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Abstract
An implicit ambiguity in the field of prediction-based decision-making concerns the relation between the concepts of pre-
diction and decision. Much of the literature in the field tends to blur the boundaries between the two concepts and often 
simply refers to ‘fair prediction’. In this paper, we point out that a differentiation of these concepts is helpful when trying 
to implement algorithmic fairness. Even if fairness properties are related to the features of the used prediction model, what 
is more properly called ‘fair’ or ‘unfair’ is a decision system, not a prediction model. This is because fairness is about the 
consequences on human lives, created by a decision, not by a prediction. In this paper, we clarify the distinction between 
the concepts of prediction and decision and show the different ways in which these two elements influence the final fairness 
properties of a prediction-based decision system. As well as discussing this relationship both from a conceptual and a practical 
point of view, we propose a framework that enables a better understanding and reasoning of the conceptual logic of creating 
fairness in prediction-based decision-making. In our framework, we specify different roles, namely the ‘prediction-modeler’ 
and the ‘decision-maker,’ and the information required from each of them for being able to implement fairness of the system. 
Our framework allows for deriving distinct responsibilities for both roles and discussing some insights related to ethical 
and legal requirements. Our contribution is twofold. First, we offer a new perspective shifting the focus from an abstract 
concept of algorithmic fairness to the concrete context-dependent nature of algorithmic decision-making, where different 
actors exist, can have different goals, and may act independently. In addition, we provide a conceptual framework that can 
help structure prediction-based decision problems with respect to fairness issues, identify responsibilities, and implement 
fairness governance mechanisms in real-world scenarios.

Keywords Algorithmic fairness · Prediction-based decision systems · Responsibility · Human-in-the-loop · Prediction 
modeler · Decision maker

1 Introduction

Algorithmic fairness has become a popular topic in the 
research community in recent years (Barocas et al. 2019; 
Kearns and Roth 2019), being increasingly addressed not 
only from a technical angle but also from a philosophical, 
political, and legal perspective (Binns 2018; Barocas and 
Selbst 2016). Algorithmic fairness is concerned with the 
consequences of prediction-based decisions on individuals 
and groups under the perspective of social justice (Mulligan 
et al. 2019). Since the beginning, the debate on algorith-
mic fairness has been focusing on the fairness of predic-
tion models, which represent the core of Machine Learning 
(ML) research (Pedreschi et al. 2008; Calders and Verwer 
2010; Kamishima et al. 2012; Dwork et al. 2012; Zemel 
et al. 2013). Therefore, it is not surprising that the focus 
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of attention was put on how prediction models can create 
unfairness.

We argue that the prediction model as such cannot be 
the reason for unfairness. It is the usage of the prediction 
model in its specific context which creates unfairness. For 
example, the recidivism risk model of the COMPAS tool 
(Angwin et al. 2016) in itself does not create racial discrimi-
nation. Such discrimination only occurs when it is used by 
judges to make decisions based on the COMPAS risk scores. 
Thus, the relationship between the properties of a predic-
tion model, such as false-positive or false-negative rates, 
and possible harm for a specific group of the society, such 
as African Americans in the case of COMPAS, rests upon an 
assumption of how the output of a prediction model creates 
actual consequences in the lives of people.

This aspect is often neglected in the algorithmic fairness 
literature. Assumptions on this relationship are often left 
implicit, and a fixed relationship between the prediction out-
come and the impact on lives is taken for granted (Choul-
dechova 2017; Kusner et al. 2017). While assuming such a 
fixed relationship is convenient for studying the impact of 
the prediction model’s features on the resulting fairness, it 
also ignores a central part of almost all implementations of 
influential prediction-based systems, which is the part of 
the actual decision-making: Only insofar as the output of 
a prediction model changes the course of the world, it can 
create unfairness. And how a prediction changes the course 
of the world depends strongly on how the prediction is actu-
ally used.

As a prototypical case of how prediction models are 
implemented in real-world applications, we focus our dis-
cussion on prediction-based decision systems, where the out-
come of ML prediction algorithms is used to make decisions 
affecting human subjects.1 We imagine a (human or auto-
mated) decision-maker who is taking decisions on people or 
for people, while this decision is informed by a prediction of 
some features of these persons. This is the typical scenario 
for many of the discussed cases of algorithmic fairness, 
such as a bank taking loan decisions based on repayment 
prediction, an enterprise taking hiring decisions based on 
job performance prediction, or a university taking admis-
sion decisions based on academic performance prediction.2

In such prediction-based decision systems, we may dis-
tinguish two conceptually different functions: first, we have 
the function of prediction, performed by a prediction model 

which is fed with individual data of a person, and whose out-
put is some form of prediction of a target variable attributed 
to this person, which is not known to the decision-maker at 
the time of decision-making. This prediction might come 
in the form of a score, a probability, or a point prediction. 
Second, we have the function of decision which is informed 
by the prediction, but in nearly all cases also influenced by 
additional parameters. For example, for a loan decision of a 
bank, not only the repayment probability but also the inter-
est rate and the bank’s business strategy may be decisive 
parameters. This idea has been studied in so-called cost-sen-
sitive learning problems (Elkan 2001). However, it remains 
unclear, how the cost-sensitive approach changes once the 
additional requirement of fairness is introduced and how the 
concepts of prediction and decision interact in this process.

For studying the interaction of prediction and decision, 
we introduce a framework allowing us to distinguish the 
tasks and responsibilities of two different roles: The role 
of the ‘prediction-modeler,’ and the role of the ‘decision-
maker.’ Following decision-theoretic concepts, we may think 
of two different agents, one being responsible for the pre-
diction model and the other one being responsible for the 
decision-making. Our motivation for distinguishing these 
roles is not only fed by the theoretical analysis of how pre-
dictions are converted into (un)fair treatment as discussed 
above, but also by the observation that in practice these two 
roles are often split organizationally and covered by different 
people, different departments, or even different companies.3 
Under a perspective of responsibility, the decision-maker is 
responsible for the decisions, and hence their consequences. 
However, as we will discuss below, the prediction-modelers 
also have their area of responsibility. They are responsible 
for creating the basis for a good decision, which consists 
in (a) delivering a meaningful and robust prediction (e.g., 
think of transparency and safety requirements in High-
Level Expert Group on Artificial Intelligence 2019), and 
(b) delivering all information needed for the decision-maker 
to care for fairness and other relevant ethical requirements 
(see accountability and fairness requirements in High-Level 
Expert Group on Artificial Intelligence 2019 and the obliga-
tions requested by European Commission 2021a).

These two roles have different tasks and often conflict-
ing goals. On one hand, the prediction-modeler strives for 
prediction performance such as accuracy. This may be prob-
lematic when using ML models for consequential decision-
making. For example, Athey (2019) argues that standard ML 
prediction algorithms, optimized for accuracy, are not suffi-
cient to take decisions in complex settings as there are often 1 Such systems may be implemented either in the form of Automated 

Decision-Making (ADM) systems or in the form of a combination of 
a prediction system with a human decision-maker.
2 Note that other scenarios exist such as recommender systems where 
predictions are communicated to people who are taking decisions on 
themselves. In such cases, the findings of this paper are not directly 
applicable but they may inspire future work.

3 Of course, in an integrated and fully automated data-based decision 
system, both agents may be combined into one function, but we think 
that it is conceptually useful to distinguish the two functions.
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other relevant factors that are not represented in how well a 
model fits the training data. It also has shown that the fact 
that prediction-modelers usually have little specific knowl-
edge of the domain in which an algorithm is applied may be 
problematic in consequential decision-making (Athey 2017). 
Similarly, Cabitza et al. (2021) argue that optimizing for 
accuracy is imperfect and that a larger spectrum of metrics 
and information should be considered to assess a system’s 
performance. On the other hand, the decision-maker aims 
to optimize their benefit resulting from the decision-making 
(e.g., considering business-related goals). These observa-
tions clearly show that the goal of a prediction-modeler 
needs not to be consistent with the final goal of the decision 
system. The framework we propose addresses this tension. 
Specifying the prediction-modeler and the decision-maker 
as two different roles allows for separate performance meas-
ures. Furthermore, it allows a separation of the responsibili-
ties of the actors which may also account for their domain-
specific competencies.

Our framework starts from a decision-theoretic analysis, 
thus connecting to existing literature that conceptualizes 
fairness as a decision-theoretic problem (see for example 
Petersen 1976; Sawyer et al. 1976). However, instead of 
formulating fairness in terms of utility statements (e.g., see 
Corbett-Davies et al. (2017) for a similar approach in the 
contemporary debate), we encode fairness as constraints of 
a decision problem. This paper focuses on group fairness 
as the most established and most commonly used fairness 
category. This type of fairness intends to avoid systematic 
disadvantages of algorithmic decisions with respect to a sen-
sitive attribute (such as gender, age, or race) (Binns 2020; 
Barocas et al. 2019). There are also other types of fairness 
[for example, counterfactual fairness (Kusner et al. 2017), 
individual fairness (Dwork et al. 2012), or procedural fair-
ness definitions (Grgić-Hlača et al. 2018)] but these are not 
covered in the present paper.

This paper is structured as follows: In Sect. 2, we give a 
short review on the ML literature with respect to prediction-
based decision-making, with a particular emphasis on group 
fairness metrics. In Sect. 3, we comment on the relationship 
between prediction and decision, which we then articulate 
and formalize in Sect. 4. In Sect. 5, we discuss some insights 
derived from our framework.

2  Fairness in the machine learning literature

2.1  Fairness of prediction‑based decision‑making 
systems

Prediction-based decision-making systems are increasingly 
used to assist (or replace) humans in making consequential 
decisions. Algorithms are used to inform or automatically 

take decisions in lending (Hardt et al. 2016; Fuster et al. 
2017; Liu et al. 2018), pretrial detention (Angwin et al. 
2016; Dieterich et al. 2016; Chouldechova 2017; Berk et al. 
2021; Baumann et al. 2022) college admission (Kleinberg 
et al. 2018), hiring (Miller 2015a, b; Li et al. 2020; Raghavan 
et al. 2020), insurance (Baumann and Loi 2023), and many 
other fields. Recently, there has been a growing interest in 
the ethical implications of such prediction-based decisions, 
both from society and policymakers (European Commission 
2021b). This has motivated the study of fairness in the field 
of ML, which has led to a newly formed community.4

Various factors can lead to algorithmic unfairness, such as 
a biased dataset, a systematic measurement error, the selec-
tion of a specific evaluation metric, or the taken modeling 
choices (Mitchell et al. 2021). Pursuing the goal of alle-
viating issues of algorithmic unfairness, researchers have 
proposed a plethora of fairness definitions (Narayanan 2018; 
Verma and Rubin 2018). In this paper, we focus on group 
fairness, a definition that has been of particular interest in 
the literature on fair ML (Pessach and Shmueli 2020). We 
now introduce the most common group fairness metrics 
before we describe how they can be ensured.

2.2  Measuring group fairness

We use A to denote the sensitive attribute (sometimes also 
referred to as protected attribute). Following related work, 
we consider binary group membership A = {0, 1} , but our 
arguments generalize multi-group situations. X denotes the 
observable attributes that are used for prediction,5 while Y 
denotes the unknown but decision-relevant target variable. 
For the sake of simplicity, we assume Y to be a binary vari-
able. We assume that there is prediction function f that maps 
instances of X to a prediction Ŷ = f (X) . The decision func-
tion is a (possibly group-specific) function d(Ŷ) or d(Ŷ ,A) 
that transforms the prediction Ŷ  into a decision D.

According to Barocas et al. (2019) and Kearns and Roth 
(2019), most of the existing group fairness criteria fall into 
one of three categories: independence, separation, or suf-
ficiency. Due to ambiguities regarding the notion of a ‘fair 
prediction’ vs. that of a ‘fair decision,’ different notations 
are being used for the same fairness criterion. Those who 
apply the criteria to prediction models usually refer to the 

4 See for example: https:// facct confe rence. org/ and special tracks in 
major conferences in the field (ICML, NeurIPS, ECML, etc.).
5 Notice that X may or may not contain A. Not using the sensitive 
attribute as an input for the ML algorithm refers to a somewhat naive 
concept of fairness called fairness through unawareness (Grgić-Hlača 
et al. 2016), which does not effectively avoid disparate impact in case 
of redundant encodings (meaning that the sensitive attribute can be 
predicted by the remaining observable attributes, which is a likely 
scenario in the age of big data) (Pedreschi et al. 2008).

https://facctconference.org/


 AI & SOCIETY

prediction Ŷ  (sometimes also expressed as a score, usually 
denoted by S or R), while those applying it to decision algo-
rithms refer to the decision D for the same criteria (Hardt 
et al. 2016; Verma and Rubin 2018).6 In this paper, we use 
the latter notation (which is also used by Verma and Rubin 
(2018) and Mitchell et al. (2021), for example) because it is 
in line with the framework we propose.

Independence (also called statistical parity, demographic 
parity, or group fairness) requires the decision to be inde-
pendent of the sensitive attribute and is formally defined as:

Thus, the probability of a specific decision d must not 
depend on the group membership A. For the example of 
granting a loan, independence requires equal acceptance 
rates for both groups. Conditional statistical parity extends 
independence in that it allows a set of legitimate features L 
to affect the decision (Kamiran et al. 2013; Corbett-Davies 
et al. 2017):

For example, in the loan case, the applicant’s requested 
credit amount could be a possible legitimate feature.

Separation (also called equalized odds) takes the indi-
vidual’s Y-value into account:

Thus, the requirement of the same probability of a decision 
d across groups is restricted to individuals with the same 
value of Y. Separation is equivalent to parity of true posi-
tive rates (TPR) and false positive rates (FPR) across groups 
a ∈ A . Another popular definition of fairness, equality of 
opportunity, is a relaxation of the separation constraint only 
requiring TPR parity.7 In the loan granting scenario, this 
definition of fairness would ensure that “deserving individu-
als” (the ones who would repay the loan if given one, i.e., 
Y = 1 ) receive loans proportionately across groups.

In contrast, the fairness notion sufficiency conditions not 
on Y but on the decision D:

(1)P(D = d|A = 1) = P(D = d|A = 0).

(2)P(D = d|L = l,A = 1) = P(D = d|L = l,A = 0).

(3)P(D = d|Y = y,A = 1) = P(D = d|Y = y,A = 0).

This means that, among all those individuals who receive 
the same decision d, the probability of a specific value y 
must not depend on A. For binary Y and D, sufficiency is 
equivalent to parity of positive predictive values (PPV) and 
false omission rates (FOR) across groups – meaning that for 
subgroups formed by D, an equal share of individuals must 
belong to the positive class Y = 1 across groups A (Baumann 
et al. 2022). The fairness definition PPV parity (also called 
predictive parity by Chouldechova (2017); Kasy and Abebe 
(2021)) relaxes sufficiency in that it only requires Y and A 
to be independent for all individuals who received a positive 
decision D = 1 , which amounts to parity of PPV for binary 
classification (Baumann et al. 2022).8

Concluding, we see that all group fairness definitions are 
based on the equality of a specifically defined probability 
across the considered groups. Interestingly, the ML literature 
does not systematically relate the equality of these probabili-
ties to philosophical concepts of social justice and fairness. 
However, it is beyond the scope of this paper to explore this 
question of the relation of the mathematical definition of 
fairness metrics and their moral meaning, even though this 
is still only rarely discussed, for example, in Hedden (2021), 
Loi et al. (2019), Baumann and Heitz (2022), Long (2021) 
and Hertweck et al. (2021). For the current paper, it suffices 
to state that measures of group fairness are typically based 
on the equality of conditional probabilities, which corre-
sponds to the normative idea of ‘equal shares’ across the 
different groups.

2.3  Generating group fairness

The context-dependent nature of the fairness problems 
makes it impossible to agree on one universally applicable 
definition of group fairness. In addition, many fairness crite-
ria are mathematically incompatible (Kleinberg et al. 2016; 
Chouldechova 2017; Garg et al. 2020; Friedler et al. 2021). 
This requires making a choice based on the concrete setting 
of the decision problem.

There are different techniques for ensuring the fairness of 
prediction-based decision systems, most of which fall into 
one of three categories (Mehrabi et al. 2019): Pre-processing 
involves manipulating the training data in order to generate 
a prediction model that leads to a fair decision (Calders and 
Verwer 2010; Kamiran and Calders 2012). In-processing 
involves integrating fairness requirements directly into the 
prediction model training itself (e.g., by incorporating a 

(4)P(Y = y|D = d,A = 1) = P(Y = y|D = d,A = 0).

7 Similarly, FPR parity (also called predictive equality by Corbett-
Davies et al. 2017) is a relaxation of separation that only conditions 
on Y = 0.

8 Similarly, FOR parity is a relaxation of sufficiency that only con-
siders individuals who received a negative decision D = 0 (Baumann 
et al. 2022).

6 An example of such a discrepancy in notations is the group fair-
ness metric called separation (which we introduce shortly) as defined 
in the algorithmic fairness literature. For example, Hardt et al. (2016) 
defines this notion of fairness for a sensitive attribute A = {0, 1} 
as: P(Ŷ = 1|A = 0,Y = y) = P(Ŷ = 1|A = 1,Y = y), y ∈ {0, 1} . 
This definition implicitly assumes that a specific value of 
the prediction Ŷ  is equivalent to a specific decision. Oth-
ers, such as Verma and Rubin (2018), define separation for 
a sensitive attribute G = {m, f } and a decision d as follows: 
P(d = 1|Y = i,G = m) = P(d = 1|Y = i,G = f ), i ∈ 0, 1.
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fairness constraint for the training of a prediction model) 
(Kamishima et al. 2012; Bilal Zafar et al. 2017). The third 
category, post-processing, takes the prediction model as 
given and changes the decision function such that the result-
ing decisions meet some fairness constraints (e.g., by using 
group-specific thresholds on predicted scores) (Baumann 
et al. 2022; Hardt et al. 2016; Menon et al. 2018; Corbett-
Davies et al. 2017). Despite their inherent advantages and 
disadvantages, all of these methods have been shown to be 
effective (Barocas et al. 2019).9 Pre-processing and in-pro-
cessing techniques place the burden of generating fairness on 
the prediction-modeler. Conceptually, this is only possible if 
the decision-maker is not an independent actor but instead 
implements a predefined decision rule applied to the output 
of the prediction model. In Sect. 3, we will point out that this 
is an unrealistic assumption in many cases. The much more 
frequent situation is that a prediction model may be used in 
different ways by an independent decision-maker, who, e.g., 
considers additional factors for the decision-making. This 
implies a focus on post-processing methods.

3  The relation between predictions 
and decisions

In popular narratives of algorithmic decision-making, the 
distinction between the idea of decision and that of pre-
diction seems to be blurred and applied to the notion of 
fairness in a flexible way. Neologisms such as “fair predic-
tion” Chouldechova (2017) or “fairness-aware learning” 
Kamishima et al. (2012) have become familiar within the 
ML community fueling, often unintentionally, the idea that 
fairness is a property of a prediction model. Even studies 
addressing algorithm-human interaction ultimately assimi-
late human decisions to a prediction task, e.g by comparing 
human estimates to algorithmic outcomes (Kleinberg et al. 
2018; Dressel and Farid 2018; Vaccaro and Waldo 2019; 
Green and Chen 2019).

Actually, the conflation of the two concepts does not 
reflect an explicit ideological position and some studies 
clearly specify that fairness is an attribute that refers to a 
decision rule (Corbett-Davies and Goel 2018). However, 
formal characterizations tend to apply fairness criteria to 
the prediction model (e.g., the classifier) assuming that the 
decision consists of the prediction outcome (e.g., see Zafar 
et al. 2015; Menon et al. 2018; Berk et al. 2021).

Given similar formulations, one might naturally assume 
that the relation between prediction and decision is fixed and 

given, i.e., that a specific prediction leads to a specific deci-
sion. However, this is not true in many realistic examples, 
where the optimal decision depends on the prediction and 
other parameters (for example, in lending decisions, on the 
interest rate). This is in line with the idea of cost-sensitive 
learning (Elkan 2001). Thus, it is misleading to qualify a 
prediction as fair without explicitly assuming how a predic-
tion is converted into a decision. In general, the fairness 
attribution applies more properly to the full system (i.e., the 
combination of prediction and decision rule) rather than to 
the prediction as such.

In a similar vein, Kuppler et al. 2022 distinguish between 
prediction and decision in data-driven decision procedures 
to highlight the different meanings and roles of fairness and 
justice. According to the authors, (algorithmic) fairness is 
concerned with the statistical properties of the prediction 
model, whereas justice is concerned with the allocation of 
goods and, therefore, more appropriately associated with the 
decision step. It is important to note that our approach differs 
as it builds on the idea that fairness is a concept related to the 
outcomes of decisions on people’s lives. Therefore, we argue 
that fairness is a property of the entire system and that theo-
ries of distributive justice should be reflected in the chosen 
fairness definition. Instead of fully disentangling the desired 
properties of a prediction model from the decisions step, we 
argue that the prediction model’s sole purpose is to inform 
decision-makers. This allows for building prediction-based 
decision-making systems around social fairness desiderata 
including theories of distributive justice that are morally 
appropriate for the context at hand.

3.1  Why a distinction is needed

Abstract formalization facilitates the overlap between the 
concepts of prediction and decision. For example, in clas-
sification tasks, the goal of prediction is to select an option 
among possible alternatives so that predicting can be viewed 
as a special form of deciding. Also in cases where the out-
come to be predicted is a numerical value (e.g., a risk score), 
a prediction can be easily translated into a discrete scale 
(e.g., low - medium - high risk). From this standpoint, 
there is not much difference between the task performed 
by a prediction model and that performed by a decision-
maker. However, if we go beyond mathematical abstractions 
and take an ethical stance, a decision is not just a matter of 
choosing among alternatives. It is a way to act and impinge 
upon humans and the environment. In other words, deci-
sions change the status quo, thus bearing consequences 
for the decision-maker, the decision subjects, and possibly 
the external world. In contrast, a prediction, per se, has no 
impact, and its capacity to influence decision-making is 
made possible only by a policy or a decision rule. It is the 
latter that specifies the consequences of future actions.

9 We point to Pessach and Shmueli (2020) and Caton and Haas 
(2020) for a more detailed discussion of the different unfairness-miti-
gation techniques including their (dis)advantages.
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Consider, for example, a bank giving loans to individu-
als, building their decision of accepting a loan applicant 
on a predicted repayment likelihood. Granting a loan cre-
ates a tangible impact in the form of a benefit, consisting of 
improved financial flexibility and new buying options. This 
benefit is denied to loan applicants who receive a negative 
decision. Apparently, the prediction algorithm influences the 
decision, but the prediction itself is not what creates (un)
fairness, it is the decision that specifies how to use the pre-
diction estimate. Note that even if the decision is fully deter-
mined by the prediction—a case which is rarely met—the 
question of whether the prediction algorithm is fair or not 
is conditioned on the assumed relation between prediction 
and decision rule. This is why we conceptually suggest to 
clearly distinguish between the two elements of prediction 
and decision, which both are ingredients of any prediction-
based decision system, whether it be fully automatic or also 
influenced by humans. Most importantly, the distinction 
between the two concepts invites us to contextualize algo-
rithmic decision-making into a process of social construc-
tion reflecting value judgments and power asymmetries.

Often, apart from the prediction itself, the final outcome 
of a decision process is determined by additional pieces of 
information. Consider, again, a bank that needs to decide 
whom to grant and whom to deny a loan, where the bank’s 
goal is to maximize their profit from the loan business. It is 
clear that the expected profit depends on the probability of 
repaying, which is why a prediction model for determining 
this probability is needed. However, other parameters, such 
as the interest rate charged for the loan, are also relevant, 
and these parameters obviously determine the minimum 
repaying probability that the bank will accept. A change 
of this threshold changes the decision rule and, thus, this 
represents a cost-sensitive learning problem (Elkan 2001). 
However, what is not covered in the literature on cost-sensi-
tive learning is the fact that this often also changes the deci-
sion system’s fairness properties. If the decision is fair for 
one threshold, this does not imply that it is fair for another 
threshold.

Another reason for marking a distinction between predic-
tion and decision lies in the fact that the two concepts are 
benchmarked against different criteria. From a conceptual 
point of view, independent of the decision that may follow, 
a prediction can only be assessed in terms of its predictive 
power, e.g., accuracy. If one predicts, for example, the prob-
ability that a loan applicant will repay their debt, then a 
given prediction algorithm can be more or less accurate, 
typically evaluated with observation data, which are called 
“ground truth.” It is, conversely, nonsensical to ask whether 
a decision is accurate or not since, broadly speaking, there 
is no such thing as “ground truth” in a decision process. 
A decision can be “right” or “wrong,” but the same deci-
sion can be qualified differently depending on a variety of 

factors. We can judge the quality of a decision based on 
the purpose it aims to achieve and the consequences it has 
on the decision-maker and their surrounding environment 
(including other people), for example, in terms of fairness 
and accountability. As we will see, decision theory frames 
this intuition as an optimization problem so that an optimal 
decision is the one that maximizes a specific goal.

The problem of whether a prediction can be seen as unfair 
or not connects to a broader philosophical debate. In par-
ticular, this issue recalls the attempt to investigate the moral 
status of beliefs and thoughts going beyond the sphere of 
actions and deliberations. For example, advocates of epis-
temic injustice argue that people can commit injustice when 
they fail to believe someone’s testimony due to prejudice 
(Fricker 2007), and theorists of doxastic wronging postulate 
that people can wrong others in virtue of what they believe 
about them, and not just in virtue of what they do (Basu 
2019). Therefore, one may ask whether a (un)fair prediction 
could be regarded as an unjust or discriminatory belief. In 
this paper, we do not dig into this problem, which would 
require a separate discussion, and consider unjust beliefs on 
par with a decision rule operating, more or less consciously, 
in the decision-maker’s mind.

3.2  Related studies on the interaction 
with prediction‑based decisions

Arguing that the assessment of fairness requires a distinction 
between prediction and decision recalls a growing body of 
research focusing on how humans and algorithms interact 
when making decisions. These studies approached the inter-
action from different perspectives.

Some works aimed to show how algorithms can improve 
predictive performance (Kleinberg et al. 2018; Miller 2018) 
especially when there are carefully designed protocols of 
interaction (Cabitza et al. 2021). Others investigated peo-
ple’s perceptions shedding light on what has been called 
“algorithmic aversion” (Dietvorst et  al. 2015), i.e., the 
situation in which a human decision-maker prefers human 
forecast over algorithmic prediction even when the latter is 
more accurate than the former. Further research pointed out 
that human decision-makers tend to deviate from algorith-
mic predictions (Stevenson and Doleac 2021) and struggle 
to assess algorithmic performance (Green and Chen 2019; 
Poursabzi-Sangdeh et al. 2021). Similar works suggested 
best design practices to allow designers to make adjustments 
in fully automated decision systems that interact with people 
(the so-called “street-level-algorithms”) and make erroneous 
or unfair decisions when encountering a novel or marginal 
case (Alkhatib and Bernstein 2019).

Another area of research focuses on the challenge of 
autonomy in algorithmic decision-making. A key aspect 
of this work involves clarifying the meaning of autonomy 
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when referring to algorithms, making distinctions between 
being “autonomous” and being “automatic” (Chiodo 2022; 
Pianca et al. 2022). Further concerns regard the constraints 
that algorithms may pose to decision-makers’ agency (e.g., 
in relation to the algorithm’s perceived authority) (Hayes 
et al. 2020) or the liability of algorithms causing injuries to 
humans or property damages (Barfield 2018).

Our work complements this broader literature and sug-
gests new research directions exploring the interaction 
between the actors who deal with the prediction and the 
decision tasks. In this way, we aim at gaining a better under-
standing of the context of prediction-based decision systems, 
suggesting the fundamental social nature of systems’ con-
struction process and highlighting the informational gaps 
that must be addressed to improve the accountability of 
prediction-based decision-making systems.

4  A prediction‑based decision system 
under fairness constraints

Intuitively, a decision is a termination of a process that 
involves several tasks. In general, a decision-maker identifies 
preferences, sets requirements and courses of action, analy-
ses the pros and cons of each alternative, and chooses from 
the available options – the etymology of the term is quite 
explanatory: from Latin “de” = “off” + “caedere” = “cut.”

The idea that distinct tasks are involved in human deci-
sion-making is well-entrenched in classical philosophy. 
For instance, medieval philosophers recognized three dis-
tinct operations (see e.g. Aquinas 2005; Saarinen 2006; 
Hain 2015, for a modern interpretation). The first, known 
as “consilium,” consists of asking for advice and gathering 
relevant information for the decision at stake. The second 
operation involves judgment and constitutes more properly 
the deliberation step, also known as “resolution.” The third 
operation regards the concrete actions that implement what 
was decided in the previous step.10

Our framework focuses on the first two operations of 
this deliberation scheme (“seeking advice” and “decid-
ing”). Given the focus on decisions under uncertainty, it par-
ticularly emphasizes a specific type of advice generated by a 
prediction model. Additionally, our framework incorporates 

a specific ethical constraint on group fairness (as described 
in Sect. 2.2).

First, we introduce two formal roles, the role of the pre-
diction-modeler and the role of the decision-maker. We show 
how these connect to different goals and tasks of prediction-
based decision systems, and where fairness constraints (FC) 
come into play. Then, we describe the two roles in a more 
formal way specifying the parameters that characterize the 
tasks of both actors. Finally, we specify how these two inter-
act and, in particular, define a minimum set of deliverables 
required to construct optimal decision rules meeting fairness 
constraints.

4.1  Two roles in prediction‑based decisions

In our framework, we distinguish two roles that become par-
ticularly relevant in the discussion of responsibilities con-
nected to a prediction-based decision system. The first role 
is the prediction-modeler, who is responsible for the predic-
tion. The second one is the decision-maker who uses the pre-
diction to optimize their own benefit (utility) while, possibly, 
also considering fairness issues by ensuring that certain fair-
ness measures are met. Note that following the analogy with 
the aforementioned three-step model of decision-making, 
the role of prediction-modeler and that of decision-maker 
fulfill, respectively, the tasks of advising and deliberating.11

Usually, these two roles reflect different backgrounds and 
often different education. Typically, the role of the predic-
tion-modeler is taken by data scientists, engineers, or com-
puter scientists, while the role of the decision-maker can 
be played by various professionals, such as doctors, prod-
uct managers, or business strategists. In the bank setting, 
the prediction-modeler may coincide with an external and 
independent organization (say, a software company) or an 
internal but separate department (e.g., the bank’s data sci-
ence lab), while bank managers play the role of the decision-
maker. The source of the distinction between the two roles 
lies in the different goals they aim to achieve. While the 
goal of the prediction-modeler is to maximize the perfor-
mance of a prediction model, such as accuracy, the goal of 
the decision-maker may vary depending on the context and 
includes, for instance, the increase of profit or the optimiza-
tion of product development.

Our framework rests on the idea that even though the two 
roles are conceptually and practically distinct, but need to 
work in synergy for addressing fairness issues. Our frame-
work specifies the tasks related to each role and, at the same 
time, the interaction points that allow the decision-maker to 

10 The conceptualization of prediction-based decision as a two-step 
process has another parallel with the philosophy of science, where 
a famous distinction regards the generation of new knowledge (the 
“context of discovery”) and its assessment (the “context of justifica-
tion”). In this work, we recalled the analogy with classical moral phi-
losophy but we acknowledge that the parallelism with the pair “dis-
covery-justification” would offer other important stimuli that would 
deserve e dedicated discussion.

11 Here, we present a simplified characterization focused on two roles 
but more sophisticated descriptions could rely on multiagent system 
theory (Singh 1994)
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adequately integrate fairness concerns into decision-making 
(see Sects. 4.2-4.4).

The decision-maker is the role directly involved in choos-
ing which fairness metric to use (i.e., how unfairness is 
measured) and to what extent unfairness should be removed. 
These choices require the assessment of the social and the 
business context of the decision system. Typical questions 
to be answered are: Which subgroups should be considered 
with respect to fairness (i.e., what are the sensitive attrib-
utes)? Which fairness metric is the most appropriate in the 
given social context? What is the optimum trade-off between 
optimizing utility and enforcing fairness?

Answering these questions can be challenging, if not 
impossible, for the prediction-modeler whose task is pre-
dicting an unknown, but decision-relevant, quantity Y.12 On 
the one hand, one may argue that, in principle, the prediction 
task should not involve caring for fairness-relevant issues: 
A good prediction is something else than fair treatment or a 
socially just distribution of benefits and harms. So, from a 
conceptual point of view, one may question whether assign-
ing responsibility to the prediction-modeler makes any 
sense. On the other hand, from a practical perspective, the 
prediction-modeler is often simply not able to care for fair-
ness because they do not have access to the needed contex-
tual information and do not have the competence to decide 
on the normative issues involved. This makes clear why, 
both from a conceptual and a practical viewpoint, the two 
roles should be distinguished and why these are separated 
in most real-world cases.

Note that these roles are often left implicit in most ML 
fairness literature, where the common narrative of “fair ML” 
or “fair prediction models” would indirectly suggest that car-
ing for fairness is a task of ML engineers. Our framework 
aims to be more specific than the standard approach in defin-
ing the roles and the minimum requirements associated with 
these roles in prediction-based decision-making. This will 
allow us to derive ethical responsibilities and support the 
implementation of fairness governance mechanisms in real-
world scenarios.

In the following subsections, we will analyze the two 
roles and their interaction more closely, which will lay the 
ground for answering the question of who is responsible 
for what.

4.2  The decision‑maker

Decision-making is a task that can be described in purely 
abstract terms. This is what decision theory does to frame 
a variety of decision problems ranging from what movie to 
watch in the evening to what career to pursue after college.

We consider a decision-theoretic agent13 who makes 
decisions based on certain goals and preferences. In its 
simplest form, the agent chooses an action in a finite set of 
possible alternatives, and this action has an impact on the 
surrounding environment. To evaluate the impact, we con-
sider the system’s state after the agent’s action and assign 
each possible state a specific value of the so-called utility. 
This refers to a quality that measures the desirability of this 
future state: the more desirable the state, the higher the util-
ity. Thus, utility formalizes and quantifies the notion of a 
goal. It allows comparisons among different future states as 
a function of the chosen action which, in turn, allows one to 
choose among the different possible actions. In many cases, 
the relation between action and outcome (and thus utility) 
is not deterministic: The same action might lead to differ-
ent outcomes, depending on factors that are not under the 
decision-maker’s control. This situation is referred to as a 
“decision under uncertainty.” It puts a decision-maker in a 
situation where they have to make a decision without really 
knowing what utility will be realized. In other words: The 
utility achieved following a decision is a random variable. 
Decision-making under uncertainty is about managing this 
uncertainty, while still trying to achieve a goal.

In the loan example, there are two possible future states 
or outcomes at the end of the loan contract: The loan plus 
associated interests may be paid back, or the debtor has 
defaulted, resulting in a loss of the loan. Obviously, for the 
bank, the former state is more desirable than the latter. The 
utility can be measured, e.g., by the amount of money that 
the bank has in their accounts by the end of the contract 
duration.

For applying this general decision-theoretic framework to 
the case of prediction-based decision systems, we identify 
the concept of “action” with that of “decision.” The uncer-
tainty of the outcome is usually attributed to the lack of 
knowledge of a random variable Y which might take dif-
ferent values y. Note that in real-world situations, many 
other factors might create uncertainty, but in the following, 
we analyze the simplest case in which Y is the only source 
of uncertainty. In the loan example, Y corresponds to the 

12 Note that the notion of a prediction in the context of an ML model 
is more encompassing than it is in colloquial language. While, in 
everyday language, we use the term “prediction” to refer to future 
situations (e.g., whether it will rain tomorrow), in the field of ML 
and statistics, a prediction simply relates to a fact that is not known 
when taking some action (e.g., “whether patient x has disease y“ 
or “whether applicant z is trustworthy or not”). This lack of knowl-
edge may be caused by different reasons, for example, due to missing 
information, but also when referring to an event in the future.

13 We are aware that the decision-maker (also called the rational 
agent) assumed in economic theory is an idealization that might be 
far away from reality (i.e., humans can make irrational decisions for 
many reasons), but a decision-theoretic approach can also be a good 
starting point for modeling and analyzing decisions and their conse-
quences.
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repayment of the debt by the debtor, which decides which 
state is reached at the end of the loan contract. We also 
assume that the decision-maker takes not only one single 
decision but a sequence of many decisions of the same kind, 
which is a standard assumption for prediction-based deci-
sion systems. In the loan example, we envision a sequence 
of loan decisions of the bank, following the same decision 
rules for acceptance.

In such a situation, the goal achievement is measured as 
an expectation value, i.e., the decision-maker is interested 
in a decision rule which creates maximum utility in the long 
run, which means that they try to maximize the expected 
utility E(U) as a function of their decision D:

where each state s represents a possible outcome as a func-
tion of the decision D, and U(s|D) are the utilities associated 
with each outcome s. If Y is the only source of uncertainty, 
and thus determines the outcome, the different outcome 
states s correspond to the different values y of the random 
variable Y:

where now U(Y = y|D) denotes the utility for the state 
reached in case of Y = y , and P(Y = y|D) is the probabil-
ity that this state is reached. Note that both elements may 
depend on the decision D.

For the sake of simplicity, in the following, we restrict 
ourselves to a binary variable Y, with two values y = 0 and 
y = 1 . This gives:

A decision-maker would be called rational if they choose the 
action that maximizes their expected utility (see the prin-
ciple of Maximum Expected Utility (Russell and Norvig 
2010)):

For a simple loan example, the decision D is binary, with 
D = 1 corresponding to accepting the loan.14 If we set the 
repaying probability p = P(Y = 1) , then this reads:

(5)E(U(D)) =
∑
s

P(s|D) ⋅ U(s|D)

(6)E(U(D)) =
∑
y

P(Y = y|D) ⋅ U(Y = y|D)

(7)
E(U(D)) =P(Y = 1|D) ⋅ U(Y = 1|D)

+ (1 − P(Y = 1|D)) ⋅ U(Y = 0|D)

(8)D = argmaxE(U(D))

where � is the profit of the bank if the customer pays back, 
� is the loss if the customer defaults, and � is the profit that 
can be made by not giving the loan, but instead investing the 
money into another business line of the bank.

The optimization problem with respect to the decision 
(see Eq. (8)) can easily be solved, leading to:

This example shows that the decision rule depends not only 
on the probability p, but also on other parameters ( �, �, � ) 
which are independent on the prediction of Y (given by p), 
but still decision-relevant.15 In line with cost-sensitive learn-
ing approaches (Elkan 2001), this exemplifies why the pre-
diction alone does not solve the decision problem.

An important insight from this decision-theoretic analysis 
is that the decision-maker needs the probabilities P(Y|D) to 
optimize their decisions, which directly leads to the neces-
sity of a prediction model. In fact, the fundamental equation 
(6) is composed of two elements: the probabilities P(Y|D), 
and the utilities U(Y|D). The first element is the one that 
is related to the prediction task, and the second element is 
related to the decision context, as it implements the desir-
ability of the different possible outcomes. Both elements are 
independent of each other.

Until now, we assumed that the decision-maker bases 
their decision strictly on maximizing their utility. The result-
ing optimum decision rule, given by the solution of Eq. (8), 
may or may not produce fairness issues. A decision-maker 
who also wants to consider fairness in their decision-making 
has to adopt their decision strategy such that the resulting 
decision fulfills the chosen fairness criterion. While many 
different ways of how to do this are conceivable, a natural 
way of extending Eq. (8) to a fairness-sensitive context is 
to impose a fairness constraint on the utility maximization:

where FC is a condition of equality such as the ones men-
tioned in Sect. 2.2, or a relaxed version of them. From a 
formal decision-theoretic perspective, this is the optimal 
combination of the decision-maker’s original goal and the 
additional consideration of fairness.

E(U(D = 1)) = p ⋅ � − (1 − p) ⋅ �

E(U(D = 0)) = �

(9)D = 1 if p >
𝛽 + 𝛾

𝛼 + 𝛽
,D = 0 else.

(10)
D = argmaxE(U(D))

subject to Fairness Condition FC

14 Notice that decision rules are likely to be more complex in real-
ity. For example, a bank could adjust the interest rate depending on 
the predicted repayment probability and the applicant’s willingness 
to pay (only denying a loan in cases with a very high default prob-
ability). Our framework generalizes to more complex decision rules. 
However, for simplicity, we consider a binary case.

15 We assume � + � ≠ 0 , as otherwise there would be no need for 
a prediction in the first place. In the loan example, if � = −� , the 
bank’s profit would be the same for any value of D.
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In the context of a post-processing approach for ensur-
ing fairness, this constraint optimization problem has been 
solved in Hardt et al. (2016) (for the fairness metrics equal-
ized odds, equality of opportunity, and predictive equality), 
in Corbett-Davies et al. (2017) (for the fairness metrics 
statistical parity and conditional statistical parity), and in 
Baumann et al. (2022) (for the fairness metrics sufficiency, 
predictive parity, and FOR parity).

4.3  The prediction‑modeler

As illustrated in the preceding subsection, the decision-mak-
ing process requires the probabilities P(Y|D) to solve prob-
lems that involve an unknown quantity Y. In the context of 
machine learning, this corresponds to making a probabilistic 
prediction of Y that the decision D might depend on. This 
represents the prediction task that the prediction-modeler is 
expected to address.

Interestingly, this does not include all versions of predic-
tion models used in ML and discussed in the context of fair-
ness. In particular, a point estimator Ŷ with two possible val-
ues Ŷ = {0, 1} is of little use for the decision-maker, as this 
does not allow to solve the decision problem stated in Eq. 
(8). Consider, for example, the optimum solution (see Eq. 
(9)) for p ≫ 0.5 and for realistic parameters � and � : a typi-
cal ML prediction model optimized for maximum accuracy 
(threshold p = 0.5 ) would lead to far too many instances of 
Ŷ = 1 and thus D = 1 . In general, we can conclude that a 
prediction-modeler who does not have access to the external 
parameters �, �, � is not able to deliver a good point estima-
tor Ŷ  , which allows solving the decision-maker’s task.

A typical assumption in the ML (fairness) literature is 
that the decision is determined by the value of Y (see Mur-
phy 2012; Hardt et al. 2016; Mitchell et al. 2021), e.g., such 
that Y = 1 implies D = 1 , and vice versa. This means that if 
only Y can be predicted with high accuracy, then the decision 
D will be correct. Sometimes it might be possible to achieve 
a perfect prediction, e.g., in the case of picture recognition. 
Here, the fact that a picture represents a dog instead of a cat 
is evidence that could be checked at the time of decision-
making (or recognition), even if an ML classifier does not 
predict the image correctly. However, this is not the case in 
many decision problems discussed in the algorithmic fair-
ness literature. For instance, for the loan example, there is 
real uncertainty about the repayment: Y is a random variable 
whose value cannot be predicted deterministically, and even 
the best prediction model cannot rule out this uncertainty. 
Similarly, in the COMPAS case, the fact of re-offending can-
not be seen as a deterministic property of a delinquent. In all 
such cases, point estimators Ŷ  do not deliver useful informa-
tion, and the only way of dealing with the uncertainty of the 
underlying situation is to use probabilities. This is reflected 
by Eq. (6).

Thus, from a decision-theoretical perspective, the basic 
task of the prediction-modeler is not to deliver a point esti-
mate, but a probability (even if there are cases where a point 
estimator may be useful), i.e., the required prediction model 
is a probabilistic prediction model. The ML task then con-
sists of deriving an estimate p̂ of the true probability, based 
on the analysis of historical data {xi, i = 1,… n} , by specify-
ing a function f with p̂ = f (x) . Since f is determined from 
training data, it is prone to errors, and the resulting p̂ is not 
identical to the real p. The goal of the prediction-modeler is 
thus to create a probability estimate which is as close as pos-
sible to the real p, as any deviation will lead to non-optimum 
decisions if the decision-maker uses the estimator p̂ instead 
of the (unknown) true probability.

If the decision rule is assumed to be given, this require-
ment can be somewhat relaxed: strictly speaking, the 
requirement is that p̂ leads to the same decisions as the true 
probabilities p. For example, in the loan context recalled in 
the last subsection, errors in p̂ far away from the threshold 
specified in Eq. (9) would not make any difference. Thus, 
in general, our framework is agnostic to the type of predic-
tion model used. However, in all cases where the decision-
making is not fully specified from the beginning, or the 
prediction-modeler does not have full access to all decision-
relevant parameters, or the value of the decision-relevant 
parameters might change over time, the prediction-modeler 
has to care for generating a prediction model that works over 
the full range of p.

4.4  The interaction

In this subsection, we analyze in more detail the interac-
tion between the prediction-modeler and the decision-maker 
during the creation of a prediction-based decision system. 
Figure 1 illustrates this from a business process perspective. 
In addition to the specific activities performed, we visualize 
the flow of information between the two roles required for 
developing a prediction-based decision system, focusing on 
the minimum interaction required between the two actors. 
The objective is to identify a minimal set of deliverables for 
this interaction and examine how the introduction of a fair-
ness constraint affects these deliverables.

Table 1 lists the minimum deliverables, i.e., the infor-
mation that the decision-maker and the prediction-modeler 
must provide to each other, while Fig. 1 visualizes when 
during the sequence of tasks these deliverables are due. The 
decision-maker has to specify the prediction task according 
to the decision problem at stake. The prediction-modeler 
has to deliver a prediction model with associated additional 
information, such that the decision-maker can integrate it 
into the decision procedure. The required deliverables vary 
based on whether the decision-maker considers fairness 
requirements, resulting in two different scenarios for both 



AI & SOCIETY 

roles, as depicted in Table 1: The row described by uncon-
strained utility maximization refers to a decision-maker 
that bases their decision strictly on maximizing their util-
ity without considering fairness (as formalized in Eq. (8)). 
In contrast, the row utility maximization s.t. FC refers to 
a decision-maker who also considers fairness, i.e., who 
adds a fairness constraint to the optimization problem, as is 
described in Eq. (10). In the following, we will comment on 
and justify the elements of this table.

4.4.1  Unconstrained utility maximization: DM → PM

At a minimum, defining the prediction task involves speci-
fying the unknown variable Y to be predicted. In practice, 

additional specification elements such as the considered 
population or input features are given, which we omit for 
the sake of simplicity.16

4.4.2  Unconstrained utility maximization: PM → DM

Among the information provided by the prediction-modeler 
to the decision-maker, the prediction model is arguably the 
most important deliverable. In addition to that, the predic-
tion-modeler also needs to communicate the performance of 
the model. This is necessary for the decision-maker to assess 
whether the model fits the domain-specific requirements, 
i.e., to evaluate if the model should be included in the deci-
sion procedure or not.

The decision-maker needs the probabilities p to be able 
to derive the optimal decision rule (see Eq. (9)). However, 
many ML models deliver uncalibrated scores instead of 
an estimate of the probability. To fulfill the needs of the 
decision-maker, the prediction model needs to be calibrated, 
delivering an estimate p̂ of p. If this is not the case, the pre-
diction model should come with a calibration function that 
allows the decision-maker to reconstruct the probabilities 
from the score. Note that calibration defines “a property of 

Fig. 1  A BPMN (Business 
Process Model and Notation) 
diagram of the tasks involved 
to generate a prediction-based 
decision system

Table 1  Sets of minimum deliverables by role

DM → PM stands for the minimum set of deliverables the decision-
maker (DM) must provide to the prediction-modeler (PM) and PM → 
DM describes the minimum set of deliverables the PM must provide 
to the DM

DM → PM PM → DM

Uncon-
strained 
utility 
maximi-
zation

∙ Target variable Y ∙ Prediction model p̂ = f (x)

∙ Prediction model performance
∙ Calibration function

utility 
maximi-
zation s.t. 
FC

∙ Target variable Y ∙ Prediction model p̂ = f (x)

∙ sensitive attribute A ∙ Prediction model performance
∙ Group-specific calibration 

functions
∙ Group-specific baseline 

distributions

16 In certain situations, the prediction-modeler might receive train-
ing data from the decision-maker (for example, if it makes sense to 
use the decision-maker’s customer data for training). However, in 
other cases, the prediction-modeler relies on external data sources to 
develop a model predicting the target variable Y, as specified by the 
decision-maker. Therefore, our general framework does not foresee 
the provision of training data by the decision-maker as a minimum 
deliverable.
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the model [more] than of its use since it does not depend on 
decision thresholds” (Hutchinson and Mitchell 2019, p. 55).

4.4.3  Utility maximization s.t. FC: DM → PM

Consider now the minimum deliverables of the decision-
maker in the constrained case, that is, when the decision-
maker optimizes their utility subject to some group fairness 
constraint. Recall that the basic idea of group fairness is to 
avoid unjustified disadvantages for subgroups of the popula-
tion, defined by a sensitive attribute A (see Sect. 2.2). The 
specification of the regarded sensitive attributes is done by 
the decision-maker. Only with knowledge of the protected 
subgroups considered, the prediction-modeler, in turn, can 
transmit the minimum deliverables assigned to them.

4.4.4  Utility maximization s.t. FC: PM → DM

To facilitate the decision-maker's ability to solve the con-
strained optimization problem outlined in Eq.  (10), the 
prediction-modeler must provide additional information. 
The type of information might depend on the fairness con-
straint, and while the problem has been studied for some 
cases of fairness constraints, the ML literature still has many 
unexplored areas. In the following, we restrict the discussion 
to the group fairness metrics that have been studied so far, 
relating to Hardt et al. (2016), Corbett-Davies et al. (2017), 
and Baumann et al. (2022).17Hardt et al. (2016) and Corbett-
Davies et al. (2017) prove that any optimal decision rule d∗ 
that satisfies statistical parity, conditional statistical parity, 
equality of opportunity, or predictive equality takes the fol-
lowing form of group-specific thresholds, i.e.:

where �a ∈ [0, 1] denote different group-specific 
constants.18Baumann et al. (2022) prove that any optimal 
decision rule d∗ that satisfies predictive parity or false 

(11)d∗ =

{
1 p ≥ �a
0 otherwise

omission rate (FOR) parity takes the following form of 
group-specific upper- or lower-bound thresholds, i.e.:

where v denotes the positive predictive value for the predic-
tive parity fairness constraint – the false omission rate in the 
case of FOR parity, respectively. P(Y = 1|A = a) denotes 
the prevalence of group a (also called base rate), which is 
defined as the share of individuals belonging to the positive 
class.

The fairness constraint transforms into a condition relat-
ing the thresholds �0 and �1 , where the exact form of this rela-
tion depends on the chosen fairness constraint. The decision-
maker’s utility is maximized by selecting the optimum one 
from all pairs (�0, �1) defined by this relation, based on the 
resulting utility. To evaluate the utility, the distributions of 
p for both groups are needed. This so-called “baseline distri-
bution” describes how each subgroup is distributed over the 
probability range p ∈ [0, 1] (for details of the determination 
of optimum thresholds see Hardt et al. 2016; Corbett-Davies 
et al. 2017; Baumann et al. 2022). For a given prediction 
model, the baseline distributions can be determined, at least 
approximately, from the training data, and this information 
has to be delivered to the decision-maker as a necessary ele-
ment for their decision-making. Also, the utility evaluation 
can only be done if the calibration requirements are met on 
the level of the subgroups, so either the prediction model 
must be calibrated separately for each considered subgroup, 
or group-specific calibration functions need to be provided.

Thus, the fact that the decision-maker is considering fair-
ness constraints leads to additional information requirements 
from the side of the prediction-modeler. Recall that we have 
restricted the discussion to the case of a few already stud-
ied group fairness criteria, for which we end up with the 
specification of deliverables in Table 1. For other fairness 
constraints, the additional requirements may be different. 
However, as a general rule, we might expect that imposing 
fairness constraints for the decision system generates addi-
tional information requirements that the prediction-modeler 
must meet. Simply delivering a black-box prediction model 
without this additional information is, in general, not suf-
ficient for enabling the decision-maker to ensure a fair deci-
sion system. In Sect. 5, we will analyze the ethical conse-
quences of this.

Note that the discussed examples in this subsection relate 
to the so-called post-processing methods for creating fair-
ness (Mehrabi et al. 2019), assuming that a decision-maker 
accepts the prediction model as given. This is the simplest 
situation with minimum interaction between the two players. 

(12)d∗ =

⎧⎪⎨⎪⎩

1, for p ≥ 𝜏a
0, otherwise

�
for v > P(Y = 1�A = a)

1, for p ≤ 𝜏a
0, otherwise

�
for v < P(Y = 1�A = a)

17 Hardt et  al. (2016) use a concept they call immediate utility 
whereas (Corbett-Davies et al. 2017) use the concept of loss minimi-
zation for their proofs. Both of these concepts can easily be translated 
to what we call the decision-maker’s utility. Therefore, their solutions 
hold for the constrained optimization problem, as we defined it. The 
problem formalization of Baumann et  al. (2022) is in line with the 
constrained optimization problem, as we defined it.
18 Note that when choosing conditional statistical parity as the FC, 
these constants additionally depend on the “legitimate” attributes. 
Furthermore, for the fairness criteria that combine two parity con-
straints (equalized odds and sufficiency), some randomization is 
needed (Hardt et al. 2016; Baumann et al. 2022). For simplicity, we 
omit this for the rest of the discussion.
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However, our framework (as presented in Fig. 1) also holds 
in cases where pre-processing or in-processing methods are 
applied. In such cases, the interaction between the two roles 
is more complicated, as the decision-maker has to inform the 
prediction-modeler about the fairness constraint and, at least 
for in-processing methods, specify the decision rule upfront. 
Thus, the task of generating fairness can be shifted to the 
prediction-modeler, but at the expense that the decision-
maker restricts their freedom to change the decision rule 
after the prediction model is delivered. Thus, pre-processing 
and in-processing approaches require a closer collaboration 
of the two roles, with associated increased requirements for 
the interaction between the two roles.

5  Discussion

The first important insight is that different actors come with 
different responsibilities. Here, we focus more specifically 
on professional responsibility, that is, the set of obligations 
based on a role played in a certain context.19 Since our analy-
sis relates to a well-defined problem in algorithmic decision-
making (i.e., group fairness), these obligations translate into 
specific pieces of information that each role is expected to 
deliver.

The deliverables we suggested are not optional and reflect 
the strong interdependence between roles. Ultimately, we 
acknowledge that the responsibility for fair decisions falls 
on the role of the decision-maker for the reasons we already 
discussed in Sect. 4. However, their ability to address fair-
ness issues depends heavily on the work of the prediction-
modeler. Similarly, the latter cannot take responsibility for 
group-specific calibration functions and baseline distribu-
tions if they do not receive information about the sensitive 
attributes to be considered.

The interdependence between roles recalls the problem 
of creating meaningful communication channels among 
designers, managers, and, more generally, all profession-
als involved in designing and using artificial intelligence 
(AI) systems. To this aim, we offer some considerations that 
might be useful to inform future research and the implemen-
tation of prediction-based decision-making systems.

So far most of the literature on algorithmic fairness under-
estimated practical issues emerging in real-world organiza-
tions (see Holstein et al. (2019) for a notable counterexam-
ple), but to provide effective and sustainable solutions we 
need to fill the gap between mathematical abstractions and 
organizational dynamics and engineering practices (Tubella 
et al. 2022). Scholars have already addressed the risks of 

abstracting from the social context of AI applications and 
highlighted the need to reorient technical work away from 
solutions to process (Selbst et al. 2019; Scantamburlo 2021). 
Our framework goes in that direction and tries to figure out 
which kind of concrete interactions would help the imple-
mentation of (group) fairness starting from two key roles and 
their associated tasks.

Starting from professional roles gives the opportunity to 
distill important information entering prediction and deci-
sion tasks and directs greater attention to organizational 
aspects, which are often less regarded in the field of AI eth-
ics. In general, analyzing roles and their interactions can 
reveal the background of values and assumptions that shape 
the design process (Krijger 2021). This role-based perspec-
tive may also serve to highlight a more articulated view of 
the design and use of algorithmic decision-making sys-
tems, where more than one professional might be involved. 
Usually, the study of human-AI interaction focuses on the 
exchange occurring between the (end) users and the operat-
ing systems. However, our framework suggests that there 
are other meaningful interactions that are worthy of consid-
eration. An analysis of interactions shaping the design and 
use of AI systems may reveal conceptual gaps, structural 
deficiencies, and power imbalances.

Our exercise considers a simple business process sce-
nario, but other elaborations are possible (a finer-grained 
analysis of tasks in different settings, e.g., medicine). For 
example, further research might explore connections with 
existing frameworks that emphasize the context-sensitive 
nature of computing systems, such as the model of con-
textual integrity (Nissenbaum 2010). A closer look at the 
norms and social practices that control, manage, and steer 
the flow of information within organizations can help gain a 
richer understanding of prediction-based decision systems. 
This may result in a description of the flows of information 
characterizing the context of a prediction-based decision 
system and the identification of which flows are appropriate 
to ensure agents (and the organizations) meet established 
goals and ethical norms.

For supporting interactions among professionals, an 
essential task is to keep track of relevant information 
characterizing the elements of the algorithmic decision-
making system. In computer science and engineering dis-
ciplines, this goal is often fulfilled by devising software 
documentation that may include a variety of information 
(e.g., technical requirements, software architecture, codes, 
etc). Note that documentation is also acknowledged as an 
important measure to ensure transparency and accounta-
bility of AI systems. In this regard, the European Commis-
sion’s proposal for an AI regulation requires that “techni-
cal documentation of a high-risk AI system shall be drawn 
up before that system is placed on the market or put into 
service and shall be kept up-to-date” (article 11 (European 

19 Responsibility, of course, extends beyond roles, and for a broader 
discussion see Van de Poel and Royakkers (2011).
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Commission 2021a)). However, it is still unclear which 
types of information should form a robust documentation. 
This effort, moreover, should also consider how to make 
information accessible and useful for the players contrib-
uting to the informational exchange. This would require 
addressing issues of knowledge and language divides 
which often characterize participatory design processes.

With respect to the documentation task, the results 
suggested by our framework have a limited scope in that 
they refer to a particular setting (i.e., group fairness in 
algorithmic decision-making). However, our results show 
that, in general, it is necessary to perform an analysis of 
which specific contents one may need to address the prob-
lem at stake. Our effort suggests that, in general, players 
might have to ask for more specific information due to the 
context of use and the ethical issues addressed. Also, our 
attempt shows that it is necessary to address the question 
of how to modulate the creation and maintenance of docu-
mentation among different players. So far, technical docu-
mentation is often conceived as a task entirely in charge 
of engineers and computer scientists, but, in reality, there 
might be other roles affecting the design and the deploy-
ment of AI and ML systems. So we might think of report-
ing and documenting more as a collaborative practice that 
involves different roles rather than a duty assigned to a 
single category of people.

A final consideration regards human oversight, an ethi-
cal principle recommending human agency in AI-driven 
decision processes to ensure human autonomy and prevent 
adverse effects. While the notion of human-in-the-loop can 
inspire the structuring of human intervention and monitor-
ing, it is open to discussion what type of duties and actions 
would be needed in real-world scenarios: What does it mean 
to intervene in a decision cycle? Who should do it? The 
intuition of identifying roles and the associated tasks is a 
way to start answering such questions. This would be par-
ticularly beneficial because in real-world decision-making 
procedures (such as those embedded in administrations or 
bureaucratic processes) responsibility is often delegated and 
distributed across multiple actors (Strandburg 2021). In our 
framework, we envision activities and interactions based on 
a simplified Business Model Notation, but richer elaboration 
can provide more details on who supervises what.

The creation of a flow of information between the pre-
diction-modeler and the decision-maker connects to key 
ethical requirements in the design and deployment of AI 
and ML systems: Transparency, accountability, and human 
oversight. The scientific community and policy makers 
largely acknowledge the centrality of these requirements. 
However, there is still limited knowledge and experi-
ence on translating these requirements into practice. The 
approach our framework suggests offers meaningful stim-
uli to articulate these requirements more concretely and 

raises points that can move the community towards new 
research and policy directions.

6  Conclusions

In this paper, we argue that a prediction model as such 
cannot be qualified as fair or unfair. This argument is based 
on two observations: First, predictions themselves have no 
direct impact. Second, predictions can be used differently 
for making decisions. Important examples for the second 
observation are all post-processing methods to implement 
fairness constraints, e.g., Baumann et al. (2022), Hardt 
et al. (2016) and Corbett-Davies et al. (2017). These meth-
ods are based on the idea that the fairness properties of a 
decision system can be shaped by the way in which the 
prediction model’s output is transformed into a decision, 
e.g., by imposing group-dependent decision thresholds. 
So, the same prediction model can lead to unfairness 
(without post-processing) or fairness (with adequate post-
processing). Other examples are all human-in-the-loop 
approaches that combine prediction models with human 
decision-makers. They assume that humans are at least 
co-creators of the resulting ethical consequences of predic-
tion-based decision systems, which of course implies that 
different ways of using the prediction model’s output are 
conceivable and that the activity of the human in the loop 
consists exactly in influencing the usage of the prediction 
model’s output.

Our framework serves as a tool to identify what is 
essential for each role in addressing fairness within a pre-
diction-based decision system. It enables us to propose a 
minimum level of active responsibility (Van de Poel and 
Royakkers 2011) that one could demand from these roles 
in similar situations. The identification of deliverables 
and interactions is not meant to limit the responsibility 
of ML developers and decision-makers to the delivery 
of specific pieces of information, but to avoid false or 
too vague expectations of the obligations for the roles 
involved. Indeed, a deeper comprehension of the various 
roles, along with their goals, tasks, and responsibilities, is 
a crucial first step for implementing ethical requirements 
in prediction-based decision systems.
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