portfolio
allocation decisions and for predicting returns using machine
learning. Fund managers need to know why certain assets are
favored by the model when allocating resources among various
assets in a portfolio. This understanding helps identify the critical
drivers behind portfolio allocation, improve trust in the model’s
decisions, and make more informed allocation adjustments.
Regarding return predictions, explainability can reveal the model’s
sensitivity to certain features. It can also help ensure regulatory
compliance, as financial regulators often require firms to explain
their algorithmic decision-making processes. Thus, in portfolio
choices and return predictions, XAI is critical in enhancing
transparency, promoting trust, and ensuring better governance
when using AI in portfolio management.

8 Discussion

The magic of AI is its ability to process big data at speed
and accuracy that is not achievable by humans or conventional
methods, to learn from the data and its mistakes, and to evolve
and cope with high-complexity tasks. The primary role of the
paper is to systematically review the existing state-of-the-art AI
approaches used for asset allocation in each step of the portfolio
management framework. However, the rapid surge in performance
of sophisticated AI-powered systems turned them into black-box
models, raising uncertainties about how the decisions are generated
(Linardatos et al., 2021). This perfectly explains why the adoption
of AI in finance still struggles, as high-speed investment decision-
making should satisfy requirements such as reliability/soundness,

accountability, transparency, fairness and ethics, which have been
declared as the critical determinants of trustworthy solutions
(Prenio and Yong, 2021). As a result, XAI has gained increased
attention as a means (1) to develop more explainable models
while preserving a high level of learning performance and (2)
to enable humans to understand how the model works at its
core, appropriately trust, and embrace the benefits of AI as
artificially intelligent advisor or autonomous system (Arrieta et al.,
2020).

The field of XAI, being comparatively new, is a rapidly
growing body of research and, therefore, is still very fragmented.
On the one hand, as an alternative to transparent/interpretable
models, we observe a continuous development of different post-
hoc explainability approaches and their extensions, which broadly
could be categorized intomodel-agnostic andmodel-specific (PWc,
2018; Arrieta et al., 2020). On the other hand, in parallel, the
conceptual frameworks, standards, and requirements are being
published in their early stages by different bodies of the financial
market. For example, in response to AI-powered risk, the draft
EU regulatory framework on AI named the AI Act, was published
in April 2021 (The European Commission, 2021). Under the
proposed AI Act, a technology-neutral definition of AI system is
established, and a risk-based classification is laid down, introducing
prohibited AI systems, high-risk AI systems, AI systems subject
to transparency requirements, and low-risk AI systems. This
implies that different requirements and obligations will be applied
accordingly, but this has not been settled definitively. Based on
its current version, it may be concluded that the intelligent AI-
powered portfolio management system is assigned to a low-risk
case. As another example, in 2022, the Bank of England and the
Financial Conduct Authority published their report on Artificial
Intelligence Public-Private Forum (The Bank of England and the
Financial Conduct Authority, 2022) summarizing the dialogue
between the public sector, the private sector, and academia on
AI. In the context of the use of AI in savings and investment
management, the authors posed a potential AI-powered risk on
markets in case AI becomes more widely used in institutional
fund products, as this could lead to a “herd” behavior due to
the similar data and models used or through concentrations in
the networks used to transfer data and models, which ultimately
affect consumers, firms, and the financial system. It has been
envisioned as future steps that an industry body for practitioners
could build trustworthy AI. At the same time, the regulators should
support the innovation and accommodation of AI by clarifying
how existing policies and regulations and policies apply to AI.
Comparatively, in the report of IOSCO on the use of AI and
ML by market intermediaries and asset managers (The Board of
the International Organization of Securities Commissions, 2021),
the areas such as (1) governance and oversight, (2) algorithm
development, testing and ongoing monitoring, (3) data quality
and bias, (4) transparency, and explainability, (5) outsourcing,
and (6) ethical concerns were highlighted, where potential risks
and harms may arise to AI-powered product development.
Based on the responses received, the guidance consisting of
six measures that reflect expected standards of conduct by
market intermediaries and asset managers using AI is provided.
Moreover, as the use of AI evolves in line with technological
advances, the regulatory framework will need to be updated in
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TABLE 11 Transparency and explainability.

Application
purpose

Method/data Description References

Transparency and XAI Responsible AI, Deep Responsible
Investment Portfolio (DRIP)

The transparency and explainability of models using AI are
crucial for any organization that uses AI. AI tools often lack
widespread public awareness, contributing to a lack of confidence
in their results. Encouraging professionals from various fields to
understand the benefits of AI in their activities is crucial,
overcoming initial reluctance due to perceived lack of clarity

Vo et al., 2019;
Arrieta et al., 2020;
Dwivedi et al., 2021;
Ng et al., 2021

Identification of how ML
impact trust frameworks
are drawn

ABI (Ability, Benevolence,
Integrity) principles

Authors identify how trust can be enhanced in the various stages
of an AI-based system’s life-cycle, specifically the design,
development and deployment stages (AI chain of trust)

Toreini et al., 2020

Evaluation of
interpretability

Taxonomy of Interpretability
Evaluation

Authors hypothesize factors that may be the latent dimensions of
interpretability (global vs. local; Area, Severity of Incompleteness;
Time constraints; Nature of User Expertise)

Doshi-Velez and
Kim, 2017

Understanding why a
model makes a specific
prediction

SHapley Additive exPlanation
(SHAP)

Presentation of several different estimation methods for SHAP
values, along with proofs and experiments showing what values
are desirable

Lundberg and Lee,
2017; Lundberg
et al., 2018

Insights qualifying
generic statistical
learning processes

Shapley-Taylor decomposition for
a generic inference framework

Estimation of heterogeneous treatment effects in simulated and
real-world randomized experiments

Joseph, 2020

Portfolio construction Reinforcement-learning-based
portfolio management

Authors propose a polynomial-feature-sensitivity (and
textual-factor) analysis to project the model onto linear regression
(and natural language) space for greater transparency and
interpretation

Cong et al., 2020

Benchmark rule-based
investment strategies

Calmar ratio spread between HRP
and ERC

Authors regress the Calmar ratio spread of portfolio allocation
backtests against statistical features of bootstrapped futures return
datasets using XGBoost and apply the SHAP framework to
discuss the local and global feature importance

Jaeger et al., 2021

Asset allocation heuristic ASRP Benchmarking of the standard HRP with other static and adaptive
tree-based methods in backtests, as well as ASRP methods by
SHAP framework

Schwendner et al.,
2021

Construction of robust
investment portfolios

Evolutionary algorithms to
simulate synthetic correlation
matrices

An explainable machine learning program links the synthetic
matrices to the portfolio volatility spread of hierarchical risk
parity vs. equal risk contribution

Papenbrock et al.,
2021

Identification of stock
crisis variables

GBDT Robust identification of the most important variables planning
stock market crises, and a local explanation of the crisis
probability at each date through a features attribution

Benhamou et al.,
2021a

tandem to address new emerging risks. And finally, any data-
specific solution should inevitably align with GDPR principles
(The European Commission, 2016, 2019). According to Tang
(2019), adopting AI may violate GDPR provisions concerning two
data-related rights, automated decision-making and the right to
erasure, and two GDPR principles, i.e., transparency and data
minimization.

As market intermediaries and institutional asset managers are
developing solutions and products based on AI innovations, there
is an increasing need to create and use AI-specific standards,
which are now at a very conceptual level. Investment businesses
are generally regulated at four levels: financial service providers
as companies, product structure, product sales, and markets.
As AI standardization is still in its early stages, we may only
hypothesize that we expect an update of transparency regulation
at the product level. For example, already today, a UCITS fund
“should not invest in financial indices whose methodology for
the selection and the rebalancing of the components is not
based on a set of pre-determined rules and objective criteria”
according to ESMA guidelines (ESMA, 2014, par. 58). This

excludes dynamically learned rules from an AI system to create an
index suitable as a reference underlying. Furthermore, we expect
updated regulation at the market level. The FCA report (FCA,
2018) reviews excellent and bad algorithmic trading practices.
MiFID II addresses algorithmic trading, but ESMA (2021) points
out “that the use of algorithms which only serve to inform a
trader of a particular investment opportunity is not considered
as algorithmic trading, provided that the execution is not
algorithmic”. Regulators prefer human oversight and judgement
to fully automated systems. We speculate future regulation might
require explainable AI concepts to enable humans to realize this
oversight better.

So, it seems that much work still has to be done to
retain control and safety, maintain trust and ethics, and
comply with accountability and regulation. Ultimately, it
may be concluded that the success of AI applications for
portfolio management, and more generally, the products
and services provided in the financial sector, will be
only guaranteed if all these AI-related principles are
harmonized.
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