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Abstract 

Background  Rotator cuff muscles stabilise the glenohumeral joint and contribute to the initial abduction phase 
with other shoulder muscles. This study aimed to determine if the load-induced increase in shoulder muscle activity 
during a 30° abduction test is influenced by asymptomatic or symptomatic rotator cuff pathologies.

Materials and Methods  Twenty-five patients with unilateral rotator cuff tears (age, 64.3 ± 10.2 years), 25 older control 
subjects (55.4 ± 8.2 years) and 25 younger control subjects (26.1 ± 2.3 years) participated in this study. Participants 
performed a bilateral 30° arm abduction and adduction movement in the scapular plane with handheld weights 
(0–4 kg). Activity of the deltoid, infraspinatus, biceps brachii, pectoralis major, latissimus dorsi and upper trapezius 
muscles was analysed at maximum abduction angle after normalisation to maximum voluntary contraction. Shoul-
ders were classified into rotator cuff tendinopathy, asymptomatic and symptomatic rotator cuff tears, and healthy 
based on magnetic resonance images. A linear mixed model (loads, shoulder types) with random effects (shoulder 
identification) was applied to the log-transformed muscle activities.

Results  Muscle activity increased with increasing load in all muscles and shoulder types (P < 0.001), and 1-kg incre-
ments in additional weights were significant (P < 0.001). Significant effects of rotator cuff pathologies were found 
for all muscles analysed (P < 0.05). In all muscles, activity was at least 20% higher in symptomatic rotator cuff tears 
than in healthy shoulders (P < 0.001). Symptomatic rotator cuff tears showed 20–32% higher posterior deltoid 
(P < 0.05) and 19–25% higher pectoralis major (P < 0.01) activity when compared with asymptomatic tears.

Conclusions  Rotator cuff pathologies are associated with greater relative activity of shoulder muscles, even with low 
levels of additional load. Therefore, the inclusion of loaded shoulder tests in the diagnosis and rehabilitation of rotator 
cuff pathologies can provide important insight into the functional status of shoulders and can be used to guide treat-
ment decisions.

Level of evidence: Level 2.
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Introduction
Rotator cuff tears are very common; their prevalence 
steadily increases with age [1] and approximately 45% of 
the population over the age of 70 years are affected [2]. 
Rotator cuff tears can significantly affect shoulder com-
fort and function during activities of daily living [3], 
resulting in lower functional scores [4], such as the clini-
cally commonly used Constant score, which takes into 
account pain, activities of daily living, range of motion 
and strength [5, 6]. Rotator cuff tears can present clini-
cally in a variety of ways: some patients have severe pain 
and limited range of motion, while others have no symp-
toms [7]. Many of these asymptomatic rotator cuff tears 
eventually become symptomatic within 3 years of initial 
diagnosis [8, 9].

Rotator cuff muscles primarily facilitate shoulder 
motion and centre the glenohumeral joint to prevent 
superior migration of the humeral head [10–12]. Rota-
tor cuff muscles (supraspinatus and infraspinatus), along 
with other shoulder muscles (deltoid and axioscapular 
muscles), contribute to the initiation of abduction [13]. 
For shoulder joint motion to occur smoothly and effi-
ciently, a coordinated force couple of the deltoid and 
rotator cuff muscles is required, with the infraspinatus, 
teres minor and subscapularis stabilising the humeral 
head against the glenoid and providing a fulcrum for 
the actions of the deltoid and supraspinatus muscle [14]. 
Rotator cuff tears lead to an imbalance of this force cou-
ple and may cause instability of the glenohumeral joint 
[15]. Although altered kinematics have been reported, 
a clear consensus has yet to be reached [16, 17]. These 
kinematic changes may also be associated with altered 
muscle activity as measured by electromyography (EMG) 
[18–22].

Changes in muscle activity in rotator cuff pathologies 
are not completely understood, and the current litera-
ture is inconsistent. For instance, a tendency to increased 
shoulder muscle activity has been found in patients with 
rotator cuff tears compared with normal subjects [18]. 
Increased axioscapular muscle activity has also been 
found to be a compensatory mechanisms for the desta-
bilising forces of the deltoid muscle [21], suggesting 
decreased glenohumeral joint motion [23]. However, 
symptomatic rotator cuff tears have less activity of the 
deltoid muscle during shoulder elevation compared with 
asymptomatic tears [23]. Moreover, muscle activity of 
only the posterior deltoid and biceps brachii was higher 
in symptomatic rotator cuff tears than in age-matched 
healthy controls [19].

To date, the differences in muscle activity between 
symptomatic and asymptomatic rotator cuff tears have 
not been fully elucidated [23]. In addition, the effect of 
additional load during a dynamic task in rotator cuff 

tears has not yet been fully studied even in control sub-
jects [24, 25]. Previous studies have shown that deltoid 
and rotator cuff muscle activity in asymptomatic shoul-
ders increased with additional load during the first 90° of 
abduction in the scapular plane [24], and that increasing 
load in asymptomatic shoulders resulted in higher activa-
tion of the middle deltoid, rotator cuff and axioscapular 
muscles throughout abduction in the scapular plane [25]. 
Understanding muscle activation patterns under different 
loading conditions is important for rehabilitation because 
increased loading is commonly used in shoulder reha-
bilitation programmes to gradually challenge muscles to 
improve muscle strength and function [24, 26].

This study aimed to investigate whether the load-
induced increase in shoulder muscle activity during 30° 
arm abduction in the scapular plane is influenced by 
asymptomatic or symptomatic pathologies of the rota-
tor cuff. We hypothesised that muscle activity would 
increase with increasing loading conditions and that the 
load-induced increase in deltoid muscle activity would 
be greater in the presence of a rotator cuff pathology to 
compensate for rotator cuff deficiency.

Materials and methods
Participants
In this study, 25 patients with unilateral rotator cuff tears, 
25 older (45–85 years) and sex-matched control subjects, 
and 25 younger (20–30  years) and sex-matched control 
subjects were recruited from our clinic (patients) or from 
the surrounding community via advertisements (con-
trol subjects) between May 2021 and January 2023. Two 
controls groups were chosen to include both shoulders 
with asymptomatic rotator cuff tears (to be expected in 
the older control group) and healthy shoulders. Inclusion 
criteria for patients were: age between 45 and 85 years, a 
unilateral rotator cuff tear with at least the supraspina-
tus tendon affected (either a partial or a complete tear) 
confirmed by diagnostic imaging, an active arm range of 
motion of at least 30° in abduction and flexion, and no 
known clinical history or pain in the contralateral gle-
nohumeral joint. Control subjects were included if they 
were aged between 45 and 85  years or between 20 and 
30 years, had an active arm range of motion of at least 90° 
in abduction and flexion, and had no history of injury or 
pain in both shoulders. General exclusion criteria were: 
body mass index (BMI) greater than 35 kg/m2, previous 
surgical treatment of the upper extremities, neuromus-
cular disorders affecting upper limb motion, and other 
pathologies influencing shoulder joint mobility. Writ-
ten informed consent was obtained before data collec-
tion. This study was part of a larger umbrella study [27] 
approved by the regional ethics board and conducted in 
accordance with the Declaration of Helsinki (2013) [28]. 
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As described in detail in [27], for a 5% significance level, 
90% power, and a correlation of 0.37, a sample size of 76 
shoulders was necessary.

Experimental protocol
First, the Constant score [5, 6] was obtained for both 
shoulders of all participants to determine the overall sta-
tus of their shoulders. Then, all participants performed 
a sequence of three repetitions of a 30° arm abduction 
and adduction movement in the scapular plane with 
elbows extended and hands in neutral positions, with 
and without additional handheld weights (0, 1, 2, 3 and 
4 kg). This test was performed simultaneously with both 
arms to ensure a straight and stable torso, first without 
handheld weights and then in random order with the 
handheld weights. The repetitions were interspersed 
with 1-min rests. To limit the range of motion of the task 
to 30°, adjustable strings were attached to the hip and 
forearms. The length of the strings was assessed with a 
goniometer (Fig. 1). Verbal commands were given to the 
participants to maintain a similar movement velocity, 
which corresponded to about 4.5  s for a 30° abduction 
and adduction movement. Testing was performed while 
motion capture (sampling rate of 240 Hz, Vicon, Oxford, 
UK) and EMG data (sampling rate of 2400 Hz, Myon AG, 
Schwarzenberg, Switzerland) were acquired. Subjects 
were equipped with 53 reflective anatomical and cluster 
markers and 16 EMG sensors [27]. The reflective markers 
were placed on landmarks of the upper extremities and 
torso according to the International Society of Biome-
chanics guidelines [29]. After skin preparation, the EMG 
sensors were placed parallel to the muscle fibres accord-
ing to the surface EMG for the non-invasive assessment 
of muscles guidelines (SENIAM) [30] and Criswell [31]. 

Muscle activities of the deltoid (anterior, middle and 
posterior part), infraspinatus, biceps brachii, latissimus 
dorsi, pectoralis major and upper trapezius muscles of 
both sides were recorded.

In addition, muscle activities of maximum voluntary 
isometric contractions (MVCs) were recorded. The fol-
lowing isometric tests were performed: empty can test, 
internal rotation (at 90° shoulder abduction and 90° 
elbow flexion), shoulder flexion at 125°, palm press (at 
90° shoulder flexion and 20° elbow flexion) and shoulder 
extension (at 30° abduction with internal rotation) [32, 
33]. Elbow flexion at 90° was also performed to obtain the 
MVC of the biceps brachii muscle. Each contraction was 
performed once for 5 s.

Magnetic resonance images (MRI) of all shoulders (of 
all patients and controls) were obtained using a 3-T scan-
ner (Prisma, Siemens Healthineers, Erlangen, Germany) 
with dedicated shoulder and body array coils. No con-
trast agent was administered. The following sequences 
were acquired: axial proton density turbo spin echo 
sequence with fat saturation, parasagittal T1-weighted 
turbo spin echo, parasagittal and coronal T2-weighted 
BLADE and coronal T1-weighted volumetric interpo-
lated breath-hold examination Dixon sequence.

Data processing
According to MRI findings, participants were grouped 
into the following shoulder types: healthy, with rotator 
cuff tendinopathy, with asymptomatic rotator cuff tears 
and with symptomatic rotator cuff tears (confirming the 
initial diagnosis). If any other findings were present, but 
none on the rotator cuff, data of the corresponding shoul-
ders were excluded from the analyses. An experienced 
radiologist in musculoskeletal imaging read all MRIs.

Fig. 1  Setting of the 30° abduction test at minimum (A) and maximum (B) range of motion. Participants performed a sequence of three 
abduction–adduction repetitions in the scapular plane. The second repetition was included in the analysis
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All data were processed using MATLAB 2021b (Math-
Works Inc., Natick). EMG data were filtered with a 
fourth-order bandpass filter (10–450  Hz) [34], except 
for the latissimus dorsi and pectoralis major, where a 
modified bandpass filter (40–450 Hz) was used to reduce 
electrocardiographic artefacts. EMG data were then full-
wave rectified and smoothed with a 100-ms moving aver-
age window. The EMG signals of the abduction tests were 
then normalised to the maximum values of the MVCs for 
each muscle. The mean intensity of the interval 250  ms 
before to 250 ms after the maximum abduction angle of 
the second repetition was computed and used for further 
analysis. Kinematics data were reconstructed, and gleno-
humeral joint centres were estimated using the regres-
sion equation published by the International Shoulder 
Group [35]. Abduction angles were calculated using the 
XZY sequence [36].

Statistical analysis
All statistical analyses were performed using R statis-
tical software [37]. All data were checked for normal-
ity using Shapiro–Wilk’s test, and log transformation, 
parametric and nonparametric tests were applied as 
appropriate. Differences in the Constant score between 
shoulder groups were evaluated using univariate analysis 
of variance with independent t-test post hoc tests with 
Bonferroni correction. Muscle activities were log trans-
formed [log10(EMG + 1)] to achieve normality. Linear 
mixed models [38] with fixed (loads and shoulder types) 
and random effects (shoulder identification, to account 
for intra- and inter-individual differences within and 
between subjects) were applied to the log-transformed 
activities of each muscle with healthy shoulders as ref-
erence. Post hoc tests (estimated marginal means [39]) 
were carried out accordingly. The level of significance 
was set a priori to 5%.

Results
Overall, 25 patients with unilateral rotator cuff tear (15 
men, 10 women; mean (standard deviation) age: 64.3 
(10.2) years, height: 172 (10) cm, body mass: 78.4 (17.3) 
kg, BMI: 26.5 (5.0) kg/m2); 25 older control subjects (15 
men, 10 women, age: 55.4 (8.2) years, height: 174 (9) cm, 
body mass: 76.5 (13.0) kg, BMI: 25.2 (4.6) kg/m2); and 25 
younger control subjects (15 men, 10 women, age: 26.1 
(2.3) years, height: 177 (9) cm, body mass: 71.6 (12.9) kg, 
BMI: 22.7 (3.0) kg/m2) participated in this study.

Because of missing MRIs or other diagnosis not 
involving the rotator cuff, 20 shoulders (5 contralateral 
shoulders of patients, 10 shoulders of older control sub-
jects and 5 shoulders of younger control subjects) were 
excluded from the analysis (Fig. 2). MRI findings resulted 
in the following shoulder groups included in the analysis: 

43 healthy, 24 with rotator cuff tendinopathy, 38 with 
asymptomatic rotator cuff tears, and 25 with sympto-
matic rotator cuff tears (Fig.  2). It should be noted that 
the healthy shoulders were predominantly from the 
younger control subjects (83.7%). All subjects were able 
to perform the loaded and unloaded abduction tests 
with both arms, except for two patients who were unable 
to hold 3 kg and 4 kg or perform the test correctly with 
elbows extended. In addition, EMG data of the pectora-
lis major and latissimus dorsi muscles were not available 
for nine shoulders, and some other EMG data had to be 
excluded due to signal artefacts (Fig. 2, Additional File 1).

Constant score
Constant scores of shoulders with symptomatic rota-
tor cuff tears were lower than those of all other shoulder 
types [P < 0.001; mean (standard deviation), shoulders 
with rotator cuff tendinopathy: 85.2 (6.1); shoulders with 
asymptomatic rotator cuff tears: 84.0 (5.2); shoulders 
with symptomatic rotator cuff tear: 74.0 (10.3); healthy 
shoulders: 88.2 (2.6)]. Constant scores of shoulders with 
asymptomatic rotator cuff tears were also lower than 
those of healthy shoulders (P < 0.001). Constant scores 
did not differ between asymptomatic rotator cuff tears 
and shoulders with rotator cuff tendinopathy (P = 1.000) 
or between shoulders with rotator cuff tendinopathy 
and healthy shoulders (P = 0.187). Shoulders with symp-
tomatic rotator cuff tears had some pain and range of 
motion deficit compared with the other shoulder types. 
The other differences were due to the different scores 
achieved in the strength component of the Constant 
score.

Overall effect of shoulder type and load on muscle activity
The following pattern in MVC-normalised muscle activ-
ity was observed in all loading conditions: lowest in 
healthy subjects, slightly higher in rotator cuff tendi-
nopathy, then substantially higher in asymptomatic rota-
tor cuff tears and finally highest in symptomatic rotator 
cuff tears (Fig. 3). This trend was observed in all muscles 
except for the pectoralis major, where shoulders with 
rotator cuff tendinopathy had higher muscle activity than 
shoulders with asymptomatic rotator cuff tears (Fig.  4, 
Table  1). In almost all muscles studied, muscle activity 
without additional weight was as high in symptomatic 
rotor cuff tears as in healthy shoulders with 4  kg addi-
tional weight (Fig.  3, median and interquartile range in 
Additional file 2). Particularly, the latissimus dorsi muscle 
activity without additional weight in symptomatic rotator 
cuff tears was twice as high as muscle activity with 4 kg 
additional weight in healthy subjects (Fig.  3, Additional 
file 2). In addition, a significant increase in muscle activ-
ity with increasing load was observed for all muscles and 
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shoulder types (Figs.  3 and 4, Table  1). The estimated 
coefficients for load were similar for all muscles except 
for the latissimus dorsi muscle, where muscle activ-
ity increased only slightly with increasing load (Fig.  4, 
Table  1). Results (P-values) of the linear mixed models 
with the different shoulders as reference can be found in 
the Additional file 3.

Interaction effect of load magnitude and shoulder type
Few interaction effects of the linear mixed model were 
found in the anterior deltoid muscle (load with rotator 
cuff tendinopathy, with asymptomatic rotator cuff tears, 
and with symptomatic rotator cuff tears), middle deltoid 
muscle (load with rotator cuff tendinopathy), infraspina-
tus muscle (load with rotator cuff tendinopathy), latissi-
mus dorsi muscle (load with rotator cuff tendinopathy), 
and upper trapezius muscle (load with asymptomatic 
rotator cuff tears, Table  1). In these cases, the load-
induced increase in muscle activity was less steep than in 
healthy shoulders (Fig. 4, Table 1).

Effect of individual shoulder
In all models of muscle activity, fixed effects (mar-
ginal R2) explained less variance than random effects 
(conditional R2), especially in the case of latissimus 
dorsi (Table 2). High intraclass correlation coefficients 
were found in all models, so most of the variance was 
explained by the random factor (Table 2).

Effect of load on muscle activity
Post hoc tests for the load effect showed that the 
increase in muscle activity was significant from a load 
increment of 1 kg in all muscles and all shoulder types 
(P < 0.001 for all). The only exception was latissimus 
dorsi muscle activity in shoulders with rotator cuff ten-
dinopathy (P = 0.153 for all loads compared).

Effect of shoulder type on muscle activity at each load
Results of the post hoc test for shoulder effects are 
shown in Additional file  4, and only statistically sig-
nificant results are reported here. Symptomatic rotator 

Fig. 2  Flowchart illustrating the classification of all included shoulders into different shoulder types. RC rotator cuff, RCT​ rotator cuff tear, MRI 
magnetic resonance imaging
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cuff tears showed higher muscle activity than healthy 
shoulders in all analysed muscles (at all loads). The 
increase in the log-transformed muscle activity was 
greatest in the posterior deltoid (ranging from 58% to 
88%) and least in the upper trapezius (ranging from 
20 to 32%). Similarly, asymptomatic rotator cuff tears 
had higher muscle activity than healthy shoulders in all 
muscles (at all loads), but not in the pectoralis major (at 
all loads). Indeed, pectoralis major muscle activity was 

higher in symptomatic rotator cuff tears than in asymp-
tomatic tears at all loading conditions, with increases 
ranging from 20% to 32%. Differences between symp-
tomatic and asymptomatic rotator cuff tears were also 
found in posterior deltoid muscle activity at all loads 
(between 19% and 25% higher activity in symptomatic 
rotator cuff tears). Higher muscle activity in shoulders 
with rotator cuff tendinopathy than healthy shoulders 
was found in the biceps brachii (22% to 44% increase), 

Fig. 3  Box plots of the normalised muscle activities. RC rotator cuff, RCT​ rotator cuff tear, MVC maximal voluntary contraction, EMG 
electromyography
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latissimus dorsi (37% to 48% increase) and pectora-
lis major (21 to 44% increase) at all loads, but in the 
infraspinatus and deltoid muscles only at some loads. 
These were in the infraspinatus at 0 kg and 1 kg (15% to 
16% increase), in the anterior deltoid at 0 kg and 1 kg 
(16% to 26% increase), in the middle deltoid at 0, 1, and 
2 kg (21% to 26% increase), and in the posterior deltoid 
at all loads but 4 kg (25% to 37% increase). The only dif-
ference between shoulders with asymptomatic rotator 

cuff tears and shoulders with rotator cuff tendinopa-
thy was higher infraspinatus muscle activity with 4-kg 
additional weight (9%) in shoulders with asymptomatic 
rotator cuff tears. In contrast, shoulders with sympto-
matic rotator cuff tears had higher muscle activity in 
the three parts of the deltoid muscle at all loads (20% 
to 41% increase) and also in the infraspinatus muscle at 
loads of at least 2  kg (14% to 16% increase) compared 
with shoulders with rotator cuff tendinopathy.

Fig. 4  Mean and standard deviation of the normalised and log-transformed muscle activities with regression lines. RC rotator cuff, RCT​ rotator cuff 
tear, MVC maximal voluntary contraction, EMG electromyography
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Discussion
In this study, muscle activity of 130 shoulders was ana-
lysed during a 30° arm abduction and adduction move-
ment with and without additional handheld weight. 
Although only 25 patients with unilateral rotator cuff 
tears were recruited, incidental MRI findings were 
discovered in 62 additional shoulders. These results 
allowed a realistic evaluation of the load-induced 
increase in activity in shoulder muscles in different 
rotator cuff pathologies.

Load‑induced increase in muscle activity
In our abduction test, a load-induced increase in 
muscle activity was observed in all shoulder muscles 
and types studied, where every 1-kg load increment 
resulted in a significant increase in muscle activity. 
The only exception was the activity of the latissimus 
dorsi muscle in shoulders with rotator cuff tendinopa-
thy, which was less affected by additional weights. This 
low activation of latissimus dorsi at maximum abduc-
tion angle could be explained by its function, which 

Table 1  Effects load and shoulder types of linear mixed models on the log-transformed muscle activities

Bold values indicate significant differences (P < 0.05)

RC rotator cuff, RCT​ rotator cuff tear, CI confidence interval

Predictors Anterior 
deltoid

Middle 
deltoid

Posterior 
deltoid

Infraspinatus Biceps brachii Latissimus 
dorsi

Pectoralis 
major

Upper 
trapezius

Intercept

 Estimates 0.76 0.72 0.54 0.90 0.61 0.66 0.56 0.97

 CI [0.70–0.83] [0.65–0.79] [0.46–0.63] [0.83–0.96] [0.51–0.70] [0.58–0.75] [0.48–0.64] [0.90–1.04]

 P-values  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Load

 Estimates 0.12 0.10 0.09 0.10 0.12 0.02 0.09 0.09

 CI [0.11 to 0.12] [0.10 to 0.11] [0.08 to 0.36] [0.09 to 0.11] [0.11 to 0.14] [0.01 to 0.02] [0.08 to 0.10] [0.08 to 0.10]

 P  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
RC tendinopathy

 Estimates 0.19 0.20 0.22 0.17 0.24 0.33 0.25 0.20

 CI [0.08 to 0.29] [0.08 to 0.31] [0.08 to 0.36] [0.07 to 0.28] [0.07 to 0.40] [0.18 to 0.48] [0.12 to 0.38] [0.09 to 0.32]

 P-values  < 0.001 0.001 0.002 0.002 0.006  < 0.001  < 0.001 0.001
Asymptomatic RCT​

 Estimates 0.31 0.26 0.31 0.26 0.30 0.36 0.13 0.26

 CI [0.21 to 0.40] [0.16 to 0.37] [0.18 to 0.43] [0.16 to 0.35] [0.16 to 0.44] [0.22 to 0.49] [0.01 to 0.25] [0.16 to 0.36]

 P-values  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.031  < 0.001
Symptomatic RCT​

 Estimates 0.44 0.41 0.52 0.31 0.42 0.38 0.37 0.30

 CI [0.33 to 0.54] [0.30 to 0.53] [0.38 to 0.66] [0.20 to 0.42] [0.26 to 0.58] [0.23 to 0.54] [0.23 to 0.50] [0.19 to 0.41]

 P-values  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Load × RC tendinopathy

 Estimates −0.02 −0.02 −0.01 −0.02 −0.00 −0.01 −0.01 −0.01

 CI [−0.04 
to −0.01]

[−0.03 to 0.00] [−0.02 to 0.01] [−0.03 
to −0.00]

[−0.02 to 0.02] [−0.02 
to −0.00]

[−0.03 to 0.00] [−0.02 to 0.00]

 P-values < 0.001 0.011 0.252 < 0.001 0.985 0.011 0.135 0.068

Load × asymptomatic RCT​

 Estimates −0.02 0.01 0.01 −0.00 0.02 0.01 −0.01 −0.01

 CI [−0.03 
to −0.01]

[−0.01 to 0.01] [−0.01 to 0.02] [−0.01 to 0.01] [−0.00 to 0.04] [−0.00 to 0.01] [−0.03 to 0.00] [−0.02 to −0.00]

 P-values 0.003 0.600 0.266 0.447 0.060 0.171 0.139 0.027
Load × symptomatic RCT​

 Estimates −0.02 −0.01 0.01 0.00 −0.01 0.00 −0.01 −0.00

 CI [−0.03 
to −0.01]

[−0.02 
to −0.01]

[−0.02 to 0.02] [−0.01 to 0.01] [−0.03 to 0.01] [−0.01 to 0.01] [−0.03 to 0.01] [−0.02 to 0.01]

 P-values 0.006 0.350 0.317 0.759 0.237 0.571 0.291 0.633
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is mainly arm adduction and internal rotation [12]. A 
load-induced increase in deltoid and rotator cuff mus-
cle activity was also observed by Alpert et  al. [24] in 
healthy subjects during the first 90° of abduction in the 
scapular plane. Analogous to that study, we observed 
similar muscle activity of the anterior and middle del-
toid and a slightly lower muscle activity of the poste-
rior deltoid. This is related to the individual muscle 
force vectors and muscle moment arms of the three 
parts of the deltoid. Indeed, the posterior deltoid mus-
cle has a short lever arm during the first phase of full 
abduction [40]; moreover, the loaded and unloaded test 
was performed with the arm in neutral rotation, so no 
increased muscle activity of the posterior deltoid was 
required. The load-induced increase in muscle activity 
of the major muscles producing abduction torque (del-
toid) is required in healthy subjects during the first 90° 
of abduction in the scapular plane to execute the move-
ment. A systematic increase with additional weights 
in upper trapezius muscle activity during arm abduc-
tion in the scapular plane was also observed in asymp-
tomatic subjects by Reed et al. [25]. This load-induced 
increase in activity of the other shoulder muscles is 
biomechanically supported because greater activity of 
the deltoid muscle causes potential translational forces 
on the humerus [14, 40], possibly leading to subacro-
mial impingement, such that the rotator cuff and axi-
oscapular muscles require increased muscle activity 
to counterbalance these forces [41]. We also observed 
an increase in muscle activity of the pectoralis major 
and biceps brachii muscles, possibly to oppose the 
action of the deltoid muscle, hence acting as a humeral 
head depressor. With increasing load, we also noted 
increased variability in muscle activity, which could 
be due to the individual strength capacity of the par-
ticipants, as the additional weights were not scaled to 
the relative maximum strength. However, even in this 

case, the variability would have tended to increase with 
increasing load [24, 25].

Load‑induced changes after rotator cuff pathologies
Overall, shoulders with rotator cuff tears or tendinopathy 
showed the same load-induced increase in muscle activ-
ity as healthy shoulders, but relative muscle activity was 
higher in these patients. Moreover, symptomatic rotator 
cuff tears had higher muscle activity than asymptomatic 
rotator cuff tears, and these in turn had higher muscle 
activity than rotator cuff tendinopathies. In the latter 
case, there was one exception: pectoralis major muscle 
activity was lower in asymptomatic rotator cuff tears than 
in rotator cuff tendinopathy. This higher muscle activ-
ity in shoulders with rotator cuff pathology is consistent 
with the study of Kelly et al. [18], which concluded that 
patients with rotator cuff tears tend to have higher mus-
cle activity compared with normal subjects, regardless of 
the presence of pain or symptoms. However, in contrast 
to the study of Shinozaki et  al. [23], which used posi-
tron emission tomography (PET), we found no decrease 
in deltoid muscle activity and no increase in trapezius 
muscle activity in symptomatic rotator cuff tears com-
pared with asymptomatic rotator cuff tears. This is likely 
due to the different methodologies and acquisition time 
of PET and EMG, and differences in the movement per-
formed (arm in internal rotation versus neutral rotation). 
Although differences in upper trapezius muscle activity 
between symptomatic and asymptomatic rotator cuffs 
were not significant (log-transformed data), upper trape-
zius muscle activity tended to be higher, suggesting less 
glenohumeral joint motion in symptomatic rotator cuff 
tears. Significant differences between symptomatic and 
asymptomatic rotator cuff tears were found only in pos-
terior deltoid and pectoralis major muscle activity, where 
the activity was greater in the symptomatic shoulders. 
One possible explanation may be that tears are more 
severe in symptomatic shoulders, leading to even greater 
compensation of the greater deltoid for the deficient rota-
tor cuff and higher pectoralis muscle activity to counter-
balance the superior translational forces of the deltoid 
muscle.

In another study, patients with symptomatic rotator 
cuff tears were found to have higher posterior deltoid and 
biceps brachii muscle activity, especially during weight 
lifting, compared with age-matched healthy controls [19]. 
Consequently, this study supported the benefit of treat-
ing the long head of the biceps tendon in symptomatic 
rotator cuff tears, as the biceps brachii can act as humeral 
depressor and cause pain if over-activated. This was only 
partially confirmed by our results, because in sympto-
matic rotator cuff tears, muscle activity of the biceps bra-
chii and posterior deltoid was increased compared with 

Table 2  Random effects of the linear mixed models for the log-
transformed muscle activities

ICC intraclass correlation coefficient

Muscle ICC Marginal R2 Conditional R2

Anterior deltoid 0.865 0.475 0.929

Middle deltoid 0.904 0.416 0.944

Posterior deltoid 0.897 0.400 0.938

Infraspinatus 0.889 0.412 0.935

Biceps brachii 0.858 0.370 0.911

Latissimus dorsi 0.967 0.258 0.976

Pectoralis major 0.833 0.288 0.881

Upper trapezius 0.892 0.335 0.928
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healthy shoulders, but also the activity of the other mus-
cles studied was increased. The increase in muscle activ-
ity was highest in the posterior deltoid muscle. While in 
healthy shoulders the muscle activity of the posterior del-
toid is much lower than that of the anterior and middle 
deltoids, in shoulders with rotator cuff tears the posterior 
deltoid is rather active and its activity level approaches 
that of the anterior and middle deltoids. Therefore, the 
posterior deltoid muscle gains importance in abduction 
movement up to 30° in the scapular plane after rotator 
cuff tears. The observed increase in latissimus dorsi mus-
cle activity is consistent with the study by Hawkes et al. 
[21]. Indeed, an increase in muscle activity of the biceps 
brachii, upper trapezius–serratus anterior, latissimus 
dorsi and teres major muscles was observed in massive 
rotator cuff tears compared with healthy subjects [21], as 
a compensatory mechanism for the destabilising forces 
of the deltoid. Similar to symptomatic rotator cuff tears, 
activity differences in almost all muscles were found 
between asymptomatic rotator cuff tears and healthy 
shoulders, but not in the pectoralis major muscle activity.

Clinically, rotator cuff tendinopathy is not as relevant 
as a rotator cuff tear, yet athletes with rotator cuff tendi-
nopathy had an abnormal pattern of scapular movement 
that may be related to scapular muscle deficits [42]. Dur-
ing the loaded and unloaded abduction test in our study, 
shoulders with rotator cuff tendinopathy had higher 
activity than healthy shoulders in almost all muscles 
studied at all loads, with the exception of the infraspi-
natus and deltoid muscles at only some loads. Although 
latissimus dorsi muscle activity was higher in shoulders 
with rotator cuff tendinopathy, it remained unchanged 
with additional load, and deltoid and infraspinatus mus-
cles had reduced activity. It is possible that these changes 
occur to avoid an overactivation of the tendinopathic 
supraspinatus muscle. Although the changes in muscle 
activity in shoulders with rotator cuff tendinopathy may 
not be as pronounced as in rotator cuff tears, compen-
satory mechanisms for the pathologic rotator cuff still 
appears to occur. Understanding the adaptive changes 
in muscle activity is crucial for rehabilitation as shoulder 
and scapula muscle activity may be altered with specific 
interventions such as mobilisation and strengthening 
exercises [43–44].

Clinical relevance
The possibility of comparing muscle activity of shoul-
ders with rotator cuff pathologies and healthy shoulders 
with a simple abduction test is useful in the clinic to gain 
a better understanding of compensation mechanisms. In 
this 30° arm abduction test in the scapular plane, not only 
the deltoid and infraspinatus muscle showed a significant 
increase in activity with additional loading in all shoulder 

types, but also the surrounding stabilising muscles. In the 
Constant score, symptomatic rotator cuff tears differed 
from all other shoulder types and differences between 
asymptomatic rotator cuff tears and healthy shoulders 
were also detected. These differences were also observed 
in the muscle activity in our 30° arm abduction test. In 
addition, differences in the muscle activity between 
shoulders with rotator cuff tendinopathy and shoulders 
with asymptomatic rotator cuff tears or healthy shoulders 
were also present. This low abduction angle allows even 
patients with a limited range of motion to perform this 
test, and objective measurements of these patients can be 
obtained. However, performing tests with the same abso-
lute handheld weights in all participants leads to variabil-
ity due to individual strength capacity that must be taken 
into account when interpreting results. It is possible 
that weaker participants require a higher level of muscle 
activity (closer to maximal contraction to complete the 
task) or cannot perform the test at all, while stronger par-
ticipants might not be as challenged by the same hand-
held weight. The EMG system is portable and the test can 
be performed by a trained person in less than 15  min, 
making an implementation in clinical practice feasible.

Strengths and limitations
A major strength of our study is the combination of 
EMG data and MRI to investigate differences in mus-
cle activity and potential compensatory mechanisms 
in shoulders with rotator cuff pathologies. EMG sur-
face electrodes were used in this study, and because of 
the compact anatomy of the shoulder, the possibility of 
crosstalk of EMG signals from adjacent muscles cannot 
be excluded. To compare muscle activity between par-
ticipants, we normalised the EMG with MVC. However, 
MVC might be influenced by pain and result in a larger 
normalised value due to a smaller denominator [46, 47], 
making it challenging to compare symptomatic (painful) 
and pain-free shoulders [20]. Alternatively, the amplitude 
could have been normalised to the unloaded condition of 
each shoulder, but this would not have excluded evasive 
muscle activity a priori. We chose the MVC normalisa-
tion method because there were no obvious differences 
in millivolt values between patients’ shoulders compared 
with the controls (Additional file 5).

Muscle activity exhibits some variability, to which 
several factors may have contributed. Although verbal 
instructions were given to the participants to maintain 
a comparable movement velocity, there could have been 
variations in movement duration. In addition, movement 
in the scapular plane was not restricted, and hence slight 
deviation from the scapular plane may have occurred. 
Some of the variability in muscle activity may also be 
explained by the heterogeneity of rotator cuff tears in 
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the participants. However, to further characterise muscle 
activity for a specific tear type and severity, a larger num-
ber of participants would be needed.

Nonetheless, the results of this study are clinically rele-
vant: this 30° abduction test was implemented to investi-
gate the effect of additional handheld weight in shoulders 
with rotator cuff pathologies, and we indeed observed 
important biomechanical changes in shoulders with rota-
tor cuff pathologies, such as greater relative activation of 
shoulder muscles even with small additional load.

Conclusion
Rotator cuff pathologies are associated with greater rela-
tive shoulder muscle activity already at low additional 
load. In addition to questionnaires and clinical tests, 
objective measures, such as muscle activity, can be used 
to better distinguish between pathologies and identify 
patient-specific deficits and compensation strategies. 
Incorporating this 30° loaded and unloaded shoulder 
abduction test in the scapular plane into the diagno-
sis and rehabilitation of rotator cuff tears may provide 
important insight into the functional shoulder status 
and may be used to guide treatment. Handheld weights 
could be adjusted according to the individual muscle 
strength capacity for optimal within and between subject 
comparisons.
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