A faster FPTAS for makespan minimization with time-dependent agreeable V-shaped processing times

Nir Halman ${ }^{1}$ and Helmut A. Sedding ${ }^{2}$
${ }^{1}$ Bar-Ilan University Ramat-Gan, Israel
nir.halman@biu.ac.il
${ }^{2}$ ZHAW, Institute of Data Analysis and Process Design, Switzerland
helmut.sedding@zhaw.ch

Keywords: time-dependent scheduling, FPTAS, K-approximation sets and functions, monotone dynamic programming.

1 Introduction

Scheduling jobs with time-dependent V-shaped processing times on a single machine minimizing makespan $C_{\max }$ is an NP-hard scheduling problem even if all jobs have the same slopes, but it permits a fully polynomial time approximation scheme (FPTAS), even for job-dependent slopes if they are agreeable (Sedding 2020a). We improve the FPTAS runtime by factor $1 / \varepsilon$ (up to log terms) by giving an alternative dynamic programming (DP) formulation and employing the recent advances in Alon \& Halman (2021) that let us apply the technique of K-approximation sets and functions.

Job deterioration is a common theme in time-dependent scheduling (Gawiejnowicz 2020, Sedding 2020a): The processing time is linearly dependent on the job's start time t, defined by function $p_{j}(t)=\ell_{j}+b_{j} t$ for basic processing time $\ell_{j} \geq 0$ and slope $b_{j} \geq 0$. Minimization of $C_{\max }$ requires to order the jobs by ℓ_{j} / b_{j} nondecreasingly (jobs with $b_{j}=0$ last).

We study the extension to shortening as well as deteriorating processing times in a Vshape (Sedding 2020a), which model walking time for assembly operations, from a moving assembly line to a statically positioned supply at the line side. Constant times can only upper bound that, and are 51% higher in an extended case in Sedding (2023).

An instance specifies rational-valued $\ell_{j} \geq 0, b_{j} \geq 0$, a shortening slope $0 \leq a_{j} \leq 1$, and a common ideal start time τ. Then, a job's processing time is defined by

$$
\begin{equation*}
p_{j}(t)=\ell_{j}+\max \left\{-a_{j}(t-\tau), b_{j}(t-\tau)\right\} . \tag{1}
\end{equation*}
$$

A solution is then structured into three parts (in that order): a first sequence S_{1} that completes strictly before τ, a straddler job χ that starts no later than at τ and completes not earlier than at τ, and a second sequence S_{2}. Interestingly, the straddler job is not necessarily the shortest job. Within sequence S_{2}, jobs are sorted nondecreasingly by ℓ_{j} / b_{j}; while in S_{1}, they are sorted nonincreasingly by ℓ_{j} / a_{j}. Hence, solving an instance involves to select a straddler job, and a partition of the other jobs into the two sorted sequences. This problem is NP-hard already for common slopes ($a_{j}=a$ and $b_{j}=b$), which is shown in Sedding (2020a), as well as for the all-zero a_{j} case (Kononov 1997, Kubiak \& van de Velde 1998), and the for all-zero b_{j} case (Cheng, Ding, Kovalyov, Bachman \& Janiak 2003).

Let us only consider the special case where the basic processing times and slopes have agreeable ratios: $\ell_{i} / a_{i} \leq \ell_{j} / a_{j} \Longleftrightarrow \ell_{i} / b_{i} \leq \ell_{j} / b_{j}$ for any pair of two jobs i, j. This case still permits an FPTAS, which is shown in Sedding (2020a). We give a faster FPTAS based on the technique of K-approximation sets and functions, introduced in Halman, Klabjan, Mostagir, Orlin \& Simchi-Levi (2009), by reformulating the problem as a certain monotone dynamic program (DP) that falls into the FPTAS framework of Alon \& Halman (2021).

Employing it allows us to omit an explicit algorithm statement, and directly conclude running time and approximation error. The resulting FPTAS's runtime dependency on n is in $\mathcal{O}\left(n^{6}\right)$, and is linear in $1 / \varepsilon$ up to \log terms, i.e., faster by a factor of $1 / \varepsilon$ up to log terms than the tailor-made FPTAS in Sedding (2020a). As the considered problem includes special cases like all-zero a_{j} slopes, or all-zero b_{j} slopes, specialized FPTASes (Cai, Cai \& Zhu 1998, Halman 2020, Kovalyov \& Kubiak 1998, Kovalyov \& Kubiak 2012, Ji \& Cheng 2007, Sedding 2020b) can be substituted with our approach.

2 Dynamic Program

Based on the DP in Sedding (2020a), we introduce an alternative formulation as a certain monotone DP. First of all, reindex the jobs such that the straddler job χ is job $n+1$. Let state x of the n-stages dynamic program denote the (exact) completion time of the sequence of jobs that are executed before time τ, assuming that it can start being processed as early as time 0 (to be called first sequence S_{1}^{j}, containing jobs from set $\{1, \ldots, j\}$). Because the straddler job starts by τ, the range of the state space for x is the rational valued interval $[0, \tau]$. For every stage $j=1, \ldots, n$, we define two functions of the state x.

The first function, denoted by $z_{j}(x)$, refers to a second sequence $S_{2}^{j}(x)$ scheduled to start exactly at τ that minimizes the objective for all jobs $1, \ldots, j$, and contains only the jobs $\{1, \ldots, j\} \backslash S_{1}^{j}$. The value of $z_{j}(x)$ is explicitly not the objective value, but rather the makespan of $S_{2}^{j}(x)$ from τ to the completion time of the last job in the sequence. This makespan can be derived from Sedding (2020a, Eq. (6)) and, given state x and defining $F\left(i, S_{2}^{j}(x)\right) \subset S_{2}^{j}(x)$ as the set of jobs that follow job i in $S_{2}^{j}(x)$, is equivalent to

$$
\begin{equation*}
z_{j}(x)=\sum_{i \in S_{2}^{j}(x)}\left(\ell_{i} \cdot \prod_{f \in F\left(i, S_{2}^{j}(x)\right)}\left(1+b_{f}\right)\right) \tag{2}
\end{equation*}
$$

After stage n, the straddler job χ is appended to the end of the first sequence S_{1}^{n}, then the second sequence S_{2}^{n} follows, and the resulting completion time is the objective value. To calculate it, we use a second function, denoted by $y_{j}(x)$, that describes the proportional increase of sequence $S_{2}^{j}(x)$'s makespan $z_{j}(x)$ if increasing its start time, when having the jobs in $S_{1}^{j}(x)$ and $S_{2}^{j}(x)$ as determined by the state variable x (see below).
Algorithm $1(D P)$. The alternative dynamic programming algorithm's steps are as follows.

1. Initialize functions $z_{0}(\cdot) \equiv 0$ and $y_{0}(\cdot) \equiv 1$ over their entire domain $[0, \tau]$.
2. For all j from 1 to n :
(a) To append job j to the end of S_{1}, define

$$
\begin{equation*}
z^{\prime}(x)=z_{j-1}\left(\frac{x-\ell_{j}-a_{j} \tau}{1-a_{j}}\right), \quad \quad \ell_{j}+a_{j} \tau \leq x \leq \tau \tag{3a}
\end{equation*}
$$

To prepend job j to the beginning of S_{2}, define

$$
\begin{equation*}
z^{\prime \prime}(x)=\ell_{j} \cdot y_{j-1}(x)+z_{j-1}(x), \quad 0 \leq x \leq \tau \tag{3b}
\end{equation*}
$$

(b) For S_{2} 's makespan, define

$$
z_{j}(x)=\left\{\begin{array}{ll}
z^{\prime \prime}(x), & \text { if } 0 \leq x<\ell_{j}+a_{j} \tau, \tag{3c}\\
\min \left\{z^{\prime}(x), z^{\prime \prime}(x)\right\}, & \text { if } \ell_{j}+a_{j} \tau \leq x \leq \tau
\end{array} \quad 0 \leq x \leq \tau\right.
$$

(c) For S_{2} 's start-time-dependent makespan increase, define, for $0 \leq x \leq \tau$,

$$
y_{j}(x)= \begin{cases}\left(1+b_{j}\right) \cdot y_{j-1}(x), & \text { if } 0 \leq x<\ell_{j}+a_{j} \tau \tag{3d}\\ \left(1+b_{j}\right) \cdot y_{j-1}(x), & \text { if } \ell_{j}+a_{j} \tau \leq x \leq \tau \text { and } z_{j}(x)=z^{\prime \prime}(x) \\ y_{j-1}\left(\frac{x-\ell_{j}-a_{j} \tau}{1-a_{j}}\right), & \text { if } \ell_{j}+a_{j} \tau \leq x \leq \tau \text { and } z_{j}(x)=z^{\prime}(x)\end{cases}
$$

3. Return completion time

$$
\begin{equation*}
C_{\max }^{\chi}=\inf _{0 \leq x \leq \tau}\left\{\tau+y_{n}(x) \cdot \max \left\{x+p_{\chi}(x)-\tau, 0\right\}+z_{n}(x)\right\} \tag{3e}
\end{equation*}
$$

Let us explain the DP recursion. Regarding function $z^{\prime}(\cdot)$ in Step 2(a), to attain that job j finishes at time x, we need job $j-1$ to finish at time $\frac{x-\ell_{j}-a_{j} \tau}{1-a_{j}}$. If $\ell_{j}+a_{j} \tau>\tau$, then the domain of the function is empty, i.e., job j cannot be processed as a job of the first sequence because even if starting at time zero, it will finish after time τ. In this case, function z^{\prime} is undefined, in Step 2(b) we set $z_{j}(x) \equiv z^{\prime \prime}(x)$, and in Step 2(c) we set $y_{j}(x) \equiv\left(1+b_{j}\right) \cdot y_{j-1}(x)$.

Suppose the infimum in Step 3 is reached at a point x^{*}. The overall job sequence then is $S=S_{1}^{n}\left(x^{*}\right),(\chi), S_{2}^{n}\left(x^{*}\right)$ and can be found by backtracking. If in stage j the state's value when performing backtracking from $z_{n}\left(x^{*}\right)$ (i.e., the corresponding value of x_{j}^{*} in $z_{j}\left(x_{j}^{*}\right)$) was generated by assigning the value of $z_{j}^{\prime}\left(x_{j}^{*}\right)$ to $z_{j}\left(x_{j}^{*}\right)$ (hence $x_{j}^{*}=x_{j-1}^{*}+\ell_{j}+a_{j} \cdot(\tau-$ $\left.x_{j-1}^{*}\right)$), then we append job j to the end of S_{1}^{j-1}. If it instead was generated by assigning the value of $z^{\prime \prime}\left(x^{*}\right)$ to $z_{j}\left(x^{*}\right)$ (hence $x_{j}^{*}=x_{j-1}^{*}$), we insert job j to the beginning of S_{2}^{j-1}. In Step 3, the straddler job χ is appended to the end of $S_{1}^{n}\left(x^{*}\right)$, and $S_{2}^{n}\left(x^{*}\right)$ is started at $\max \left\{x^{*}+p_{\chi}\left(x^{*}\right), \tau\right\}$ with p_{χ} as in (1). If χ completes strictly before τ, idle time is inserted before starting the second sequence such that it starts precisely at τ; in this case the result is dominated by a solution for another straddler job.

3 Fully Polynomial Time Approximation Scheme

Alon \& Halman's (2021) framework is used to derive an FPTAS for the DP. For the ease of presentation, instead of referring directly to Alon \& Halman (2021), we cite from the concise summary available in Gawiejnowicz, Halman \& Kellerer (2023, Appendix A).

We convert the DP (Algorithm 1) to integer values by multiplying all input numbers $\tau=q_{\tau} / r_{\tau}, \ell_{j}=q_{\ell_{j}} / r_{\ell_{j}}, a_{j}=q_{a_{j}} / r_{a_{j}}, b_{j}=q_{b_{j}} / r_{b_{j}}$ by $M:=r_{\tau} \prod_{j=1}^{n}\left(r_{\ell_{j}} \cdot r_{a_{j}} \cdot\left(r_{a_{j}}-q_{a_{j}}\right) \cdot r_{b_{j}}\right)$. Note that the factor $\left(r_{a_{j}}-q_{a_{j}}\right)$ turns $1 /\left(1-a_{j}\right)$ in (3a) into an integer, since $1 /\left(1-a_{j}\right)=$ $1 /\left(1-q_{a_{j}} / r_{a_{j}}\right)=r_{a_{j}} /\left(r_{a_{j}}-q_{a_{j}}\right)$. Doing so, the state space of x becomes the integer interval $[0,1, \ldots, \tau M]$. Moreover, we divide the output value in (3e) by M to get back the unscaled objective value. Therefore, the DP is solved in $\mathcal{O}(n \cdot \tau M)$ time, which is to be repeated for each possible straddler job. Observing that M is in $\mathcal{O}\left(N^{4 n+1}\right)$ for

$$
\begin{equation*}
N:=\max _{j=1, \ldots, n}\left\{q_{\tau}, r_{\tau}, q_{\ell_{j}}, r_{\ell_{j}}, q_{a_{j}}, r_{a_{j}}, q_{b_{j}}, r_{b_{j}}\right\} \tag{4}
\end{equation*}
$$

we conclude that the DP runtime is exponential in the number of input items (and is therefore not pseudo-polynomial).

Nevertheless, the DP (Algorithm 1) can be seen as a special case of Gawiejnowicz et al. (2023, Eq. (12)) in the following sense: (i) we set the level index t to be the index j and therefore the number of levels is $T=n$, i.e., the number of jobs to schedule; (ii) regarding DP equation (12) in Gawiejnowicz et al. (2023), we set $f_{t, 1}=z_{t}$ and $f_{t, 2}=y_{t}$, therefore the other index i is either 1 or 2 , and $m=2$; (iii) we set the state variable $I_{t, i}$ to be x, i.e., the completion time of the sequence of jobs that are executed before time τ; (iv) for every pair of levels t and i we set the additional information $A_{t, i}(x)$ to be the conditions stated in step 2 of the DP, which determine the values of $f_{t, i}$ in each case; (v) when considering level t in Gawiejnowicz et al. (2023, Eq. (12)), instead of using all previously calculated $\left\{z_{r, j}\right\}_{0 \leq r<t, 1 \leq j \leq 2}$, we use only $\left\{z_{r, j}\right\}_{r=t-1,1 \leq j \leq 2}$; (vi) we set the boundary functions to be $f_{0,1} \equiv 0$ and $f_{0,2} \equiv 1$. Thus, from (i)-(vi), we conclude that DP (Algorithm 1) is indeed a special case of Gawiejnowicz et al. (2023, Eq. (12)).

Next, we set a bound U_{z} on the ratio between the maximal value of functions $z_{j}(\cdot), y_{j}(\cdot)$ and their minimal non-zero value to be $U_{z} \leq(M N)^{n}$ (e.g., the product $\prod_{j=1}^{n}\left(1+b_{j}\right)$ after the scaling), and a bound U_{S} on the cardinality of the state space to be $U_{S}=M N$.

Functions $y_{j}(x)$ and $z_{j}(x)$, for $j=1, \ldots, n$, are monotone non-increasing, since as x grows the problem becomes less constrained, i.e., there is more space available for scheduling jobs between 0 and x. Therefore, the DP (Algorithm 1) is monotone and Condition A. 1 in Gawiejnowicz et al. (2023) is satisfied; as well, it can be shown that Conditions 2-4(i) are satisfied, which grant us an approximated DP. Its last step is polynomial since computing the infimum in (3e) corresponds to calculating the minimum in the pseudo-polynomial state space $[0,1, \ldots, M \tau]$ while the approximated functions y_{n}, z_{n} are step functions with a polynomial number of steps. Finally, we use parameter value $\tau_{f} \in \mathcal{O}(n)$ to apply Theorem 4 in Gawiejnowicz et al. (2023) for each possible straddler job, and obtain an FPTAS.

Theorem 1. There exists an FPTAS to minimize the makespan $C_{\max }$ on a single machine with time-dependent V-shaped processing times that runs in $\mathcal{O}\left(\frac{n^{6}}{\varepsilon} \cdot \log ^{2} N \cdot \log \frac{n \log N}{\varepsilon}\right)$ time, where N is the maximal value of the numbers in the input, as defined in equation (4).

This runtime is by $1 / \varepsilon$ (up to log terms) lower than Sedding's (2020a) FPTAS runtime, which is in $\mathcal{O}\left(\frac{n^{5}}{\varepsilon^{2}} \cdot \log \left(1+b_{\max }\right) \cdot\left(\log \left(1+b_{\max }\right)+n \cdot \log \left(1+b_{\max }\right)\right)\right)$.

References

Alon, T. \& Halman, N. (2021), 'Automatic generation of FPTASes for stochastic monotone dynamic programs made easier', SIAM Journal on Discrete Mathematics 35(4), 2679-2722.
Cai, J.-Y., Cai, P. \& Zhu, Y. (1998), 'On a scheduling problem of time deteriorating jobs', Journal of Complexity 14(2), 190-209.
Cheng, T. C. E., Ding, Q., Kovalyov, M. Y., Bachman, A. \& Janiak, A. (2003), 'Scheduling jobs with piecewise linear decreasing processing times', Naval Research Logistics 50(6), 531-554.
Gawiejnowicz, S. (2020), 'A review of four decades of time-dependent scheduling: Main results, new topics, and open problems', Journal of Scheduling 23(1), 3-47.
Gawiejnowicz, S., Halman, N. \& Kellerer, H. (2023), 'Knapsack problems with position-dependent item weights or profits', Annals of Operations Research 326(1), 137-156.
Halman, N. (2020), 'A technical note: Fully polynomial time approximation schemes for minimizing the makespan of deteriorating jobs with nonlinear processing times', Journal of Scheduling 23(6), 643-648.
Halman, N., Klabjan, D., Mostagir, M., Orlin, J. \& Simchi-Levi, D. (2009), 'A fully polynomialtime approximation scheme for single-item stochastic inventory control with discrete demand', Mathematics of Operations Research 34(3), 674-685.
Ji, M. \& Cheng, T. C. E. (2007), 'An FPTAS for scheduling jobs with piecewise linear decreasing processing times to minimize makespan', Information Processing Letters 102(2-3), 41-47.
Kononov, A. V. (1997), 'On schedules of a single machine jobs with processing times nonlinear in time', Discrete Analysis and Operational Research 391, 109-122.
Kovalyov, M. Y. \& Kubiak, W. (1998), 'A fully polynomial approximation scheme for minimizing makespan of deteriorating jobs', Journal of Heuristics 3(4), 287-297.
Kovalyov, M. Y. \& Kubiak, W. (2012), 'A generic FPTAS for partition type optimisation problems', International Journal of Planning and Scheduling 1(3), 209-233.
Kubiak, W. \& van de Velde, S. L. (1998), 'Scheduling deteriorating jobs to minimize makespan', Naval Research Logistics 45(5), 511-523.
Sedding, H. A. (2020a), 'Scheduling jobs with a V-shaped time-dependent processing time', Journal of Scheduling 23(6), 751-768.
Sedding, H. A. (2020b), Time-Dependent Path Scheduling: Algorithmic Minimization of Walking Time at the Moving Assembly Line, Springer Vieweg, Wiesbaden.
Sedding, H. A. (2023), 'Mixed-model moving assembly line material placement optimization for a shorter time-dependent worker walking time', Journal of Scheduling.

