A faster FPTAS for makespan minimization with
time-dependent agreeable V-shaped processing times

Nir Halman' and Helmut A. Sedding?

! Bar-Tlan University Ramat-Gan, Israel
nir.halman@biu.ac.il
2 ZHAW, Institute of Data Analysis and Process Design, Switzerland
helmut.sedding@zhaw.ch

Keywords: time-dependent scheduling, FPTAS, K-approximation sets and functions,
monotone dynamic programming.

1 Introduction

Scheduling jobs with time-dependent V-shaped processing times on a single machine
minimizing makespan Cl .y is an NP-hard scheduling problem even if all jobs have the same
slopes, but it permits a fully polynomial time approximation scheme (FPTAS), even for
job-dependent slopes if they are agreeable (Sedding 2020a). We improve the FPTAS run-
time by factor 1/¢ (up to log terms) by giving an alternative dynamic programming (DP)
formulation and employing the recent advances in Alon & Halman (2021) that let us apply
the technique of K-approximation sets and functions.

Job deterioration is a common theme in time-dependent scheduling (Gawiejnowicz 2020,
Sedding 2020a): The processing time is linearly dependent on the job’s start time ¢, defined
by function p;(t) = ¢; 4 b;t for basic processing time £; > 0 and slope b; > 0. Minimization
of Crax requires to order the jobs by ¢;/b; nondecreasingly (jobs with b; = 0 last).

We study the extension to shortening as well as deteriorating processing times in a V-
shape (Sedding 2020a), which model walking time for assembly operations, from a moving
assembly line to a statically positioned supply at the line side. Constant times can only
upper bound that, and are 51% higher in an extended case in Sedding (2023).

An instance specifies rational-valued £; > 0, b; > 0, a shortening slope 0 < a; <1, and
a common ideal start time 7. Then, a job’s processing time is defined by

p;(t) = ¢; + max{—a; (t —7), b; (t —7)}. (1)

A solution is then structured into three parts (in that order): a first sequence S; that
completes strictly before 7, a straddler job y that starts no later than at 7 and completes
not earlier than at 7, and a second sequence Ss. Interestingly, the straddler job is not
necessarily the shortest job. Within sequence Ss, jobs are sorted nondecreasingly by ¢;/b;;
while in Sq, they are sorted nonincreasingly by ¢;/a;. Hence, solving an instance involves
to select a straddler job, and a partition of the other jobs into the two sorted sequences.
This problem is NP-hard already for common slopes (a¢; = a and b; = b), which is shown
in Sedding (2020a), as well as for the all-zero a; case (Kononov 1997, Kubiak & van de
Velde 1998), and the for all-zero b; case (Cheng, Ding, Kovalyov, Bachman & Janiak 2003).

Let us only consider the special case where the basic processing times and slopes have
agreeable ratios: £;/a; < £j/a; <= {£;/b; < £;/b; for any pair of two jobs 4, j. This case
still permits an FPTAS, which is shown in Sedding (2020a). We give a faster FPTAS based
on the technique of K-approximation sets and functions, introduced in Halman, Klabjan,
Mostagir, Orlin & Simchi-Levi (2009), by reformulating the problem as a certain monotone
dynamic program (DP) that falls into the FPTAS framework of Alon & Halman (2021).

Employing it allows us to omit an explicit algorithm statement, and directly conclude
running time and approximation error. The resulting FPTAS’s runtime dependency on
n is in O(n®), and is linear in 1/¢ up to log terms, i.e., faster by a factor of 1/¢ up
to log terms than the tailor-made FPTAS in Sedding (2020a). As the considered problem
includes special cases like all-zero a; slopes, or all-zero b; slopes, specialized FPTASes (Cali,
Cai & Zhu 1998, Halman 2020, Kovalyov & Kubiak 1998, Kovalyov & Kubiak 2012, Ji &
Cheng 2007, Sedding 2020b) can be substituted with our approach.

2 Dynamic Program

Based on the DP in Sedding (2020a), we introduce an alternative formulation as a
certain monotone DP. First of all, reindex the jobs such that the straddler job x is job n+1.
Let state x of the n-stages dynamic program denote the (exact) completion time of the
sequence of jobs that are executed before time 7, assuming that it can start being processed
as early as time 0 (to be called first sequence Sy, containing jobs from set {1,...,5}).
Because the straddler job starts by 7, the range of the state space for x is the rational
valued interval [0, 7]. For every stage j = 1,...,n, we define two functions of the state .

The first function, denoted by z;(z), refers to a second sequence S3(z) scheduled to
start exactly at 7 that minimizes the objective for all jobs 1,...,, and contains only the
jobs {1,...,7}\ S7. The value of z;(z) is explicitly not the objective value, but rather the
makespan of Sg (z) from 7 to the completion time of the last job in the sequence. This
makespan can be derived from Sedding (2020a, Eq. (6)) and, given state 2 and defining
F(i,83(x)) C S5(x) as the set of jobs that follow job i in S5 (z), is equivalent to

2; (I) = Zzes’%(w) (EZ . erF(i,Sg(I))(l + bf)) . (2)

After stage n, the straddler job x is appended to the end of the first sequence S7, then
the second sequence S3 follows, and the resulting completion time is the objective value.
To calculate it, we use a second function, denoted by y;(x), that describes the proportional
increase of sequence SJ(z)’s makespan z;(z) if increasing its start time, when having the
jobs in §7(z) and S (x) as determined by the state variable z (see below).

Algorithm 1 (DP). The alternative dynamic programming algorithm’s steps are as follows.

1. Initialize functions zo(-) = 0 and yo(-) = 1 over their entire domain [0, 7].
2. For all j from 1 to n:
(a) To append job j to the end of Sp, define

2(z) =21 (M) li+amr<az<T. (3a)

17(1]‘
To prepend job j to the beginning of Ss, define

2Nx) =4 yi—1(x) + zj—1(x), 0<z<T. (3b)
(b) For Sy’s makespan, define

1 'f0< é .
zj(a?):{z (), if0<a<¥;+a;r, 0o<z<r (30)

min{z'(z), 2" ()}, ifl;+a;7 <z <,
(¢) For Sy’s start-time-dependent makespan increase, define, for 0 < z <7,
(1+0b;) yj—1(z), if0<z<t;+ay,
y;(x) = (14b;)-yj—1(z), ifl;+a;7 <z <7andzjx)=2"(z), (3d)
Yi—1 (w) , il +a;7 <z <7and z(z) = ().

1—aj

3. Return completion time
Cluw = Inf_{7 -+ yn (@) -mac{ + py (&) — 7, 0} + 20 (2}, (3¢)

Let us explain the DP recursion. Regarding function 2/(-) in Step 2(a), to attain that
job j finishes at time x, we need job j — 1 to finish at time I_fj_% If ¢; + aj7 > 7,
then the domain of the function is empty, i.e., job j cannot be processed as a job of the
first sequence because even if starting at time zero, it will finish after time 7. In this
case, function 2’ is undefined, in Step 2(b) we set z;(z) = 2”(x), and in Step 2(c) we set
yi(@) = (1+b;) - yj-1(z).

Suppose the infimum in Step 3 is reached at a point z*. The overall job sequence then
is S = S7(z*), (x), S¥(2*) and can be found by backtracking. If in stage j the state’s value
when performing backtracking from z,(z*) (i.e., the corresponding value of z7 in z;(z}))
was generated by assigning the value of zj(z7) to z;(z}) (hence ¥} = x}_; +£; +a; - (T —
x7_1)), then we append job j to the end of S{fl. If it instead was generated by assigning
the value of 2" (2*) to z;(z*) (hence 2§ = z5_,), we insert job j to the beginning of st
In Step 3, the straddler job y is appended to the end of S} (z*), and S§(z*) is started at
max{z* +py(z*), 7} with p, asin (1). If x completes strictly before 7, idle time is inserted
before starting the second sequence such that it starts precisely at 7; in this case the result
is dominated by a solution for another straddler job.

3 Fully Polynomial Time Approximation Scheme

Alon & Halman’s (2021) framework is used to derive an FPTAS for the DP. For the
ease of presentation, instead of referring directly to Alon & Halman (2021), we cite from
the concise summary available in Gawiejnowicz, Halman & Kellerer (2023, Appendix A).

We convert the DP (Algorithm 1) to integer values by multiplying all input numbers
T=qr /T, 45 = q; /Te;, @ = qa; [Tay, b = qv; /T, bY M := 17 H?Zl(rgj “Ta; (Ta; —Ga;)Tb;)-
Note that the factor (ry; —qq;) turns 1/(1 —a;) in (3a) into an integer, since 1/(1 —a;) =
/(1 = qa;/Ta;) = Ta;/(Ta; — qa;)- Doing so, the state space of = becomes the integer
interval [0,1,...,7M]. Moreover, we divide the output value in (3e) by M to get back the
unscaled objective value. Therefore, the DP is solved in O(n - M) time, which is to be
repeated for each possible straddler job. Observing that M is in O(N*"+1) for

N = j:Hll?.x.,n{qT’ Try4e;57¢;,9a;,Ta;sqb;5 T'b; }a (4)
we conclude that the DP runtime is exponential in the number of input items (and is
therefore not pseudo-polynomial).

Nevertheless, the DP (Algorithm 1) can be seen as a special case of Gawiejnowicz et al.
(2023, Eq. (12)) in the following sense: (i) we set the level index ¢ to be the index j and
therefore the number of levels is T' = n, i.e., the number of jobs to schedule; (ii) regarding
DP equation (12) in Gawiejnowicz et al. (2023), we set f;1 = 2z and fi o = yq, therefore
the other index i is either 1 or 2, and m = 2; (iii) we set the state variable I; ; to be z, i.e.,
the completion time of the sequence of jobs that are executed before time 7; (iv) for every
pair of levels ¢ and i we set the additional information A, ;(z) to be the conditions stated
in step 2 of the DP, which determine the values of f;; in each case; (v) when considering
level ¢ in Gawiejnowicz et al. (2023, Eq. (12)), instead of using all previously calculated
{zrjo<r<t,i<j<2, we use only {z, j}r=¢t—1,1<j<2; (vi) we set the boundary functions to be
fo1 =0and fo2 = 1. Thus, from (i)—(vi), we conclude that DP (Algorithm 1) is indeed a
special case of Gawiejnowicz et al. (2023, Eq. (12)).

Next, we set a bound U, on the ratio between the maximal value of functions z;(-), y;(-)
and their minimal non-zero value to be U, < (M N)™ (e.g., the product H?Zl(l +b;) after
the scaling), and a bound Ug on the cardinality of the state space to be Us = M N.

Functions y,(x) and z;(z), for j = 1,...,n, are monotone non-increasing, since as x
grows the problem becomes less constrained, i.e., there is more space available for scheduling
jobs between 0 and x. Therefore, the DP (Algorithm 1) is monotone and Condition A.1
in Gawiejnowicz et al. (2023) is satisfied; as well, it can be shown that Conditions 2-4(i) are
satisfied, which grant us an approximated DP. Its last step is polynomial since computing
the infimum in (3e) corresponds to calculating the minimum in the pseudo-polynomial
state space [0, 1, ..., M7] while the approximated functions yy, z, are step functions with a
polynomial number of steps. Finally, we use parameter value 7y € O(n) to apply Theorem 4
in Gawiejnowicz et al. (2023) for each possible straddler job, and obtain an FPTAS.

Theorem 1. There exists an FPTAS to minimize the makespan Cpax on a single machine

with time-dependent V-shaped processing times that runs in (9(%6 -log® N - log %)

time, where N is the maximal value of the numbers in the input, as defined in equation (4).

This runtime is by 1/¢ (up to log terms) lower than Sedding’s (2020a) FPTAS runtime,
which is in O("— 10g(1 + bunax) - (10g(1 + bynax) + 71 - log(1 + bmax))).

References

Alon, T. & Halman, N. (2021), ‘Automatic generation of FPTASes for stochastic monotone dy-
namic programs made easier’, STAM Journal on Discrete Mathematics 35(4), 2679-2722.
Cai, J.-Y., Cai, P. & Zhu, Y. (1998), ‘On a scheduling problem of time deteriorating jobs’, Journal

of Complexity 14(2), 190-209.

Cheng, T. C. E., Ding, Q., Kovalyov, M. Y., Bachman, A. & Janiak, A. (2003), ‘Scheduling jobs
with piecewise linear decreasing processing times’, Naval Research Logistics 50(6), 531-554.

Gawiejnowicz, S. (2020), ‘A review of four decades of time-dependent scheduling: Main results,
new topics, and open problems’, Journal of Scheduling 23(1), 3-47.

Gawiejnowicz, S., Halman, N. & Kellerer, H. (2023), ‘Knapsack problems with position-dependent
item weights or profits’, Annals of Operations Research 326(1), 137-156.

Halman, N. (2020), ‘A technical note: Fully polynomial time approximation schemes for minimizing
the makespan of deteriorating jobs with nonlinear processing times’, Journal of Scheduling
23(6), 643-648.

Halman, N., Klabjan, D., Mostagir, M., Orlin, J. & Simchi-Levi, D. (2009), ‘A fully polynomial-
time approximation scheme for single-item stochastic inventory control with discrete demand’,
Mathematics of Operations Research 34(3), 674-685.

Ji, M. & Cheng, T. C. E. (2007), ‘An FPTAS for scheduling jobs with piecewise linear decreasing
processing times to minimize makespan’, Information Processing Letters 102(2-3), 41-47.
Kononov, A. V. (1997), ‘On schedules of a single machine jobs with processing times nonlinear in

time’; Discrete Analysis and Operational Research 391, 109-122.

Kovalyov, M. Y. & Kubiak, W. (1998), ‘A fully polynomial approximation scheme for minimizing
makespan of deteriorating jobs’, Journal of Heuristics 3(4), 287-297.

Kovalyov, M. Y. & Kubiak, W. (2012), ‘A generic FPTAS for partition type optimisation prob-
lems’, International Journal of Planning and Scheduling 1(3), 209-233.

Kubiak, W. & van de Velde, S. L. (1998), ‘Scheduling deteriorating jobs to minimize makespan’,
Naval Research Logistics 45(5), 511-523.

Sedding, H. A. (2020a), ‘Scheduling jobs with a V-shaped time-dependent processing time’, Journal
of Scheduling 23(6), 751-768.

Sedding, H. A. (2020b), Time-Dependent Path Scheduling: Algorithmic Minimization of Walking
Time at the Moving Assembly Line, Springer Vieweg, Wiesbaden.

Sedding, H. A. (2023), ‘Mixed-model moving assembly line material placement optimization for a
shorter time-dependent worker walking time’, Journal of Scheduling.

