
A faster FPTAS for makespan minimization with
time-dependent agreeable V-shaped processing times

Nir Halman1 and Helmut A. Sedding2

1 Bar-Ilan University Ramat-Gan, Israel
nir.halman@biu.ac.il

2 ZHAW, Institute of Data Analysis and Process Design, Switzerland
helmut.sedding@zhaw.ch

Keywords: time-dependent scheduling, FPTAS, K -approximation sets and functions,
monotone dynamic programming.

1 Introduction

Scheduling jobs with time-dependent V-shaped processing times on a single machine
minimizing makespan Cmax is an NP-hard scheduling problem even if all jobs have the same
slopes, but it permits a fully polynomial time approximation scheme (FPTAS), even for
job-dependent slopes if they are agreeable (Sedding 2020a). We improve the FPTAS run-
time by factor 1/ε (up to log terms) by giving an alternative dynamic programming (DP)
formulation and employing the recent advances in Alon & Halman (2021) that let us apply
the technique of K -approximation sets and functions.

Job deterioration is a common theme in time-dependent scheduling (Gawiejnowicz 2020,
Sedding 2020a): The processing time is linearly dependent on the job’s start time t, defined
by function pj(t) = ℓj+bjt for basic processing time ℓj ≥ 0 and slope bj ≥ 0. Minimization
of Cmax requires to order the jobs by ℓj/bj nondecreasingly (jobs with bj = 0 last).

We study the extension to shortening as well as deteriorating processing times in a V-
shape (Sedding 2020a), which model walking time for assembly operations, from a moving
assembly line to a statically positioned supply at the line side. Constant times can only
upper bound that, and are 51% higher in an extended case in Sedding (2023).

An instance specifies rational-valued ℓj ≥ 0, bj ≥ 0, a shortening slope 0 ≤ aj ≤ 1, and
a common ideal start time τ . Then, a job’s processing time is defined by

pj(t) = ℓj +max{−aj (t− τ), bj (t− τ)}. (1)

A solution is then structured into three parts (in that order): a first sequence S1 that
completes strictly before τ , a straddler job χ that starts no later than at τ and completes
not earlier than at τ , and a second sequence S2. Interestingly, the straddler job is not
necessarily the shortest job. Within sequence S2, jobs are sorted nondecreasingly by ℓj/bj ;
while in S1, they are sorted nonincreasingly by ℓj/aj . Hence, solving an instance involves
to select a straddler job, and a partition of the other jobs into the two sorted sequences.
This problem is NP-hard already for common slopes (aj = a and bj = b), which is shown
in Sedding (2020a), as well as for the all-zero aj case (Kononov 1997, Kubiak & van de
Velde 1998), and the for all-zero bj case (Cheng, Ding, Kovalyov, Bachman & Janiak 2003).

Let us only consider the special case where the basic processing times and slopes have
agreeable ratios : ℓi/ai ≤ ℓj/aj ⇐⇒ ℓi/bi ≤ ℓj/bj for any pair of two jobs i, j. This case
still permits an FPTAS, which is shown in Sedding (2020a). We give a faster FPTAS based
on the technique of K-approximation sets and functions, introduced in Halman, Klabjan,
Mostagir, Orlin & Simchi-Levi (2009), by reformulating the problem as a certain monotone
dynamic program (DP) that falls into the FPTAS framework of Alon & Halman (2021).



Employing it allows us to omit an explicit algorithm statement, and directly conclude
running time and approximation error. The resulting FPTAS’s runtime dependency on
n is in O(n6), and is linear in 1/ε up to log terms, i.e., faster by a factor of 1/ε up
to log terms than the tailor-made FPTAS in Sedding (2020a). As the considered problem
includes special cases like all-zero aj slopes, or all-zero bj slopes, specialized FPTASes (Cai,
Cai & Zhu 1998, Halman 2020, Kovalyov & Kubiak 1998, Kovalyov & Kubiak 2012, Ji &
Cheng 2007, Sedding 2020b) can be substituted with our approach.

2 Dynamic Program

Based on the DP in Sedding (2020a), we introduce an alternative formulation as a
certain monotone DP. First of all, reindex the jobs such that the straddler job χ is job n+1.
Let state x of the n-stages dynamic program denote the (exact) completion time of the
sequence of jobs that are executed before time τ , assuming that it can start being processed
as early as time 0 (to be called first sequence Sj

1, containing jobs from set {1, . . . , j}).
Because the straddler job starts by τ , the range of the state space for x is the rational
valued interval [0, τ ]. For every stage j = 1, . . . , n, we define two functions of the state x.

The first function, denoted by zj(x), refers to a second sequence Sj
2(x) scheduled to

start exactly at τ that minimizes the objective for all jobs 1, . . . , j, and contains only the
jobs {1, . . . , j} \ Sj

1. The value of zj(x) is explicitly not the objective value, but rather the
makespan of Sj

2(x) from τ to the completion time of the last job in the sequence. This
makespan can be derived from Sedding (2020a, Eq. (6)) and, given state x and defining
F (i, Sj

2(x)) ⊂ Sj
2(x) as the set of jobs that follow job i in Sj

2(x), is equivalent to

zj(x) =
∑

i∈Sj
2(x)

(
ℓi ·

∏
f∈F (i,Sj

2(x))
(1 + bf )

)
. (2)

After stage n, the straddler job χ is appended to the end of the first sequence Sn
1 , then

the second sequence Sn
2 follows, and the resulting completion time is the objective value.

To calculate it, we use a second function, denoted by yj(x), that describes the proportional
increase of sequence Sj

2(x)’s makespan zj(x) if increasing its start time, when having the
jobs in Sj

1(x) and Sj
2(x) as determined by the state variable x (see below).

Algorithm 1 (DP). The alternative dynamic programming algorithm’s steps are as follows.

1. Initialize functions z0(·) ≡ 0 and y0(·) ≡ 1 over their entire domain [0, τ ].
2. For all j from 1 to n:

(a) To append job j to the end of S1, define

z′(x) = zj−1

(
x−ℓj−ajτ

1−aj

)
, ℓj + ajτ ≤ x ≤ τ. (3a)

To prepend job j to the beginning of S2, define

z′′(x) = ℓj · yj−1(x) + zj−1(x), 0 ≤ x ≤ τ. (3b)

(b) For S2’s makespan, define

zj(x) =

{
z′′(x), if 0 ≤ x < ℓj + ajτ,

min{z′(x), z′′(x)}, if ℓj + ajτ ≤ x ≤ τ,
0 ≤ x ≤ τ. (3c)

(c) For S2’s start-time-dependent makespan increase, define, for 0 ≤ x ≤ τ ,

yj(x) =


(1 + bj) · yj−1(x), if 0 ≤ x < ℓj + ajτ,

(1 + bj) · yj−1(x), if ℓj + ajτ ≤ x ≤ τ and zj(x) = z′′(x),

yj−1

(
x−ℓj−ajτ

1−aj

)
, if ℓj + ajτ ≤ x ≤ τ and zj(x) = z′(x).

(3d)



3. Return completion time

Cχ
max = inf

0≤x≤τ
{τ + yn(x) ·max{x+ pχ(x)− τ, 0}+ zn(x)}. (3e)

Let us explain the DP recursion. Regarding function z′(·) in Step 2(a), to attain that
job j finishes at time x, we need job j − 1 to finish at time x−ℓj−ajτ

1−aj
. If ℓj + ajτ > τ ,

then the domain of the function is empty, i.e., job j cannot be processed as a job of the
first sequence because even if starting at time zero, it will finish after time τ . In this
case, function z′ is undefined, in Step 2(b) we set zj(x) ≡ z′′(x), and in Step 2(c) we set
yj(x) ≡ (1 + bj) · yj−1(x).

Suppose the infimum in Step 3 is reached at a point x∗. The overall job sequence then
is S = Sn

1 (x
∗), (χ), Sn

2 (x
∗) and can be found by backtracking. If in stage j the state’s value

when performing backtracking from zn(x
∗) (i.e., the corresponding value of x∗

j in zj(x
∗
j ))

was generated by assigning the value of z′j(x∗
j ) to zj(x

∗
j ) (hence x∗

j = x∗
j−1 + ℓj + aj · (τ −

x∗
j−1)), then we append job j to the end of Sj−1

1 . If it instead was generated by assigning
the value of z′′(x∗) to zj(x

∗) (hence x∗
j = x∗

j−1), we insert job j to the beginning of Sj−1
2 .

In Step 3, the straddler job χ is appended to the end of Sn
1 (x

∗), and Sn
2 (x

∗) is started at
max{x∗+pχ(x

∗), τ} with pχ as in (1). If χ completes strictly before τ , idle time is inserted
before starting the second sequence such that it starts precisely at τ ; in this case the result
is dominated by a solution for another straddler job.

3 Fully Polynomial Time Approximation Scheme

Alon & Halman’s (2021) framework is used to derive an FPTAS for the DP. For the
ease of presentation, instead of referring directly to Alon & Halman (2021), we cite from
the concise summary available in Gawiejnowicz, Halman & Kellerer (2023, Appendix A).

We convert the DP (Algorithm 1) to integer values by multiplying all input numbers
τ = qτ/rτ , ℓj = qℓj/rℓj , aj = qaj

/raj
, bj = qbj/rbj by M := rτ

∏n
j=1(rℓj ·raj

·(raj
−qaj

)·rbj ).
Note that the factor (raj − qaj ) turns 1/(1− aj) in (3a) into an integer, since 1/(1− aj) =
1/(1 − qaj/raj ) = raj/(raj − qaj ). Doing so, the state space of x becomes the integer
interval [0, 1, . . . , τM ]. Moreover, we divide the output value in (3e) by M to get back the
unscaled objective value. Therefore, the DP is solved in O(n · τM) time, which is to be
repeated for each possible straddler job. Observing that M is in O(N4n+1) for

N := max
j=1,...,n

{qτ , rτ , qℓj , rℓj , qaj
, raj

, qbj , rbj}, (4)

we conclude that the DP runtime is exponential in the number of input items (and is
therefore not pseudo-polynomial).

Nevertheless, the DP (Algorithm 1) can be seen as a special case of Gawiejnowicz et al.
(2023, Eq. (12)) in the following sense: (i) we set the level index t to be the index j and
therefore the number of levels is T = n, i.e., the number of jobs to schedule; (ii) regarding
DP equation (12) in Gawiejnowicz et al. (2023), we set ft,1 = zt and ft,2 = yt, therefore
the other index i is either 1 or 2, and m = 2; (iii) we set the state variable It,i to be x, i.e.,
the completion time of the sequence of jobs that are executed before time τ ; (iv) for every
pair of levels t and i we set the additional information At,i(x) to be the conditions stated
in step 2 of the DP, which determine the values of ft,i in each case; (v) when considering
level t in Gawiejnowicz et al. (2023, Eq. (12)), instead of using all previously calculated
{zr,j}0≤r<t,1≤j≤2, we use only {zr,j}r=t−1,1≤j≤2; (vi) we set the boundary functions to be
f0,1 ≡ 0 and f0,2 ≡ 1. Thus, from (i)–(vi), we conclude that DP (Algorithm 1) is indeed a
special case of Gawiejnowicz et al. (2023, Eq. (12)).



Next, we set a bound Uz on the ratio between the maximal value of functions zj(·), yj(·)
and their minimal non-zero value to be Uz ≤ (MN)n (e.g., the product

∏n
j=1(1+ bj) after

the scaling), and a bound US on the cardinality of the state space to be US = MN .
Functions yj(x) and zj(x), for j = 1, . . . , n, are monotone non-increasing, since as x

grows the problem becomes less constrained, i.e., there is more space available for scheduling
jobs between 0 and x. Therefore, the DP (Algorithm 1) is monotone and Condition A.1
in Gawiejnowicz et al. (2023) is satisfied; as well, it can be shown that Conditions 2–4(i) are
satisfied, which grant us an approximated DP. Its last step is polynomial since computing
the infimum in (3e) corresponds to calculating the minimum in the pseudo-polynomial
state space [0, 1, . . . ,Mτ ] while the approximated functions yn, zn are step functions with a
polynomial number of steps. Finally, we use parameter value τf ∈ O(n) to apply Theorem 4
in Gawiejnowicz et al. (2023) for each possible straddler job, and obtain an FPTAS.

Theorem 1. There exists an FPTAS to minimize the makespan Cmax on a single machine
with time-dependent V-shaped processing times that runs in O

(
n6

ε · log2 N · log n logN
ε

)
time, where N is the maximal value of the numbers in the input, as defined in equation (4).

This runtime is by 1/ε (up to log terms) lower than Sedding’s (2020a) FPTAS runtime,
which is in O

(
n5

ε2 · log(1 + bmax) · (log(1 + bmax) + n · log(1 + bmax))
)
.

References

Alon, T. & Halman, N. (2021), ‘Automatic generation of FPTASes for stochastic monotone dy-
namic programs made easier’, SIAM Journal on Discrete Mathematics 35(4), 2679–2722.

Cai, J.-Y., Cai, P. & Zhu, Y. (1998), ‘On a scheduling problem of time deteriorating jobs’, Journal
of Complexity 14(2), 190–209.

Cheng, T. C. E., Ding, Q., Kovalyov, M. Y., Bachman, A. & Janiak, A. (2003), ‘Scheduling jobs
with piecewise linear decreasing processing times’, Naval Research Logistics 50(6), 531–554.

Gawiejnowicz, S. (2020), ‘A review of four decades of time-dependent scheduling: Main results,
new topics, and open problems’, Journal of Scheduling 23(1), 3–47.

Gawiejnowicz, S., Halman, N. & Kellerer, H. (2023), ‘Knapsack problems with position-dependent
item weights or profits’, Annals of Operations Research 326(1), 137–156.

Halman, N. (2020), ‘A technical note: Fully polynomial time approximation schemes for minimizing
the makespan of deteriorating jobs with nonlinear processing times’, Journal of Scheduling
23(6), 643–648.

Halman, N., Klabjan, D., Mostagir, M., Orlin, J. & Simchi-Levi, D. (2009), ‘A fully polynomial-
time approximation scheme for single-item stochastic inventory control with discrete demand’,
Mathematics of Operations Research 34(3), 674–685.

Ji, M. & Cheng, T. C. E. (2007), ‘An FPTAS for scheduling jobs with piecewise linear decreasing
processing times to minimize makespan’, Information Processing Letters 102(2-3), 41–47.

Kononov, A. V. (1997), ‘On schedules of a single machine jobs with processing times nonlinear in
time’, Discrete Analysis and Operational Research 391, 109–122.

Kovalyov, M. Y. & Kubiak, W. (1998), ‘A fully polynomial approximation scheme for minimizing
makespan of deteriorating jobs’, Journal of Heuristics 3(4), 287–297.

Kovalyov, M. Y. & Kubiak, W. (2012), ‘A generic FPTAS for partition type optimisation prob-
lems’, International Journal of Planning and Scheduling 1(3), 209–233.

Kubiak, W. & van de Velde, S. L. (1998), ‘Scheduling deteriorating jobs to minimize makespan’,
Naval Research Logistics 45(5), 511–523.

Sedding, H. A. (2020a), ‘Scheduling jobs with a V-shaped time-dependent processing time’, Journal
of Scheduling 23(6), 751–768.

Sedding, H. A. (2020b), Time-Dependent Path Scheduling: Algorithmic Minimization of Walking
Time at the Moving Assembly Line, Springer Vieweg, Wiesbaden.

Sedding, H. A. (2023), ‘Mixed-model moving assembly line material placement optimization for a
shorter time-dependent worker walking time’, Journal of Scheduling.


