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ABSTRACT

For software maintenance and evolution, insight into the codebase is crucial. One way to enhance insight is
the application of static analysis to extract and visualize program-specific relations from the code itself, such
as call graphs and inheritance trees. Yet, software often contains in-house libraries: unique, domain-specific
libraries whose usage is typically scattered throughout the codebase. To provide sufficient insight into the
usage of those libraries, the static analysis must be customized with domain-specific information.

In this paper, we propose a method to enhance insight into the usage of in-house libraries by producing
custom overviews. Furthermore, we describe three exploratory case studies targeting industrial C++ and Ada
codebases, in which the method was developed, evolved, and validated.

The method prescribes how to create custom overviews using static analysis iteratively, starting from a
user-provided, initial specification of proper library usage using code patterns. As a safeguard, the method
includes cross-checks to detect code fragments that deviate from proper library usage. Whenever such a
deviating library usage is found, the code owners determine whether that deviating library usage should be
added to the specification of proper library usage or the code fragment should be made compliant. The latter
alternative makes both the codebase more regular and keeps the custom static analysis simpler. The method
creates custom overviews that reveal opportunities to improve the usage of the in-house libraries, e.g., the
removal of domain-specific redundant code which cannot be detected using generic tools, such as compilers
and linters.

We observed that industrial codebases are regular enough to create custom overviews using static analysis
in the three exploratory case studies. Furthermore, we observed that the cross-checks, which detect deviating
library usage, ensure the validity and completeness of the custom overviews. We conclude that producing
custom overviews for in-house libraries using the method is valuable and feasible.

1. Introduction

research question: How to enhance insight into the usage of in-house
libraries?

Several studies (Schroter et al., 2017; Xia et al., 2018) show that
software engineers spend most of their time understanding source code,
not only for maintenance and modernization but also for evolution
and development. Software is often built around in-house libraries with
various purposes, such as data exchange, logging, and company-specific
functionality. Software engineers' would benefit from enhanced insight
into the usage of those in-house libraries, whose usage is typically
scattered throughout the codebase. In this paper, we address the

* Editor: Marcos Kalinowski.

* Corresponding author.
E-mail address: pierre.vandelaar@tno.nl (P. van de Laar).

In-house libraries provide abstractions relevant to a specific domain.
The domain concepts are exposed using a combination of programming
language constructs, such as functions, classes, and constants. The
usage of these programming constructs typically adheres to particular
code patterns, either as required by the library’s preconditions and pro-
tocols or due to the software engineers’ explicit practices and implicit
conventions. We aim for insight in terms of these domain concepts
instead of the programming language concepts.

1 The type of an engineer is not exclusive. A software engineer must understand software yet might also be a mechanical engineer, a systems engineer, or a

hardware engineer.

https://doi.org/10.1016/j.jss.2024.112028

Received 17 April 2023; Received in revised form 1 February 2024; Accepted 14 March 2024

Available online 19 March 2024
0164-1212/© 2024 Published by Elsevier Inc.


https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:pierre.vandelaar@tno.nl
https://doi.org/10.1016/j.jss.2024.112028
https://doi.org/10.1016/j.jss.2024.112028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112028&domain=pdf

P. van de Laar et al.

For example, consider a time measurement library that introduces
the stopwatch domain concept and implements it using the following
programming language constructs: a stopwatch class with member
functions to start and stop the time measurement. Imagine a codebase
that uses these member functions as follows:

« the stop function is only called for started stopwatches, as re-
quired by the library; and

+ a stopped stopwatch is, in practice, never started again, although
this is supported by the library.

Given these usage patterns, an overview of the time measurement
library could show for each stopwatch the location, or absence thereof,
where it is constructed, started, and stopped. This overview enhances
insight in the codebase by exposing the relation between the code
fragments associated with each stopwatch. Furthermore, this overview
enables domain-specific improvements to the codebase: started-but-
never-stopped stopwatches correspond to incomplete time measure-
ments and all code related to these stopwatches is domain-specific
redundant code which can be removed.

Manual analysis of large codebases is laborious and error-prone, so
we aim for automation, with the following requirements:

+ automation must be able to process all relevant code of the
application, and

+ automation must be customizable to the specific analysis in the
specific domain.

We considered the following options for automation:

* Regular expressions: Analysis using regular expressions is sup-
ported in most text editors, integrated development environ-
ments, and programming languages. Regular expressions are how-
ever text-based and thus sensitive to comments and white spaces.
Moreover, regular expressions cannot handle programming lan-
guage structures like recursively nested parentheses.
Cross-reference databases: Many compilers, with the appropriate
flag (often xref), and dedicated tools, like cxref,? GNATxref,® and
the dependency graph extractor of Renaissance for C/C++ and
IDL (Dams et al., 2021) and of Renaissance-Ada (van de Laar and
Mooij, 2022), can summarize a codebase in a database containing
all symbols and references. Analysis can exploit such a cross-
reference database. However, only few analyses need just the
information captured in a cross-reference database.

Linters: Linters analyze a codebase for general issues, such as bugs,
style violations, and non-portable constructs. Some linters, like
GNATcheck* and SonarQube,® support custom rules. However,
many analyses need more customization than is provided by
linters, as, e.g., reported by Mendonca et al. (2018).

Parsers: Many parsers, such as Eclipse CDT,° Clang,” ASIS,® and
Libadalang,’ provide an Application Programming Interface (API)
to enable custom static analysis. These parsers typically also
provide basic functionality for syntactic and semantic analysis.
However, software engineers often experience a steep learning
curve, especially when the parser’s abstract syntax tree is exposed.

Since regular expressions are unable to process all programs, and
since cross-reference databases and linters cannot be customized suffi-
ciently, we have selected parsers to enhance insight into the usage of
in-house libraries.

https://www.gedanken.org.uk/software/cxref.
https://www.adacore.com/gnatpro/toolsuite/utilities.
https://www.adacore.com/static-analysis/gnatcheck.
https://www.sonarsource.com/products/sonarqube.
https://github.com/eclipse-cdt.
https://clang.llvm.org.
https://www.adacore.com/asis.
https://adaco.re/libadalang.
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Software “understanding involves dealing with specific problems
that require program and task-specialized solutions” (Reiss, 2005).
So, for in-house libraries, one should not expect off-the-shelf analysis
tools to be immediately effective. For this reason, we distinguish in-
house libraries from widely-used off-the-shelf libraries, for which some
static analysis specialists may already have developed some dedicated
analyses. Customization is needed to find sweet spots in information
abstraction: domain-specific insight without overwhelming details.

Jbara and Feitelson (2014) “suggest that code regularity — where the
same structures are repeated time after time — may significantly reduce
complexity, because once one figures out the basic repeated element it
is easier to understand additional instances”. This does not only apply
to humans but also to tools. As Bessey et al. (2010) state “tools want
expected”. The benefits of code regularity are not limited to static
analysis. Both Wlodarski et al. (2019) and Mooij et al. (2020) argue
that automated code transformation also benefits from improving code
regularity first, and Ossendrijver et al. (2022) states that the quality of
the transformation “is dependent on how idiomatic and consistent the
codebase is”.

Irregularities can easily be introduced in a codebase as industrial
codebases are developed and maintained for decades by an evolving
multi-disciplinary team of engineers: Engineers have personal program-
ming habits based on earlier experience and education; best practices in
software engineering advance over time; and programming languages,
standards, and libraries regularly get updated. Irregular usages of
an in-house library deviate from the most-frequent usages of that
library’s API. However, these irregularities typically do not violate the
usage constraints of the library’s API and thus are typically not API
misuses (Amann et al., 2019). The need for custom static analysis raises
the question whether the codebases are regular enough to capture
all code fragments relevant for that analysis with a limited amount of
code patterns. At the start of our case studies it was not clear how to
determine this regularity, so we have decided to observe this regularity
experimentally.

In contrast to our earlier work (Klusener et al., 2018; Mooij et al.,
2020) on code transformation, in this paper we focus on code analysis.
In particular, we propose a method to create custom overviews that
enhance insight into the usage of in-house libraries. Furthermore, we
describe three exploratory case studies involving industrial C++ and
Ada codebases, in which the method was developed, evolved, and val-
idated using the industry-as-laboratory approach (Potts, 1993). These
case studies were executed within public—private partnership research
projects. These projects were proposed by our industrial partners, as
being in need of an innovative solution to enhance insight into the
usage of their in-house libraries. In these case studies, we address two
additional research questions specifically for code regularity:

+ Are these industrial codebases sufficiently regular regarding the
usage of in-house libraries so that custom static analysis is effec-
tive and efficient?

» Can code fragments that deviate from expected code patterns
be detected effectively and efficiently to ensure the validity and
completeness of the custom overviews?

The remainder of this paper is organized as follows: Section 2
presents the method to analyze the usage of in-house libraries. Sections
3, 4, and 5 describe an industrial case study of a blackboard library,
a logging library, and an inspection library, respectively. The threats
to validity are addressed in Section 6, and in Section 7 we discuss
related work. We end with discussions, conclusions, and future work
in Sections 8, 9, and 10.

2. Method

The method is summarized in Fig. 1 and has 3 phases: develop, apply,
and act. We first describe these phases and briefly introduce the process
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Fig. 1. Schematic summary of the method.

steps that they contain, then in the subsections we elaborate in more
detail on these steps.

In the develop phase, a custom static analysis is developed in two
steps. Step 1 is a mostly manual investigation of the library usage in
the codebase that involves the code owners and domain experts. This
investigation yields the relevant artifacts in the codebase, the relevant
library elements, and the code patterns that describe proper library
usage. In step 2, based on the results of the investigation, a custom
static analysis is manually implemented using tools for static analysis
and visualization. In particular, the custom static analysis captures,
from the relevant artifacts in the codebase, the code fragments that
match any code pattern for proper library usage. From these code
fragments, the analysis extracts the relevant information and combines
that information into an overview of the library usage in the codebase.
Furthermore, the analysis reports on deviating library usage in the
codebase: usage of the relevant libraries elements that are not matching
any of the code patterns.

In the apply phase, the custom static analysis is executed and
produces a list of deviating library usage and an overview of the library
usage in the codebase. The former output contains usages of relevant
library elements that do not match any code pattern for proper library
usage. The latter output presents the essential information extracted
from the code fragments that match any code pattern for proper library
usage. The latter output is emphasized using bold in Fig. 1 to reflect
the importance of the overview to enhance insight into the usage of
in-house libraries.

In the act phase, manual action is taken based on the output of the
custom static analysis. For each deviating library usage, the method
requires a decision of the code owners. Based on the outcome of the
decision, the method prescribes to either return to step 1 and update the
specification such that the usage is considered proper library usage or
execute step 3 which reduces variation in the codebase by changing the
deviating library usage into a proper equivalent. Before the overview of
the library usage is shown to the software engineers, also some sanity
checks should be applied. Suspicious items in the overview should be
verified against the codebase; if the analysis is wrong, then the method
prescribes to return to step 1. Otherwise, the software engineers can
use the overview and likely enhance their insight in the codebase. The
software engineers’ enhanced insight typically results in improvements
to the codebase in step 4.

2.1. Investigate the library usage in the codebase

The goal of the investigation is to understand the library and its us-
age in the codebase sufficiently to create the needed custom overviews.
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Therefore, this investigation should determine which code patterns
capture relevant information and how code fragments that match
these code patterns relate to one another. Whereas the relevant in-
formation contained in the code fragments is typically domain-specific,
the relations between the code fragments are often found in call graphs
and inheritance trees.

The output of this investigation is a specification of the relevant
artifacts in the codebase, the relevant library elements, and the code
patterns capturing proper library usage. The method acknowledges that
this investigation might miss some relevant details. Hence, this step will
be revisited whenever the specification must be extended or updated.

We observed that discussing the following questions with stake-
holders helped the investigation:

» What are the relevant artifacts to be analyzed? Codebases contain
not only source code but also artifacts such as make files, project
files, configuration files, installation scripts, test scripts, docu-
mentation, and input files for code generators. These artifacts
might contain information that can focus the analysis, e.g., on
the source code relevant for the specified configuration, and that
can simplify the analysis, e.g., by using the input files for code
generators instead of the generated code. Answering this question
helps to get the relevant codebase artifacts in Fig. 1.

What is part of the in-house library? We observed that it was not
always clear which artifacts were part of the in-house library,
especially in the following cases:

— When similar functionality was implemented in multiple
in-house libraries, such as multiple logging frameworks.

— When wrappers around the in-house library were made, yet
the library was still also accessed directly.

- When multiple versions of an in-house library were used in
the codebase at the same time.

Yet, what constitutes the in-house library must be agreed upon
by all stakeholders to ensure effective and efficient development
of the custom static analysis in the next step. Answering this
question helps to get the relevant library elements in Fig. 1.
How does the codebase interact with the in-house library? We ob-
served that each in-house library could support many ways of
interaction, such as

— Object-oriented interaction based on inheritance of an inter-
face or base class provided by the in-house library;

— Functional interface based on direct calls to functions pro-
vided by the in-house library;

— Functional interface based on passing functions provided by
the in-house library as arguments by using function pointers
in C/C++ and access types in Ada;

- Functional interface based on indirect calls to functions
provided by the in-house library using messaging protocols,
such as Remote Procedure Call and SOAP;

— Test interface based on keywords used by both test code and
test scripts; and

— Implicit interaction based on exchanges of text messages
with some implicit, proprietary structure.

All kinds of interactions are relevant to determine the usage of the
in-house library and its complete API. Note that the presented list
is not exhaustive. For example, interactions using reflection and
based on aspect-oriented techniques are possible, but were not
used in our case studies. Answering this question helps to get
the code patterns for proper library usage in Fig. 1.

2.2. Develop a custom static analysis

In the second step of the method, a custom static analysis for the
needed overview of the library usage in the codebase is developed. The
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aim of the overview is not just to enhance software engineers’ insight,
but also to enable them to improve the library usage in the codebase.
The custom static analysis also has another output: the deviating library
usage in the codebase. This output only targets the developers of the
custom static analysis and is described in the next section.

The method aims for automation of the custom static analysis, since
automation ensures the validity and completeness of the overview of
the library usage in the codebase. Furthermore, automation enables not
only the integration of the custom static analysis into the nightly-build
process to keep the overview up-to-date with the codebase but also
the comparison of the overviews of all branches within a source code
repository. Yet, in exceptional cases, the manual execution of some
custom analysis steps is more cost effective.

Software engineers can develop the custom static analysis using
their programming skills in combination with tools for static analysis
and visualization. The recommendations of the method for the tools,
design, and overview are discussed in detail in the remainder of this
section.

Tools for static analysis and visualization
The method recommends the following kinds of tools to develop the
custom static analysis:

* Parsers for the build process specifications, such as supported by
MSBuild for Microsoft Visual Studio projects; Maven for Java
projects; and GNAT Components Collection for GNAT projects.
Parsers and semantic analyzers for the programming languages, such
as Clang and Eclipse CDT for C/C++; and ASIS and Libadalang
for Ada.

Cross-reference databases, such as produced by many compilers
with the appropriate flag (often xref), and dedicated tools, such as
cxref, GNATxref, and the dependency graph extractor of Renais-
sance for C/C++ and IDL (Dams et al., 2021) and of Renaissance-
Ada (van de Laar and Mooij, 2022), and accessed either di-
rectly using query languages, like the Structured Query Language
(SQL) and the Cypher query language, or indirectly via tools like
GNATinspect.'?

« Pattern matchers for a programming language, such as Structural
Search and Replace for Java (Mossienko, 2006), the rejuvenation
library of Renaissance for C/C++ (Mooij et al.,, 2020) and of
Renaissance-Ada (van de Laar and Mooij, 2022).

Visualization, of graphs, e.g., using Graphviz, Neo4j, and yEd; of
tables and spreadsheets, e.g., using Excel; and of code compar-
isons and patches, e.g., using WinDiff.

Design of custom static analysis

The method does not consider the analysis to be a monolithic,
indivisible process but rather composed of analysis steps in which the
output of an analysis step can be input for other analysis steps. By
splitting the analysis in multiple steps, the runtime may increase since
source files may need to be processed multiple times, yet the following
advantages can be obtained:

separation of concerns;

reuse of standard analysis steps, such as the extraction of the call
graph and inheritance tree;

enable diagnostics and validation of individual steps;

store intermediate analysis results, e.g., to enable faster iteration
and to perform regression tests; and

reduce memory consumption.

10 https://docs.adacore.com/gnatcoll-docs/xref. html#xref-gnatinspect.
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In one of the case studies involving industrial C++ codebases, we
needed to split the analysis, since, due to duplication caused by #in-
clude’s, the parse trees of all C++ source files together were too large
to fit in the memory of a regular laptop.

The method recommends to consider at least to split the analysis
into two steps:

1. alocal, intra-procedural analysis step that analyzes each compi-
lation unit, after macro expansions, to produce nodes with local
knowledge; and

2. a global, inter-procedural analysis step that captures the rela-
tions and dependencies by combining these nodes into graphs.

Similar to our suggestion, Horvath et al. (2018) generates a sum-
mary of the relevant information during the intra-procedural analysis
and uses that summary to enhance the completeness of the global
inter-procedural analysis.

The separation introduced by function declaration and definitions is
just one of the many decoupling techniques that software engineers use
to simplify the development and maintenance of codebases. Callbacks,
inheritance, and broadcasting are other, well-known decoupling tech-
niques. These decoupling techniques make codebases harder to analyze
not only since more analysis steps are needed but also since without
additional information, results will only be over- and under-estimations
instead of exact answers.

In our method, we try to evaluate expressions at compile-time to
determine the value relevant for the analysis of the in-house library.
For example, the actual parameter values passed to the function calls
of the in-house library can help to enhance insight in its usage. The
evaluation of expressions at compile-time becomes more complicated
given the earlier described two step-approach to evaluate function calls.

Overview to enhance insight

According to Reiss (2005), a visualization “is often unusable be-
cause it is overwhelming and the relevant information for a particular
problem is so hard to extract”. The method has the following guidelines
for developing the custom static analysis to address this challenge and
to produce overviews that enhance the software engineers’ insight:

Add structure to make the overview less overwhelming. For exam-
ple, experiment with different structures, such as lists and trees,
and with using order, e.g., sort based on alphabetic order or
location in archive.

Put the user in control to make the overview less overwhelming.
For example, experiment with interactive overviews such that
the user can extract the relevant information for a specific task
and goal using e.g., expandable and collapsible tree structures,
configurable filters, and custom queries.

Use familiar representations to make the overview less over-
whelming. For example, an overview for software engineers could
use code patches, showing the differences between code frag-
ments or between a code fragment and a code pattern.
Experiment with multiple representations, such as text, tables,
and graphs, to find the optimal overview. Textual representation
includes lists of related code fragments.

Experiment with different ways to combine data, such as group-
ing and aggregating based on, e.g., domain- and programming-
concepts, to obtain the most relevant information.

Relate the information in the overview to the constituent data
in the code fragments for easy verification and validation of
the analysis results. For example, experiment with inserting an-
notations and comments in source code to communicate this
relation.
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2.3. Check analysis and reduce variation in the codebase

As already stated, industrial codebases contain irregular code frag-
ments. Indeed, “if programmers must obey a rule hundreds of times,
then without an automatic safety net they cannot avoid mistakes”
(Bessey et al., 2010). Due to such irregularities, we expect that some
relevant code fragments will not match any code pattern in the initial
set of proper library usage and hence the resulting overview will be
initially incomplete. To ensure the completeness of the overview, the
method explicitly requires to search for missed code patterns, library
elements, and artifacts. To ensure the correctness of the overview, the
method expects quality checks, e.g., to automatically detect conflicting
information extracted by the analysis. In the remainder of this section,
we describe both these checks and our recommendation to reduce the
variation in the codebase.

Checks for validation

As stated in Section 2.2, the custom static analysis has besides
the overview of library usage also the deviating library usage in the
codebase as output. Whereas the first output is relevant for both the
developers and the users, the latter output only targets the developers
to ensure the validity and completeness of the overview.

Deviating library usage is found using cross-checks whenever

+ a library element is used in the codebase, yet does not match any
of the code patterns describing proper library usage; and

» a domain invariant is violated, for example, a stopwatch that is
stopped before being started.

When deviating library usage is found, improvements to either the
analysis or the codebase must be made.

Developers should also check the validity of the analysis and the
overview. In the case studies, while checking unresolved references, we
observed that, in the beginning, unresolved references typically indi-
cated incompleteness of the analysis and irregularities in the codebase,
yet in the end, reflected limitations of static analysis. Furthermore, we
observed that in graphical overviews, checking the following nodes was
typically worthwhile:

» nodes without edges, e.g., a definition without any usage;

» nodes with only incoming edges, e.g., a variable that is only
written and never read; and

» nodes with only outgoing edges, e.g., a function that calls other
functions, yet is never called.

In particular, we observed that, in the beginning, these nodes typically
indicate incompleteness of the analysis, such as missed artifacts and
relations, yet in the end, these nodes indicate possible improvements
in the codebase.

Reduce variation

Industrial codebases contain variations in code, both required by
the customer or the development process, e.g., to support multiple
products in a single product family, and accidental since pro-
gramming languages allow software engineers to realize the same
functionality in multiple ways (Wall et al., 2000) . Of course, all
analyses, automatic and manual, need to interpret the variations: When
variations in code are due to differences in requirements that are
relevant for the analysis, these variations should be treated differently.
Otherwise, these variations should be treated the same.

For accidental variations, i.e., when variations in code are not due
to differences in requirements, the method recommends to reduce the
variation such that the codebase becomes more regular and the analysis
stays simple. Of course, also all future analyses benefit from the more
regular codebase.

The decision is, however, up to the code owners. When the code
owners decide to keep the codebase unchanged, the complexity of the
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custom static analysis increases since multiple library usage variants
have to be handled. Yet the method is still applicable. When the code
owners decide to change the codebase, producing the custom overviews
goes hand-in-hand with improving the code regularity.

2.4. Improve the codebase

The aim of the overview of library usage is not just to enhance
software engineers’ insight, but also to enable them to improve the
library usage in the codebase. We observed that many improvements
resulted from gaining overview of the library usage. To give some
examples:

» The overviews showed unexpected usage of some library items.
Unexpected usage includes only allocation of a library item, only
read operations on a library item, and only write operations
on a library item. Many of the library items with unexpected
usage were considered domain-specific redundant code and were
removed. In some other cases, the codebase was made more
regular, e.g., by adding missing operations and test cases, to bring
the usage of all library items into line with the expectations.
The overviews showed library items and their properties together,
e.g., in a single table. This clearly showed some inconsistencies
between library items that went unnoticed so far due to being
scattered all over the codebase. The code was improved to remove
these revealed inconsistencies.

The overviews gave insight that enabled architects to improve
the interface of the in-house library and developers to refactor
its code.

3. Industrial in-house blackboard library

Our first case study was executed at Philips'! within the context of
their Image-Guided Therapy systems. The case study is about an in-
house blackboard library that implements a data distribution service.
A blackboard conceptually consists of data items that can be accessed
via getter and setter methods and using the publish-subscribe pattern.
The blackboard library was introduced about 20 years ago to have
a common shared state across a multitude of related modules and
libraries. The blackboard library is used in 2 product lines, both the
legacy product as well as the state-of-the-art product line, and in
particular, by the control component that was also studied in Klusener
et al. (2018). The blackboard library is not only intensively used for
internal communication but also for exposing some blackboard items
to external components. The whole codebase contains roughly 1 MLOC,
the part that uses the library contains roughly 300 KLOC, and the
library itself contains 20 KLOC.

To understand how the data flows within the control component,
engineers need to understand more than just the C++ call graph. It
is crucial that they also understand the data flow through the black-
board items, in particular regarding their publish-subscribe behavior.
Manually obtaining this information from this large codebase is error-
prone and time-consuming, making it basically impractical. This case
study aims to create overviews that support software engineers in their
maintenance and development work.

3.1. Investigate the library usage in the codebase

In this section we first describe an example code fragment that uses
the blackboard library. Afterwards we follow the three guiding ques-
tions from Section 2.1 to obtain the relevant artifacts in the codebase,
the relevant library elements, and the code patterns for proper library
usage.

Fig. 2 shows a typical example for proper usage of the blackboard
library:

11 https://www.philips.com.
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REGISTER (MyItem, "<some-big-uuid>")
EXT_PUBLISHER(MyPublisher, "<some-big-uuid>")
EXT_SUBSCRIBER (MySubscriber , MyItem)

PO
BooleanProxy m_proxy;

}

1
2
3
4
s class P {
6
7
8
9

10 P::P(): m_proxy(MyItem) {
11 m_proxy.SetValue (true);
12 m_proxy.SetEnabled (true);

15 class C {

16 cQO;

17 HandleEvent (BoolChanged rEvent);
18 BooleanProxy m_proxy;

19 bool m_value;

20 }

22 C::C(): m_proxy(MyItem) {
23 m_value = m_proxy.GetValue();
24 m_proxy.Attach(xthis, (BoolChanged*) nullptr);

27 void C::HandleEvent (BoolChanged rEvent) {
28 m_value = rEvent.GetNewValue ()

2 }

Fig. 2. Example C++ code for a blackboard item. Horizontal lines separate the
fragments that are usually located in different files.

Line 1: use a macro to register a blackboard item with two
identifiers: a human-readable variable name and a UUID;

Line 2: use a macro to create an external publisher interface for
the blackboard item (referred to by its UUID);

Line 3: use a macro to create an external subscriber interface for
the blackboard item (referred to by its human-readable variable
name);

Lines 7 and 18: define a proxy that corresponds to the type of the
blackboard item’s core value;

Lines 10 and 22: initialize the proxy for the blackboard item
(referred to by its human-readable variable name);

Line 11: set the core value of the blackboard item;

Line 12: set a meta property of the blackboard item (in this case:
enabling the event handlers);

Line 23: get the core value of the blackboard item;

Line 24: attach an event handler for change events that corre-
sponds to the type of the blackboard item’s core value;

Line 27-29: define an event handler to access the new value.

Relevant codebase artifacts

All blackboard items are defined within one specific C++ soft-
ware component, viz., the earlier mentioned control component, which
clearly needs to be in the scope of the analysis. The usage of the
blackboard library is spread over 540 functions across 118 classes. In
addition, there are two other parts of the codebase that need to be
analyzed:

+ External C++ components that access the blackboard items using
the publish-subscribe pattern; and

« Test scripts that use testing keywords instead of plain C++ code
to refer to blackboard items.

Initially, we overlooked the test scripts. This resulted in overviews
containing many blackboard items that appeared to be useless. Once,
we realized that we overlooked some relevant artifacts, we not only
added these artifacts in this case study but we also improved the
method to include checks to validate the completeness of the cus-
tom analysis. The checks specific for this case study are described in
Section 3.3.
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Relevant library elements
The main three elements of this library are:

* Blackboard item to store a core data value of a specific type
and some meta properties that control the access by external
components.

« External publisher interface to set the core value of a blackboard
item.

« External subscriber interface to attach an event handler to a black-
board item.

Internally the blackboard items are accessed via proxy classes with
the following functions:

+ A setter function for the core data value, aka internal publisher;

« A setter function for the meta properties, e.g., to enable or disable
the attached event handlers;

+ A getter function for the core data value; and

+ A subscription function to attach an event handler that is invoked
on every change of the core data value, aka internal subscriber.

The internal interface is based on C++, and the external interface is
based on Microsoft COM (Rogerson, 1997) and described using IDL.

Code patterns for proper library usage
The set of code patterns covers behavior such as:

« register a blackboard item,

» create an external publisher or subscriber interface,
+ define and initialize a proxy,

« apply an operation.

Fig. 2 contains example instances of such patterns. In particular for
the initialization of proxy variables, we observed a number of variations
(note: not all variants are shown in Fig. 2):

assignment to member variable:

m_proxy = BooleanProxy (MyItem)

local declaration with assignment:
BooleanProxy proxy = BooleanProxy (MyItem)
constructor chain initializer: m_proxy (MyItem)
reset function from std::unique_ptr:

mp_proxy .reset (new BooleanProxy (MyItem))

At several places we also observed the optional presence of addi-
tional checks:

« assert statements: ASSERT(x !'= null);
« if-statement contexts: if (x !'= null){...}

3.2. Develop a custom static analysis

In this section we first describe some of the challenges for analyzing
the in-house blackboard library. Afterwards we follow the structure
from Section 2.2 to describe the design of a custom static analysis.

Based on our investigation from Section 3.1 the required static
analysis for the needs from Section 3 looks well-structured, but we are
not aware of any off-the-shelf tool that can do it. Hence, we needed
custom static analysis.

The example C++ code fragment in Fig. 2 illustrates some important
aspects that need to be taken into account by any analysis of the usage
of this library:

+ Use of both macro (lines 1..3) and plain (lines 5..29) C++ code
patterns;

» Two naming schemes for blackboard items (human-readable vari-
able names on lines 1, 3, 10 and 22) and UUIDs (lines 1 and
2);

» Multiple proxies accessing a single blackboard item (lines 7, 10,
18, and 22);
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Table 1

Tabular overview of the blackboard item MyItem shown in Fig. 2. The top part
contains the conceptual blackboard operations, whereas the bottom part contains
implementation aspects.

Operation Primitive Name Location
Set core value EXT_PUBLISHER ~ MyPublisher 2
Set core value SetValue 11
Set meta property SetEnabled 12
Get core value GetValue 23
Attach event handler EXT SUBSCRIBER MySubscriber 3
Attach event handler Attach 24
Initialize proxy P::m_proxy 10
Initialize proxy C::m_proxy 22
Define event handler C::HandleEvent(BoolChanged) 27

+ Selecting the event handler based on the change event type (line
24); and

» Code decoupling in multiple functions and files. The code decou-
pling over files is visualized in Fig. 2 using horizontal lines.

Tools for static analysis and visualization
We used the following tools:

* Parser for the C++ programming language: Eclipse CDT for C/C++.

* Cross-reference database: The dependency graph extractor of Re-
naissance for C/C++ and IDL.

« Pattern matcher for the C++ programming language: The rejuvena-
tion library of Renaissance for C/C++ (Mooij et al., 2020).

* Graph visualization: Neo4j and yEd.

Design of custom static analysis
We have incrementally extracted the required data using the follow-
ing steps:

1. Process all relevant code fragments in the main C++ component,
and relate them to global blackboard items;

2. Use a cross-reference database to find usages of external sub-
scribers and publishers in other C++ components; and

3. Use a lexical analysis to find usages in the test scripts.

We have analyzed all C++ files in isolation without expanding
included files nor using specific build configurations. We did not need
any custom analysis of the IDL files, as all IDL identifiers (UUIDs) can
be obtained from the analyzed C++ code.

We have used limited forms of data flow analysis to deal with brack-
ets and conditional expressions, such as in the following statement:

(... 7 m_proxy_left m_proxy_right).SetValue(...);

For a few exceptional cases we have decided to perform the analysis
manually instead of extending the automated custom static analysis,
because of the expected required efforts.

Overview to enhance insight
We have created multiple views on the extracted data, differing in
aspects like:

- representations (textual, tabular, and graphical);

« subsets of the data;

» grouping (by blackboard item and by C++ class); and
+ aggregation (at class-level and at function-level).

We give two examples of overviews that were used within this case
study. The content shown in these examples corresponds to the code
fragment from Fig. 2.

» Table 1 shows a tabular overview with all extracted data grouped
by blackboard item. For each blackboard item, it gives a specific
list of details. Such a tabular representation is easy to generate,
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Fig. 3. Graphical overview in yEd of the blackboard item shown in Fig. 2. This
overview shows the blackboard item MyItem, the external publisher MyPublisher,
the external subscriber MySubscriber, and the classes P and C that internally publish
and subscribe to the blackboard item via a setter and getter function, respectively.
Edges represent publish and subscribe (solid), meta-setter (dotted), and getter (dashed)
functions.

and suitable for collecting heterogeneous data about individual
blackboard items. In one glance it gives an overview of how a
blackboard item is used across multiple files.

Fig. 3 shows a graphical overview with only the main library
operations aggregated at class-level. In one glance it gives an
overview of the relations between blackboard items; their exter-
nal publishers and subscribers; and classes that internally access
them. Such a graphical overview helps to see relations between
blackboard items, and to reason about how data can flow through
the system.

When developing code using this blackboard library, it is difficult
to keep an overview of where and how each blackboard item is used.
Table 1 shows an overview of blackboard item MyItem from Fig. 2.
In addition to the main library operations (e.g., set core value) we
also include some implementation aspects (e.g., initialize proxy, and
define event handler) that help to find all code fragments related to a
blackboard item. The column “primitive” mentions the specific library
element or function that is used, and the column “name” the new name
that is introduced (if any). Finally the table includes the location (line
number) in the code.

Table 1 shows a global aspect of the source code that is difficult to
grasp in traditional ways. The small code fragment from Fig. 2 would
normally be distributed over 5 files: the two classes P and C have their
own header and implementation file, and in addition there is a file
that contains the macro’s that define the blackboard item and external
publishers and consumers. In practice there are more blackboard items,
more files, and typically more table entries per blackboard item. The
overview table clearly indicates how and where specific blackboard
items are used.

We have also combined the blackboard information with call
graphs, which is useful as both method calls and publish/subscribe pat-
terns represent data flow. Thus we obtain a more complete overview of
how the data flows through the control component of the Image-Guided
Therapy systems.

3.3. Check analysis and reduce variation in the codebase

Along the lines of Section 2.3, we describe the ways we have
checked and improved the completeness of the custom analysis.

Checks for validation
We have performed checks based on the created overviews by
looking for blackboard items with suspicious usage:

» Blackboard items that are not used;

» Blackboard items that are only written or only read;

» Blackboard items with meta property writes for external sub-
scribers, but that have no external subscribers;
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Table 2
Removal of domain-specific redundant code.
Initial Removed Final Reduction
Blackboard items 273 - 108 = 165 39 %
External publisher interfaces 50 - 19 = 31 38 %
External subscriber interfaces 95 - 31 = 64 32 %

» Blackboard items with meta property writes for external publish-
ers, but that have no external publishers.

For the blackboard items with suspicious usage, we have searched
for potentially relevant code fragments that the analysis may have
missed. The instances for which we could not find such code fragments
have been discussed with the software engineers of the codebase. In
particular, this led to the discovery mentioned in Section 3.1 that we
needed to include test scripts in our custom static analysis.

Reduce variation

In this first case study we had not yet identified the step of reducing
variation in the codebase. Moreover, the variations discussed in Sec-
tion 3.1, such as optional assert statements, could easily be handled by
the Renaissance pattern matching.

3.4. Improve the codebase

The last step, from Section 2.4, focuses on how the overviews can
be used to improve the codebase.

The industrial software engineers were interested in the overviews
of how and where the blackboard items are used. They recognized that
the overviews provide a wealth of information that can often be used
when reasoning about the interaction between components.

In particular the blackboard items with suspicious usage from the
checks indicated opportunities for improving the codebase. It turned
out that no-longer-used blackboard items were not always completely
removed from the codebase: these blackboard items with suspicious
usage were, in fact, the remainders. Modern compilers warn about pro-
gramming language items, e.g., variable and function declarations, that
are declared but never used. Domain experts however want warnings
for blackboards items that are not both written and read. Our analysis
provides these warnings by using more domain knowledge about the
blackboard items.

Based on our automated analysis, we manually removed the
domain-specific redundant code. Table 2 summarizes the realized re-
moval. The removed external interfaces were no longer used by any
external component.

During our case study, it turned out that the engineers wish to re-
duce the use of blackboard items. Our analysis provides an overview of
the current usage, in which we observe that some blackboard items (for
example, those without subscribers) could be replaced by a standard
variable. Our analysis also shows that a specific group of C++ classes
is involved in many blackboard items and deserves further human
analysis. The implementation of these observations is outside the scope
of this work.

3.5. Lessons learned

The first case study was the starting point of our method from
Section 2. Primarily it has shown the feasibility of extracting valuable
overviews of the usage of in-house libraries using custom static analysis.
It has also illustrated that the method needs checks to validate the
custom analysis and its output, the overview of library usage.

As described in Section 3.2 we have not automated a few excep-
tional cases. This illustrates a crucial point in our line of reasoning, viz.,
to take into account the effort required to automate analysis steps. In
later cases we have expanded this thought in the direction of reducing
the variation in the codebase.
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4. Industrial in-house logging library

Our second case study focuses on the analysis of an in-house logging
library. Via this library, the embedded software of the Image-Guided
Therapy systems of Philips'? logs messages describing the components’
behavior and interaction. These log messages can be used for docu-
mentation, debugging, and diagnostics. This case study focuses on the
state-of-the-art product line with 6 codebases, that together contain
roughly 6 MLOC.

Each log message consists of two parts:

+ an event type, with attributes like ID, description, and severity;
and
+ additional attributes.

The following design guidelines are assumed on the log message
specification:

» An event type is unique per component and contains immutable
information.

» An event type is associated with a fixed set of additional at-
tributes.

» The textual representation of the additional attributes is based
on key-value pairs. The ‘key’ is immutable and unique for that
attribute. The ‘value’ is variable. A key-value pair should be
logged as “[‘key’ = ‘value’]”.

However the logging library offers no way to enforce these design
guidelines. Without a safety net, mistakes are expected (Bessey et al.,
2010). Indeed, developers observed that, over the years, unwanted
variations in the code (patterns) generating logging and in the logged
messages have appeared, complicating managing and interpreting log-
ging. For instance, the maintenance of the tools that post-process the
generated logs has become increasingly difficult and developers lost a
general overview of all the logging that could be generated by the code.

To get insight into the log messages that can be generated by Philips
code, we create an overview collecting all the information known at
compile time, such as event types and keys of additional attributes.
The information known at runtime, e.g., the values associated with the
additional attributes, is not in the overview. This overview is sufficient
to understand all the log messages and verify if they adhere to the
aforementioned prescribed design guidelines. Additionally it can be
used in reasoning about redesigning the logging library.

4.1. Investigate the library usage in the codebase

Multiple components produce log messages within the analyzed
Philips system. Each component contains between hundred thousands
and millions of lines of C++ and C# code. In the remainder of this
section, we only report examples from the C++ codebase. Additionally,
multiple logging libraries were used in the different components using
different programming constructs to implement the concepts of log
messages. We will report only one of these cases exemplified in Fig. 4.

Fig. 4 shows how two log messages, related to the event types eA
and eB defined on lines 2 and 3, can be produced by the code. The
function Func (on lines 19 to 22), calls the LogSet0n function on class ¢
with an event type depending on its argument b.

Within LogSetOn, on lines 14 to 17, a call to the logging library
API evLog generates the actual logging and appends additional at-
tributes (line 16). The wrapper function CreateInfo creates two in-
stances of key-value pairs for the additional attributes in the cor-
rect format, by calling the logging API additionalInfo, and creates a
"free-format string", violating the design guidelines.

In this example, we see variations in how the code is written. For
example, the key of an additional attribute can be a string literal,

12 https://www.philips.com.
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1 const int iBase = 100;

2 const Event eA = { iBase + 1, "EventA", WARNING };
3 const Event eB = { iBase + 2, "EventB", ERROR };
4

5 const string ClassTag = "Class";

6

7 string C::CreateInfo(string s) {

8 string a = Log::additionalInfo("State", s);

9 a += Log::additionallnfo(ClassTag, "C");

10 a += "free-formatystring";

11 return a;

12 }

14 void C::LogSetOn(const Event& event) {
15 Log log;
16 log.evlog(event) << CreateInfo("On");

17}

18

19 void Func(bool b) {

20 C c;

21 c.LogSetOn(b ? eA : eB);
2 }

Fig. 4. Example C++ code fragment for logging.

e.g., "State" on line 8, and a variable, e.g., ClassTag on line 9. This
variation makes the code’s maintenance less practical and the analysis
more complicated, i.e., requiring data flow analysis in the latter case
to determine its value. We also see variation in the format of the
logged additional attributes. For example, the prescribed format of the
logged additional attributes is used on lines 8 and 9, but not on line
10. This variation makes the post-processing of the logged messages
unnecessarily complex.

Relevant codebase artifacts

In the first step of our method, as described in Fig. 1, we have
analyzed the codebase, understanding how the logging happened per
unit. From the Visual Studio Solution file, we extracted the relevant
Visual Studio Project files. From the Visual Studio Project files, we
extracted the relevant code files. We only analyzed these code files,
leaving out documentation, tests, and test input.

Relevant library elements

We will describe the relevant library elements by referring to the
example of Fig. 4. A log event type is created via a ‘struct’ declaration
(cf. lines 2 and 3) and can be logged via a dedicated method (evLog) of
the Log class (cf. line 16). Additional attributes are created, preferably
(but not exclusively) via a dedicated API (cf. Log::additionalInfo on
lines 8 and 9), and appended to the logged message via an overloaded
append operator (cf. operator << on line 16).

Code patterns for proper library usage
The set of code patterns to detect the usage of the library includes:

+ a pattern for the event type declaration;

+ a pattern to detect calls to the method evLog of the Log class;

+ a pattern to detect calls to the method additionalInfo of the Log
class; and

+ a pattern to detect the overloaded append operator of the addi-
tional attributes.

4.2. Develop a custom static analysis

To help Philips to get insight in all the types of log messages that the
system can generate, we generated an overview, as shown in Table 3.
This overview contains all the possible logging events ordered by
identifiers and their additional attributes. This overview concentrates,
in a single place, information that is otherwise scattered throughout
the code and provides a means to identify possible data inconsistencies,
unwanted variations, and unwanted changes to log messages.

The example of Fig. 4 shows some challenges with which the
analysis needs to deal:
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1. Event IDs may contain simple arithmetic; thus, they require a
compilation-time arithmetic expression evaluation (lines 2 and
3).

2. Appended information does not always adhere to the prescribed
format and requires a compilation-time string evaluation (line
10).

3. Logging code may be decoupled in multiple functions, which
declaration, definition, and usages span multiple files as is vi-
sualized in Fig. 4 using horizontal lines.

4. Natural growth of the code brings a proliferation of wrappers
and code (patterns) for logging. This is not shown in the picture
for sake of simplicity.

The used tools, design, and overviews to address these challenges are
described in the remainder of this section.

Tools for static analysis and visualization

The analyses for C++ and C# use different tools, namely Eclipse
CDT and Roslyn, respectively. Therefore, the analyses have been de-
veloped separately, yet are based on the same design principles.

We used the following tools:

* Parser of Visual Studio Solution and Project files: MSBuild.

* Parser for the C++ programming language: Eclipse CDT for C/C++.

* Parser for the C# programming language: Roslyn.

* Pattern matcher for the C++ programming language: The rejuvena-
tion library of Renaissance for C/C++ (Mooij et al., 2020).

Design of custom static analysis

To handle challenges 1 and 2 of the beginning of this section, we
use compile-time evaluation of integers for the event IDs and strings for
the additional attributes. Event IDs and additional attributes may use
variables whose definitions are scattered through the code and require
data flow analysis to be resolved. Moreover, the key—value pairs of the
additional attributes have no dedicated type (and could be any string
without an enforced format). In many cases, they were composed by
combining many string variables. Therefore their evaluation initially
resulted in the Cartesian product of all possible values of those string
variables leading to an exponential explosion of the number of final
possible values, i.e., entries in the final overview. This fact rendered
the final overview unusable.

To solve this problem, we limited the evaluation of particular string
variables to stop the data-flow analysis. The expression evaluation
algorithm returns with a wildcard character, indicating that the value
of the string at that point is not crucial for the overview. For instance,
we would stop the evaluation of variables containing file names in logs
reporting an error occurring in a file. So instead of having hundreds
of occurrences of the same error message on different files, we would
have only the generic, parameterized error message “Error in file %s”
indicating what type of logging message was generated from that
location in the code. Another example of such a filter is shown in Fig. 4
on line 10 and in the corresponding entries in Table 3. Here all the
strings generated by the function CreateInfo, which are not produced
using the Log: :additionalInfo API, are presented in the overview using
the key %s to signal free-formatted text.

To handle challenge 3 of the beginning of this section, we have split
our custom static analysis into a two-step approach:

1. a time-consuming step that processes the declarations in each
compiled file (with the expansion of includes); and

2. a quick step that integrates the results from the previous step
and, in particular, deals with decoupling patterns, starting from
the evLog calls.

The final overview and the intermediate data are labeled with source
locations to facilitate debugging and analysis.

To handle challenge 4 of the beginning of this section, we had to
choose between only analyzing the standard library usage, somehow
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Table 3

Tabular overview for the example from Fig. 4.
D Description Severity Appended information
101 EventA Warning State, Class, %s
102 EventB Error State, Class, %s

working our way through the wrapper code, or analyzing selected
wrappers as alternative logging mechanisms. However, the first choice
was not always possible, especially for logging messages across server—
client process boundaries. Running the analysis for the logging infor-
mation takes up to a couple of hours in the most significant unit with
a million code lines. The analysis runtime is of the same order of
magnitude as code compilation. This runtime is considerable but was
deemed acceptable to include this analysis in the nightly sanity-check
build.

Overview to enhance insight

Table 3 gives an example overview corresponding to the C++ code
fragment of Fig. 4. The generated overviews were similar to Table 3,
yet contained over a hundred rows. These overviews fostered good
discussions between the various engineering teams, ranging from the
requirements on logging to the intended way of using the in-house
library. For this purpose, the overview abstracts irrelevant details and
captures cross-cutting aspects of the source code that are difficult to
grasp in other ways. For instance, in a list representation of all the log
messages, it was relatively simple to see if and how the same event ID
was used with different sets of additional attributes. In contrast, estab-
lishing this manually would require a complex, error-prone, analysis to
resolve the keys of the additional attributes. In addition, the overviews
indicate inconsistencies between related event types. For instance, in a
specific code unit with an old and a new version of the code maintained
simultaneously, the log event identifiers of the old and new versions
were not consistent, revealing a so far undetected fault.

4.3. Check analysis and reduce variation in the codebase

The following variations were removed to make the codebase more
regular and to keep the analysis simple.

+ An unnecessarily complex way to initialize a map of events indi-
rectly via a constructor was replaced by a simple initialization.

+ Violations of the design guideline that information of event types
is immutable were removed by rewriting the code to use multiple
event types instead of reusing and mutating a single event type.

+ A switch statement with an unreachable default case that logged
an ill-formatted event was rewritten to log a well-formed event.

Checks for validation
We use two primary checks at two different levels:

+ a local cross-check that reports evLog calls for which the analysis
fails to resolve the event or additional attributes, and

+ a global cross-check where the analysis fails to find usage of a
relevant parameter or function in the codebase.

During the construction of the custom static analysis we also looked
at other checking mechanisms to make the produced overview as
complete as possible. Some of those checks have been promoted to
feedback for users once we were sufficiently confident of the quality
of the produced overview. For example, a check that looks for event
declarations that are not used in any evLog statement. Initially, this
check indicated the incompleteness of our custom static analysis. But
after iteratively improving our analysis, this check reported unused
events, i.e., domain-specific redundant code, in the analyzed codebase.

Two other additional checks were realized in post-processing to
validate the analysis result.
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A cross-check against a logging design specification, where that
existed.

* A cross-check against the logging results of tests.
The comparison against test results was automated with Python
scripts. The comparison showed that:

— As expected, the tests trigger fewer logging events than
those detected by static analysis.

— All log messages generated during testing were also detected
by our static analysis, either as entries in the generated
overview or reported by the cross-checks.

- Entries not adhering to the prescribed format of the logging
design, had counterparts in the set of logs generated by
tests, for instance, log event descriptions with wildcards %s
appeared as occurrences of logging with the same event log
ID but different descriptions.

4.4. Improve the codebase

Based on the overviews, the following code improvements were
identified.

» Remove unused events: We detected many event declarations that
were only used in a function that reports all event declarations.
Some of them were reported in separate open issues in the issue-
tracking system as unused log events. Based on the overview, all
these event declarations were removed and marked as obsolete to
avoid accidental reuse.

Solve inconsistencies: Some small errors (capitalization, copy-paste-
not-modified, inconsistent IDs) in log event types and
additionalInfo format have been solved.

Standardize usage: At many places, the set of additional attributes
was made unique per event to adhere to the design requirements.

Note that these specific issues would not have been found with off-the-
shelf static analyzers.

In addition, the result of the provided analysis was used for the
subsequent re-design of the logging framework. We used an approach
based on a domain-specific language (DSL) to generate the implemen-
tation of new logging APIs. A single, well-designed logging framework
was adopted for all the units, and the format of the additional attributes
was enforced in the new APIs. The results of the analysis tool were
used to extract information to generate the APIs’ DSL specification and
refactor the code using the newly designed APIs.

4.5. Lessons learned

This case showed us the importance of a re-usable method to quickly
build custom analyses for the different logging frameworks of the
various code repositories. For the first time, we have validated the
results of our method against system test results. This confirmed that, as
expected, static analysis covers more logging than tests. Thanks to this
case, we enriched our C++ and C# rejuvenation library with data-flow
analysis and compile-time evaluation of simple arithmetic expressions
and strings. The compile-time string evaluation brought an exponential
explosion in the number of entries in the logging overview. To limit the
explosion, we terminated the string evaluation based on case-specific
conditions related to problematic cases, e.g., cases producing many
repetitions of almost the same logging message with slight variations
such as file names.

5. Industrial in-house inspection library
Our third exploratory case study was executed at ITEC,'® an inde-

pendent subsidiary of Nexperia.'* ITEC is an equipment and automation

13 https://www.itecequipment.com.
14 https://www.nexperia.com.
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partner of semiconductor manufacturers. The equipment produced by
ITEC guarantees the quality of both the production process and the
final product by performing vision-based inspections. A vision-based
inspection controls cameras and (flash) lights to capture images and
analyses them. ITEC currently realizes the vision-based inspections
using two in-house inspection libraries.

Since 2005, the basic inspection library is under development by
ITEC. This library contains 20K lines of Ada code and is an essential
part of the complete codebase of 1.5M lines of Ada code. However,
in 2017, ITEC concluded that the basic inspection library was at the
end of its life cycle. Since then, the flexible inspection library is under
development.

Despite that the flexible inspection library was still under construc-
tion, the development of just a few vision-based inspections using
the flexible inspection library convinced ITEC to migrate all vision-
based inspections from the basic to the flexible inspection library. They
did not intend to automate this migration fully but preferred manual
changes whenever they estimated that automation would not reduce
the overall needed time and effort.

Our third case study was initiated to support this migration. Yet,
the goal of the third case study was not to perform the migration but
to enhance insight into the usage of the basic inspection library within
the ITEC codebase: not only a prerequisite for changing the codebase
but also for the associated effort estimation and planning. To be able
to describe what ITEC needed, we first have to explain the abstractions
that the basic inspection library provides in the domain of vision-based
inspections.

The basic inspection library supports the following three domain-
specific concepts:

« Inspection process (85 instances): analyzes a (part of a) camera
image.

« Inspection container (25 instances): orchestrates all inspection pro-
cesses that analyze the same camera image.

« Inspection location (8 instances): orchestrates all inspection con-
tainers that share the same camera and associated (flash) lights
to obtain camera images.

A vision-based inspection contains at least one inspection process. A
vision-based inspection is not limited to a single inspection container or
location. For example, a vision-based inspection might check a product
by using camera images that are made at different locations with
different (flash) light conditions.

To support the migration, ITEC needed to know

» How does each inspection process, container, and location use the
library?

Where are inspection processes, containers, and locations cre-
ated?

How is each inspection process, container, and location config-
ured? Le., which configuration values are used?

Where and how are the settings of each inspection process, con-
tainer, and location changed?

Where and how are functions of the library called?

Which inspection process, container, and location are involved in
every function call to the library?

5.1. Investigate the library usage in the codebase

To enhance insight necessary to support the migration from the
basic to the flexible inspection library, we started with the first step of
the proposed method, as depicted in Fig. 1, and manually investigated,
together with ITEC experts, the usage of the basic inspection library in
the ITEC codebase.

The investigation showed that the usage of the basic inspection
library is distributed across the codebase: Not only many vision-based
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1 procedure Init_Inspection_Location
2 (i1 Inspection_Location)

3 is

4 begin

5 Set_Process (il.Container (8),
6 Template_Type, 1, "Transfer_1_Align");
7 Set_Process (il.Container (8),

8 Circle_Type, 2, "Transfer_1_PinAl");

9 Set_Process (il.Container (9),

10 Line_Type, 1, "Transfer_2_Edges");

11 end Init_Inspection_Location;

13 procedure Run_Inspection_Location

14 (il Inspection_Location)

15 1is

16 psps Procs_Params;

17 begin

18 Get_Procs_Params (il.Container (8), psps);

19 psps.Par (Match_Kind) (1) .ROI_Grid := Shifted;
20 psps.Par (Ruler_Kind) (2) .ROI_Grid := Absolute;
21 Set_Procs_Params (il.Container (8), psps);

22

23 Get_Procs_Params (il.Container (9), psps);

24 psps.Par (Ruler_Kind) (1) .ROI_Grid := Relative;
25 Set_Procs_Params (il.Container (9), psps);

26 end Run_Inspection_Location;

28 procedure Handle_Inspection_Location

29 (il Inspection_Location)

30 is

31 begin

32 Init_Inspection_Location (il);
33 Run_Inspection_Location (il);

3¢ end Handle_Inspection_Location;

Fig. 5. Example.adb: Ada code using the basic inspection library.

inspections, but also many inspection processes, containers, and loca-
tions regularly are scattered over multiple functions and files. Further-
more, the investigation showed that the usage of inspection processes,
containers, and locations is similar throughout the codebase, so we
will focus in the example and discussion on the usage of inspection
processes in the remainder of this section.

Fig. 5 shows the usage of the basic inspection library in a simplified,
yet representative Ada file. Like in the ITEC codebase, magic numbers,
in particular, 1, 2, 8, and 9, are used to identify instances of inspection
processes and containers. The procedure Init_Inspection_Location is
defined on lines 1-11. On lines 5 and 6, the procedure Set_Process
sets the type and name of inspection process 1 within the inspection
container il.Container (8) to Template_Type and "Transfer_1_Align".
Similarly, lines 7 and 8 set the type and name of inspection process 2
within the same inspection container (il.Container (8)). Finally, lines
9 and 10 set the type and name of inspection process 1 within another
inspection container (il.Container (9)). Note that lines 5 and 6 and
lines 9 and 10 refer to different inspection containers, so although the
same identifier (1) is used, these identifiers refer to different inspection
processes.

The procedure Run_Inspection_Location is defined on lines 13-26.
On line 18, the procedure Get_Procs_Params assigns the parameters
of all processes of the inspection container il.Container (8) to the
local variable psps. Line 19 assigns shifted to the process parameter
ROI_Grid of inspection process 1 within the local variable psps. Note
that also the kind of the inspection process is used to access the process
parameter. Similarly, on line 20, Absolute is assigned to the process
parameter ROI_Grid of inspection process 2. On line 21, the procedure
Set_Procs_Params sets the parameters of all processes of the inspection
container il.Container (8) to those of the modified local variable psps
. Note that the process parameters of both inspection processes are
changed together. Lines 23-25 similarly assign Relative to the process
parameter ROI_Grid of the inspection process 1 within the inspection
container il.Container (9).

Finally, the procedure Handle_Inspection_Location is defined on
lines 28-34 and calls the previously described procedures to ensure an
inspection location is initialized before being used.
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Table 4
Created inspection containers.
ID Variable
CA il.Container (8)
CB il.Container (9)
Table 5
Created inspection processes with their configuration values.
D Name Kind Type Location
CA.1 Transfer_1_Align Match Template 5:3-6:42
CA.2 Transfer_1_PinA1l Ruler Circle 7:3-8:40
CB.1 Transfer_2_Edges Ruler Line 9:3-10:38

Relevant codebase artifacts

For the analysis, only the Ada source code files were considered
relevant. Hence, the analysis included all Ada source code files. All
Ada source code files were quickly scanned, and those files in which
the basic inspection library was used or implemented were analyzed in
more detail.

Relevant library elements

The relevant library elements in the codebase were in correspon-
dence with the domain-specific concepts of inspection process, in-
spection container, and inspection location. The information related
to a library element was unfortunately not localized but scattered
throughout the codebase. In the example, line 19 contains additional
information (its kind) of the inspection process set on lines 5 and 6.

Code patterns for proper library usage
Based on our investigation of the codebase together with the ITEC
experts, the code patterns for proper library usage included

+ a pattern that matches setting an inspection process, resulting
in the example of Fig. 5 in three matches within the procedure
Init_Inspection_Location;

» a pattern that matches the changing of the parameters of an
inspection process, resulting in the example of Fig. 5 in three
matches within the procedure Run_Inspection_Location;

+ a pattern that matches the declaration and initialization of an
inspection process as separate statements;

+ a pattern to select one of the 85 inspection processes; and

+ a pattern to change a parameter of the currently selected inspec-
tion process.

As already stated, at the start of our case studies it was not clear
how to determine the regularity of a codebase. So, we had to observe
experimentally how regular the ITEC codebase is with respect to these
custom code patterns.

5.2. Develop a custom static analysis

The goal of the custom static analysis in this case study is to enhance
insight into the usage of the basic inspection library within the ITEC
codebase that is vital to estimate, plan, and perform the migration
to the flexible inspection library. For the migration of the inspection
processes as shown in the code of Fig. 5, the information as contained
in the tabular overview shown in Tables 4, 5, 6, and 7 is needed. We
will briefly describe each table before we describe the challenges to
extract this information from the codebase.

Table 4 contains all extracted inspection containers. Since the ex-
ample only focuses on inspection processes, the table only contains for
each inspection container an identifier and the related variable. Note
that these identifiers are not extracted from the code but are introduced
to simplify the other tables.
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Table 6

Calls to the basic inspection library.
Context ID Callee Caller Location
CA Get_Procs_Params Run_Inspection_Location 18:3-17:44
CA Set_Procs_Params Run_Inspection_Location 21:3-21:44
CA.1 Set_Process Init_Inspection_Location 5:3-6:42
CA.2 Set_Process Init_Inspection_Location 7:3-8:40
CB Get_Procs_Params Run_Inspection_Location 23:3-23:44
CB Set_Procs_Params Run_Inspection_Location 25:3-26:44
CB.1 Set_Process Init_Inspection_Location 9:3-10:38

Table 7

Changes of parameters of inspection processes.
Context ID Parameter Value Location
CAl ROI_Grid Shifted 19:3-18:47
CA.2 ROI_Grid Absolute 20:3-19:48
CB.1 ROI_Grid Relative 24:3-24:48

Table 5 contains all inspection processes. For each inspection pro-
cess, the table contains its identifier, name, kind, type, and location
where it is set. The globally unique identifier is the combination of
the inspection container identifier with the locally unique process
identifier as used in the code. Note that this table combines information
from multiple locations. For example, the name and kind of inspection
process ‘CA.1’ can be observed on line 6 and 19, respectively.

Table 6 contains all calls involving an inspection container or
process. For each call, the table contains the identifier of the in-
volved inspection container or process, the called procedure, the call-
ing procedure, and the call location. Note that since the procedures
Init_Inspection_Location and Run_Inspection_Location are called with
the same argument from the procedure Handle_Inspection_Location,
the calls within different procedures still refer to the same inspection
containers.

Finally, Table 7 contains all changes to any parameter of the inspec-
tion processes. For each set operation, the table contains the identifier
of the inspection process, parameter, assigned value, and location.

The challenges to extract the information from the codebase include

» combining information scattered over files and procedures
throughout the codebase;

+ finding particular patterns in the codebase;

- relating a parameter change to a specific inspection process, al-
though the changes of parameters of multiple inspection processes
are grouped together;

» relating the values passed in function calls to the corresponding
parameters within the called functions; and

» handling the flow of information through local variables.

We executed the second step of the proposed method, as depicted in
Fig. 1, to develop a custom static analysis and address these challenges
as described in the remainder of this section.

Tools for static analysis and visualization
We used the following tools:

* Parser for the build process specifications of GNAT projects: GNAT
Components Collection.

* Parser and semantic analyzer for the Ada programming language:
Libadalang.

« Pattern matcher for the Ada programming language: The rejuvena-
tion library of Renaissance-Ada (van de Laar and Mooij, 2022).

Design of custom static analysis

Initially we developed a monolithic solution. Yet in a later iter-
ation, we separated the analysis to better cope with its complexity.
In particular, we split our custom static analysis in two consecutive
processes:
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1. Local analysis: The analysis collects for each procedure infor-
mation about not only calls and their arguments, but also all
matches of proper code patterns. When possible, this information
is expressed using the parameters of that procedure.

2. Global analysis: The domain-specific data for migration is ex-
tracted, among others by following the hierarchy of procedure
calls and by replacing the parameters of a procedure by their
actual values to simplify the information.

Overview to enhance insight

We did experiments with different ways to share the overview with
the ITEC experts. We tried a direct representation of the overview of
the code that uses tables, such as Tables 4, 5, 6, and 7. We also tried
some indirect, code-oriented representations:

+ Add comments, around the code fragments that use the library,
that contain information, such as the involved inspection pro-
cess, container, and location, or provided links to related code
fragments; and

» use the codebase after migrating a specific inspection process,
container, or location, towards the flexible inspection library.

For both cases, code comparison with the original codebase shows all
related code fragments and thus also provides an overview of library
usage in the codebase. Fig. 6, that shows the automatically migrated
code of the example code in Fig. 5, is an example of the latter. The
ITEC experts stated they already knew the indirect representations from
other software-development activities, such as reviewing and analyzing
code. In particular, the ITEC experts preferred the patch of the codebase
. We assume that besides being a known representation also performing
the migration was considered valuable.

5.3. Check analysis and reduce variation in the codebase

Along the lines of Section 2.3, we describe the ways we have
checked and improved the custom analysis.

Checks for validation

Although we did some manual checking before presenting our
overviews to ITEC, most checks were automated. In particular, we
developed the custom static analysis to provide a list of deviating
library usages in the ITEC codebase, using the following checks:

check whether each declared inspection process is initialized,
check whether all references to “Set_Process” are found and ana-
lyzed,

check whether all references to “Set_Procs_Params” are found and
analyzed,

check whether each inspection location has at least one inspection
container, and

check whether each inspection container has at least one inspec-
tion process.

Executing the custom static analysis on the ITEC codebase produced
only a short list of deviating library usages. Hence, the ITEC codebase
was quite regular. Most deviating library usages were related to the
code pattern that matches the declaration and initialization of an
inspection process as separate statements. This code pattern had 13
‘violations’ where the declaration and initialization of an inspection
process were combined in a single statement.

Reduce variation

We addressed the deviating library usages in a few cases by extend-
ing the proper code patterns to capture this variation. Yet in most cases,
we addressed them by reducing the variation in the ITEC codebase. For
example, the 13 ‘violations’ were removed by splitting the combined
declaration and initialization into two statements. An additional benefit
of making the codebase more regular is that the custom static analysis
was kept as simple as possible.
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1 procedure Init_Inspection_Location

2 (il Inspection_Location)

3 is

4 begin

5 declare

6 Insp constant Match_Specifics_Access :=
7 Match_Specifics_Factory.

8 Create ("Transfer_1_Align");

9 begin

10 il.Container_IF (8).Add_Inspection (Insp);
11 Transfer_Inspections (Transfer_1_Align)
12 := Insp;

13 end;

14 Set_Process (il.Container (8),

15 Circle_Type, 2, "Transfer_1_PinAl");

16 Set_Process (il.Container (9),

17 Line_Type, 1, "Transfer_2_Edges");

18 end Init_Inspection_Location;

20 procedure Run_Inspection_Location

21 (il Inspection_Location)

22 is

23 psps Procs_Params;

24 begin

25 Get_Procs_Params (il.Container (8), psps);

26 Set_ROI_Grid

27 (Match_Specifics_Access

28 (Transfer_Inspections

29 (Transfer_1_Align)).Teach.all,

30 ROI_Grid => Shifted);

31 psps.Par (Ruler_Kind) (2) .ROI_Grid := Absolute;
32 Set_Procs_Params (il.Container (8), psps);

33

34 Get_Procs_Params (il.Container (9), psps);

35 psps.Par (Ruler_Kind) (1) .ROI_Grid := Relative;
36 Set_Procs_Params (il.Container (9), psps);

37 end Run_Inspection_Location;

39 procedure Handle_Inspection_Location

40 (il Inspection_Location)

41 is

42 begin

43 Init_Inspection_Location (il);
a4 Run_Inspection_Location (il);

45 end Handle_Inspection_Location;

Fig. 6. Ada code after migration of the inspection process ‘CA.1’ to the flexible
inspection library.

5.4. Improve the codebase and its development

Executing the custom static analysis on the ITEC codebase produced
an overview of the library usage, similar to Tables 4, 5, 6, and 7.
In step 4, we used that overview to improve the library usage in the
codebase by migrating usage from the basic to the flexible inspection
library. Although we could migrate all inspection functionality at once,
ITEC wanted to migrate the inspection functionality in a number of
iterations for the following reasons:

+ to reduce the risk of migration,

« to minimize the manual test activities involved,

* to ensure easy diagnosis and root-cause analysis in case of unex-
pected results, and

* to enable learning by using the newly obtained insights to im-
prove the analysis, the extracted overview, and the automatic part
of the migration.

So in each iteration, we focused on one part of the overview at a
time. In the first iterations, we focused on a single inspection process.
Fig. 6 shows the code after migrating a single inspection process of
our running example as shown in Fig. 5. In later iterations, we were
confident that inspection processes were correctly migrated and we
expanded the focus, e.g., to a single inspection container.

In all iterations, the activities we performed were:

» Manually select the part from the overview relevant in this itera-
tion.
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Automatically transform the ITEC codebase using the selected
part of the overview.

Discuss the selected part of the overview together with the trans-
formed code with the ITEC experts.

When needed update the extracted overview and the ITEC code-
base based on the feedback of the ITEC experts.

Make some minor manual changes to compile the ITEC codebase.
Test the migrated part.

When issues were found, they were not only solved but also used
as feedback to improve the analysis.

Commit the final code to the ITEC codebase.

In all iterations, new insights with respect to the ITEC codebase were
obtained. Most insights were obtained while discussing the selected
part of the overview together with the transformed code with the ITEC
experts. Most obtained insights were related to the changes needed to
migrate a part: the overview exposed functions that were initially not
considered by the ITEC experts to be included in the migration.

After all iterations, the basic inspection library was no longer used
and could be removed from the ITEC codebase. This removal severely
simplified the maintenance activities of the inspection functionality.
Finally, we want to mention that

» although the migration was already challenging on itself, keeping
it synchronized with the large number of ongoing developments
added an additional layer of complexity; and

+ the enhanced insight into the inspection functionality even re-
sulted in improvements of the flexible inspection library.

5.5. Lessons learned

1. Initially we developed a monolithic solution. Yet in a later
iteration, we separated the analysis in two parts to better cope
with its complexity.

2. For our analysis we had to deal with (extreme) decoupling:
the analysis needed global context from multiple earlier nested
method calls.

3. An iterative way-of-working was necessary, since initially the
goal of the analysis was not completely clear. When the first
insights were obtained, the goal of the analysis became clearer,
yet also shifted slightly.

4. We had multiple ways of communicating our analysis results
with the ITEC experts. The ITEC experts preferred the patch of
the codebase . We assume that besides being a known represen-
tation also performing the migration was considered valuable.

5. We decided not to migrate all inspection functionality using the
basic inspection library at once but to use a number of iterations.
Since the details of the overview, such as line numbers, changed
in every iteration, we had to run our analysis at the start of each
iteration. This added a new requirement to our custom static
analysis since some code patterns also matched the migrated
code: exclude already migrated code from the overview. We
excluded migrated code partly manual and partly automatic.
We realized automatic exclusion, among others, by no longer
matching on a function’s name only, but by including the type
of its first argument as well.

6. Threats to validity

This section discusses the validity of our study based on three types
of threats: construct, internal, and external validity.

Threats to construct validity come from the way in which we
evaluated our case study. Our study focused on the usefulness of our
overviews, but we did not compare them with overviews produced
using other approaches. We also did not investigate whether a bias
might be present in our overviews. Yet, we are aware that the overviews
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are based on the latest version of the codebase, which does not cover
the design space homogeneously but only reflects the currently realized
solution.

Threats to internal validity come from the way in which we carried
out our case study. Our study focused on qualitative aspects and
ignored quantitative aspects. The time to create the custom static
analysis was not considered, although some stakeholders considered it
a performance indicator. Finally, the method is intended for software
engineers, yet in the case studies the researchers developed the custom
static analysis.

Threats to external validity come from the way in which our results
will generalize to other in-house libraries and codebases. We only
presented three case studies from the Dutch high-tech industry. The
case studies were not randomly chosen, yet they vary in terms of
the involved company, programming language, and type of in-house
library.

7. Related work

We have organized the related work section into two subsections.
The subsections relate our work to the fields of knowledge extraction
and retrieval and of static analysis.

7.1. Knowledge extraction and retrieval

Different methods exist within the field of knowledge extraction and
retrieval, including reverse engineering, program comprehension, and
mining software repositories.

Tonella et al. (2007) define reverse engineering as follows: “Every
method aimed at recovering knowledge about an existing software
system in support to the execution of a software engineering task”.
Tonella et al. (2007) emphasize that no hidden or lost structure is
recovered: “Rather, a structure is superimposed in order to facilitate the
execution of some software engineering task”. Raibulet et al. (2017) fo-
cus on model-driven reverse engineering and distinguish among others
the following features: Automation level, scope, type of analysis, and
availability of case studies. Furthermore, they identified the following
main model-driven reverse engineering concepts:

» discovery: obtain models from analyzed systems;

« transformation: modification and abstraction of models to obtain
the target representation of the analyzed systems; and

» metamodels: drivers for the discovery and transformation activi-
ties.

The method fits the reverse engineering definition: It superimposes
a structure based on custom code patterns to create overviews. The
method is semi-automated, has a custom specific scope, uses static
analysis, and has been applied in three case studies. It is however not a
model-driven approach, since it lacks explicit models, metamodels, and
transformations.

Program comprehension is an important human factor in software
engineering (Siegmund and Schumann, 2015). Human comprehension
of a codebase correlates with that codebase’s parameters such as con-
tent, language, layout, and size (Siegmund and Schumann, 2015).
Humans apply several models for program comprehension, including
top-down and bottom-up models (Siegmund and Schumann, 2015).

To enhance insight, our custom static analysis should also ‘com-
prehend’ the codebase. On the one hand, we expect that the com-
prehension of our custom static analysis of the codebase will also
correlate with that codebase’s parameters. However, we expect that
the correlation will be different compared to human analysis, due to,
among others, differences in memory and in sensitivity to, e.g., layout
and regularity. The method also uses multiple ‘models’ for program
comprehension with a local and global scope.
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Approaches for mining software repositories analyze artifacts re-
lated to software development, such as source code version-control sys-
tems, requirements- and bug-tracking systems, communication
archives, and deployment logs (Kagdi et al., 2007; de Freitas Farias
et al., 2016). The artifacts related to software development do not cover
the design space homogeneously but strongly focus on the solution
evolving over time. The analysis techniques include metadata analysis,
source code static analysis, source code differencing, clone detection,
and classification supervised learning (Kagdi et al., 2007). The field
of mining software repositories has a bias towards comprehension of
software changes and evolution (Kagdi et al., 2007; de Freitas Farias
et al., 2016).

Our custom static analysis statically analyzes only one version of
the codebase, and aims at enhanced insight related to only a part of
the codebase: the usage of an in-house library.

7.2. Static analysis

Many analysis tools “are unfocused, and take place in the absence
of any indication of which properties are of interest to the consumer of
the analysis information” (Jackson and Rinard, 2000). These analysis
tools have generic goals and aim to find weaknesses and code smells,
see, e.g., TiCS,' Coverity (Bessey et al., 2010), and HLint'®; to generate
related artifacts, such as skeletons, stubs, and documentation, see,
e.g., Doxygen'’; or to measure and quantify, see, e.g., GNATmetric.'®

Custom static analysis

Some static analysis tools, like GNATcheck and SonarQube, support
custom rules, but these are rarely used (Beller et al., 2016; Christakis
and Bird, 2016). Furthermore, many analyses need more expressive-
ness than is provided, as, e.g., reported by Mendonca et al. (2018).
Finally, these analysis tools favor overviews that are file-location ori-
ented, which complicates analyses that need to produce other kinds of
overviews.

Some static analysis tools, like Eclipse CDT and Clang, expose their
Abstract Syntax Tree (AST). Although these tools enable all possible
custom analyses, they require to learn a complex, abstract syntax tree
that is typically not designed for analysis purposes only. Mendonca and
Kalinowski (2022) even concluded that expecting developers which are
not rule experts to develop custom “rules directly using the AST is
unrealistic”. The following alternatives are proposed to simplify custom
static analysis:

» Domain Specific Languages, such as SmPL, that is based on the
patch syntax (Padioleau et al., 2006), and Source Code Pattern
Language, that uses naming conventions and markups embedded
in the concrete syntax (Silva and Mendonca, 2021),
domain-specific libraries, such as Clang-tidy'® that provide a pro-
gramming interface that does not hide but only aims to simplify
working with the AST, and

domain-specific libraries, such as Renaissance-Ada, that provide
a programming interface by providing functions to find, filter,
and replace code fragments using patterns expressed in (an ex-
tended version of) the concrete syntax, while hiding the complex-
ities associated with matching abstract syntax trees as much as
possible.

15 https://www.tiobe.com/products/tics.

16 https://github.com/ndmitchell/hlint.

17 https://www.doxygen.nl.

18 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_
utility_programs.html#the-gnat-metrics-tool-gnatmetric.

19 https://clang.llvm.org/extra/clang-tidy.
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Methods to create custom static analyses

Meta-level compilation (Engler et al., 2000) is a method to find
violations of custom, system-specific rules. Instead of having all soft-
ware engineers to obey rules as well as they can, despite approximate
understanding of these rules and the system’s complexity, meta-level
compilation allows for each rule that a single software engineer, who
understands that rule, writes a custom compiler extensions to auto-
matically check that rule on everyone’s code. The custom compiler
extensions are written in a domain-specific language that supports
patterns and state machines. Code is checked by searching for these
patterns and, when matched, triggering transitions between states in
a state machine. The custom compiler extensions find bugs, but do
not guarantee their absence. The custom compiler extensions might
produce false positives. These false positives can be reduced signifi-
cantly by adding some amount of global analysis or system-specific
knowledge.

Pattern-driven maintenance (Mendonca et al., 2018; Mendonca and
Kalinowski, 2022) is a method to create custom static analysis rules
for defect localization. Pattern-driven maintenance provides support
to identify and document patterns from failure sources, such as er-
ror logs and issue reports; to implement rules to find instances of
these patterns; and to include context analysis to reduce the num-
ber of false positives and make the rule acceptable for inclusion in
the development process. The last aspect — improvement of analysis
precision — has, according to Muske and Serebrenik (2016), “been
extensively considered in the literature”. Pattern-driven maintenance
requires that the initial pattern should be broad enough to find all
instances but might include false positives (Mendonca et al., 2018),
but does not provide any support to check this requirement. The static
analyses developed using pattern-driven maintenance range from gen-
eral, i.e., application architecture and coding style specific, to custom,
i.e., application-specific (Mendonca and Kalinowski, 2022).

The proposed method advocates custom static analysis that is spe-
cific to a given codebase to be cost-effective and to achieve the sweet
spot in information abstraction: providing domain-specific insight with-
out overwhelming details. Reusing standard analysis techniques, like
call graphs, inheritance trees, and data flow analysis, makes developing
the static analysis cost-effective, yet some customization is considered
essential to achieve the sweet spot. Similarly, explicit checking for
relevant code fragments that do not match any pattern is considered
necessary to ensure the validity and completeness of the static analysis.

8. Discussion

We made the following general observations in our case studies:

+ Despite the many differences between the three case studies, such
as desired insights, codebases, and organizations, the method was
applicable in all case studies.

Using the method, we could develop a custom static analysis in
all case studies.

We needed customization in all case studies to enhance insight
into the usage of the in-house libraries.

The combination of domain knowledge with generic structures
was crucial to get valuable insights in all case studies.

Handling design patterns for decoupling was the biggest challenge
and the main source for the complexity of the custom static
analysis in all case studies.

The industrial codebases were more regular than expected, possi-
bly thanks to coding standards and guidelines, copy-paste-modify
habits, the use of linters, and software engineers who know they
have to maintain the code.

The method was developed, evolved, and validated in three ex-
ploratory case studies. We consider the following steps the most rel-
evant ones in the evolution of the method:
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1. During the “Blackboard” case, we observed the feasibility and
usefulness of creating overviews of a specific in-house libraries
using custom static analysis. Furthermore, we realized that all
artifacts in the codebase might be relevant, and cross-checks are
needed to ensure the validity and completeness of the custom
overviews.

2. During the “Logging” case, we introduced additional cross-
checks based on event logs from tests. We refined the discussion
on what “the method” is, and we enriched our method with
evaluation of expressions at compile-time via data flow analysis.
In this case we also benefited from the reduction of variation in
the codebase that kept the custom static analysis simple.

3. During the “Inspection” case, we realized the need to split the
analysis into two parts. Dealing with (extreme) decoupling, we
needed to retrieve the global context from multiple earlier nested
method calls.

The effort to develop custom static analysis is considerable. Yet for
large codebases, that effort is already smaller than a single manual
analysis, even when using find functionality based on text and regular
expressions. But also for smaller codebases, the effort might still be
smaller, not only when the same analysis must be performed multiple
times on variants of the codebase but also when iterations of the
analysis are needed to achieve the desired quality. In manual and
custom static analyses, iterations are needed when assumptions made
in the analysis turn out to be incorrect, and when opportunities for
improvements are discovered, such as additional information that can
be extracted from the codebase and more in-depth analysis that can be
performed.

We started this research despite the risk that the industrial code-
bases were so irregular with respect to domain-specific information
that the development of a custom static analysis would not be effective
and efficient. Our experience in these case studies has lowered our
estimate of that risk and is inline with an observation of Hindle et al.
(2016): “programming languages, in theory, are complex, flexible and
powerful, but, “natural” programs, the ones that real people actually
write, are mostly simple and rather repetitive”.

An explanation may be that engineering teams have processes, such
as mandatory code reviews with check lists, and use tools, such as
linters, to improve code regularity. In addition, some programming
languages, such as Python, have design principles like “There should be
one - and preferably only one — obvious way to do it”* that stimulate
code regularity. Other programming languages, such as Perl (Wall
et al., 2000), have slogans like “There’s More Than One Way to Do
It”. Yet, even Perl’s creator, Larry Wall, hesitates to make ten ways to
do something.

Many software engineers adhere to the proverb “if it ain’t broke,
don’t fix it”. Yet, when do code owners consider a codebase broken?
In the case studies, multiple fixes were proposed that removed code
irregularities from the codebase to keep the custom static analysis
simple. Of course, these fixes not only improved analyzability but also
other properties, such as simplicity and readability. All proposed fixes
were accepted by the code owners. In other words, we observed that
code owners considered their codebase broken not only when exposing
incorrect behavior but also when containing code irregularities.

The proposed method needs tools for static analysis and visualiza-
tion. Some programming languages currently lack static analysis tools.
Enhancing insight into the usage of in-house libraries written in those
programming languages will be quite a challenge as also these tools
have to be developed.

Static analysis tools can be classified in two categories: targeting
either a specific programming language or all programming languages.
Tools of the latter category still need a programming language specific

20 https://www.python.org/dev/peps/pep-0020.
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adapter to work correctly. At the time of our case studies no tool in the
latter category supported the languages we needed. However, currently
Rascal®! has added support for C/C++ and Ada and has become a
viable alternative, as is exemplified in Schuts et al. (2022). For the case
studies we selected tools from the first category: Eclipse CDT for the
C++ programming language and Libadalang for the Ada programming
language. However, Clang and ASIS are equally valid alternatives for
these respective languages.

9. Conclusions

In this paper, we have presented a method to enhance insight
into the usage of in-house libraries. This method was applied in three
exploratory case studies involving industrial C++ and Ada codebases
with in-house libraries. We draw the following conclusions:

» We could develop a custom static analysis to enhance insight
for all industrial codebases of the case studies. The develop-
ment turned out to be easier than initially envisioned, since the
industrial codebases were more regular than expected.

The enhanced insight immediately revealed a lot of quick-wins,
confirming that you can only manage what you can measure.
Many of the quick-wins, such as the removal of domain-specific
redundant code, are directly linked to exploiting domain knowl-
edge.

The custom static analysis had a set of code patterns for proper
library usage, and included cross-checks to detect deviating li-
brary usage. These cross-checks were crucial for the validity and
completeness of the analysis.

The automation of the custom static analysis improved the quality
of the analysis results and reduced the time needed for analysis
considerably.

10. Future work

We would like to apply the proposed method also to open-source
codebases: Not only to verify that the method generalizes beyond
industrial codebases, but also to provide examples that are accessible
as additional documentation and for further research. So we invite
open-source communities to contact us whenever they want to enhance
insight into the usage of in-house libraries within their codebase.

Industrial codebases contain more domain-specific information be-
sides the usage of in-house libraries. We would like to extend the
proposed method to include this information as well. Hence, we would
like to generalize the method to “enhance insight into the usage of in-
house libraries” to “enhance domain-specific insight into an industrial
codebase”. We consider a generic way to handle decoupling patterns
crucial for this generalization.

We observed in the case studies that the enhanced insight, e.g., the
detection of no longer used code, triggers changes in the codebase.
These changes are often not complicated, e.g., the recording of the
obsolete identifiers to avoid incidental reuse and the removal of no
longer used code. So we would like to incorporate automatic changes
in the method in the future.
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