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Abstract
Objective  Patients with rotator cuff tears present often with glenohumeral joint instability. Assessing anatomic angles and shoulder 
kinematics from fluoroscopy requires labelling of specific landmarks in each image. This study aimed to develop an artificial intel-
ligence model for automatic landmark detection from fluoroscopic images for motion tracking of the scapula and humeral head.
Materials and methods  Fluoroscopic images were acquired for both shoulders of 25 participants (N = 12 patients with unilateral 
rotator cuff tear, 6 men, mean (standard deviation) age: 63.7 ± 9.7 years; 13 asymptomatic subjects, 7 men, 58.2 ± 8.9 years) dur-
ing a 30° arm abduction and adduction movement in the scapular plane with and without handheld weights of 2 and 4 kg. A 3D 
full-resolution convolutional neural network (nnU-Net) was trained to automatically locate five landmarks (glenohumeral joint 
centre, humeral shaft, inferior and superior edges of the glenoid and most lateral point of the acromion) and a calibration sphere.
Results  The nnU-Net was trained with ground-truth data from 6021 fluoroscopic images of 40 shoulders and tested with 
1925 fluoroscopic images of 10 shoulders. The automatic landmark detection algorithm achieved an accuracy above inter-
rater variability and slightly below intra-rater variability. All landmarks and the calibration sphere were located within 1.5 
mm, except the humeral landmark within 9.6 mm, but differences in abduction angles were within 1°.
Conclusion  The proposed algorithm detects the desired landmarks on fluoroscopic images with sufficient accuracy and can 
therefore be applied to automatically assess shoulder motion, scapular rotation or glenohumeral translation in the scapular plane.
Clinical relevance statement  This nnU-net algorithm facilitates efficient and objective identification and tracking of ana-
tomical landmarks on fluoroscopic images necessary for measuring clinically relevant anatomical configuration (e.g. critical 
shoulder angle) and enables investigation of dynamic glenohumeral joint stability in pathological shoulders.
Key Points 
• Anatomical configuration and glenohumeral joint stability are often a concern after rotator cuff tears.
• Artificial intelligence applied to fluoroscopic images helps to identify and track anatomical landmarks during dynamic movements.
• The developed automatic landmark detection algorithm optimised the labelling procedures and is suitable for clinical application.
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Introduction

Rotator cuff tears are often associated with glenohumeral 
joint instability [1–3]; however, no consistent pattern of 
scapular motion has been described [4]. During abduc-
tion, patients have been found to have more upward scap-
ular rotation [5–11], normal scapular rotation [12, 13] 
or even a decrease in upward rotation [14]. Similarly, no 
conclusive findings have been made about glenohumeral 
translation [3, 15–18]. A consistent method for assess-
ing shoulder kinematics would therefore provide clear 
understanding and consequently be beneficial for patient 
treatment.

Various methods have been suggested for assessing gle-
nohumeral biomechanics. In the past, mainly conventional 
radiographs — imaging the shoulder in different arm posi-
tions — were used to assess the glenohumeral joint [1, 2, 15, 
16, 19, 20]. However, kinematics is likely to differ between 
static and dynamic conditions, and hence recently, 3D-to-2D 
model to image registration techniques have been introduced 
for assessing shoulder kinematics during scapular plane 
abduction [13, 21–26]. While this method has high accuracy, 
it requires computed tomography (CT) images, hence expos-
ing patients to high ionising radiation [27]. More recently, 
another method for estimating glenohumeral translation 
with single-plane fluoroscopy, requiring the labelling of 
five landmarks [28], has been suggested, but measurements 
of scapular rotation or critical shoulder angle [29] should 
also be possible. This method is associated with low radia-
tion exposure and has good reliability with manual labelling 
[28]. However, because this process is time consuming, its 
applicability is limited on a large scale.

At present, artificial intelligence is gaining application 
in medical imaging. Deep neural networks have been used 
on magnetic resonance images (MRI) for classifying rota-
tor cuff tears [30] and segmenting rotator cuff muscles [31, 
32] and the glenohumeral joint [32, 33]. Deep learning has 
been reported also for quantifying and characterising rota-
tor cuff muscle degeneration from CT scans [34]. While 
on radiographs, deep learning has been employed to detect 
humerus fractures [35], and to classify shoulder implants 
[36]. For measurement of the critical shoulder angle, artifi-
cial intelligence has also been used for landmark detection 
from radiographic images with accurate, reproducible and 
rapid measurements [37].

This study aimed to develop an artificial intelligence 
model for automatic landmark detection on fluoroscopic 
images during a 30° arm abduction and adduction move-
ment in the scapular plane. This model aims to provide 
quick assessment of anatomical configuration and kine-
matics of the shoulder and is expected to efficiently yield 
accurate and reproducible results based on prior artificial 
intelligence applications.

Materials and methods

Participants

This prospective study is part of an umbrella study on gle-
nohumeral biomechanics [38] that was approved by the 
regional ethics board and conducted in accordance with 
the Declaration of Helsinki. Participants were enrolled 
between May 2021 and January 2023. Exclusion crite-
ria were as follows: BMI > 35 kg/m2; inability to provide 
informed consent; prior operative treatments of the upper 
extremity; clinical history of the glenohumeral joints (only 
of the contralateral side for patients); and neuromuscular 
disorders affecting upper limb movements or other patholo-
gies influencing shoulder joint mobility. Informed consent 
was obtained from all participants included in the study. 
Figure 1 depicts the study design with the cohort for the 
training and test sets.

Image acquisition

Single-plane fluoroscopy images (Multitom Rax, Siemens 
Healthineers) were acquired for all shoulders during a 30° 
loaded and unloaded shoulder abduction test in the scapu-
lar plane. Testing procedures were performed as described 
in the study of Croci et al [28]. Participants abducted both 
arms simultaneously in the scapular plane up to 30°, first 
without handheld weight and then with 2-kg and 4-kg 
additional handheld weight in a randomised order. To 
maintain a comparable movement rate, verbal commands 

Fig. 1   Flowchart of the study
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were given to the participants. Images were captured first 
for the right shoulder and then for the left shoulder with a 
pulse rate of 3 Hz (in 13 subjects) and 10 Hz (in 12 sub-
jects). Image resolution was 946 × 958 pixels with a pixel 
size of 0.35 × 0.35 mm. The exact pixel dimensions were 
calibrated with a reference sphere (Ø = 25 mm) placed in 
the field of view of the fluoroscopy images.

Automatic landmark detection algorithm

To analyse shoulder kinematics (i.e. scapular rotation, 
glenohumeral translation or abduction angle) throughout 
the entire 30° abduction and adduction tasks, five ana-
tomic landmarks must be detected in each fluoroscopic 
image: the glenohumeral joint centre (defined as the cen-
tre of a best-fit circle on the humeral head [1]), the most 
inferior and superior points on the edge of the glenoid and 
the most lateral point on the acromion [28] as well as a 
point on the humeral shaft axis. For calibration purposes, 
it is also necessary to determine the size of the reference 
sphere. All landmarks were manually labelled in each 
image using 3D Slicer [39] (slicer.org) according to the 
proposed method by Croci et al [28] and were considered 
ground-truth. The positions of the manually registered 
landmarks (stored as JSON file) were used to generate a 
labelled mask with a Python script using the SimpleITK 
library (simpleitk.org). The mask was created by placing 
a label disc at the position of each landmark. The discs on 
the glenoid and acromion had a fixed radius of 8 pixels. 
The discs of the other landmarks were borrowed by a 
best fitting circle defined during manual landmark detec-
tion [28] (Fig. 2). An nnU-Net [40], a well-established 
convolutional neural network framework for semantic 
segmentation of 3D medical images, was trained using 
fluoroscopic images and disc masks. Pseudo-3D volumes 
were generated by stacking all fluoroscopic images of 
an acquisition session together, considering the acqui-
sition timestamp. Shoulders were randomly allocated to 
training or test sets. The 3D full-resolution network of 
nnU-Net [40] was trained on 120 fluoroscopic sequences 
from 40 shoulders (20 subjects) and the corresponding 
manual landmark segmentations in a fivefold cross-vali-
dation process. The data were allocated to these five folds 
in such a way that all images from the same shoulder 
were in a single fold. Therefore, the algorithm was never 
tested on images from shoulders used during training. 
Each predicted mask was post-processed to remove all 
but the largest connected component and the landmark 
coordinates were calculated as the centre of mass for each 
label in Python and saved as a CSV file. The accuracy of 
the landmark detection algorithm was tested on 30 unseen 
fluoroscopic sequences from 10 shoulders (5 subjects) in 
the test set. If the artificial intelligence network failed to 

find a label on a fluoroscopic image, it reported a detec-
tion failure in that specific fluoroscopic image.

Data analysis

To evaluate the performance of the semantic segmentation by 
the trained network, the Dice coefficients between the ground-
truth and the predicted masks were reported before deriving 
the landmark coordinates. The difference between the manu-
ally and automatically annotated landmark coordinates was 
calculated with MATLAB 2021b (The MathWorks). Mean 
and standard deviation of the distances on the x- and y-axes of 
the image coordinate system (i.e. lateral-medial and superior-
inferior directions, Fig. 2) and Euclidean distances for each 
landmark were investigated. Abduction angles were calculated 
for the manually and automatically annotated images over the 
entire task, by considering a vertical line and a line passing 
through the centre of the glenohumeral joint, and the centre 
of the humeral shaft. The mean and standard deviation of the 
abduction angle error (absolute difference between manual 
and automatic sets) were calculated. Moreover, limits of 
agreement and intraclass correlation coefficients (ICC) were 
calculated for each landmark coordinate and for the abduction 
angle over the entire task. In addition, intra-rater and inter-
rater analyses of all landmarks were performed on a subset of 

Fig. 2   Fluoroscopic image with the mask of the landmarks. Red — 
reference sphere, yellow — humeral head, blue — lateral point of 
the acromion, pink — superior edge of the glenoid, white — inferior 
edge of the glenoid, light blue — humeral shaft
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20 shoulders (from 10 subjects) from the training set recorded 
at a sampling rate of 3 Hz.

Results

Twelve patients with unilateral rotator cuff tear (6 men, 6 
women; mean (standard deviation) age: 63.7 ± 9.7 years; 
height: 174 ± 8 cm; body mass: 78.3 ± 15.6 kg; body mass 
index (BMI): 26.0 ± 5.7 kg/m2) and 13 age-matched control 
subjects without known shoulder injury (7 men, 6 women; 
mean (standard deviation) age: 58.2 ± 8.9 years; height: 
176 ± 10 cm; body mass: 77.6 ± 13.2 kg; BMI: 25.2 ± 4.7 
kg/m2) participated in this study. The artificial intelligence 
network was trained with ground-truth data from 6021 
fluoroscopic images of 20 subjects (n = 12 with 3Hz and 
2118 images, and n = 8 with 10 Hz and 3903 images, 40 
shoulders, 120 separate sequences) and validated with 1925 
fluoroscopic images of 5 subjects (n = 1 with 3 Hz and 154 
images and n = 4 with 10 Hz and 1771 images, 10 shoulders, 
30 separate sequences).

Figure 3 shows a fluoroscopic image with the landmarks 
labelled by artificial intelligence and ground-truth with aver-
age accuracy. The nnU-Net framework failed to segment 
some discs in 264 of 6021 (training) and in 11 of 1925 (test) 
fluoroscopy images. In the training set, these failed landmark 
localisations were observed in fluoroscopy images acquired 
at 3 Hz from eleven shoulders, and at 10 Hz from one shoul-
der (Table 1). In the latter case, the algorithm completely 

failed to segment the most lateral point of the acromion. 
In the test set, the undetected landmarks occurred on eight 
images acquired at 3 Hz from one shoulder and failed on 
three images at 10 Hz from two shoulders. The Dice coef-
ficients of the segmented discs used for landmark detection 
were on average 0.763 ± 0.168 (standard deviation, training) 
and 0.749 ± 0.182 (test; Table 2).

The mean absolute distance on the x- and y-axes of the 
image coordinate system and the mean Euclidean distances of 
the predicted landmark position after extraction from the mask 
and the manually detected ground-truth landmark position are 
shown in Table 2. Inaccuracies between artificial intelligence 
and ground-truth tended to be greater on the y-axis and for 
the images acquired with a pulse rate of 3 Hz. Apart from the 
humeral shaft midpoint, where the Euclidean distance aver-
aged 9.6 mm in the test set, all other landmarks were located 
within a distance of 1.5 mm (Table 2). The mean absolute dif-
ferences in the diameter of the reference sphere were 0.3 ± 0.4 
mm (standard deviation) in the training set (3 Hz: 0.3 ± 0.2 
mm; 10 Hz: 0.3 ± 0.5 mm), and 0.5 ± 0.1 mm in the test set (3 
Hz: 0.4 ± 0.1 mm; 10 Hz: 0.5 mm ± 0.1 mm). The mean abso-
lute differences in the measurements of the abduction angle 
were 0.8° ± 0.8° in the training set (3 Hz: 1.0° ± 1.0°; 10 Hz: 
0.7° ± 0.7°), and 0.9° ± 0.8° in the test set (3 Hz: 0.6° ± 1.3°; 10 
Hz: 1.0° ± 0.7°). Overall, the limits of agreement were within 
3.1 mm for all landmarks except the humeral shaft midpoint, 
which had larger values (Table 3 and Table S1 of Supplemen-
tary Material). However, the automatic landmarks were con-
sistently placed on the humeral shaft axis, and the limits of 
agreement were within 2.6° for the abduction angle (Table 4). 
Excellent reliability was found for all landmarks coordinates 
(ICC > 0.9), apart from the humeral shaft midpoint along the 
y-axis, which had poor reliability (ICC < 0.2 in the test set, 
Table 3), but the abduction angle still showed excellent reli-
ability (ICC > 0.9, Table 4).

For the intra- and inter-rater analyses, the subset comprised 
1817 fluoroscopic images of the training set (all acquired at 
3 Hz). Euclidean distances of the labelled landmarks of this 
subset are shown in Table 5. The mean absolute differences 
in the diameter of the reference sphere were 0.2 ± 0.4 mm for 
intra-rater, 0.3 mm ± 0.2 mm for inter-rater, and 0.3 ± 0.2 mm 
for artificial intelligence against ground-truth. The mean abso-
lute differences in the measurements of the abduction angle 
were 0.9° ± 0.7° for intra-rater, 1.3° ± 1.0° for inter-rater, and 
0.9° ± 0.7° for artificial intelligence against ground-truth.

Discussion

In this study, an artificial intelligence algorithm was devel-
oped for the automatic detection of five landmarks (gle-
nohumeral joint centre, a point on the humeral shaft axis, 
inferior and superior edges of the glenoid and the most 

Fig. 3   Fluoroscopic image with labelled landmarks. Artificial intel-
ligence (AI) vs. ground-truth (GT). Arrows point the labelled land-
marks
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lateral point on the acromion) and a calibration sphere on 
fluoroscopic images acquired with a pulse rate of 3 Hz or 
10 Hz. This allows fluoroscopy-based shoulder kinematics 
to be automatically tracked and analysed in a short time. 
With this method, the effective radiation dose was at most 
0.01 mSv, which is significantly less than that applied for 
3D-to-2D model to image registration techniques requiring 

a CT scan of the shoulder (approximate effective dose 5.8 
mSv [41]). This algorithm allows a fast, automatic annota-
tion of fluoroscopic images facilitating computation of the 
shoulder kinematic parameters such as downward-upward 
scapular rotation or inferior-superior glenohumeral trans-
lation during this 30° arm abduction–adduction task in the 
scapular plane.

Table 1   Detailed overview 
of undetected landmarks with 
artificial intelligence

Landmarks Number of images with failures of artificial intelligence

Training Test

3 Hz  
(n = 2118)

10 Hz 
(n = 3903)

3 Hz  
(n = 154)

10 Hz 
(n = 1771)

Superior edge of glenoid 4 0 0 0
Inferior edge of glenoid 16 0 0 3
Most lateral point of the acromion 21 209 0 0
Glenohumeral joint centre 0 0 0 0
Humeral shaft midpoint 14 0 8 0
Reference sphere 0 0 0 0 

Table 2   Distances and Dice 
coefficients of the landmarks 
between ground-truth and 
artificial intelligence

Landmarks Absolute distance on 
the x-axis of the image 
coordinate system 
(mm)
Mean ± standard 
deviation

Absolute distance on 
the y-axis of the image 
coordinate system 
(mm)
Mean ± standard 
deviation

Euclidean distance 
(mm)
Mean ± standard 
deviation

Dice coefficients
Mean

Training Test Training Test Training Test Training Test

Superior edge of glenoid
  All 0.5 ± 0.5 0.5 ± 0.5 1.0 ± 0.9 1.2 ± 0.7 1.2 ± 1.0 1.4 ± 0.7 0.722 0.678
  3 Hz 0.5 ± 0.6 1.1 ± 0.8 1.0 ± 0.9 0.9 ± 0.5 1.3 ± 0.9 1.6 ± 0.7 0.721 0.621
  10 Hz 0.5 ± 0.5 0.5 ± 0.4 1.0 ± 0.9 1.2 ± 0.7 1.2 ± 1.0 1.4 ± 0.7 0.722 0.693

Inferior edge of glenoid
  All 0.9 ± 1.0 0.8 ± 0.6 0.8 ± 0.7 0.7 ± 0.6 1.4 ± 1.0 1.2 ± 0.7 0.665 0.714
  3 Hz 1.4 ± 1.4 0.6 ± 0.5 1.0 ± 0.9 0.7 ± 0.6 1.8 ± 1.5 1.0 ± 0.7 0.614 0.704
  10 Hz 0.7 ± 0.6 0.8 ± 0.6 0.8 ± 0.6 0.7 ± 0.6 1.2 ± 0.7 1.2 ± 0.7 0.728 0.717

Most lateral point of the acromion
  All 0.5 ± 0.5 0.6 ± 0.5 1.2 ± 0.9 1.3 ± 0.9 1.3 ± 1.0 1.5 ± 0.9 0.663 0.648
  3 Hz 0.5 ± 0.8 1.2 ± 0.8 1.5 ± 1.2 1.9 ± 0.8 1.6 ± 1.3 2.4 ± 0.9 0.625 0.460
  10 Hz 0.4 ± 0.3 0.5 ± 0.5 1.0 ± 0.7 1.3 ± 0.9 1.1 ± 0.7 1.4 ± 0.9 0.709 0.695

Glenohumeral joint centre
  All 0.7 ± 0.5 0.8 ± 0.5 0.7 ± 0.5 0.7 ± 0.4 1.1 ± 0.6 1.1 ± 0.6 0.962 0.954
  3 Hz 0.5 ± 0.5 0.9 ± 0.5 0.6 ± 0.5 0.4 ± 0.4 0.9 ± 0.6 1.3 ± 0.5 0.963 0.952
  10 Hz 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.7 ± 0.5 1.1 ± 0.6 1.1 ± 0.6 0.960 0.954

Humeral shaft midpoint
  All 2.1 ± 3.1 2.6 ± 2.4 7.1 ± 8.0 8.0 ± 5.4 7.6 ± 8.4 8.6 ± 5.7 0.583 0.520
  3 Hz 1.9 ± 2.0 2.0 ± 2.4 6.5 ± 5.3 4.3 ± 3.1 6.9 ± 5.5 4.9 ± 3.7 0.572 0.666
  10 Hz 2.2 ± 3.4 2.7 ± 2.4 7.5 ± 9.2 8.3 ± 5.4 8.0 ± 9.7 8.9 ± 5.8 0.602 0.484

Reference sphere
  All 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.983 0.983
  3 Hz 0.1 ± 0.1 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 0.981 0.983
  10 Hz 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.985 0.982
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In addition to being faster than manual labelling, this algo-
rithm achieves higher accuracy compared to inter-rater vari-
ability and allows for more concise annotation of large data-
sets. Furthermore, it has the advantage of being deterministic, 
which means that the same result is always obtained for the 
same image and in a clinical setting where replicability is criti-
cal. This automatic landmark detection algorithm is reproduc-
ible for the selected landmarks during an arm abduction and 
adduction movement. The algorithm detected the landmarks 

with a low failure rate, failing to find landmarks on only 11 out 
of 1925 test images (0.57%), and showed greater robustness on 
fluoroscopic images acquired at 10 Hz than at 3 Hz. This may 
be because the fluoroscopic images remained consistently sharp 
during arm movement at faster acquisition rate whereas blurred 
fluoroscopic images may have occurred in 3-Hz acquisitions. 
The automatic algorithm annotated all landmarks accurately 
within a Euclidean distance of 1.5 mm except for the locali-
sation of the humeral shaft midpoint. Because this landmark 

Table 3   Comparison of 
x-axis and y-axis landmark 
coordinates between ground-
truth and artificial intelligence 
of the test set. Shown are mean 
differences with the limits of 
agreements, and the intraclass 
correlation coefficients with 
95% confidence interval

Landmarks Mean difference (mm)
[limits of agreement]

Intraclass correlation coefficients
[95% confidence interval]

x-axis y-axis x-axis y-axis

Superior edge of glenoid
  All 0.0

[− 1.4 to 1.4]
 − 1.0
[− 2.7 to 0.6]

0.998
[0.998 to 0.998]

0.992
[0.889 to 0.998]

  3 Hz 1.1
[0.7 to 2.8]

 − 0.8
[− 2.0 to 0.3]

0.994
[0.923 to 0.998]

0.978
[0.578 to 0.994]

  10 Hz  − 0.1
[− 1.3 to 1.1]

 − 1.1
[− 2.8 to 0.7]

0.997
[0.997 to 0.998]

0.992
[0.882 to 0.997]

Inferior edge of glenoid
  All 0.2

[− 1.7 to 2.1]
0.3
[− 1.5 to 2.1]

0.996
[0.996 to 0.997]

0.995
[0.993 to 0.996]

  3 Hz 0.5
[− 0.8 to 1.8]

0.6
[− 0.9 to 2.0]

0.998
[0.992 to 0.999]

0.983
[0.924 to 0.993]

  10 Hz 0.2
[− 1.8 to 2.1]

0.3
[− 1.5 to 2.0]

0.994
[0.993 to 0.994]

0.994
[0.993 to 0.996]

Most lateral point of the acromion
  All 0.3

[− 1.1 to 1.7]
1.3
[− 0.5 to 3.1]

0.997
[0.996 to 0.998]

0.993
[0.839 to 0.998]

  3 Hz  − 0.5
[− 3.2 to 2.2]

1.8
[0.1 to 3.6]

0.993
[0.989 to 0.996]

0.984
[0.084 to 0.987]

  10 Hz 0.3
[− 0.8 to 1.5]

1.2
[− 0.6 to 3.0]

0.997
[0.992 to 0.998]

0.993
[0.859 to 0.998]

Glenohumeral joint centre
  ll 0.0

[− 1.9 to 1.8]
0.1
[− 1.5 to 1.7]

0.996
[0.996 to 0.997]

0.997
[0.997 to 0.998]

  3 Hz  − 0.9
[− 2.0 to 0.3]

 − 0.7
[− 1.6 to 0.2]

0.997
[0.901 to 0.999]

0.990
[0.674 to 0.997]

  10 Hz 0.2
[− 1.8 to 1.8]

0.2
[− 1.4 to 1.7]

0.994
[0.994 to 0.995]

0.997
[0.997 to 0.998]

Humeral shaft midpoint
  All 0.0

[− 7.0 to 7.0]
 − 0.4
[− 19.3 to 18.5]

0.970
[0.967 to 0.973]

0.151
[0.107 to 0.194]

  3 Hz 1.8
[− 3.3 to 6.9]

4.2
[− 2.2 to 10.5]

0.987
[0.958 to 0.994]

0.775
[0.042 to 0.921]

  10 Hz  − 0.1
[− 7.2 to 6.9]

 − 0.8
[− 20.2 to 18.6]

0.960
[0.956 to 0.963]

0.092
[0.046 to 0.137]

Reference sphere
  All 0.0

[− 0.1 to 0.1]
0.0
[− 0.2 to 0.2]

1.000
[1.000 to 1.000]

1.000
[1.000 to 1.000]

  3 Hz 0.0
[− 0.1 to 0.1]

0.0
[0.0 to 0.1]

1.000
[1.000 to 1.000]

1.000
[1.000 to 1.000]

  10 Hz 0.0
[− 0.2 to 0.1]

0.0
[− 0.2 to 0.2]

1.000
[1.000 to 1.000]

1.000
[1.000 to 1.000]
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is solely used for measuring the abduction angle and being 
defined as a point on the shaft axis, the exact position of this 
landmark is not well defined. Hence, the manual landmarks 
are not placed with a consistent distance to the humeral head 
and therefore impossible to exactly replicate with the automatic 
algorithm. Despite this inconsistent ground-truth data, the auto-
matic algorithm learned to annotate this landmark consistently 
on the axis of the humeral shaft leading to an average abduction 
angle error of 1.0° compared to 1.3° of inter-rater.

The landmark errors of the superior edge of the glenoid 
and the most lateral point of the acromion were larger along 
the y-axis compared to the x-axis. This was also observed with 
the intra-rater analysis. These landmarks are sometimes more 
difficult to consistently annotate due to the rounded anatomi-
cal edges, and so they are less accurately defined in the infe-
rior-superior direction compared to the mediolateral direction.

Manual image labelling takes about 1 min per image and 
— depending on the pulse rate at which the images were 
acquired — accumulating to more than 1 h for labelling an 

entire sequence acquired at 10 Hz (approximately 80 images 
per shoulder per abduction–adduction task). In contrast, the 
automatic landmark detection algorithm can provide suffi-
ciently accurate automatic predictions in less than 1 min for 
the entire image set. Hence, this automatic landmark detec-
tion is potentially suitable for clinically assessing fluoros-
copy-based shoulder kinematics. If required, the predicted 
landmarks may be imported into software for manual correc-
tion of the position. Manual correction might be needed in 
cases where the algorithm fails to find all desired landmarks 
when the image quality is poor.

In this work, a two-step process for automatic landmark 
detection is presented by first generating a labelled mask with 
a 3D deep learning network and then extracting the landmark 
coordinates from the mask. In a preliminary study, this 3D net-
work outperformed the 2D network (Table S1 of Supplemen-
tary Material), even though the third dimension of the stacked 
fluoroscopy data is in the time domain. Because the fluoros-
copy images are acquired periodically, the landmarks always 
move smoothly from one image to the next. It is believed that, 
because the 3D kernel also considers the fluoroscopy images 
before and after the currently processed fluoroscopy image, the 
3D network operates in a more robust way in single images of 
poor quality where certain landmarks would be difficult to find 
in that particular isolated blurred image. The algorithm pre-
sented by Minelli et al [37] outputs the landmark coordinates 
directly and does not generate an intermediate landmark mask, 
hence reducing the required computational costs. However, the 
algorithm is solely applied to single 2D radiographs and inter-
preting the reliability and accuracy of the landmark position 
is difficult. The intermediate step of mask generation aids in 
the interpretation of the landmark localisation process, thereby 
increasing explainability and robustness [42, 43] and allowing 
automatic detection of an otherwise failed landmark detection. 
In the future, an analysis of the variance of the predictions from 
the nnU-Net subnetworks will be conducted to automatically 
detect predictions with insufficient accuracy [32].

A limitation of this study is that the algorithm was trained 
solely with normal shoulders and shoulders with rotator cuff 
tears, so the performance of the algorithm is likely to decrease 
in cases where the contours of the glenoid or humerus are not 
well defined, such as in the presence of severe osteoarthritis. 
In addition, because the algorithm was trained on single-cen-
tre data acquired during a specific movement and always using 
the same fluoroscopy device, the algorithm presented may 
require retraining to maintain high performance in landmark 
detection on data acquired during different movements (e.g. 
arm abduction of more than 30°) or with different settings, or 
with other fluoroscopy devices.

In this study, the limited number of participants and the 
lack of diagnostic images prevented analysis of the data to 
discriminate between healthy shoulders and shoulders with 
asymptomatic or symptomatic rotator cuff tears based on 

Table 4   Mean difference and intraclass correlation coefficients of the 
abduction angles calculated from ground-truth and artificial intelli-
gence-detected landmarks

Images Abduction angle

Mean difference (°)
[limits of agreement]

Intraclass correlation coef-
ficients
[95% confidence interval]

Training Test Training Test

All 0.0
[− 2.3 to 2.3]

 − 0.3
[− 2.6 to 2.1]

0.993
[0.992 to 

0.993]

0.991
[0.989 to 

0.992]
3 Hz  − 0.3

[− 3.0 to 2.4]
0.0
[− 2.8 to 2.9]

0.991
[0.989 to 

0.992]

0.994
[0.991 to 

0.996]
10 Hz 0.1

[− 1.8 to 2.1]
0.3
[− 2.8 to 2.9]

0.994
[0.994 to 

0.994]

0.990
[0.988 to 

0.992]

Table 5   Comparisons of the Euclidean distances for the subset 
between the different raters

AI, artificial intelligence; GT, ground-truth

Euclidean distance for subset (mm)
Mean ± standard deviation

Intra-rater Inter-rater AI vs. GT

Superior edge of glenoid 1.4 ± 0.9 1.5 ± 1.1 1.3 ± 1.0
Inferior edge of glenoid 1.6 ± 1.3 1.8 ± 1.5 1.7 ± 1.5
Most lateral point of the  

acromion
1.1 ± 0.8 2.0 ± 1.3 1.5 ± 1.3

Glenohumeral joint centre 0.7 ± 0.5 0.8 ± 0.5 0.8 ± 0.6
Humeral shaft midpoint 6.2 ± 5.0 10.2 ± 7.0 7.1 ± 5.6
Reference sphere 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
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kinematics alone. However, the proposed algorithm will 
facilitate the analysis of kinematic differences analysis in 
a larger study in the future.

In conclusion, the proposed automatic detection algo-
rithm enables rapid labelling of the fluoroscopic images, 
especially for images acquired at a sampling rate of at 
least 10 Hz, allowing tracking and analysis of shoulder 
motion. Thus, this model facilitates fast measurement of 
fluoroscopy-based shoulder kinematics during a 30° arm 
abduction and adduction movement in the scapular plane 
and thus gaining insight into the kinematics of the shoul-
der joint in patients with rotator cuff tears.
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tary material available at https://​doi.​org/​10.​1007/​s00330-​023-​10082-8.
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