
Zurich University of Applied Sciences

School of Management and Law

Department Banking, Finance, Insurance

Bachelor’s Thesis

Evaluation of lookback options in the Heston model using

the finite difference method in Python

Submitted by

Moritz Leon Schroeter

Supervised by

Dr. Norbert Hilber

Winterthur, May 31st, 2023

i

Management Summary

Financial markets consist not only of exchanges for publicly traded assets but also

comprise decisive private financial transactions with various participants. The fair value

of some assets can be determined directly by the market through supply and demand or

by simple calculations. On the other hand, the complexity of price determination is

significantly exacerbated for the issuance of over-the-counter products without liquid

markets, such as lookback options. The value of these options is path-dependent and

considers the future movement of the underlying asset’s price. Thus, the option price

depends on future uncertainty but must be determined at the time of emission. Although

an explicit analytical solution for the evaluation is known, the calculation of this solution

is highly complex and unwarranted in terms of practicality and efficiency. Thus, the

option price must be approximated by numerical-algorithmic processes in a stochastic

volatility model such as the Heston model. Despite notable advancements in recent

research, the study of lookback options in the Heston model exhibits a limited body of

literature and a scarcity of practical implementations.

Hence, this thesis lays the foundation for the evaluation of lookback options by

expounding the functionality and payoff of options, the Black-Scholes model with its

deficiencies, and the Heston model as an extension. Furthermore, the finite difference

approach is introduced as a numerical approximation method for one and two-

dimensional problems. First, the numerical method is converted into matrix notation for

further application and fundamental properties such as multiple, combinable boundary

conditions are covered. Subsequently, an analytical partial differential equation for the

pricing of lookback options is transformed from four to three dimensions with a new

domain satisfying the requirement of the finite difference method, and a modified payoff

function is defined. The implementation of the evaluation entails the construction of

univariate functions and the development of the finite difference model in the software

Python. Furthermore, the option value is interpolated, and node points at the lower

boundary are extrapolated to receive the price of floating lookback options. The price for

fixed lookback options is obtained by converting floating lookback option prices through

a specific put-call parity. Moreover, the processing time is significantly reduced by

applying the Craig-Sneyd scheme with specialised algorithms, and a graphic user

interface is developed for enhanced usability.

ii

The developed model is verified on the basis of a Monte Carlo simulation and exhibits

accurate results up to the second decimal place with expeditious discretisation processes.

In addition, this thesis proposes amended option prices for an erroneous study conducted

in 2019, thereby contributing to the field of quantitative finance. The codes for the

developed model, graphical user interface, and complex graphics are disclosed in the

appendix for extended transparency and further research.

iii

Table of Contents

Management Summary ___ i

1. Introduction __ 1

2. Financial Options and Lookback Options _______________________________ 3

2.1. Call & Put Options __ 3

2.2. Lookback Options __ 3

3. Option Pricing Models __ 5

3.1. Black-Scholes Model __ 5

3.2. Deficiencies of the Black-Scholes Model ____________________________ 9

3.3. Heston Model ___ 12

4. Finite Difference Method ___ 14

4.1. Finite Differences in One Dimension _______________________________ 14

4.1.1. Finite Difference Approximation ______________________________ 14

4.1.2. Finite Difference Grid and Matrices ____________________________ 17

4.1.3. Theta Method with Application _______________________________ 21

4.1.4. Boundary Conditions _______________________________________ 25

4.2. Finite Differences in Two Dimensions _____________________________ 32

5. Implementation ___ 40

5.1. Application in Python ___ 43

5.2. Interpolation and Put-Call Parity __________________________________ 46

5.3. Craig-Sneyd Method ___ 48

5.4. Graphical User Interface __ 53

6. Numerical Analysis and Discussion of Results __________________________ 55

7. Conclusion __ 59

Bibliography ___ 61

Appendix ___ 63

iv

1. Generation of matrices comprising boundary conditions________________ 63

2. Routine FDM ___ 65

3. Routine lookback options __ 67

4. Creation of diagonal matrices_____________________________________ 68

5. Permutation matrix ___ 68

6. Routine FDM – Craig-Sneyd _____________________________________ 69

7. Routine lookback option – Craig-Sneyd ____________________________ 70

8. Graphical user interface ___ 71

9. SMI distributions __ 76

10. Volatility smile DAX ___ 77

11. 2-dimensional FDM grid __ 79

12. Domain of lookback options _____________________________________ 80

v

List of Figures

Figure 3.1: Histogram of logarithmic daily SMI returns with its normal distribution and

the Student’s t-distribution in reference to Hilber (2023, p. 12). __________________ 9

Figure 3.2: QQ-plot of logarithmic daily SMI returns illustrates high kurtosis and

leptokurtic distribution. ___ 9

Figure 3.3: Visualisation of the implied volatility 𝜎𝜎𝑖𝑖 for different strikes of European call

options in reference to Hilber (2023, S. 19). ________________________________ 11

Figure 4.1: Illustration of a two-dimensional grid 𝐺𝐺𝑥𝑥,𝑦𝑦 with 𝑁𝑁𝑥𝑥 = 6 and 𝑁𝑁𝑦𝑦 = 6, where

the values 𝑤𝑤(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) ≈ 𝑤𝑤𝑖𝑖,𝑗𝑗 are approximated at every node point 𝑤𝑤𝑥𝑥,𝑦𝑦 in reference to

Hilber (2023, p. 334). __ 35

Figure 5.1: The grid of a Lookback call option with 𝑠𝑠∗ representing the maximum or

minimum process, in reference to Hilber (2023, p. 368). _______________________ 41

Figure 5.2: Option prices of floating strike lookback put options. ________________ 46

Figure 5.3: Graphical user interface with default settings. ______________________ 53

Figure 5.4: Graphical user interface with entered inputs during discretisation. ______ 54

vi

List of Tables

Table 3.1: Market value 𝑉𝑉𝐼𝐼𝑀𝑀 of European call options on the DAX with selected strike

price 𝐾𝐾𝐼𝐼 in index points and expiry date on 23. June 2023 (EUREX, 2023). ________ 11

Table 5.1: The processing time 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 in seconds for the discretisation with 𝑵𝑵 grid points

for the theta and Craig-Sneyd method by the Python function time.time(). ________ 52

Table 6.1: Calibrated parameters for fixed lookback call options from Table 6 of De

Gennaro Aquino & Bernard (2019, p. 738). _________________________________ 55

Table 6.2: Comparison of option prices for the finite difference method with a Monte

Carlo simulation. ___ 57

Table 6.3: Proposed values for the calibrated parameters of De Gennaro Aquino &

Bernard (2019, p. 738). ___ 58

vii

Notation

𝑆𝑆(𝑡𝑡) Price of an underlying asset

𝑉𝑉 Option’s value

𝐾𝐾 Strike of option

𝑡𝑡 Generic time

𝑇𝑇 Expiration date of an option

𝜏𝜏 Term of maturity

𝑟𝑟 Continuous risk-free interest rate

𝑞𝑞 Continuous dividend yield

𝑔𝑔 Payoff function

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 Minimum underlying asset’s price during the lookback period

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 Maximum underlying asset’s price during the lookback period

𝑆𝑆∗ Represents 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 for call options and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 for put options

𝜆𝜆 Coefficient of partial payoff

𝑉𝑉(𝑡𝑡) Variance process of the Heston model

𝑊𝑊(𝑡𝑡) Wiener process (Brownian motion)

𝜇𝜇 Drift coefficient of the Wiener process

𝜃𝜃𝑑𝑑 Theta coefficient

𝒜𝒜 Infinitesimal generator

𝑥𝑥 Logarithmic ratio of 𝑆𝑆∗ to 𝑆𝑆(𝑡𝑡)

𝑦𝑦 Variance of the Heston model after transformation

𝑣𝑣 Instantaneous variance

𝜎𝜎 Volatility of the instantaneous variance

𝜅𝜅 Mean reversion speed of the variance

𝜌𝜌 Correlation of Wiener processes

𝜃𝜃𝑚𝑚 Mean reversion level of the variance

𝑁𝑁 Number of grid points

𝑀𝑀 Number of time steps

Introduction

1

1. Introduction

Economists assume efficient financial markets with fair price settings through supply and

demand. Therefore, market prices should reflect the fair price, and investors would be

able to value financial assets accurately. While this hypothesis holds for most market

events, anomalies and distortions in prices aggravate the evaluation of fair prices for

market participants. The value of certain financial assets, such as futures contracts, can

be directly determined through simple calculations or the usage of formulas. On the other

hand, many financial assets, such as stocks or bonds, are dependent on uncertain variables

such as management, earnings, default probability, and other economic factors. Similarly,

the price of options is reliant on the upon-agreed conditions and unknown future prices

of the underlying.

Lookback options are barrier-determined options which pay the difference between the

price at maturity and the most beneficial price of the underlying during the term of the

option. This characteristic increases the likelihood and the amount of a payoff for an

investor but complicates the evaluation of fair prices. Thus, the payoff is dependent on

the future movement of the underlying asset’s price. The known analytical solution for

lookback options in the Heston model is given in the form of

𝐰𝐰(𝑡𝑡) = 𝑒𝑒−𝐀𝐀𝑡𝑡𝐠𝐠

with the matrix 𝐀𝐀 in the exponent of e. Thus, the option price can be defined with a unique

solution, but the calculation for a simple case with few steps already requires extensive

processing power, and the complex process is far too time-consuming for this purpose.

Other closed-end formulas likewise fall short in the valuation of barrier-determined

options because of inaccuracy or additional assumptions. Therefore, the finite difference

method is used to approximate the prices of lookback options efficiently. Consequently,

the thesis of this paper is the evaluation of lookback options in the Heston model using

the finite difference method in Python. The prospective model aims to generate an

accurate price estimate up to the second decimal place by using the calibrated parameters

of a lookback option as inputs. Moreover, the aim of the model is to evaluate prices

expeditiously for floating and fixed lookback call and put options as well as partial

lookback options. In addition, this thesis strives to present reliable option prices for a

scientific paper with erroneous values.

Introduction

2

The focus of the thesis is on the pricing of European lookback options, the Heston model

and its underlying model, and the finite difference method. The model is designed to use

continuous monitoring and is applicable to lookback options with all types of underlying.

The prices of fixed lookback options are determined based on a put-call parity using

prices of floating lookback options. The intention is to create a transparent model that

contributes to the evaluation of lookback option prices and strengthens research in this

field.

This thesis provides an explanation for the functionality of financial options in general

and for lookback options specifically in the second chapter. The third chapter introduces

option pricing models, including the Black-Scholes model and elucidates its

shortcomings. Furthermore, the Black-Scholes model is extended to the Heston model.

Chapter four expounds on the finite difference method, which will be used for the

discretisation of differential equations in two dimensions. Moreover, the grid and

matrices for the approximation as well as the boundary conditions are introduced and

explained. Chapter five deduces the applicable formulas, performs necessary

transformations, and depicts the implementation of the model in Python. Additionally,

the Craig-Sneyd scheme is presented and applied, and a graphical user interface is created.

Subsequently, the developed model is verified by a Monte Carlo simulation with

calibrated parameters, and the results are compared in chapter six. Furthermore, this

chapter provides amended option prices and serves as a correction for the article of De

Gennaro Aquino & Bernard (2019, p. 738). Finally, chapter seven concludes the thesis

and discusses the decisive findings and limitations.

Financial Options and Lookback Options

3

2. Financial Options and Lookback Options

An option is a financial contract with a counterparty which gives the buyer the right to

buy or sell an underlying asset 𝑆𝑆 at the strike price 𝐾𝐾 before or at a specified expiration

date. The option contract is only binding for the emitter of the option in case of delivery

of the underlying, called execution of an option. The option’s premium compensates the

emitter for incurring the inherent risk of a loss. A European option concedes the buyer

the right to execute the option at the expiration date 𝑇𝑇. In contrast, the buyer of an

American option is allowed to execute the option at any time during the specified term

(Bodie, Kane & Marcus, 2019, p. 475).

2.1. Call & Put Options

The buyer of a call option speculates on a rising price of the underlying, whereas the

buyer of a put option speculates on a decreasing price. The payoff function of an option

is given by the function 𝑔𝑔 through

 𝑔𝑔�𝑆𝑆(𝑇𝑇)� = max(ω(𝑆𝑆(𝑇𝑇) − 𝐾𝐾), 0 (2.1)

with 𝜔𝜔 = 1 for a call option and 𝜔𝜔 = −1 for a put option (Hilber, 2023, p. 3). The option

expires worthless if 𝑆𝑆(𝑡𝑡) is below 𝐾𝐾 in the case of a call option or 𝑆𝑆(𝑡𝑡) is above 𝐾𝐾 for a

put option. The execution of the option would be unfavourable in this case because the

underlying could be acquired on the market for a lower price or sold on the market for a

higher price. Hence, the execution would lead to a loss for the option holder. The option’s

premium consists of the intrinsic value, which is determined by the payoff plus the time

value, corresponding to the likelihood of an option to generate a higher payoff.

2.2. Lookback Options

Lookback options are path-dependent options where the payoff depends on the price

development of the underlying over a specified term, called the lookback period. The

payoff of lookback options depends on the reached minimum 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 in the case of lookback

call options and the maximum 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 in the case of lookback put options. Lookback

options are divided into floating lookback options without a strike 𝐾𝐾 and fixed lookback

options with a strike 𝐾𝐾.

Financial Options and Lookback Options

4

The payoff of a floating lookback option with 𝑆𝑆∗ representing 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 is given by

 𝑉𝑉𝑓𝑓𝑓𝑓 = max(𝜔𝜔(𝑆𝑆(𝑇𝑇) − 𝑆𝑆∗), 0) (2.2)

with 𝜔𝜔 = 1 for a floating lookback call option 𝐶𝐶𝑓𝑓𝑓𝑓 and 𝜔𝜔 = −1 for a floating lookback

put option 𝑃𝑃𝑓𝑓𝑓𝑓. The payoff of a fixed lookback call option Cfix with 𝜔𝜔 = 1 and fixed

lookback put option Pfix with 𝜔𝜔 = −1 are given by

 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓 = max(𝜔𝜔(𝑆𝑆(𝑇𝑇)𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐾𝐾), 0). (2.3)

The attractive characteristic of lookback options to take the most beneficial price enables

the buyer to realise a higher or at least identical payoff in comparison to conventional

options and to speculate on price fluctuations of the underlying asset (Leung, 2013, p.

145). The downside of the lookback option is the significantly higher premium in

comparison to a conventional option because of a higher payoff and the elevated inherent

risk for the issuer.

In addition, the price of a lookback option can be reduced by reducing the payoff partially

by the parameter 𝜆𝜆. A partial lookback option is generally a floating lookback option with

a scaled payoff. The parameter 𝜆𝜆 typically takes the value 𝜆𝜆 ≥ 1 for call options and

0 < 𝜆𝜆 ≤ 1 for put options. A partial lookback option with 𝜆𝜆 = 1 is identical to a

conventional floating lookback option. Thus, the payoff is given by the formula

 𝑉𝑉𝑓𝑓𝑓𝑓 = max(𝜔𝜔(𝑆𝑆(𝑇𝑇) − 𝜆𝜆𝜆𝜆∗), 0), (2.4)

which reduces the payoff by decreasing the difference between 𝑆𝑆(𝑇𝑇) and the minimum

or maximum 𝑆𝑆∗ (Hilber, 2023, p. 366).

Option Pricing Models

5

3. Option Pricing Models

The value of an option can be derived from option pricing models through the application

of the theory of probability and stochastic processes. First, the Black-Scholes equation is

derived by a partial differential equation (PDE), and the Black-Scholes formula is given

afterwards. Subsequently, the shortcomings of the Black-Scholes model are identified,

and the Heston model is presented to address these deficiencies.

3.1. Black-Scholes Model

The Black-Scholes model is the established standard option pricing model for the

evaluation of European call and put options. Black and Scholes (1973, p. 640-641)

assume that (a) the short-term interest rate r is known and constant, (b) the price of the

underlying follows a continuous random walk and has a log-normal distribution, (c) the

underlying does not pay a dividend, (d) there are no transaction costs for trading the

underlying, (e) any fraction of the price of the underlying can be borrowed at the short-

term interest rate, and (f) there are no limitations to short selling. Hence, the option value

depends only on the price of the underlying, time, and known variables and assumes a

no-arbitrage price for European call and put options.

Let 𝑉𝑉(𝑠𝑠, 𝑡𝑡) denote the price of a European option at time 𝑡𝑡 and let Π𝑡𝑡 denote the portfolio

value at time 𝑡𝑡, which contains one option 𝑉𝑉(𝑠𝑠, 𝑡𝑡) and a short position consisting of a

number 𝛿𝛿 of the underlying asset multiplied by the asset price 𝑠𝑠 = 𝑆𝑆(𝑡𝑡).

 Π𝑡𝑡 = 𝑉𝑉(𝑠𝑠, 𝑡𝑡) − 𝛿𝛿𝛿𝛿 (3.1)

The change in portfolio value can be found by the derivative of (3.1), given by

 dΠ𝑡𝑡 = d𝑉𝑉(𝑠𝑠, 𝑡𝑡) − 𝛿𝛿d𝑠𝑠 (3.2)

with d𝑉𝑉(𝑠𝑠, 𝑡𝑡) being the change in the option’s value. The change in the underlying price,

denoted d𝑠𝑠, is given by

 d𝑠𝑠 = 𝜇𝜇𝜇𝜇d𝑡𝑡 + 𝜎𝜎𝜎𝜎d𝑊𝑊(𝑡𝑡) (3.3)

with 𝜇𝜇𝜇𝜇d𝑡𝑡 describing the drift of the underlying as a deterministic component and

𝜎𝜎𝜎𝜎d𝑊𝑊(𝑡𝑡) describing the volatility. The term d𝑊𝑊(𝑡𝑡) denotes the geometric Brownian

motion, also known as the Wiener process. Given that 𝑊𝑊(𝑡𝑡) is normally distributed, the

Option Pricing Models

6

equation (3.3) is a special case of the Itô process and is log-normal distributed (Albrecher,

Binder & Mayer, 2009, p. 49). The term 𝑉𝑉(𝑠𝑠, 𝑡𝑡) is the function of a stochastic process.

Therefore, the dynamics of d𝑉𝑉(𝑠𝑠, 𝑡𝑡) are described by Itô’s Lemma

 d𝑉𝑉 = 𝜕𝜕𝑡𝑡𝑉𝑉 ∗ d𝑡𝑡 + 𝜕𝜕𝑠𝑠𝑉𝑉 ∗ ds +
1
2
𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉 ∗ d𝑠𝑠2. (3.4)

By substituting the d𝑠𝑠2 term of (3.3) in (3.4), most terms cancel out because of

d𝑡𝑡 ∗ d𝑡𝑡 = 0, d𝑡𝑡 ∗ d𝑊𝑊 = 0, d𝑊𝑊 ∗ d𝑊𝑊 = d𝑡𝑡.

The modified equation can be written as

 d𝑉𝑉 = 𝜕𝜕𝑡𝑡𝑉𝑉 ∗ d𝑡𝑡 + 𝜕𝜕𝑠𝑠𝑉𝑉 ∗ d𝑠𝑠 +
1
2
𝜎𝜎2𝑠𝑠2𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉d𝑡𝑡. (3.5)

The equation (3.5) can be inserted into (3.2) for d𝑉𝑉 and rearranged into d𝑡𝑡 terms and d𝑠𝑠

terms to receive

 dΠ𝑡𝑡 = �𝜕𝜕𝑡𝑡𝑉𝑉 +
1
2
𝜎𝜎2𝑠𝑠2𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉�d𝑡𝑡 + (𝜕𝜕𝑠𝑠𝑉𝑉 − 𝛿𝛿)ds.

By choosing 𝛿𝛿 = 𝜕𝜕𝑠𝑠𝑉𝑉 for delta, the stochastic component (𝜕𝜕𝑠𝑠𝑉𝑉 − 𝛿𝛿)d𝑠𝑠 cancels out, and

the equation simplifies to

 dΠ𝑡𝑡 = �𝜕𝜕𝑡𝑡𝑉𝑉 +
1
2
𝜎𝜎2𝑠𝑠2𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉�d𝑡𝑡. (3.6)

This step eliminates the risk, and the resulting portfolio is deterministic. Under the Q-

measure, the portfolio is risk-free and should yield the risk-free interest rate 𝑟𝑟. The new

portfolio is given by

 dΠ𝑡𝑡 = 𝑟𝑟 ∗ Πd𝑡𝑡 = (𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟𝜕𝜕𝑠𝑠𝑉𝑉)d𝑡𝑡. (3.7)

The equations (3.6) and (3.7) are set equal

�𝜕𝜕𝑡𝑡𝑉𝑉 +
1
2
𝜎𝜎2𝑠𝑠2𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉�d𝑡𝑡 = (𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟𝜕𝜕𝑠𝑠𝑉𝑉)d𝑡𝑡,

and the terms are rearranged on the left side to consolidate the equation.

Option Pricing Models

7

The result is complemented with the payoff function to yield in the system of equations

 �𝜕𝜕𝑡𝑡𝑉𝑉 +
1
2
𝜎𝜎2𝑠𝑠2𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉 + 𝑟𝑟𝑟𝑟𝜕𝜕𝑠𝑠𝑉𝑉 − 𝑟𝑟𝑟𝑟 = 0 in ℝ+ × [0,𝑇𝑇[

𝑉𝑉(𝑠𝑠,𝑇𝑇) = 𝑔𝑔(𝑠𝑠) in ℝ+
, (3.8)

which is the Black-Scholes equation (Albrecher et al., 2009, p. 53-55).

The Black-Scholes equation (3.8) is a PDE and is satisfied for European derivatives. For

specific derivates to be calculated, the desired derivative’s end and boundary condition

must first be defined. In the case of the European call and put option, the end condition is

given by the payoff function and the boundary condition is given by the no-arbitrage

limitations. It becomes apparent that the equation is akin to the heat equation, and the

Feynman-Kac theorem can be used to solve the equation analytically (Albrecher et al.,

2009, p. 54). The result is the closed-end Black-Scholes formula, which can be extended

with the addition of Hilber (2023, p. 8) to include the continuous dividend yield 𝑞𝑞. This

approach replaces 𝜇𝜇 with (𝑟𝑟 − 𝑞𝑞) under a risk-neutral valuation with constant parameters

r, q, and σ. The extended Black-Scholes formula is given by

⎩
⎪
⎨

⎪
⎧𝑉𝑉(𝑠𝑠, 𝑡𝑡,𝑇𝑇,𝐾𝐾,𝜎𝜎, 𝑟𝑟, 𝑞𝑞,𝜔𝜔) = 𝜔𝜔 �𝑠𝑠𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)Φ0,1(𝜔𝜔𝜔𝜔1) − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)Φ0,1(𝜔𝜔𝜔𝜔2)�

𝑑𝑑1 =
1

𝜎𝜎√𝑇𝑇 − 𝑡𝑡
�ln �

𝑠𝑠
𝐾𝐾
� + �𝑟𝑟 − 𝑞𝑞 +

𝜎𝜎2

2
� (𝑇𝑇 − 𝑡𝑡)�

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇 − 𝑡𝑡

 (3.9)

with Φ0,1 being the normal distribution function (Hilber, 2023, p. 8-9). The probability

density function of the normal distribution is given by

𝜑𝜑𝜇𝜇,𝜎𝜎(𝑥𝑥) ∶=
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2 .

In the following intercept, the non-constant coefficients of the Black-Scholes equation

are converted into constant coefficients to facilitate the calculation of option prices. First,

a transition from time 𝑡𝑡 to the term of maturity of the option, denoted 𝜏𝜏 = 𝑇𝑇 − 𝑡𝑡, is

performed by defining the function

 𝑣𝑣(𝑠𝑠, 𝜏𝜏) ∶= 𝑉𝑉(𝑠𝑠,𝑇𝑇 − 𝜏𝜏), (3.10)

which replaces 𝑉𝑉(𝑠𝑠, 𝑡𝑡) in the Black-Scholes equation (3.8).

Option Pricing Models

8

The risk-neutral valuation, as shown in (3.9), is implemented with (𝑟𝑟 − 𝑞𝑞) replacing 𝜇𝜇.

Applying the chain rule 𝜕𝜕𝜏𝜏𝑣𝑣 = −𝜕𝜕𝑡𝑡𝑉𝑉 changes the signs in the equation and yields in

 �𝜕𝜕𝜏𝜏𝑣𝑣 −
1
2
𝜎𝜎2𝑠𝑠2𝜕𝜕𝑠𝑠𝑠𝑠𝑣𝑣 − (𝑟𝑟 − 𝑞𝑞)𝑠𝑠𝜕𝜕𝑠𝑠𝑣𝑣 + 𝑟𝑟𝑟𝑟 = 0 in ℝ+ ×]0,𝑇𝑇]

𝑣𝑣(𝑠𝑠, 0) = 𝑔𝑔(𝑠𝑠) in ℝ+
. (3.11)

The transformation of the differential equation is achieved by setting the variable

𝑥𝑥 ∶= ln(𝑠𝑠) and replacing 𝑠𝑠 = 𝑒𝑒𝑥𝑥 to result in the modified function

𝑣𝑣(𝑠𝑠, 𝜏𝜏) = 𝑣𝑣(𝑒𝑒𝑥𝑥, 𝜏𝜏).

The new function 𝑢𝑢 with the natural logarithm 𝑥𝑥 replacing the underlying value 𝑠𝑠 is

defined for

𝑢𝑢(𝑥𝑥, 𝜏𝜏) ∶= 𝑣𝑣(𝑒𝑒𝑥𝑥, 𝜏𝜏),

and the new equation exhibiting constant coefficients is given by

�𝜕𝜕𝜏𝜏𝑢𝑢 −
1
2
𝜎𝜎2𝜕𝜕𝑥𝑥𝑥𝑥𝑢𝑢 − �𝑟𝑟 − 𝑞𝑞 −

𝜎𝜎2

2
�𝜕𝜕𝑥𝑥𝑢𝑢 + 𝑟𝑟𝑟𝑟 = 0 in ℝ ×]0,𝑇𝑇]

𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔(𝑒𝑒𝑥𝑥) in ℝ
.

For reasons of simplicity, the term of maturity 𝜏𝜏 is renamed to 𝑡𝑡, and the equation is

simplified by defining the coefficients 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 with

𝑎𝑎 ∶= −
1
2
𝜎𝜎2, 𝑏𝑏 ∶= −𝑟𝑟 + 𝑞𝑞 +

𝜎𝜎2

2
, 𝑐𝑐 ∶= 𝑟𝑟.

The remodelled Black-Scholes equation with option price 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is defined as

 �
𝜕𝜕𝑡𝑡𝑢𝑢 + 𝑎𝑎𝜕𝜕𝑥𝑥𝑥𝑥𝑢𝑢 + 𝑏𝑏𝜕𝜕𝑥𝑥𝑢𝑢 + 𝑐𝑐𝑐𝑐 = 0 in ℝ ×]0,𝑇𝑇]

𝑢𝑢(𝑥𝑥, 0) = 𝑔𝑔(𝑒𝑒𝑥𝑥) in ℝ
 (3.12)

and builds the basis for further calculations (Hilber, 2023, p. 82-83).

Option Pricing Models

9

3.2. Deficiencies of the Black-Scholes Model

The Black-Scholes model calculates European call and put option values under the

assumption of normally distributed logarithmic returns. On the other hand, empirical log

returns do not exhibit a normal distribution. The logarithmic daily returns of the Swiss

Market Index (SMI) from 1. January 2013 to 31. December 2022 were retrieved from

Refinitiv (2023) and used as an example to illustrate the deviation.

Figure 3.1: Histogram of logarithmic daily SMI returns with its
normal distribution and the Student’s t-distribution in reference
to Hilber (2023, p. 12).

Figure 3.2: QQ-plot of logarithmic daily SMI returns illustrates
high kurtosis and leptokurtic distribution.

Option Pricing Models

10

The normal distribution has a mean 𝜇𝜇 = 0, a standard deviation 𝜎𝜎 = 1, a skewness of 0

and excess kurtosis of 0. In contrast, the empirical log returns have 𝜇𝜇 ≈ 𝑟̅𝑟 =̇ 0.0001689,

𝜎𝜎 ≈ 𝑠𝑠𝑟𝑟 =̇ 0.0097648, a skewness of −0.9985240, and an excess kurtosis of 7.8901749.

The SMI sample exhibits a negative skewness and a significant excess kurtosis as a

leptokurtic distribution, meaning that the Black-Scholes model significantly

underapproximates the probability of extreme returns.

The Student’s t-distribution is more leptokurtic and exhibits fatter tails than the normal

distribution. Thus, the Student’s t-distribution approximates the distribution of the SMI

better (Hilber, 2023, p. 12). The probability density function of the Student’s t-

distribution is given by

𝑓𝑓𝜇𝜇,𝜎𝜎,𝑣𝑣(𝑥𝑥) = 𝑐𝑐𝑣𝑣
1

𝜎𝜎√𝑣𝑣𝑣𝑣
�1 +

1
𝑣𝑣
�
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
2
�
−𝑣𝑣+12

.

A further deficiency of the Black-Scholes model is the assumption of constant volatility

with respect to the term of maturity and the strike K. Every parameter for the Black-

Scholes formula is determined by either the option contract itself or no-arbitrage

considerations except the volatility as an arbitrary parameter. The volatility can be

estimated from data of options published by exchanges such as the EUREX or financial

databases such as Refinitiv or Bloomberg but is always assumed to be constant.

Conversely, the published option price can be used to calculate the volatility as the only

missing parameter. In this case, the calculated probability is referred to as implied

volatility 𝜎𝜎𝑖𝑖 .

The constancy of volatility is subsequently tested with published prices of European call

options on the DAX in EUR with an expiry date 23. June 2023 and term of maturity 𝜏𝜏 =

𝑇𝑇 − 𝑡𝑡 = 112
360

. The market values 𝑉𝑉𝐼𝐼𝑀𝑀 of the European call options are given for selected

strike prices 𝐾𝐾𝐼𝐼 in index points. The DAX closed at 15’305.02, and the data is drawn from

EUREX with reference date 1. March 2023. Moreover, the applied risk-free rate is given

by the EURIBOR money market rate quoted at 2.783%. The EURIBOR is the decisive

reference interest rate for unsecured funds in the euro interbank market. Hence, the option

values for selected strikes are listed below in Table 3.1, and the implied volatility is

plotted in Figure 3.3.

Option Pricing Models

11

𝑲𝑲𝑰𝑰 𝑽𝑽𝑰𝑰𝑴𝑴 𝑲𝑲𝑰𝑰 𝑽𝑽𝑰𝑰𝑴𝑴 𝑲𝑲𝑰𝑰 𝑽𝑽𝑰𝑰𝑴𝑴 𝑲𝑲𝑰𝑰 𝑽𝑽𝑰𝑰𝑴𝑴

11’600 3’878.2 13’600 2’002.3 15’600 492.1 17’600 17.9

12’000 3’492.6 14’000 1’653.3 16’000 301.9 18’000 8.0

12’400 3’110.8 14’400 1’321.3 16’400 167.2 18’500 3.0

12’800 2’733.9 14’800 1’011.9 16’800 83.6 19’000 1.2

13’200 2’363.7 15’200 732.3 17’200 39.5 19’500 0.5

Table 3.1: Market value 𝑉𝑉𝐼𝐼𝑀𝑀 of European call options on the DAX with selected strike
price 𝐾𝐾𝐼𝐼 in index points and expiry date on 23. June 2023 (EUREX, 2023).

The assumed implied volatility in the Black-Scholes model should be identical for all

strikes and displayed as a horizontal line. However, the graph displays a downwards-

sloping curve, the so-called volatility smile. Therefore, it infers that the implied volatility

in the Black-Scholes formula is changing for varying strikes, consequently not being

constant. These shortcomings can be addressed by extending the Black-Scholes model to

the Heston model. This model reproduces the volatility as a stochastic process, accounting

for the volatility smile observed in the European call options. Thus, the actual volatility

is more accurately estimated, the additional stochastic process affects the distribution of

the underlying’s price, and the model yields a more precise price estimation of the fair

value of an option.

Figure 3.3: Visualisation of the implied volatility 𝜎𝜎𝑖𝑖 for different
strikes of European call options in reference to Hilber (2023, S. 19).

Option Pricing Models

12

3.3. Heston Model

The Heston model extends the Black-Scholes model by replacing the constant volatility

𝜎𝜎 in (3.3) with a stochastic volatility 𝜎𝜎(𝑡𝑡). The adapted stochastic differential equation is

thereby given through

d𝑆𝑆(𝑡𝑡) = 𝜇𝜇𝜇𝜇(𝑡𝑡)d𝑡𝑡 + 𝜎𝜎(𝑡𝑡)𝑆𝑆(𝑡𝑡)d𝑊𝑊1(𝑡𝑡)

with the stochastic volatility defined by

𝜎𝜎(𝑡𝑡) = �𝑉𝑉(𝑡𝑡).

The process 𝑉𝑉(𝑡𝑡) represents the variance in the Heston model (Hilber, 2023, p. 377-378)

and the stochastic differential equation of 𝑉𝑉(𝑡𝑡) is described by

 d𝑉𝑉(𝑡𝑡) = 𝜅𝜅�𝜃𝜃 − 𝑉𝑉(𝑡𝑡)�d𝑡𝑡 + 𝛿𝛿�𝑉𝑉(𝑡𝑡)d𝑊𝑊2(𝑡𝑡) (3.13)

with 𝜅𝜅 as the mean reversion speed of the variance, 𝜃𝜃 the mean reversion level of the

variance, 𝛿𝛿 > 0 as the volatility of the variance, and 𝑊𝑊2(𝑡𝑡) the Wiener process of the

variance 𝑉𝑉(𝑡𝑡). The Wiener processes 𝑊𝑊1(𝑡𝑡) and 𝑊𝑊2(𝑡𝑡) are assumed to be correlated

𝐸𝐸ℙ[d𝑊𝑊1(𝑡𝑡)d𝑊𝑊2(𝑡𝑡)] = 𝜌𝜌d𝑡𝑡

with correlation coefficient 𝜌𝜌 ∈ [−1,1]. For evaluating the prices of financial assets, the

risk-neutral Q-measure is subsequently applied instead of the historical P-measure

(Rouah, 2015, p. 2). Girsanov’s theorem is applied to the stochastic differential equations,

and the risk-neutral equations are states as

d𝑆𝑆(𝑡𝑡) = (𝑟𝑟 − 𝑞𝑞)𝑆𝑆(𝑡𝑡)d𝑡𝑡 + �𝑉𝑉(𝑡𝑡)𝑆𝑆(𝑡𝑡)d𝑊𝑊1(𝑡𝑡),

d𝑉𝑉(𝑡𝑡) = 𝜅𝜅�𝜃𝜃 − 𝑉𝑉(𝑡𝑡)�d𝑡𝑡 + 𝛿𝛿�𝑉𝑉(𝑡𝑡)d𝑊𝑊2(𝑡𝑡)
(3.14)

with 𝜇𝜇 being replaced by (𝑟𝑟 − 𝑞𝑞) and the correlation of the Wiener processes given by

𝐸𝐸ℚ[d𝑊𝑊1(𝑡𝑡)d𝑊𝑊2(𝑡𝑡)] = 𝜌𝜌d𝑡𝑡,

𝑊𝑊2(𝑡𝑡) = 𝜌𝜌𝑊𝑊1(𝑡𝑡) + �1 − 𝜌𝜌2𝑊𝑊2(𝑡𝑡).

The variance process 𝑉𝑉(𝑡𝑡) follows a stochastic differential equation, also known as the

Cox-Ingersoll-Ross (CIR) model, which initially depicts the movements of interest rates.

Option Pricing Models

13

A property of the variance process 𝑉𝑉(𝑡𝑡) is the Feller condition. It states that the drift is

significant enough to ensure the variance process remains positive and does not reach

zero if the condition 2𝜅𝜅𝜅𝜅 > 𝛿𝛿2 is satisfied (Rouah, 2013, p. 2-4).

The differential equations of the Heston model can be simplified under the risk-neutral

Q-measure. Therefore, the vector process 𝐗𝐗(𝑡𝑡) = �𝑆𝑆(𝑡𝑡),𝑉𝑉(𝑡𝑡)�
⊤

 is defined by

�d𝑆𝑆(𝑡𝑡)
d𝑉𝑉(𝑡𝑡)� = �

(𝑟𝑟 − 𝑞𝑞)𝑆𝑆(𝑡𝑡)
𝜅𝜅�𝜃𝜃 − 𝑉𝑉(𝑡𝑡)�������������

𝛍𝛍�𝐗𝐗(𝑡𝑡)�

d𝑡𝑡 + �
�𝑉𝑉(𝑡𝑡)𝑆𝑆(𝑡𝑡) 0
𝜌𝜌𝜌𝜌�𝑉𝑉(𝑡𝑡) �1 − 𝜌𝜌2𝛿𝛿�𝑉𝑉(𝑡𝑡)

�
���������������������

𝛔𝛔�𝐗𝐗(𝑡𝑡)�

�d𝑊𝑊1(𝑡𝑡)
d𝑊𝑊2(𝑡𝑡)�

with the covariance matrix 𝐐𝐐 for �𝐱𝐱 = (𝑠𝑠, 𝑣𝑣)�

𝐐𝐐(𝐬𝐬) = 𝛔𝛔(𝐬𝐬)𝛔𝛔(𝐬𝐬)⊤ = � 𝑠𝑠
2𝑣𝑣 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝛿𝛿2𝑣𝑣
�.

Thus, the Heston model can be written with

𝐗𝐗(𝑡𝑡) = �d𝑆𝑆(𝑡𝑡)
d𝑉𝑉(𝑡𝑡)� , 𝛍𝛍(𝐱𝐱, 𝑡𝑡) = �

(𝑟𝑟 − 𝑞𝑞)𝑆𝑆(𝑡𝑡)
𝜅𝜅�𝜃𝜃 − 𝑉𝑉(𝑡𝑡)�� ,

𝛔𝛔(𝐱𝐱, 𝑡𝑡) = �
�𝑉𝑉(𝑡𝑡)𝑆𝑆(𝑡𝑡) 0
𝜌𝜌𝜌𝜌�𝑉𝑉(𝑡𝑡) �1 − 𝜌𝜌2𝛿𝛿�𝑉𝑉(𝑡𝑡)

� , 𝐖𝐖(𝑡𝑡) = �d𝑊𝑊1(𝑡𝑡)
d𝑊𝑊2(𝑡𝑡)�

as the differential equation

d𝐗𝐗(𝑡𝑡) = 𝛍𝛍(𝐗𝐗(𝑡𝑡), 𝑡𝑡)d𝑡𝑡 + 𝛔𝛔(𝐗𝐗(𝑡𝑡), 𝑡𝑡)d𝐖𝐖(𝑡𝑡).

Consequently, the multidimensional case does not differ from the one-dimensional case

in form (Hilber, 2023, p. 326-327, 378-379).

Finite Difference Method

14

4. Finite Difference Method

This chapter explains the finite difference method as an approach to numerically solve

PDEs. First, the approximation of finite differences is explained for one-dimensional

differential equations, including extended formulas with smaller estimating errors.

Secondly, the finite difference grid and the fundamental matrices are defined. The theta

method is introduced, and multiple combinable boundary conditions are given.

Subsequently, the case is extended to PDEs with two dimensions.

4.1. Finite Differences in One Dimension

This section introduces the finite difference method (FDM) and the corresponding grid

for one dimension. Afterwards, the finite difference equations are transformed into matrix

form and the theta method as well as boundary conditions are presented and applied.

4.1.1. Finite Difference Approximation

The slope of the secant at a given point of a threefold continuously differentiable function

𝑓𝑓(𝑥𝑥) can be determined by the limit of

𝑓𝑓′(𝑥𝑥) = lim
∆𝑥𝑥→0

𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥)
∆𝑥𝑥

to obtain the derivative 𝑓𝑓′(𝑥𝑥) of a function. This approach can be used to approximate

the value of the derivative for small ∆𝑥𝑥 and is the basis for the finite difference method.

𝑓𝑓′(𝑥𝑥) ≈
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥)

∆𝑥𝑥

The Taylor expansion of 𝑓𝑓(𝑥𝑥) is given by

 𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝑓𝑓′(𝑥𝑥)∆𝑥𝑥 +
1
2!
𝑓𝑓′′(𝑥𝑥)∆𝑥𝑥2 +

1
3!
𝑓𝑓′′′(𝑥𝑥)∆𝑥𝑥3 + ⋯ (4.15)

which can be rewritten to the derivative of 𝑓𝑓(𝑥𝑥)

𝑓𝑓′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥)

∆𝑥𝑥
+

1
2!
𝑓𝑓′′(𝑥𝑥)∆𝑥𝑥 +

1
3!
𝑓𝑓′′′(𝑥𝑥)∆𝑥𝑥2 + ⋯.

The derivation between the first-degree approximation and the actual value is described

by the error term 𝒪𝒪(∆𝑥𝑥), which represents the subsequent terms. The quotient obtained

Finite Difference Method

15

in (4.16) is called the forward difference, which follows the explicit Euler’s method.

Explicit methods determine the value of the next increment based on the initial or current

value. In this case, the approximation 𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) is calculated based on 𝑓𝑓(𝑥𝑥) without

requiring the solution of algebraic equations. Thus, this method enables a simple and fast

calculation of the following value but exhibits only conditional stability.

 𝑓𝑓′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥)

∆𝑥𝑥
+ 𝒪𝒪(∆𝑥𝑥) (4.16)

The error term 𝒪𝒪(∆𝑥𝑥) in (4.16) can be omitted to receive the approximation

 𝑓𝑓′(𝑥𝑥) ≈
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥)

∆𝑥𝑥
. (4.17)

Alternatively, the Taylor expansion can be computed at the point (𝑥𝑥 − ∆𝑥𝑥), called the

backward difference, which follows the implicit Euler’s method. In contrast to the explicit

method, the implicit method finds the solution of the approximation by solving an

equation involving the current and advanced value. The disadvantage of using this

method is the higher computation time required to solve the equation. Nonetheless, the

benefits of this approach include enhanced convergence, improved numerical stability,

and the ability to use larger increments ∆𝑥𝑥 when solving equations. The Taylor expansion

(4.15) for (𝑥𝑥 − ∆𝑥𝑥) is given by

 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − 𝑓𝑓′(𝑥𝑥)∆𝑥𝑥 +
1
2!
𝑓𝑓′′(𝑥𝑥)∆𝑥𝑥2 −

1
3!
𝑓𝑓′′′(𝑥𝑥)∆𝑥𝑥3 + ⋯ (4.18)

with the derivative adjusting to

𝑓𝑓′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

∆𝑥𝑥
−

1
2!
𝑓𝑓′′(𝑥𝑥)∆𝑥𝑥 +

1
3!
𝑓𝑓′′′(𝑥𝑥)∆𝑥𝑥2 + ⋯.

The polynomial can be simplified to the backward difference quotient

 𝑓𝑓′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

∆𝑥𝑥
+ 𝒪𝒪(∆𝑥𝑥) (4.19)

(Hilber, 2023, p. 99-102), which is first-order accurate 𝒪𝒪(∆𝑥𝑥) and unconditionally stable.

Finite Difference Method

16

Omitting the error term 𝒪𝒪(∆𝑥𝑥) in (4.19) leads to the approximation

 𝑓𝑓′(𝑥𝑥) ≈
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

∆𝑥𝑥
. (4.20)

The forward and backward difference have some variation and are not second-order

accurate, while only the backward difference is unconditionally stable. To address this

problem, the Crank-Nicolson method can be used to obtain a more precise result. The

method is implemented by subtracting polynomial (4.18) from (4.15) to obtain

 𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥) = 2𝑓𝑓′(𝑥𝑥)∆𝑥𝑥 + 2
1
3!
𝑓𝑓′′′(𝑥𝑥)∆𝑥𝑥3 + ⋯. (4.21)

The polynomial (4.21) can be rewritten as the derivative

𝑓𝑓′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

2∆𝑥𝑥
−

1
3!
𝑓𝑓′′′(𝑥𝑥)∆𝑥𝑥2 + ⋯,

adjusted to result in the central difference quotient

𝑓𝑓′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

2∆𝑥𝑥
+ 𝒪𝒪(∆𝑥𝑥2),

and the approximation with omitted error term 𝒪𝒪(∆𝑥𝑥2) is defined as

 𝑓𝑓′(𝑥𝑥) ≈
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

2∆𝑥𝑥
. (4.22)

Thus, the central difference results in a more minute result than the forward or backward

difference individually. The accuracy of the first-order central difference quotient can be

further improved by taking the second-order central difference.

The quotient can be derived by adding (4.18) to (4.15) as subsequently shown by

𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) + 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥) = 2𝑓𝑓(𝑥𝑥) + 2
1
2!
𝑓𝑓′′(𝑥𝑥)∆𝑥𝑥2 + 2

1
4!
𝑓𝑓(4)(𝑥𝑥)∆𝑥𝑥4 + ⋯

and rewriting to

 𝑓𝑓′′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 2𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

∆𝑥𝑥2
− 2

1
4!
𝑓𝑓(4)(𝑥𝑥)∆𝑥𝑥2 + ⋯. (4.23)

The polynomial (4.23) can be simplified to the central difference quotient

𝑓𝑓′′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 2𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

∆𝑥𝑥2
+ 𝒪𝒪(∆𝑥𝑥2)

Finite Difference Method

17

which is second-order accurate 𝒪𝒪(∆𝑥𝑥2) and unconditionally stable (Seydel, 2017, p. 134-

146). The omission of the error term 𝒪𝒪(∆𝑥𝑥2) leads to the approximation

 𝑓𝑓′′(𝑥𝑥) ≈
𝑓𝑓(𝑥𝑥 + ∆𝑥𝑥) − 2𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥)

∆𝑥𝑥2
. (4.24)

4.1.2. Finite Difference Grid and Matrices

The quotients derived above can be applied on an interval 𝐺𝐺𝑥𝑥 =]𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚[at defined

steps to approximate the values at these points. Thus, the equidistant finite difference grid

𝐺𝐺𝑥𝑥 ∶= {𝑥𝑥𝑖𝑖 | 𝑖𝑖 = 1, … ,𝑁𝑁}

is defined with minimum value 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥1 and maximum value 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑁𝑁. Let ∆𝑥𝑥

denote the discretisation increments of variables 𝑥𝑥 with

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑖𝑖∆𝑥𝑥, ∆𝑥𝑥 ∶=
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁 − 1
.

The application of the finite difference method is demonstrated in a generalised example.

The differential equation

�

𝑎𝑎𝑢𝑢′′(𝑥𝑥) + 𝑏𝑏𝑢𝑢′(𝑥𝑥) + 𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) in 𝐺𝐺𝑥𝑥
𝑢𝑢(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

approximates the function 𝑢𝑢(𝑥𝑥) (Hilber, 2023, p. 110-114) in a one-dimensional

equidistant grid for every point 𝑥𝑥𝑖𝑖

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥1 < 𝑥𝑥2 < ⋯ < 𝑥𝑥𝑖𝑖−1 < 𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑖𝑖+1 < ⋯ < 𝑥𝑥𝑁𝑁−1 < 𝑥𝑥𝑁𝑁 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 .

The first-order central difference quotient in (4.22) can be rewritten with the grid notation

and by omitting the error term 𝒪𝒪(∆𝑥𝑥2) to receive the approximation for a grid point 𝑥𝑥𝑖𝑖

specified as

 𝑢𝑢′(𝑥𝑥𝑖𝑖) ≈ 𝜕𝜕∆𝑥𝑥𝑢𝑢(𝑥𝑥𝑖𝑖) =
𝑢𝑢(𝑥𝑥𝑖𝑖+1) − 𝑢𝑢(𝑥𝑥𝑖𝑖−1)

2∆𝑥𝑥
 (4.25)

and rewriting the second-order central difference quotient in (4.24) results in

 𝑢𝑢′′(𝑥𝑥𝑖𝑖) ≈ 𝜕𝜕∆𝑥𝑥2 𝑢𝑢(𝑥𝑥𝑖𝑖) =
𝑢𝑢(𝑥𝑥𝑖𝑖+1) − 2𝑢𝑢(𝑥𝑥𝑖𝑖) + 𝑢𝑢(𝑥𝑥𝑖𝑖−1)

∆𝑥𝑥2
. (4.26)

Finite Difference Method

18

The derivatives 𝑢𝑢′′(𝑥𝑥𝑖𝑖) and 𝑢𝑢′(𝑥𝑥𝑖𝑖) are replaced by quotient (4.25) and (4.26) at every 𝑥𝑥𝑖𝑖

to receive

𝑎𝑎
𝑢𝑢(𝑥𝑥𝑖𝑖+1) − 2𝑢𝑢(𝑥𝑥𝑖𝑖) + 𝑢𝑢(𝑥𝑥𝑖𝑖−1)

∆𝑥𝑥2
+ 𝑏𝑏

𝑢𝑢(𝑥𝑥𝑖𝑖+1) − 𝑢𝑢(𝑥𝑥𝑖𝑖−1)
2∆𝑥𝑥

+ 𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖) ≈ 𝑓𝑓(𝑥𝑥𝑖𝑖).

To enforce equality in the above approximations, the function values 𝑢𝑢(𝑥𝑥𝑖𝑖+1),𝑢𝑢(𝑥𝑥𝑖𝑖), and

𝑢𝑢(𝑥𝑥𝑖𝑖−1) are replaced by the approximative values 𝑢𝑢𝑖𝑖+1,𝑢𝑢𝑖𝑖 , and 𝑢𝑢𝑖𝑖−1 to enable the

calculation of the equation. Hence, the revised equation is given by

 𝑎𝑎
𝑢𝑢𝑖𝑖+1 − 2𝑢𝑢𝑖𝑖 + 𝑢𝑢𝑖𝑖−1

∆𝑢𝑢2
+ 𝑏𝑏

𝑢𝑢𝑖𝑖+1 − 𝑢𝑢𝑖𝑖−1
2∆𝑢𝑢

+ 𝑐𝑐𝑢𝑢𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖) (4.27)

with 𝑖𝑖 = 2, … ,𝑁𝑁 − 1. Thus, the equation for the points 𝑢𝑢2, … ,𝑢𝑢𝑁𝑁−1 are given by

�−
2𝑎𝑎
∆𝑥𝑥2

+ 𝑐𝑐� 𝑢𝑢2 + �
𝑎𝑎
∆𝑥𝑥2

+
𝑏𝑏

2∆𝑥𝑥
� 𝑢𝑢3 = 𝑓𝑓(𝑥𝑥2) − �

𝑎𝑎
∆𝑥𝑥2

−
𝑏𝑏

2∆𝑥𝑥
� 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,

�
𝑎𝑎
∆𝑥𝑥2

−
𝑏𝑏

2∆𝑥𝑥
� 𝑢𝑢𝑖𝑖−1 + �−

2𝑎𝑎
∆𝑥𝑥2

+ 𝑐𝑐� 𝑢𝑢𝑖𝑖 + �
𝑎𝑎
∆𝑥𝑥2

+
𝑏𝑏

2∆𝑥𝑥
� 𝑢𝑢𝑖𝑖+1 = 𝑓𝑓(𝑥𝑥𝑖𝑖),

�
𝑎𝑎
∆𝑥𝑥2

−
𝑏𝑏

2∆𝑥𝑥
� 𝑢𝑢𝑁𝑁−2 + �−

2𝑎𝑎
∆𝑥𝑥2

+ 𝑐𝑐� 𝑢𝑢𝑁𝑁−1

= 𝑓𝑓(𝑥𝑥𝑁𝑁−1) − �
𝑎𝑎
∆𝑥𝑥2

−
𝑏𝑏

2∆𝑥𝑥
� 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

(4.28)

with the upper and lower equation for the boundary points and the middle equation for

points 𝑢𝑢 = 2, … ,𝑁𝑁 − 2.

The equations possess the same terms, which can be defined as variables

 𝛼𝛼 ∶=
𝑎𝑎
∆𝑥𝑥2

−
𝑏𝑏

2∆𝑥𝑥
, 𝛽𝛽 ∶= −

2𝑎𝑎
∆𝑥𝑥2

+ 𝑐𝑐, 𝛾𝛾 ∶=
𝑎𝑎
∆𝑥𝑥2

+
𝑏𝑏

2∆𝑥𝑥
. (4.29)

Thus, the equations can be written in a matrix with the defined variables as

𝛽𝛽𝑢𝑢2 + 𝛾𝛾𝑢𝑢3 = 𝑓𝑓(𝑥𝑥2) − 𝛼𝛼𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝛼𝛼𝑢𝑢2 + 𝛽𝛽𝑢𝑢3 + 𝛾𝛾𝑢𝑢4 = 𝑓𝑓(𝑥𝑥3)

𝛼𝛼𝑢𝑢3 + 𝛽𝛽𝑢𝑢4 + 𝛾𝛾𝑢𝑢5 = 𝑓𝑓(𝑥𝑥4)
⋱ ⋮

𝛼𝛼𝑢𝑢𝑁𝑁−3 + 𝛽𝛽𝑢𝑢𝑁𝑁−2 + 𝛾𝛾𝑢𝑢𝑁𝑁−1 = 𝑓𝑓(𝑥𝑥𝑁𝑁−2)
+ 𝛼𝛼𝑢𝑢𝑁𝑁−2 + 𝛽𝛽𝑢𝑢𝑁𝑁−1 = 𝑓𝑓(𝑥𝑥𝑁𝑁−1) − 𝛾𝛾𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

.

Finite Difference Method

19

Hence, the equations are rewritten as (𝑁𝑁 − 2) × (𝑁𝑁 − 2) matrix 𝐀𝐀, the vector of the

points 𝐮𝐮 and the vector of the function values 𝐟𝐟

𝐀𝐀 ∶=

⎝

⎜⎜
⎜
⎛

𝛽𝛽 𝛾𝛾
𝛼𝛼 𝛽𝛽 𝛾𝛾

𝛼𝛼 𝛽𝛽 𝛾𝛾
⋱
𝛼𝛼 𝛽𝛽 𝛾𝛾

𝛼𝛼 𝛽𝛽⎠

⎟⎟
⎟
⎞

, 𝐮𝐮 ∶=

⎝

⎜
⎛

𝑢𝑢2
𝑢𝑢3
⋮

𝑢𝑢𝑁𝑁−2
𝑢𝑢𝑁𝑁−1⎠

⎟
⎞

,

𝐟𝐟 ∶=

⎝

⎜
⎛

𝑓𝑓(𝑥𝑥2) − 𝛼𝛼𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓(𝑥𝑥3)
⋮

𝑓𝑓(𝑥𝑥𝑁𝑁−2)
𝑓𝑓(𝑥𝑥𝑁𝑁−1) − 𝛾𝛾𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚⎠

⎟
⎞

(4.30)

to represent the equation in matrix notation

𝐀𝐀𝐀𝐀 = 𝐟𝐟.

To apply the derivation in later problems, matrix 𝐀𝐀 can be written as a sum of three

matrices. These matrices are created by the discretisations of the terms 𝑎𝑎𝑢𝑢′′, 𝑏𝑏𝑢𝑢′, and 𝑐𝑐𝑐𝑐.

First, assume that 𝑏𝑏 = 𝑐𝑐 = 0 and the differential equation is stated as

𝑎𝑎𝑢𝑢′′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)

with 𝛼𝛼 = 𝑎𝑎
∆𝑥𝑥2

, 𝛽𝛽 = − 2𝑎𝑎
∆𝑥𝑥2

, and 𝛾𝛾 = 𝑎𝑎
∆𝑥𝑥2

. The matrix 𝐀𝐀 for this case is given by

𝐌𝐌𝑎𝑎
(2) ∶=

1
∆𝑥𝑥2

⎝

⎜⎜
⎛

−2𝑎𝑎 𝑎𝑎
𝑎𝑎 −2𝑎𝑎 𝑎𝑎

𝑎𝑎 −2𝑎𝑎 𝑎𝑎
⋱
𝑎𝑎 −2𝑎𝑎 𝑎𝑎

𝑎𝑎 −2𝑎𝑎⎠

⎟⎟
⎞

.

Secondly, assume that 𝑎𝑎 = 𝑐𝑐 = 0 and the differential equation is stated as

𝑏𝑏𝑢𝑢′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)

with 𝛼𝛼 = − 𝑏𝑏
2∆𝑥𝑥

, 𝛽𝛽 = 0, and 𝛾𝛾 = 𝑏𝑏
2∆𝑥𝑥

. The matrix 𝐀𝐀 for this case is given by

𝐌𝐌𝑏𝑏
(1) ∶=

1
2∆𝑥𝑥

⎝

⎜⎜
⎛

0 𝑏𝑏
−𝑏𝑏 0 𝑏𝑏

−𝑏𝑏 0 𝑏𝑏
⋱
−𝑏𝑏 0 𝑏𝑏

−𝑏𝑏 0⎠

⎟⎟
⎞

.

Finite Difference Method

20

Thirdly, assume that 𝑎𝑎 = 𝑏𝑏 = 0 and the differential equation is stated as

𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)

with 𝛼𝛼 = 0, 𝛽𝛽 = 𝑐𝑐, and 𝛾𝛾 = 0. The matrix 𝐀𝐀 for this case is given by

𝐌𝐌𝑐𝑐
(0) ∶=

⎝

⎜⎜
⎛

𝑐𝑐 0
0 𝑐𝑐 0

0 𝑐𝑐 0
⋱
0 𝑐𝑐 0

0 𝑐𝑐 ⎠

⎟⎟
⎞

.

Consequently, matrix 𝐀𝐀 is the sum of

𝐀𝐀 = 𝐌𝐌𝑎𝑎
(2) + 𝐌𝐌𝑏𝑏

(1) + 𝐌𝐌𝑐𝑐
(0).

The general definition of this structure is given for function 𝑦𝑦 as (𝑁𝑁 − 2) × (𝑁𝑁 − 2)

matrix 𝐌𝐌𝑦𝑦
(𝑘𝑘) in interval 𝐺𝐺 with length 𝐺𝐺 and 𝑘𝑘 = 0, 1, 2, and 𝑦𝑦𝑖𝑖 ∶= 𝑦𝑦(𝑥𝑥𝑖𝑖) with 𝑁𝑁 − 2

equidistant points 𝑥𝑥𝑖𝑖 and ∆𝑥𝑥 = 𝐺𝐺
𝑁𝑁−1

. The superscript (k) determines the order of the

derivative (𝑘𝑘 = 2 for the second, 𝑘𝑘 = 1 for the first, and 𝑘𝑘 = 0 for the zeroth derivative).

The general form with variable 𝑦𝑦 is given by

𝐌𝐌𝑎𝑎
(2) ∶=

1
∆𝑥𝑥2

⎝

⎜
⎜
⎜
⎛

−2𝑦𝑦2 𝑦𝑦2
𝑦𝑦3 −2𝑦𝑦3 𝑦𝑦3

𝑦𝑦4 −2𝑦𝑦4 𝑦𝑦4
⋱

𝑦𝑦𝑁𝑁−2 −2𝑦𝑦𝑁𝑁−2 𝑦𝑦𝑁𝑁−2
𝑦𝑦𝑁𝑁−1 −2𝑦𝑦𝑁𝑁−1⎠

⎟
⎟
⎟
⎞

,

𝐌𝐌𝑏𝑏
(1) ∶=

1
2∆𝑥𝑥

⎝

⎜
⎜
⎜
⎛

0 𝑦𝑦2
−𝑦𝑦3 0 𝑦𝑦3

−𝑦𝑦4 0 𝑦𝑦4
⋱

−𝑦𝑦𝑁𝑁−2 0 𝑦𝑦𝑁𝑁−2
−𝑦𝑦𝑁𝑁−1 0 ⎠

⎟
⎟
⎟
⎞

,

𝐌𝐌𝑐𝑐
(0) ∶=

⎝

⎜
⎜
⎜
⎛

𝑦𝑦2
𝑦𝑦3

𝑦𝑦4
⋱

𝑦𝑦𝑁𝑁−2
𝑦𝑦𝑁𝑁−1⎠

⎟
⎟
⎟
⎞

,

(4.31)

and builds the foundation for later approximations (Hilber, 2023, p. 110-114).

Finite Difference Method

21

4.1.3. Theta Method with Application

This section introduces the theta method in order to solve finite difference problems. The

method is introduced on the basis of the remodelled Black-Scholes equation in (3.12).

The function 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is replaced with function 𝑤𝑤(𝑥𝑥, 𝑡𝑡) in 𝐺𝐺𝑥𝑥 =]𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚[and the

differential equation is given by

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜕𝜕𝑡𝑡𝑤𝑤(𝑥𝑥, 𝑡𝑡) + a𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤(𝑥𝑥, 𝑡𝑡) + b𝜕𝜕𝑥𝑥𝑤𝑤(𝑥𝑥, 𝑡𝑡)

+c𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 0 in 𝐺𝐺𝑥𝑥 ×]0,𝑇𝑇]

𝑤𝑤(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡) = 0 in]0,𝑇𝑇]

𝑤𝑤(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡) = 0 in]0,𝑇𝑇]

𝑤𝑤(𝑥𝑥, 0) = 𝑔𝑔(𝑒𝑒𝑥𝑥) in 𝐺𝐺𝑥𝑥

 (4.32)

Additionally, finite differences approximate the solution of a function in a finite grid with

the limits given by boundary conditions. For this example, the boundaries are defined by

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 0 (Hilber, 2023, p. 124). The partial derivatives of equation (4.28)

are replaced by the central difference quotients as in (4.27) for 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 2, … ,𝑁𝑁 − 1

𝜕𝜕𝑡𝑡𝑤𝑤(𝑥𝑥𝑖𝑖, 𝑡𝑡) + 𝑎𝑎
𝑤𝑤(𝑥𝑥𝑖𝑖+1, 𝑡𝑡) − 2𝑤𝑤(𝑥𝑥𝑖𝑖, 𝑡𝑡) + 𝑤𝑤(𝑥𝑥𝑖𝑖−1, 𝑡𝑡)

∆𝑥𝑥2
+ 𝑏𝑏

𝑤𝑤(𝑥𝑥𝑖𝑖+1, 𝑡𝑡) − 𝑤𝑤(𝑥𝑥𝑖𝑖−1, 𝑡𝑡)
2∆𝑥𝑥

+ 𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖, 𝑡𝑡) ≈ 0.

The equality in the approximation is enforced by replacing the function values

𝑤𝑤(𝑥𝑥𝑖𝑖+1, 𝑡𝑡),𝑤𝑤(𝑥𝑥𝑖𝑖, 𝑡𝑡), and 𝑤𝑤(𝑥𝑥𝑖𝑖−1, 𝑡𝑡) by the approximative values 𝑤𝑤𝑖𝑖+1(𝑡𝑡),𝑤𝑤𝑖𝑖(𝑡𝑡), and

𝑤𝑤𝑖𝑖−1(𝑡𝑡). Thus, the new quotient is given as

𝜕𝜕𝑡𝑡𝑤𝑤𝑖𝑖(𝑡𝑡) + 𝑎𝑎

𝑤𝑤𝑖𝑖+1(𝑡𝑡) − 2𝑤𝑤𝑖𝑖(𝑡𝑡) + 𝑤𝑤𝑖𝑖−1(𝑡𝑡)
∆𝑥𝑥2

+ 𝑏𝑏
𝑤𝑤𝑖𝑖+1(𝑡𝑡) − 𝑤𝑤𝑖𝑖−1(𝑡𝑡)

2∆𝑥𝑥
+ 𝑐𝑐𝑤𝑤𝑖𝑖(𝑡𝑡) = 0.

(4.33)

The resulting equations of the points possess the same terms as in the time-independent

variables in (4.29) and are given by

𝛼𝛼 ∶=
𝑎𝑎
∆𝑥𝑥2

−
𝑏𝑏

2∆𝑥𝑥
, 𝛽𝛽 ∶= −

2𝑎𝑎
∆𝑥𝑥2

+ 𝑐𝑐, 𝛾𝛾 ∶=
𝑎𝑎
∆𝑥𝑥2

+
𝑏𝑏

2∆𝑥𝑥
.

The boundary conditions for the time 𝑡𝑡 are given by

𝑤𝑤(𝑥𝑥0, 𝑡𝑡) = 𝑤𝑤0(𝑡𝑡) = 0 and 𝑤𝑤(𝑥𝑥𝑁𝑁 , 𝑡𝑡) = 𝑤𝑤𝑁𝑁(𝑡𝑡) = 0

with the simplified notation 𝑤𝑤𝑖𝑖
′(𝑡𝑡) = 𝜕𝜕𝑡𝑡𝑤𝑤𝑖𝑖(𝑡𝑡) and leads to

Finite Difference Method

22

𝑤𝑤2
′(𝑡𝑡) + 𝛽𝛽𝑤𝑤2 + 𝛾𝛾𝑤𝑤3 = 0

𝑤𝑤3
′(𝑡𝑡) + 𝛼𝛼𝑤𝑤2 + 𝛽𝛽𝑤𝑤3 + 𝛾𝛾𝑤𝑤4 = 0

𝑤𝑤4′(𝑡𝑡) + 𝛼𝛼𝑤𝑤3 + 𝛽𝛽𝑤𝑤4 + 𝛾𝛾𝑤𝑤4 = 0
⋮ ⋱ ⋮

𝑤𝑤𝑁𝑁−2
′ (𝑡𝑡) + 𝛼𝛼𝑤𝑤𝑁𝑁−3 + 𝛽𝛽𝑤𝑤𝑁𝑁−2 + 𝛾𝛾𝑤𝑤𝑁𝑁−1 = 0

𝑤𝑤𝑁𝑁−1
′ (𝑡𝑡) + + 𝛼𝛼𝑤𝑤𝑁𝑁−2 + 𝛽𝛽𝑤𝑤𝑁𝑁−1 = 0

.

The above system of equations can be converted into matrix notation by using the matrix

𝐀𝐀 of (4.30) and the vectors

 𝐰𝐰(𝑡𝑡) ∶= �

𝑤𝑤2(𝑡𝑡)
𝑤𝑤3(𝑡𝑡)
⋮

𝑤𝑤𝑁𝑁−1(𝑡𝑡)

� , 𝐰𝐰′(𝑡𝑡) ∶= �

𝑤𝑤2
′(𝑡𝑡)

𝑤𝑤3
′(𝑡𝑡)
⋮

𝑤𝑤𝑁𝑁−1
′ (𝑡𝑡)

� (4.34)

to obtain the equation

 𝐰𝐰′(𝑡𝑡) + 𝐀𝐀𝐀𝐀(𝑡𝑡) = 𝟎𝟎. (4.35)

The equation (4.35) must now be completed with the option’s payoff function to reflect

the option value. For this purpose, the initial condition 𝐰𝐰(0) = 𝐠𝐠 determines the payoff

at 𝑡𝑡 = 0, and the vector 𝐠𝐠 contains the function values of the payoff function at the grid

points. The vector of grid points is stated as

𝐠𝐠 ∶= �

𝑔𝑔(𝑒𝑒𝑥𝑥2)
𝑔𝑔(𝑒𝑒𝑥𝑥3)

⋮
𝑔𝑔(𝑒𝑒𝑥𝑥𝑁𝑁−1)

�.

The resulting system of equations can be solved explicitly and is defined as

 �
𝐰𝐰′(𝑡𝑡) + 𝐀𝐀𝐀𝐀(𝑡𝑡) = 𝟎𝟎

𝐰𝐰(0) = 𝐠𝐠
, (4.36)

which forms the complex equation in the introduction (Hilber, 2023, p. 125-127).

The following intercept illustrates the theta method to derive the calculation rule. For this

purpose, the equidistant grid

𝐺𝐺𝑡𝑡 ∶= �𝑡𝑡𝑗𝑗 � 𝑗𝑗 = 1, … ,𝑀𝑀}, 0 = 𝑡𝑡1 < 𝑡𝑡2 < ⋯ < 𝑡𝑡𝑀𝑀−1 < 𝑡𝑡𝑀𝑀 = 𝑇𝑇

in the interval 𝐺𝐺𝑡𝑡 = [0,𝑇𝑇] is defined.

Finite Difference Method

23

The grid points 𝑡𝑡𝑗𝑗 and discretisation increments of variables 𝑡𝑡 are given by

𝑡𝑡𝑗𝑗 = 𝑗𝑗𝑗𝑗, 𝑗𝑗 = 1, … ,𝑀𝑀, ∆𝑡𝑡 ∶=
𝑇𝑇

𝑀𝑀 − 1
.

The first derivative 𝑤𝑤′(𝑡𝑡) of equation (4.36) can be approximated by the forward

difference quotient from (4.17) at the points 𝑗𝑗 = 1, … ,𝑀𝑀 − 1 by

 𝑤𝑤�𝑡𝑡𝑗𝑗 + ∆𝑡𝑡� − 𝑤𝑤�𝑡𝑡𝑗𝑗�
∆𝑡𝑡

+ 𝐴𝐴𝐴𝐴�𝑡𝑡𝑗𝑗� ≈ 0. (4.37)

The equality in the approximation is enforced by replacing the function values 𝑤𝑤�𝑡𝑡𝑗𝑗� with

the approximative values 𝑤𝑤𝑗𝑗. Thus, the equation with 𝑤𝑤�𝑡𝑡𝑗𝑗� ≈ 𝑤𝑤𝑗𝑗 is given by

𝑤𝑤𝑗𝑗+1 − 𝑤𝑤𝑗𝑗

∆𝑡𝑡
+ 𝐴𝐴𝑤𝑤𝑗𝑗 = 0. (4.38)

Equation (4.38) can be multiplied with ∆𝑡𝑡 and rearranged to

 𝑤𝑤𝑗𝑗+1 = 𝑤𝑤𝑗𝑗 + ∆𝑡𝑡(−𝐴𝐴)𝑤𝑤𝑗𝑗�������
∆𝑤𝑤

 (4.39)

with the increment ∆𝑤𝑤 = ∆𝑡𝑡(−𝐴𝐴)𝑤𝑤𝑗𝑗 and approximated slope −𝐴𝐴𝑤𝑤𝑗𝑗. The equation in

(4.39) is the calculation rule for the explicit Euler’s method and can further be simplified

to

𝑤𝑤𝑗𝑗+1 = (1 − ∆𝑡𝑡𝑡𝑡)𝑤𝑤𝑗𝑗

to show the growth factor (1 − ∆𝑡𝑡𝑡𝑡). The explicit method is only conditionally stable as

mentioned in Chapter 4.1.1. Therefore, the implicit Euler’s method is derived below. The

forward difference quotient in equation (4.37) is replaced by the backwards difference

quotient in accordance with (4.20) to yield

𝑤𝑤�𝑡𝑡𝑗𝑗� − 𝑤𝑤�𝑡𝑡𝑗𝑗 − ∆𝑡𝑡�
∆𝑡𝑡

+ 𝐴𝐴𝐴𝐴�𝑡𝑡𝑗𝑗� ≈ 0, 𝑗𝑗 = 2, … ,𝑀𝑀.

The equality in the approximation is enforced by replacing the function values 𝑤𝑤�𝑡𝑡𝑗𝑗� by

values 𝑤𝑤𝑗𝑗 with 𝑤𝑤�𝑡𝑡𝑗𝑗� ≈ 𝑤𝑤𝑗𝑗 to

𝑤𝑤𝑗𝑗 − 𝑤𝑤𝑗𝑗−1
∆𝑡𝑡

+ 𝐴𝐴𝑤𝑤𝑗𝑗 = 0, 𝑗𝑗 = 2, … ,𝑀𝑀.

Finite Difference Method

24

Aligning the index to the index of the forward difference quotient with index 𝑗𝑗 starting at

1 instead of 2 results in

𝑤𝑤𝑗𝑗+1 − 𝑤𝑤𝑗𝑗
∆𝑡𝑡

+ 𝐴𝐴𝑤𝑤𝑗𝑗 = 0, 𝑗𝑗 = 1, … ,𝑀𝑀 − 1.

The equation can be rearranged analogously to (4.39) to

 𝑤𝑤𝑗𝑗+1 = 𝑤𝑤𝑗𝑗 + ∆𝑡𝑡(−𝐴𝐴)𝑤𝑤𝑗𝑗+1���������
∆𝑤𝑤

 (4.40)

with the increment ∆𝑤𝑤 = ∆𝑡𝑡(−𝐴𝐴)𝑤𝑤𝑗𝑗+1 and approximated slope −𝐴𝐴𝑤𝑤𝑗𝑗+1. The equation

(4.40) is resolved according to 𝑤𝑤𝑗𝑗+1 to the geometric sequence

𝑤𝑤𝑗𝑗+1 =
1

1 + ∆𝑡𝑡𝑡𝑡
𝑤𝑤𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑀𝑀 − 1.

After deriving the explicit and implicit Euler’s method, both approximations can be

combined in one equation with parameter 𝜃𝜃𝑑𝑑 determining the convex combination of the

two increments ∆𝑡𝑡(−𝐴𝐴)𝑤𝑤𝑗𝑗 and ∆𝑡𝑡(−𝐴𝐴)𝑤𝑤𝑗𝑗+1.

The calculation rule is given by

𝑤𝑤𝑗𝑗+1 = 𝑤𝑤𝑗𝑗 + (1 − 𝜃𝜃𝑑𝑑)∆𝑡𝑡(−𝐴𝐴)𝑤𝑤𝑗𝑗 + 𝜃𝜃𝑑𝑑∆𝑡𝑡(−𝐴𝐴)𝑤𝑤𝑗𝑗+1,

𝑗𝑗 = 1, … ,𝑀𝑀 − 1
(4.41)

and represents the so-called theta method. The equation (4.41) can be assorted to

(1 + ∆𝑡𝑡𝜃𝜃𝑑𝑑𝐴𝐴)𝑤𝑤𝑗𝑗+1 = (1 − ∆𝑡𝑡(1 − 𝜃𝜃𝑑𝑑)𝐴𝐴)𝑤𝑤𝑗𝑗, 𝑗𝑗 = 1, … ,𝑀𝑀 − 1.

The parameter 𝜃𝜃𝑑𝑑 denotes the implicitness of Euler’s method, with 𝜃𝜃𝑑𝑑 = 0 denoting the

explicit method, 𝜃𝜃𝑑𝑑 = 1 denoting the implicit Euler’s method, and 𝜃𝜃𝑑𝑑 = 0.5 denoting the

Crank-Nicolson method. The unique characteristic of 𝜃𝜃𝑑𝑑 = 0.5 is that the Crank-Nicolson

method is second-order accurate 𝒪𝒪(∆𝑥𝑥2), while for 𝜃𝜃𝑑𝑑 ≠ 0.5, the approximation is only

first-order accurate 𝒪𝒪(∆𝑥𝑥). Thus, halving the time step ∆𝑡𝑡, the error term for 𝜃𝜃𝑑𝑑 = 0.5 is

reduced quadratically by a factor of four, while the error is only linearly reduced, by factor

two, for 𝜃𝜃𝑑𝑑 ≠ 0.5 (Hilber, 2023, p. 128-138).

Finite Difference Method

25

4.1.4. Boundary Conditions

The restricted grid for the finite difference method is defined by its boundary conditions,

which are determined by the characteristic of the financial product. The boundary

conditions can be defined either as Dirichlet boundary condition, which defines the

boundary for specified function values or as Neumann boundary condition, which

specifies the boundary for a normal derivative of the solution. Additionally, boundary

conditions are referred to as homogeneous if the value of a function or derivative at the

boundary is equal to zero. Otherwise, the boundary condition is inhomogeneous (Seydel,

2017, p. 147-149).

The boundary conditions of the differential equation in (4.32) were defined as

homogenous Dirichlet boundary conditions with 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 0.

Subsequently, different boundary conditions are derived, including their universal

implementation, by replacing the homogenous boundary conditions of (4.32) with the

variable 𝑤𝑤(𝑛𝑛) and replacing the logarithmic payoff by the payoff 𝑔𝑔(𝑥𝑥) in

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜕𝜕𝑡𝑡𝑤𝑤(𝑥𝑥, 𝑡𝑡) + a𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤(𝑥𝑥, 𝑡𝑡) + b𝜕𝜕𝑥𝑥𝑤𝑤(𝑥𝑥, 𝑡𝑡)

+c𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 0 in 𝐺𝐺𝑥𝑥 ×]0,𝑇𝑇]

𝑤𝑤(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚)(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(t) in]0,𝑇𝑇]

𝑤𝑤(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚)(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(t) in]0,𝑇𝑇]

𝑤𝑤(𝑥𝑥, 0) = 𝑔𝑔(𝑥𝑥) in 𝐺𝐺𝑥𝑥

.

The lower boundary point is given by 𝑥𝑥1 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, the upper boundary point is given by

𝑥𝑥𝑁𝑁 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, and the interior points are given by 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 2, … ,𝑁𝑁 − 1. The superscript (𝑛𝑛)

represents the order of derivatives for 𝑛𝑛 = 0, 1, 2 with 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 for the lower boundary and

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 for the upper boundary of the interval 𝐺𝐺𝑥𝑥. First, the Dirichlet boundary conditions

are addressed, representing the function value without derivatives, denoted as

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 0. The discretisation of the differential equations similar to equation

(4.33) originates in the system of equations

𝑤𝑤′

𝑖𝑖(𝑡𝑡) + 𝑎𝑎(𝑥𝑥𝑖𝑖)
𝑤𝑤𝑖𝑖+1(𝑡𝑡) − 2𝑤𝑤𝑖𝑖(𝑡𝑡) + 𝑤𝑤𝑖𝑖−1(𝑡𝑡)

∆𝑥𝑥2

+ 𝑏𝑏(𝑥𝑥𝑖𝑖)
𝑤𝑤𝑖𝑖+1(𝑡𝑡) − 𝑤𝑤𝑖𝑖−1(𝑡𝑡)

2∆𝑥𝑥
+ 𝑐𝑐(𝑥𝑥𝑖𝑖)𝑤𝑤𝑖𝑖(𝑡𝑡) = 0.

(4.42)

Applying the equation for the interior points yields the identical equation from the

previous chapter, which is given by

Finite Difference Method

26

𝑤𝑤′

𝑖𝑖(𝑡𝑡) + �
𝑎𝑎(𝑥𝑥𝑖𝑖)
∆𝑥𝑥2

−
𝑏𝑏(𝑥𝑥𝑖𝑖)
2∆𝑥𝑥

�𝑤𝑤𝑖𝑖−1(𝑡𝑡) + �−
2𝑎𝑎(𝑥𝑥𝑖𝑖)
∆𝑥𝑥2

+ 𝑐𝑐(𝑥𝑥𝑖𝑖)�𝑤𝑤𝑖𝑖(𝑡𝑡)

+ �
𝑎𝑎(𝑥𝑥𝑖𝑖)
∆𝑥𝑥2

+
𝑏𝑏(𝑥𝑥𝑖𝑖)
2∆𝑥𝑥

�𝑢𝑢𝑖𝑖+1(𝑡𝑡) = 0.

(4.43)

The equation for the first point 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤1(𝑡𝑡) is attained by inserting the first nodes into

the equation and taking the terms for 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 to the right side of the equation by

𝑤𝑤′

2(𝑡𝑡) + 𝑎𝑎(𝑥𝑥2)
𝑤𝑤3(𝑡𝑡) − 2𝑤𝑤2(𝑡𝑡)

∆𝑥𝑥2
+ 𝑏𝑏(𝑥𝑥2)

𝑤𝑤3(𝑡𝑡)
2∆𝑥𝑥

+ 𝑐𝑐(𝑥𝑥2)𝑤𝑤2(𝑡𝑡)

= �−
𝑎𝑎(𝑥𝑥2)
∆𝑥𝑥2

+
𝑏𝑏(𝑥𝑥2)
2∆𝑥𝑥

�𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)
(4.44)

and taking the last point 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤𝑁𝑁(𝑡𝑡) and rewriting the equation results in

𝑤𝑤′
𝑁𝑁−1(𝑡𝑡) + 𝑎𝑎(𝑥𝑥𝑁𝑁−1)

−2𝑤𝑤𝑁𝑁−1(𝑡𝑡) + 𝑤𝑤𝑁𝑁−2(𝑡𝑡)
∆𝑥𝑥2

+ 𝑏𝑏(𝑥𝑥𝑁𝑁−1)
−𝑤𝑤𝑁𝑁−2(𝑡𝑡)

2∆𝑥𝑥
+ 𝑐𝑐(𝑥𝑥𝑁𝑁−1)𝑤𝑤𝑁𝑁−1(𝑡𝑡)

= �−
𝑎𝑎(𝑥𝑥𝑁𝑁−1)
∆𝑥𝑥2

−
𝑏𝑏(𝑥𝑥𝑁𝑁−1)

2∆𝑥𝑥
�𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡).

Rewriting the equations into matrix notation, as in the previous chapter, results in

 𝐰𝐰′(𝑡𝑡) + 𝐀𝐀𝐀𝐀(𝑡𝑡) = 𝐟𝐟(𝑡𝑡), 𝒘𝒘(1) = 𝐠𝐠 (4.45)

with the vector 𝐰𝐰(𝑡𝑡) as seen in (4.34) and matrix 𝐀𝐀 as in (4.30) with the modified vector

𝐟𝐟(𝑡𝑡) with length 𝑁𝑁 − 2, which incorporates the boundary conditions

𝐟𝐟(𝑡𝑡) = −

⎝

⎜
⎛
𝛼𝛼2𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)

0
⋮
0

𝛾𝛾𝑁𝑁−1𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)⎠

⎟
⎞

and can be written by the sum of matrices with the superscript 𝑏𝑏𝑏𝑏 for boundary condition

and the left subscript 𝑑𝑑 for Dirichlet condition

𝐟𝐟(𝑡𝑡) = −� 𝐌𝐌𝒅𝒅 𝑎𝑎
(2),𝑏𝑏𝑏𝑏 + 𝐌𝐌𝒅𝒅 𝑏𝑏

(1),𝑏𝑏𝑏𝑏�𝐰𝐰𝑏𝑏𝑏𝑏(𝑡𝑡),

and continuing the notation for the general function 𝑦𝑦 from (4.31) for

Finite Difference Method

27

𝐌𝐌𝒅𝒅 𝑦𝑦
(2),𝑏𝑏𝑏𝑏 ∶=

1
∆𝑥𝑥2

⎝

⎜
⎛

𝑦𝑦2 0 … 0 0
0 0 0 0
⋮ ⋱ ⋮
0 0 0 0
0 0 … 0 𝑦𝑦𝑁𝑁−1⎠

⎟
⎞

,

𝐌𝐌𝒅𝒅 𝑦𝑦
(1),𝑏𝑏𝑏𝑏 ∶=

1
2∆𝑥𝑥

⎝

⎜
⎛

−𝑦𝑦2 0 … 0 0
0 0 0 0
⋮ ⋱ ⋮
0 0 0 0
0 0 … 0 −𝑦𝑦𝑁𝑁−1⎠

⎟
⎞

,

𝐰𝐰𝑏𝑏𝑏𝑏(𝑡𝑡) ∶=

⎝

⎜
⎛
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)

0
⋮
0

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)⎠

⎟
⎞

.

Approximating the value by applying the theta method analogous to (4.41) yields

𝐰𝐰𝑗𝑗+1 − 𝐰𝐰𝑗𝑗 + ∆𝑡𝑡(1 − 𝜃𝜃𝑑𝑑)𝐀𝐀𝐰𝐰𝑗𝑗 + ∆𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀𝐰𝐰𝑗𝑗+1 = ∆𝑡𝑡𝐟𝐟𝑗𝑗

with vector 𝐟𝐟𝑗𝑗 given by

𝐟𝐟𝑗𝑗 ∶= 𝐟𝐟�𝑡𝑡𝑗𝑗 + ∆𝑡𝑡𝜃𝜃𝑑𝑑� = −�𝐌𝐌𝑎𝑎
(2),𝑏𝑏𝑏𝑏 + 𝐌𝐌𝑏𝑏

(1),𝑏𝑏𝑏𝑏�𝐰𝐰𝑏𝑏𝑏𝑏�𝑡𝑡𝑗𝑗 + ∆𝑡𝑡𝜃𝜃𝑑𝑑�.

Thus, the equation can be written by the 𝑁𝑁 × 𝑁𝑁 identity matrix 𝐈𝐈 to result in 𝑀𝑀 systems

of equations

 (𝐈𝐈 + ∆𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀)𝑤𝑤𝑗𝑗+1 = (𝐈𝐈 − ∆𝑡𝑡(1 − 𝜃𝜃𝑑𝑑)𝐀𝐀)𝐰𝐰𝑗𝑗 + ∆𝑡𝑡𝐟𝐟𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑀𝑀 − 1 (4.46)

with 𝐰𝐰1 = 𝐠𝐠 (Hilber, 2023, p. 140, 176-178).

Secondly, the Neumann boundary conditions are addressed with 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 1,

which results in the first derivative of 𝑤𝑤(𝑥𝑥, 𝑡𝑡). The first derivatives 𝜕𝜕𝑥𝑥𝑤𝑤(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡) =

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) and 𝜕𝜕𝑥𝑥𝑤𝑤(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) must first be calculated whereby only points in

the grid can be used. Consequently, the boundary point itself is found by discretisation

and the applicable different quotient used for the discretisation is given by

 𝑓𝑓′(𝑥𝑥) =
±3𝑓𝑓(𝑥𝑥) ∓ 4𝑓𝑓(𝑥𝑥 ∓ ∆𝑥𝑥) ± 𝑓𝑓(𝑥𝑥 ∓ 2∆𝑥𝑥)

2∆𝑥𝑥
+ 𝒪𝒪(∆𝑥𝑥2). (4.47)

The error term 𝒪𝒪(∆𝑥𝑥2) of equation (4.47) can be omitted to result in the approximation,

and the grid notation 𝜕𝜕𝑥𝑥𝑤𝑤(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡) ≈ 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) is inserted to enforce equality. Thus, the

upper boundary point 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝑤𝑤𝑁𝑁(𝑡𝑡) is approximated by

Finite Difference Method

28

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) =
3𝑤𝑤𝑁𝑁(𝑡𝑡) − 4𝑤𝑤𝑁𝑁−1(𝑡𝑡) + 𝑤𝑤𝑁𝑁−2(𝑡𝑡)

2∆𝑥𝑥
.

Rewriting the equation according to 𝑤𝑤𝑁𝑁(𝑡𝑡) leads to

𝑤𝑤𝑁𝑁(𝑡𝑡) =
2
3
∆𝑥𝑥𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) +

4
3
𝑤𝑤𝑁𝑁−1(𝑡𝑡) −

1
3
𝑤𝑤𝑁𝑁−2(𝑡𝑡).

Consequently, the expression can be inserted into the equation from (4.33) for the last

node point to be described by

𝑤𝑤′
𝑁𝑁−1(𝑡𝑡) + 𝑎𝑎(𝑥𝑥𝑁𝑁−1)

2
3∆𝑥𝑥𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) − 2

3𝑤𝑤𝑁𝑁−1(𝑡𝑡) + 2
3𝑤𝑤𝑁𝑁−2(𝑡𝑡)

∆𝑥𝑥2

+𝑏𝑏(𝑥𝑥𝑁𝑁−1)
2
3∆𝑥𝑥𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) + 4

3𝑤𝑤𝑁𝑁−1(𝑡𝑡) − 4
3𝑤𝑤𝑁𝑁−2(𝑡𝑡)

2∆𝑥𝑥
+ 𝑐𝑐(𝑥𝑥𝑁𝑁−1)𝑤𝑤𝑁𝑁−1(𝑡𝑡) = 0.

Hence, the term 𝑤𝑤𝑁𝑁(𝑡𝑡) is omitted and the terms can be assorted to

𝑤𝑤′
𝑁𝑁−1(𝑡𝑡) + �

2𝑎𝑎(𝑥𝑥𝑁𝑁−1)
3∆𝑥𝑥2

−
2𝑏𝑏(𝑥𝑥𝑁𝑁−1)

3∆𝑥𝑥
�𝑤𝑤𝑁𝑁−2(𝑡𝑡)

+ �−
2𝑎𝑎(𝑥𝑥𝑁𝑁−1)

3∆𝑥𝑥2
+

2𝑏𝑏(𝑥𝑥𝑁𝑁−1)
3∆𝑥𝑥

+ 𝑐𝑐(𝑥𝑥𝑁𝑁−1)�𝑤𝑤𝑁𝑁−1(𝑡𝑡)

= −�
2𝑎𝑎(𝑥𝑥𝑁𝑁−1)

3∆𝑥𝑥
+
𝑏𝑏(𝑥𝑥𝑁𝑁−1)

3
�𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)

The equation for the first point on the grid 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝑤𝑤1(𝑡𝑡) is derived by the same

procedure and results in

𝑤𝑤′
2(𝑡𝑡) + �−

2𝑎𝑎(𝑥𝑥2)
3∆𝑥𝑥2

−
2𝑏𝑏(𝑠𝑠2)

3∆𝑥𝑥
+ 𝑐𝑐(𝑥𝑥2)�𝑤𝑤2(𝑡𝑡) + �

2𝑎𝑎(𝑥𝑥2)
3∆𝑥𝑥2

+
2𝑏𝑏(𝑠𝑠2)

3∆𝑥𝑥
�𝑤𝑤3(𝑡𝑡)

= �
2𝑎𝑎(𝑥𝑥2)

3∆𝑥𝑥
−
𝑏𝑏(𝑠𝑠2)

3
�𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡).

The equation for the interior points is the identical equation as in (4.43), and the equations

can be rewritten as

𝐰𝐰′(𝑡𝑡) + 𝐀𝐀𝐀𝐀(𝑡𝑡) = 𝐟𝐟(𝑡𝑡), 𝐰𝐰(1) = 𝐠𝐠

with matrix 𝐀𝐀 and vector 𝐟𝐟(𝑡𝑡) given by

𝐀𝐀 = 𝐌𝐌𝑎𝑎
(2)

𝑛𝑛1 + 𝐌𝐌𝑏𝑏
(1)

𝑛𝑛1 + 𝐌𝐌𝑐𝑐
(0),

𝐟𝐟(𝑡𝑡) = −� 𝐌𝐌𝑎𝑎
(2),𝑏𝑏𝑏𝑏

𝑛𝑛1 + 𝐌𝐌𝑏𝑏
(1),𝑏𝑏𝑏𝑏

𝑛𝑛1 �𝐰𝐰𝑏𝑏𝑏𝑏(𝑡𝑡)

Finite Difference Method

29

with the left subscript 𝑛𝑛1 for the first-order Neumann boundary condition. The general

case with function 𝑦𝑦 results in matrices

𝐌𝐌𝑦𝑦
(2)

𝑛𝑛1 ∶=
1
∆𝑥𝑥2

⎝

⎜
⎜
⎜
⎜
⎛
−

2
3
𝑦𝑦2

2
3
𝑦𝑦2

𝑦𝑦3 −2𝑦𝑦3 𝑦𝑦3
⋱ ⋱

𝑦𝑦𝑁𝑁−2 −2𝑦𝑦𝑁𝑁−2 𝑦𝑦𝑁𝑁−2
2
3
𝑦𝑦𝑁𝑁−1 −

2
3
𝑦𝑦𝑁𝑁−1⎠

⎟
⎟
⎟
⎟
⎞

,

𝐌𝐌𝑦𝑦
(1)

𝑛𝑛1 ∶=
1

2∆𝑥𝑥

⎝

⎜
⎜
⎜
⎜
⎛
−

4
3
𝑦𝑦2

4
3
𝑦𝑦2

−𝑦𝑦3 0 𝑦𝑦3
⋱ ⋱

−𝑦𝑦𝑁𝑁−2 0 𝑦𝑦𝑁𝑁−2

−
4
3
𝑦𝑦𝑁𝑁−1

4
3
𝑦𝑦𝑁𝑁−1⎠

⎟
⎟
⎟
⎟
⎞

,

𝐌𝐌𝒏𝒏𝒏𝒏 𝑦𝑦
(2),𝑏𝑏𝑏𝑏 ∶=

2
3∆𝑥𝑥

⎝

⎜
⎛

−𝑦𝑦2 0 … 0 0
0 0 0 0
⋮ ⋱ ⋮
0 0 0 0
0 0 … 0 𝑦𝑦𝑁𝑁−1⎠

⎟
⎞

,

 𝐌𝐌𝒏𝒏𝒏𝒏 𝑦𝑦
(1),𝑏𝑏𝑏𝑏 ∶=

1
3

⎝

⎜
⎛

𝑦𝑦2 0 … 0 0
0 0 0 0
⋮ ⋱ ⋮
0 0 0 0
0 0 … 0 𝑦𝑦𝑁𝑁−1⎠

⎟
⎞

.

Discretising the equations with the theta method, as in (4.46), results in

(𝐈𝐈 + ∆𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀)𝑤𝑤𝑗𝑗+1 = (𝐈𝐈 − ∆𝑡𝑡(1 − 𝜃𝜃𝑑𝑑)𝐀𝐀)𝐰𝐰𝑗𝑗 + ∆𝑡𝑡𝐟𝐟𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑀𝑀 − 1

with vector 𝐟𝐟𝑗𝑗, matrix 𝐀𝐀, and initial vector 𝐰𝐰1 = 𝐠𝐠.

Thirdly, the second-order derivative as Neumann boundary conditions is addressed with

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 2. The different quotient for the second derivative is given by

𝑓𝑓′′(𝑥𝑥) =
2𝑓𝑓(𝑥𝑥) − 5𝑓𝑓(𝑥𝑥 ± ∆𝑥𝑥) + 4𝑓𝑓(𝑥𝑥 ± 2∆𝑥𝑥) − 𝑓𝑓(𝑥𝑥 ± 3∆𝑥𝑥)

∆𝑥𝑥2
+ 𝒪𝒪(∆𝑥𝑥2)

with + for the upper boundary and – for the lower boundary. Following the same process

as above leads to the discretisation with vector 𝐟𝐟𝑗𝑗 = 𝐟𝐟�𝑡𝑡𝑗𝑗 + ∆𝑡𝑡𝜃𝜃𝑑𝑑�, and the matrix 𝐀𝐀 and

vector 𝐟𝐟(𝑡𝑡) given by

Finite Difference Method

30

𝐀𝐀 = 𝐌𝐌𝑎𝑎
(2)

𝑛𝑛2 + 𝐌𝐌𝑏𝑏
(1)

𝑛𝑛2 + 𝐌𝐌𝑐𝑐
(0),

𝐟𝐟(𝑡𝑡) = −� 𝐌𝐌𝑎𝑎
(2),𝑏𝑏𝑏𝑏

𝑛𝑛2 + 𝐌𝐌𝑏𝑏
(1),𝑏𝑏𝑏𝑏

𝑛𝑛2 �𝐰𝐰𝑏𝑏𝑏𝑏(𝑡𝑡).

The left subscript 𝑛𝑛2 denotes the second-order Neumann condition with 𝐰𝐰1 = 𝐠𝐠 and the

matrices

𝐌𝐌𝑦𝑦
(2)

𝑛𝑛2 ∶=
1
∆𝑥𝑥2

⎝

⎜
⎜
⎜
⎛

1
2
𝑦𝑦2 −𝑦𝑦2

1
2
𝑦𝑦2

𝑦𝑦3 −2𝑦𝑦3 𝑦𝑦3
⋱ ⋱

𝑦𝑦𝑁𝑁−2 −2𝑦𝑦𝑁𝑁−2 𝑦𝑦𝑁𝑁−2
1
2
𝑦𝑦𝑁𝑁−1 −𝑦𝑦𝑁𝑁−1

1
2
𝑦𝑦𝑁𝑁−1⎠

⎟
⎟
⎟
⎞

,

𝐌𝐌𝑦𝑦
(1)

𝑛𝑛2 ∶=
1

2∆𝑥𝑥

⎝

⎜
⎜
⎜
⎜
⎛
−

5
2
𝑦𝑦2 3𝑦𝑦2 −

1
2
𝑦𝑦2

−𝑦𝑦3 0 𝑦𝑦3
⋱ ⋱

−𝑦𝑦𝑁𝑁−2 0 𝑦𝑦𝑁𝑁−1
1
2
𝑦𝑦𝑁𝑁−1 −3𝑦𝑦𝑁𝑁−1

5
2
𝑦𝑦𝑁𝑁−1⎠

⎟
⎟
⎟
⎟
⎞

,

𝐌𝐌𝒏𝒏𝒏𝒏 𝑦𝑦
(2),𝑏𝑏𝑏𝑏 ∶=

1
2

⎝

⎜
⎛

𝑦𝑦2 0 … 0 0
0 0 0 0
⋮ ⋱ ⋮
0 0 0 0
0 0 … 0 𝑦𝑦𝑁𝑁−1⎠

⎟
⎞

,

 𝐌𝐌𝒏𝒏𝒏𝒏 𝑦𝑦
(1),𝑏𝑏𝑏𝑏 ∶=

∆𝑥𝑥
4

⎝

⎜
⎛

−𝑦𝑦2 0 … 0 0
0 0 0 0
⋮ ⋱ ⋮
0 0 0 0
0 0 … 0 𝑦𝑦𝑁𝑁−1⎠

⎟
⎞

for the second-order Neumann boundary conditions (Hilber, 2023, p. 176-182).

Alternatively, certain differential equations possess intrinsic boundary conditions such as

the Feller condition and no explicit Dirichlet or Neumann boundary conditions must be

defined. For instance, the differential equation with assumed intrinsic boundary

conditions

�
𝜕𝜕𝑡𝑡𝑤𝑤(𝑥𝑥, 𝑡𝑡) + a𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤(𝑥𝑥, 𝑡𝑡) + b𝜕𝜕𝑥𝑥𝑤𝑤(𝑥𝑥, 𝑡𝑡) + c𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 0 in 𝐺𝐺𝑖𝑖 ×]0,𝑇𝑇]

𝑤𝑤(𝑥𝑥, 0) = 𝑔𝑔(𝑥𝑥) in 𝐺𝐺𝑖𝑖

can be discretised in the interval 𝐺𝐺𝑖𝑖 = [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] without further boundary conditions.

The second-order discretisation is performed analogously to the previous discretisation

with the system of equations given by (4.42). The equations of the boundary points are

Finite Difference Method

31

formed with the difference quotients from (4.47) for the first-order derivative and (4.55)

for the second-order derivative. The lower boundary is given by

𝑤𝑤′
1(𝑡𝑡) + 𝑎𝑎(𝑥𝑥1)

−𝑤𝑤4(𝑡𝑡) + 4𝑤𝑤3(𝑡𝑡) − 5𝑤𝑤2(𝑡𝑡) + 2𝑤𝑤1(𝑡𝑡)
∆𝑥𝑥2

+ 𝑏𝑏(𝑠𝑠1)
−𝑤𝑤3(𝑡𝑡) + 4𝑤𝑤2(𝑡𝑡) − 3𝑤𝑤1(𝑡𝑡)

2∆𝑥𝑥
+ 𝑐𝑐(𝑠𝑠1)𝑤𝑤1(𝑡𝑡) = 0

while the upper boundary point is given by

𝑤𝑤′
𝑁𝑁(𝑡𝑡) + 𝑎𝑎(𝑥𝑥𝑁𝑁)

2𝑤𝑤𝑁𝑁(𝑡𝑡) − 5𝑤𝑤𝑁𝑁−1(𝑡𝑡) + 4𝑤𝑤𝑁𝑁−2(𝑡𝑡) − 𝑤𝑤𝑁𝑁−3(𝑡𝑡)
∆𝑥𝑥2

+ 𝑏𝑏(𝑥𝑥𝑛𝑛)
3𝑤𝑤𝑁𝑁(𝑡𝑡) − 4𝑤𝑤𝑁𝑁−1(𝑡𝑡) + 𝑤𝑤𝑁𝑁−2(𝑡𝑡)

2∆𝑥𝑥
+ 𝑐𝑐(𝑥𝑥𝑁𝑁)𝑤𝑤𝑁𝑁(𝑡𝑡) = 0

The resulting system of equations consists of 𝑁𝑁 − 2 intrinsic equation plus two additional

equations for the two boundary points. Thus, 𝑁𝑁 equations are written as

𝐰𝐰′(𝑡𝑡) + 𝐀𝐀𝐀𝐀(𝑡𝑡) = 𝐟𝐟(𝑡𝑡)

with the 𝑁𝑁 × 𝑁𝑁 matrix

𝐀𝐀 = 𝐌𝐌𝑎𝑎
(2)

𝑖𝑖 + 𝐌𝐌𝑏𝑏
(1)

𝑖𝑖 + 𝐌𝐌𝒊𝒊 𝑐𝑐
(0)

with the subscript 𝑖𝑖 denoting the intrinsic boundary condition. The general definition is

𝐌𝐌𝑦𝑦
(2)

𝑖𝑖 ∶=
1
∆𝑥𝑥2

⎝

⎜
⎜
⎜
⎛

2𝑦𝑦1 −5𝑦𝑦1 4𝑦𝑦1 −𝑦𝑦1
𝑦𝑦2 −2𝑦𝑦2 𝑦𝑦2

𝑦𝑦3 −2𝑦𝑦3 𝑦𝑦3
⋱ ⋱

𝑦𝑦𝑁𝑁−1 −2𝑦𝑦𝑁𝑁−1 𝑦𝑦𝑁𝑁−1
−𝑦𝑦𝑁𝑁 4𝑦𝑦𝑁𝑁 −5𝑦𝑦𝑁𝑁 2𝑦𝑦𝑁𝑁 ⎠

⎟
⎟
⎟
⎞

,

𝐌𝐌𝑦𝑦
(1)

𝑖𝑖 ∶=
1

2∆𝑥𝑥

⎝

⎜
⎜
⎜
⎛

−3𝑦𝑦1 4𝑦𝑦1 −𝑦𝑦1
−𝑦𝑦2 0 𝑦𝑦2

−𝑦𝑦3 𝑦𝑦3
⋱ ⋱

−𝑦𝑦𝑁𝑁−1 𝑦𝑦𝑁𝑁−1
𝑦𝑦𝑁𝑁 −4𝑦𝑦𝑁𝑁 3𝑦𝑦𝑁𝑁 ⎠

⎟
⎟
⎟
⎞

,

𝐌𝐌𝒊𝒊 𝑦𝑦
(0) ∶=

⎝

⎜⎜
⎛

𝑦𝑦1
𝑦𝑦2

⋱
𝑦𝑦𝑁𝑁−1

𝑦𝑦𝑁𝑁⎠

⎟⎟
⎞

.

Finite Difference Method

32

The discussed boundary conditions, namely the Dirichlet, Neumann, and intrinsic

boundary conditions, enable the setting of an accurate grid for option pricing. The

different types of boundary conditions can individually be combined to account for

differing characteristics. The equation for interior grid points is identical, while the

equations for the first and last points change depending on the boundary condition. Hence,

the system of differential equations 𝐰𝐰′(𝑡𝑡) + 𝐀𝐀𝐀𝐀(𝑡𝑡) = 𝐟𝐟(𝑡𝑡) only alters for matrix 𝐀𝐀 and

vector 𝐟𝐟(𝑡𝑡) for different boundary conditions (Hilber, 2023, p. 191-194).

4.2. Finite Differences in Two Dimensions

The Feynman-Kac theorem establishes a link between derivative prices as expectation

values with PDEs. This connection is demonstrated by considering the Black-Scholes

differential equation

�
𝜕𝜕𝑡𝑡𝑉𝑉 + 𝒜𝒜𝒜𝒜 − 𝑟𝑟(𝑡𝑡)𝑉𝑉 = −∆𝑡𝑡(𝑠𝑠, 𝑡𝑡) in 𝐺𝐺 × [0,𝑇𝑇[

𝑉𝑉(𝑠𝑠,𝑇𝑇) = 𝑔𝑔(𝑠𝑠) in 𝐺𝐺

with the infinitesimal generator 𝒜𝒜 given by

𝒜𝒜𝒜𝒜 =
1
2
𝜎𝜎(𝑠𝑠, 𝑡𝑡)2𝜕𝜕𝑠𝑠𝑠𝑠𝑓𝑓 + 𝜇𝜇(𝑠𝑠, 𝑡𝑡)𝜕𝜕𝑠𝑠𝑓𝑓.

Consequently, the case is analysed for two processes 𝑆𝑆1(𝑡𝑡) and 𝑆𝑆2(𝑡𝑡), representing two

different stochastic differential equations. The vector of the two processes is

𝐒𝐒(𝑡𝑡) = �𝑆𝑆1
(𝑡𝑡)

𝑆𝑆2(𝑡𝑡)� ∈ 𝐺𝐺 ⊂ ℝ𝑑𝑑

with the corresponding stochastic differential equations for both processes

d𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝜇𝜇𝑖𝑖(𝐒𝐒(𝑡𝑡), 𝑡𝑡)d𝑡𝑡 + �𝜎𝜎𝑖𝑖𝑖𝑖

2

𝑘𝑘=1

(𝐒𝐒(𝑡𝑡), 𝑡𝑡)d𝑊𝑊𝑘𝑘(𝑡𝑡).

The functions 𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖𝑖𝑖, and 𝑊𝑊𝑘𝑘 are compiled with �𝐬𝐬 = (𝑠𝑠1, 𝑠𝑠2)� in

𝛍𝛍(𝐬𝐬, 𝑡𝑡) = �𝜇𝜇1
(𝐬𝐬, 𝑡𝑡)

𝜇𝜇1(𝐬𝐬, 𝑡𝑡)� , 𝛔𝛔(𝐬𝐬, 𝑡𝑡) = �𝜎𝜎11
(𝐬𝐬, 𝑡𝑡) 𝜎𝜎12(𝐬𝐬, 𝑡𝑡)

𝜎𝜎21(𝐬𝐬, 𝑡𝑡) 𝜎𝜎22(𝐬𝐬, 𝑡𝑡)� , 𝐖𝐖(𝑡𝑡) = �𝑊𝑊1(𝑡𝑡)
𝑊𝑊2(𝑡𝑡)�

and can be written as a one-dimensional differential equation

d𝐒𝐒(𝑡𝑡) = 𝛍𝛍(𝐒𝐒(𝑡𝑡), 𝑡𝑡)d𝑡𝑡 + 𝛔𝛔(𝐒𝐒(𝑡𝑡), 𝑡𝑡)d𝐖𝐖(𝑡𝑡).

Finite Difference Method

33

The 2 × 2 covariance matrix 𝐐𝐐 is given by 𝐐𝐐(𝐬𝐬, 𝑡𝑡) = 𝛔𝛔(𝐬𝐬, 𝑡𝑡)𝛔𝛔(𝐬𝐬, 𝑡𝑡)⊤, and the

infinitesimal generator 𝒜𝒜 of the processes is

𝒜𝒜𝒜𝒜 =
1
2

tr[𝐐𝐐(𝐬𝐬, 𝑡𝑡)𝐷𝐷2𝑓𝑓] + 𝛍𝛍(𝐬𝐬, 𝑡𝑡)⊤𝐷𝐷1𝑓𝑓

with “tr” denoting “trace”. Therefore, the trace of a square matrix is the sum of its

diagonal elements. When matrix 𝐀𝐀 = �𝐴𝐴𝑖𝑖𝑖𝑖� is a 𝑑𝑑 × 𝑑𝑑 matrix, then tr[𝐀𝐀] = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑑𝑑
𝑖𝑖=1 . The

first and second-order partial derivatives are compiled in

𝐷𝐷1𝑓𝑓(𝐬𝐬) = �
𝜕𝜕𝑠𝑠1𝑓𝑓(𝐬𝐬)
𝜕𝜕𝑠𝑠2𝑓𝑓(𝐬𝐬)� , 𝐷𝐷2𝑓𝑓(𝐬𝐬) = �

𝜕𝜕𝑠𝑠1𝑠𝑠1𝑓𝑓(𝐬𝐬) 𝜕𝜕𝑠𝑠1𝑠𝑠2𝑓𝑓(𝐬𝐬)
𝜕𝜕𝑠𝑠2𝑠𝑠1𝑓𝑓(𝐬𝐬) 𝜕𝜕𝑠𝑠2𝑠𝑠2𝑓𝑓(𝐬𝐬)�.

The two processes with 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1, 2 are given by

d𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝜇𝜇𝑖𝑖𝑆𝑆𝑖𝑖(𝑡𝑡)d𝑡𝑡 + 𝑆𝑆𝑖𝑖(𝑡𝑡)�𝐿𝐿𝑖𝑖𝑖𝑖𝑑𝑑𝑊𝑊𝑗𝑗(𝑡𝑡)
𝑑𝑑

𝑗𝑗=1

with vector 𝛍𝛍 and matrix 𝛔𝛔

𝛍𝛍(𝐬𝐬) = �
𝜇𝜇1𝑠𝑠1
𝜇𝜇2𝑠𝑠2� , 𝛔𝛔(𝐬𝐬) = �𝑠𝑠1 𝑠𝑠2

� 𝐋𝐋 ∶= diag(𝐬𝐬)𝐋𝐋

with 2 × 2 matrix 𝐋𝐋 = �𝐿𝐿𝑖𝑖𝑖𝑖�. Thus, the covariance matrix 𝐐𝐐 is given by

𝐐𝐐(𝐬𝐬) = 𝛔𝛔(𝐬𝐬)𝛔𝛔(𝐬𝐬)⊤ = diag(𝐬𝐬)𝐋𝐋𝐋𝐋⊤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐬𝐬) = � 𝜎𝜎12𝑠𝑠12 𝜎𝜎12𝑠𝑠1𝑠𝑠2
𝜎𝜎12𝑠𝑠1𝑠𝑠2 𝜎𝜎22𝑠𝑠22

�

with notation 𝜎𝜎𝑖𝑖𝑖𝑖 = (𝐋𝐋𝐋𝐋⊤)𝑖𝑖𝑖𝑖 and 𝜎𝜎𝑖𝑖2 = 𝜎𝜎𝑖𝑖𝑖𝑖 = (𝐋𝐋𝐋𝐋⊤)𝑖𝑖𝑖𝑖. The diagonal elements are

determined by the matrix

𝐐𝐐(𝐬𝐬)𝐷𝐷2𝑓𝑓 = � 𝜎𝜎12𝜎𝜎12 𝜎𝜎12𝑠𝑠1𝑠𝑠2
𝜎𝜎12𝑠𝑠1𝑠𝑠2 𝜎𝜎22𝜎𝜎22

��
𝜕𝜕𝑠𝑠1𝑠𝑠1𝑓𝑓 𝜕𝜕𝑠𝑠1𝑠𝑠2𝑓𝑓
𝜕𝜕𝑠𝑠2𝑠𝑠1𝑓𝑓 𝜕𝜕𝑠𝑠2𝑠𝑠2𝑓𝑓

�.

The trace of the 2 × 2 matrix 𝐐𝐐(𝐬𝐬)𝐷𝐷2𝑓𝑓 is given by

tr[𝐐𝐐(𝐬𝐬)𝐷𝐷2𝑓𝑓] = 𝜎𝜎12𝑠𝑠12𝜕𝜕𝑠𝑠1𝑠𝑠1𝑓𝑓 + 𝜎𝜎12𝑠𝑠1𝑠𝑠2𝜕𝜕𝑠𝑠2𝑠𝑠1𝑓𝑓 + 𝜎𝜎12𝑠𝑠1𝑠𝑠2𝜕𝜕𝑠𝑠1𝑠𝑠2𝑓𝑓 + 𝜎𝜎22𝑠𝑠22𝜕𝜕𝑠𝑠2,𝑠𝑠2𝑓𝑓

and assuming that the order has no influence according to Clairaut’s theorem. Then, the

trace results in

𝛍𝛍(𝐬𝐬)⊤𝐷𝐷1𝑓𝑓 = (𝜇𝜇1𝑠𝑠1 𝜇𝜇2𝑠𝑠2)�
𝜕𝜕𝑠𝑠1𝑓𝑓
𝜕𝜕𝑠𝑠2𝑓𝑓

� = 𝜇𝜇1𝑠𝑠1𝜕𝜕𝑠𝑠1𝑓𝑓 + 𝜇𝜇2𝑠𝑠2𝜕𝜕𝑠𝑠2𝑓𝑓.

Finite Difference Method

34

Thus, the solutions can be compiled to result in the infinitesimal generator 𝒜𝒜

𝒜𝒜𝒜𝒜 =
1
2
𝜎𝜎12𝑠𝑠12𝜕𝜕𝑠𝑠1𝑠𝑠1𝑓𝑓 +

1
2
𝜎𝜎22𝑠𝑠22𝜕𝜕𝑠𝑠2𝑠𝑠2𝑓𝑓 + 𝜎𝜎12𝑠𝑠1𝑠𝑠2𝜕𝜕𝑠𝑠1𝑠𝑠2𝑓𝑓 + 𝜇𝜇1𝑠𝑠1𝜕𝜕𝑠𝑠1𝑓𝑓 + 𝜇𝜇2𝑠𝑠2𝜕𝜕𝑠𝑠2𝑓𝑓

(Hilber, 2023, p. 326-329). Inserting the infinitesimal generator 𝒜𝒜 into the differential

equation and replacing 𝜇𝜇𝑖𝑖 with 𝑟𝑟 − 𝑞𝑞𝑖𝑖 results in

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝑡𝑡𝑉𝑉 +

1
2
𝜎𝜎12𝑠𝑠12𝜕𝜕𝑠𝑠1𝑠𝑠1𝑉𝑉 +

1
2
𝜎𝜎22𝑠𝑠22𝜕𝜕𝑠𝑠2𝑠𝑠2𝑉𝑉 + 𝜎𝜎12𝑠𝑠1𝑠𝑠2𝜕𝜕𝑠𝑠1𝑠𝑠2𝑉𝑉

+(𝑟𝑟 − 𝑞𝑞1)𝑠𝑠1𝜕𝜕𝑠𝑠1𝑉𝑉 + (𝑟𝑟 − 𝑞𝑞2)𝑠𝑠2𝜕𝜕𝑠𝑠2𝑉𝑉 − 𝑟𝑟𝑟𝑟 = 0 in 𝐺𝐺 × [0,𝑇𝑇[

𝑉𝑉(𝑠𝑠1, 𝑠𝑠2,𝑇𝑇) = 𝑔𝑔(𝑠𝑠1, 𝑠𝑠2) in 𝐺𝐺

with grid 𝐺𝐺 =]0,∞[2. The equation is again simplified as in the case (3.12) by introducing

a logarithmic payoff function 𝑠𝑠𝑖𝑖 = ln(𝑠𝑠𝑖𝑖) and substituting function 𝑣𝑣(𝑒𝑒𝑠𝑠1 , 𝑒𝑒𝑠𝑠2 ,𝑇𝑇 − 𝑡𝑡) for

𝑉𝑉(𝑠𝑠1, 𝑠𝑠2, 𝑡𝑡) to write the equation with constant coefficients

�
𝜕𝜕𝑡𝑡𝑣𝑣 + 𝑎𝑎1𝜕𝜕𝑠𝑠1𝑠𝑠1𝑣𝑣 + 𝑎𝑎2𝜕𝜕𝑠𝑠2𝑠𝑠2𝑣𝑣 + 𝑎𝑎3𝜕𝜕𝑠𝑠1𝑠𝑠2𝑣𝑣 + 𝑏𝑏1𝜕𝜕𝑠𝑠1𝑣𝑣 + 𝑏𝑏2𝜕𝜕𝑠𝑠2𝑣𝑣 + 𝑐𝑐𝑐𝑐 = 0 in 𝐺𝐺 ×]0,𝑇𝑇]

𝑣𝑣(𝑠𝑠1, 𝑠𝑠2,𝑇𝑇) = 𝑔𝑔(𝑒𝑒𝑠𝑠1 , 𝑒𝑒𝑠𝑠2) in 𝐺𝐺

with 𝑎𝑎𝑖𝑖 = −1
2
𝜎𝜎𝑖𝑖2,𝑎𝑎3 = −𝜎𝜎12, 𝑏𝑏𝑖𝑖 = 1

2
𝜎𝜎𝑖𝑖2 − 𝑟𝑟 + 𝑞𝑞𝑖𝑖 and 𝑐𝑐 = 𝑟𝑟. Consequently, the index 𝑥𝑥

replaces 𝑠𝑠1 and 𝑦𝑦 replaces 𝑠𝑠2 in the new interval 𝐺𝐺𝑧𝑧 =]𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚[×]𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚[with

suitable boundary conditions (BC). The equation is given by

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜕𝜕𝑡𝑡𝑤𝑤 + 𝑎𝑎1(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤 + 𝑎𝑎2(𝑥𝑥, 𝑦𝑦)𝜕𝜕𝑦𝑦𝑦𝑦𝑤𝑤

+𝑎𝑎3(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤 + 𝑏𝑏1(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑤𝑤

+𝑏𝑏2(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑦𝑦𝑤𝑤 + 𝑐𝑐(𝑥𝑥,𝑦𝑦)𝑤𝑤 = 0 in 𝐺𝐺𝑧𝑧 × [0,𝑇𝑇[

𝐁𝐁𝐁𝐁 in 𝜕𝜕𝐺𝐺𝑧𝑧 × [0,𝑇𝑇[

𝑤𝑤(𝑥𝑥,𝑦𝑦, 0) = 𝑔𝑔(𝑥𝑥,𝑦𝑦) in 𝐺𝐺𝑧𝑧

 (4.48)

with continuous functions 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝑐𝑐 given as the product of univariate functions

𝑎𝑎𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑎𝑎𝑖𝑖𝑥𝑥(𝑥𝑥)𝑎𝑎𝑖𝑖

𝑦𝑦(𝑦𝑦), 𝑏𝑏𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑏𝑏𝑖𝑖𝑥𝑥(𝑥𝑥)𝑏𝑏𝑖𝑖
𝑦𝑦(𝑦𝑦),

𝑐𝑐(𝑥𝑥,𝑦𝑦) = 𝑐𝑐𝑥𝑥(𝑥𝑥)𝑐𝑐𝑦𝑦(𝑦𝑦).
(4.49)

The two variables require a two-dimensional discretisation grid for the calculation of

finite differences. Let ∆𝑥𝑥 and ∆𝑦𝑦 denote the discretisation increments of variables 𝑥𝑥 and

𝑦𝑦. The equidistant grid of 𝑥𝑥 and 𝑦𝑦 is given by

 𝐺𝐺𝑥𝑥,𝑦𝑦 = ��𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗� � 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑥𝑥, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁𝑦𝑦} (4.50)

Finite Difference Method

35

with the minimum values (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚), maximum values (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚), and

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑖𝑖∆𝑥𝑥, ∆𝑥𝑥 =

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑥𝑥 − 1

𝑦𝑦𝑗𝑗 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑗𝑗∆𝑦𝑦, ∆𝑦𝑦 =
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑦𝑦 − 1

in the grid 𝐺𝐺𝑥𝑥,𝑦𝑦 = [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] × [𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚]. While the theoretical solution 𝑤𝑤(𝑥𝑥,𝑦𝑦) is

continuous, the approximations 𝑤𝑤𝑖𝑖,𝑗𝑗 are only defined on the intersections of the grid lines

𝑥𝑥 = 𝑥𝑥𝑖𝑖 and 𝑦𝑦 = 𝑦𝑦𝑗𝑗 forming the node points or centred between the node points in case of

the Crank-Nicolson method with the central difference quotient (Hilber, 2023, p. 332-

334; Seydel, 2017, p. 135-137).

Rewriting the first-order central difference quotient in (4.22) for the two variables and

replacing the function values 𝑤𝑤�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗� by the approximated values 𝑤𝑤𝑖𝑖,𝑗𝑗 with 𝑤𝑤�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗� ≈

𝑤𝑤𝑖𝑖,𝑗𝑗 leads to

 𝜕𝜕𝑥𝑥𝑤𝑤𝑖𝑖,𝑗𝑗 ≈
𝑤𝑤𝑖𝑖+1,𝑗𝑗 − 𝑤𝑤𝑖𝑖−1,𝑗𝑗

2∆𝑥𝑥
 (4.51)

 𝜕𝜕𝑦𝑦𝑤𝑤𝑖𝑖,𝑗𝑗 ≈
𝑤𝑤𝑖𝑖,𝑗𝑗+1 − 𝑤𝑤𝑖𝑖,𝑗𝑗−1

2∆𝑦𝑦
 (4.52)

Figure 4.1: Illustration of a two-dimensional grid 𝐺𝐺𝑥𝑥,𝑦𝑦 with 𝑁𝑁𝑥𝑥 = 6
and 𝑁𝑁𝑦𝑦 = 6, where the values 𝑤𝑤�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� ≈ 𝑤𝑤𝑖𝑖,𝑗𝑗 are approximated at
every node point 𝑤𝑤(𝑥𝑥,𝑦𝑦) in reference to Hilber (2023, p. 334).

Finite Difference Method

36

and rewriting the second-order central difference quotient in (4.24) to

 𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤𝑖𝑖,𝑗𝑗 ≈
𝑤𝑤𝑖𝑖+1,𝑗𝑗 − 2𝑤𝑤𝑖𝑖,𝑗𝑗 + 𝑤𝑤𝑖𝑖−1,𝑗𝑗

∆𝑥𝑥2
 (4.53)

 𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤𝑖𝑖,𝑗𝑗 ≈
𝑤𝑤𝑖𝑖+1,𝑗𝑗+1 − 𝑤𝑤𝑖𝑖+1,𝑗𝑗−1 − 𝑤𝑤𝑖𝑖−1,𝑗𝑗+1 + 𝑤𝑤𝑖𝑖−1,𝑗𝑗−1

4∆𝑥𝑥∆𝑦𝑦
 (4.54)

 𝜕𝜕𝑦𝑦𝑦𝑦𝑤𝑤𝑖𝑖,𝑗𝑗 ≈
𝑤𝑤𝑖𝑖,𝑗𝑗+1 − 2𝑤𝑤𝑖𝑖,𝑗𝑗 + 𝑤𝑤𝑖𝑖,𝑗𝑗−1

∆𝑦𝑦2
 (4.55)

(Rouah, 2015, p. 239-240). To illustrate the principle, the term 𝑎𝑎1(𝑥𝑥, 𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤 of equation

(4.48) is approximated. An arbitrary node point (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) is discretised by

𝑎𝑎1�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗�𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗� ≈
𝑎𝑎1�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗�
∆𝑥𝑥2

�𝑤𝑤𝑖𝑖+1,𝑗𝑗 − 2𝑤𝑤𝑖𝑖,𝑗𝑗 + 𝑤𝑤𝑖𝑖−1,𝑗𝑗�

with index 𝑖𝑖, 𝑖𝑖 = 2, … ,𝑁𝑁𝑥𝑥 − 1 and 𝑗𝑗, 𝑗𝑗 = 2, … ,𝑁𝑁𝑦𝑦 − 1. Thus, (𝑁𝑁𝑥𝑥 − 2)�𝑁𝑁𝑦𝑦 − 2� grid

points are estimated while the boundary points are given. The matrix 𝐌𝐌𝑎𝑎1𝑥𝑥
(2) and the vector

𝐰𝐰2 are introduced and exemplified for the row 𝑗𝑗 = 2 with 𝑎𝑎1,𝑖𝑖
𝑥𝑥 ∶= 𝑎𝑎1𝑥𝑥(𝑥𝑥𝑖𝑖) by

𝐌𝐌𝑎𝑎1𝑥𝑥
(2) =

1
∆𝑥𝑥2

⎝

⎜
⎜
⎛

−2𝑎𝑎1,2
𝑥𝑥 𝑎𝑎1,2

𝑥𝑥

𝑎𝑎1,3
𝑥𝑥 −2𝑎𝑎1,3

𝑥𝑥 𝑎𝑎1,3
𝑥𝑥

⋱
𝑎𝑎1,𝑁𝑁𝑦𝑦−2
𝑥𝑥 −2𝑎𝑎1,𝑁𝑁𝑦𝑦−2

𝑥𝑥 𝑎𝑎1,𝑁𝑁𝑦𝑦−2
𝑥𝑥

𝑎𝑎1,𝑁𝑁𝑦𝑦−1
𝑥𝑥 −2𝑎𝑎1,𝑁𝑁𝑦𝑦−1

𝑥𝑥
⎠

⎟
⎟
⎞

,

 𝐰𝐰2 =

⎝

⎜
⎛

𝑤𝑤2,2
𝑤𝑤3,2
⋮

𝑤𝑤𝑁𝑁𝑥𝑥−2,2
𝑤𝑤𝑁𝑁𝑥𝑥−1,2⎠

⎟
⎞

.

Thus, the terms for row 𝑗𝑗 = 2 are written with 𝑎𝑎1,𝑗𝑗
𝑦𝑦 ∶= 𝑎𝑎1

𝑦𝑦�𝑦𝑦𝑗𝑗� as

𝑎𝑎1,2
𝑦𝑦 𝐌𝐌𝑎𝑎1𝑥𝑥

(2)𝐰𝐰2.

The same procedure for row 𝑗𝑗 = 3 and vector 𝐰𝐰3 = �𝑤𝑤2,3, … ,𝑤𝑤𝑁𝑁𝑥𝑥−1,3�
⊤

 yields in

𝑎𝑎1,3
𝑦𝑦 𝐌𝐌𝑎𝑎1𝑥𝑥

(2)𝐰𝐰3.

Continuing the procedure for the remaining rows and generating the vectors leads to

Finite Difference Method

37

⎝

⎜
⎜
⎜
⎜
⎛
𝑎𝑎1,2
𝑦𝑦 𝐌𝐌𝑎𝑎1𝑥𝑥

(2) 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝑎𝑎1,3
𝑦𝑦 𝐌𝐌𝑎𝑎1𝑥𝑥

(2) 𝟎𝟎 𝟎𝟎 𝟎𝟎
⋱

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝑎𝑎1,𝑁𝑁𝑦𝑦−2
𝑦𝑦 𝐌𝐌𝑎𝑎1𝑥𝑥

(2) 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝑎𝑎1,𝑁𝑁𝑦𝑦−1
𝑦𝑦 𝐌𝐌𝑎𝑎1𝑥𝑥

(2)
⎠

⎟
⎟
⎟
⎟
⎞

, 𝐰𝐰 =

⎝

⎜
⎛

𝐰𝐰2
𝐰𝐰3
⋮

𝐰𝐰𝑁𝑁𝑦𝑦−2
𝐰𝐰𝑁𝑁𝑦𝑦−1⎠

⎟
⎞

with zero matrices 𝟎𝟎. Defining the �𝑁𝑁𝑦𝑦 − 2� × �𝑁𝑁𝑦𝑦 − 2� matrix

𝐌𝐌𝑎𝑎1
𝑦𝑦

(0) =

⎝

⎜⎜
⎜
⎛
𝑎𝑎1,2
𝑦𝑦 0 0 0 0
0 𝑎𝑎1,3

𝑦𝑦 0 0 0
0 0 ⋱ 0 0
0 0 0 𝑎𝑎1,𝑁𝑁𝑦𝑦−2

𝑦𝑦 0

0 0 0 0 𝑎𝑎1,𝑁𝑁𝑦𝑦−2
𝑦𝑦

⎠

⎟⎟
⎟
⎞

enables the multiplication of both matrices as a Kronecker product

𝐌𝐌𝑎𝑎1
𝑦𝑦

(0) ⊗𝐌𝐌𝑎𝑎1𝑥𝑥
(2)

and the terms of the discretisation of 𝑎𝑎1𝑥𝑥(𝑥𝑥)𝑎𝑎1
𝑦𝑦(𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤 can be written as

�𝐌𝐌𝑎𝑎1
𝑦𝑦

(0) ⊗𝐌𝐌𝑎𝑎1𝑥𝑥
(2)�𝐰𝐰.

In addition, the Kronecker product of the discretisation of 𝑎𝑎3(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤 is illustrated with

the node point �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� by

𝑎𝑎3�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗�𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� ≈
𝑎𝑎3𝑥𝑥(𝑥𝑥𝑖𝑖)𝑎𝑎3

𝑦𝑦�𝑦𝑦𝑗𝑗�
4∆𝑥𝑥∆𝑦𝑦

�𝑤𝑤𝑖𝑖+1,𝑗𝑗+1 − 𝑤𝑤𝑖𝑖+1,𝑗𝑗−1 − 𝑤𝑤𝑖𝑖−1,𝑗𝑗+1 + 𝑤𝑤𝑖𝑖−1,𝑗𝑗−1�.

The boundary points are known and the expressions for the interior points of row 𝑗𝑗 = 2

are written as

𝑎𝑎3,2
𝑦𝑦

2∆𝑦𝑦
𝐌𝐌𝑎𝑎3𝑥𝑥

(1)𝐰𝐰3

with matrix 𝐌𝐌𝑎𝑎3𝑥𝑥
(1) given by

𝐌𝐌𝑎𝑎3𝑥𝑥
(1) =

1
2∆𝑦𝑦

⎝

⎜
⎜
⎜
⎛

0 𝑎𝑎3,2
𝑥𝑥 0 0 0 0

−𝑎𝑎3,3
𝑥𝑥 0 𝑎𝑎3,3

𝑥𝑥 0 0 0
0 −𝑎𝑎3,4

𝑥𝑥 0 𝑎𝑎3,4
𝑥𝑥 0 0
⋱

0 0 0 −𝑎𝑎3,𝑁𝑁𝑦𝑦−2
𝑥𝑥 0 𝑎𝑎3,𝑁𝑁𝑦𝑦−2

𝑥𝑥

0 0 0 0 −𝑎𝑎3,𝑁𝑁𝑦𝑦−1
𝑥𝑥 0 ⎠

⎟
⎟
⎟
⎞

.

Finite Difference Method

38

Row 𝑗𝑗 = 3 can be written as

𝑎𝑎3,3
𝑦𝑦

2∆𝑦𝑦
𝐌𝐌𝑎𝑎3𝑥𝑥

(1)(−𝐰𝐰2 + 𝐰𝐰4)

and the same procedure is applied to the subsequent rows. Summarising the terms for all

rows with zero matrices 𝟎𝟎 leads to the matrix

1
2∆𝑦𝑦

⎝

⎜
⎜
⎜
⎜
⎛

𝟎𝟎 𝑎𝑎3,2
𝑦𝑦 𝐌𝐌𝑎𝑎3𝑥𝑥

(1) 𝟎𝟎 𝟎𝟎 𝟎𝟎

−𝑎𝑎3,3
𝑦𝑦 𝐌𝐌𝑎𝑎3𝑥𝑥

(1) 𝟎𝟎 𝑎𝑎3,3
𝑦𝑦 𝐌𝐌𝑎𝑎3𝑥𝑥

(1) 𝟎𝟎 𝟎𝟎
⋱ ⋱

𝟎𝟎 𝟎𝟎 −𝑎𝑎3,𝑁𝑁𝑦𝑦−2
𝑦𝑦 𝐌𝐌𝑎𝑎3𝑥𝑥

(1) 𝟎𝟎 𝑎𝑎3,𝑁𝑁𝑦𝑦−2
𝑦𝑦 𝐌𝐌𝑎𝑎3𝑥𝑥

(1)

𝟎𝟎 𝟎𝟎 𝟎𝟎 −𝑎𝑎3,𝑁𝑁𝑦𝑦−1
𝑦𝑦 𝐌𝐌𝑎𝑎3𝑥𝑥

(1) 𝟎𝟎 ⎠

⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎛

𝐰𝐰2
𝐰𝐰3
⋮

𝐰𝐰𝑁𝑁𝑦𝑦−2
𝐰𝐰𝑁𝑁𝑦𝑦−1⎠

⎟
⎞

.

Consequently, rewriting results in the �𝑁𝑁𝑦𝑦 − 2� × �𝑁𝑁𝑦𝑦 − 2� matrix

𝐌𝐌𝑎𝑎3
𝑦𝑦

(1) =
1

2∆𝑦𝑦

⎝

⎜⎜
⎜
⎛

0 𝑎𝑎3,2
𝑦𝑦 0 0 0

−𝑎𝑎3,3
𝑦𝑦 0 𝑎𝑎3,3

𝑦𝑦 0 0
⋱

0 0 −𝑎𝑎3,𝑁𝑁𝑦𝑦−2
𝑦𝑦 0 𝑎𝑎3,𝑁𝑁𝑦𝑦−2

𝑦𝑦

0 0 0 −𝑎𝑎3,𝑁𝑁𝑦𝑦−1
𝑦𝑦 0 ⎠

⎟⎟
⎟
⎞

and the discretisation of 𝑎𝑎3(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥𝑤𝑤 results in

�𝐌𝐌𝑎𝑎3
𝑦𝑦

(1) ⊗𝐌𝐌𝑎𝑎3𝑥𝑥
(1)�𝐰𝐰.

Applying the same procedure for the remaining terms, the discretisation of the differential

equation (4.48) can be determined on the finite difference grid (4.50).

The coefficients 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, 𝑏𝑏1,𝑏𝑏2, 𝑐𝑐 of equation (4.48) in the form of the product structure

(4.49) can be calculated by the partial derivatives of the matrices

𝑎𝑎1(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥 ⇒ 𝐌𝐌𝑎𝑎1
𝑦𝑦

(0) ⊗𝐌𝐌𝑎𝑎1𝑥𝑥
(2)

𝑎𝑎2(𝑥𝑥, 𝑦𝑦)𝜕𝜕𝑦𝑦𝑦𝑦 ⇒ 𝐌𝐌𝑎𝑎2
𝑦𝑦

(2) ⊗𝐌𝐌𝑎𝑎2𝑥𝑥
(0)

𝑎𝑎3(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥 ⇒ 𝐌𝐌𝑎𝑎3
𝑦𝑦

(1) ⊗𝐌𝐌𝑎𝑎3𝑥𝑥
(1)

𝑏𝑏1(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥 ⇒ 𝐌𝐌𝑏𝑏1
𝑦𝑦

(0) ⊗𝐌𝐌𝑏𝑏1𝑥𝑥
(1)

𝑏𝑏2(𝑥𝑥, 𝑦𝑦)𝜕𝜕𝑦𝑦 ⇒ 𝐌𝐌𝑏𝑏2
𝑦𝑦

(1) ⊗𝐌𝐌𝑏𝑏2𝑥𝑥
(0)

𝑐𝑐(𝑥𝑥,𝑦𝑦) ⇒ 𝐌𝐌𝑐𝑐𝑦𝑦
(0) ⊗𝐌𝐌𝑐𝑐𝑥𝑥

(0).

Finite Difference Method

39

The matrices with respect to 𝑥𝑥 are (𝑁𝑁𝑥𝑥 − 2) × (𝑁𝑁𝑥𝑥 − 2) matrices, and with respect to 𝑦𝑦

are �𝑁𝑁𝑦𝑦 − 2� × �𝑁𝑁𝑦𝑦 − 2� matrices. Thus, the discretisation of the infinitesimal generator

𝒜𝒜 is given by the sum of the Kronecker products

𝐀𝐀 ∶= 𝐌𝐌𝑎𝑎1

𝑦𝑦
(0) ⊗𝐌𝐌𝑎𝑎1𝑥𝑥

(2) + 𝐌𝐌𝑎𝑎2
𝑦𝑦

(2) ⊗𝐌𝐌𝑎𝑎2𝑥𝑥
(0) + 𝐌𝐌𝑎𝑎3

𝑦𝑦
(1) ⊗𝐌𝐌𝑎𝑎3𝑥𝑥

(1) + 𝐌𝐌𝑏𝑏1
𝑦𝑦

(0) ⊗𝐌𝐌𝑏𝑏1𝑥𝑥
(1)

+ 𝐌𝐌𝑏𝑏2
𝑦𝑦

(1) ⊗𝐌𝐌𝑏𝑏2𝑥𝑥
(0) + 𝐌𝐌𝑐𝑐𝑦𝑦

(0) ⊗𝐌𝐌𝑐𝑐𝑥𝑥
(0).

(4.56)

The determination of differential equations for the interior points can be written

analogously to (4.45) as

𝐰𝐰′(𝑡𝑡) + 𝐀𝐀𝐀𝐀(𝑡𝑡) = 𝐟𝐟(𝑡𝑡), 𝒘𝒘(1) = 𝐠𝐠

with vector 𝐟𝐟(𝑡𝑡) dependent on the specified boundary conditions and vector 𝐠𝐠 results from

the payoff function 𝑔𝑔(𝑥𝑥,𝑦𝑦) by

𝐠𝐠 =

⎝

⎜⎜
⎜
⎛

𝑔𝑔(𝑥𝑥2,𝑦𝑦2)
𝑔𝑔(𝑥𝑥3,𝑦𝑦3)

⋮
𝑔𝑔�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗�

⋮
𝑔𝑔�𝑥𝑥𝑁𝑁𝑥𝑥−1,𝑦𝑦𝑁𝑁𝑥𝑥−1�⎠

⎟⎟
⎟
⎞

.

Furthermore, the boundary conditions of the grid (4.50) for the differential equation

(4.48) and the above vector 𝐟𝐟 are given by

BC =

⎩
⎪
⎨

⎪
⎧�ℬ𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦 𝑤𝑤�(𝑥𝑥,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥 (𝑥𝑥, 𝑡𝑡) in]𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚[×]0,𝑇𝑇[

�ℬ𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦 𝑤𝑤�(𝑥𝑥,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 (𝑥𝑥, 𝑡𝑡) in]𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚[×]0,𝑇𝑇[

(ℬ𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 𝑤𝑤)(𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛,𝑦𝑦, 𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦 (𝑥𝑥, 𝑡𝑡) in]𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚[×]0,𝑇𝑇[

(ℬ𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 𝑤𝑤)(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦, 𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦 (𝑥𝑥, 𝑡𝑡) in]𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚[×]0,𝑇𝑇[

with ℬ𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥,𝑦𝑦 𝑤𝑤 indicating a Dirichlet, Neumann or intrinsic boundary condition for each

side of the two-dimensional discretisation grid (Hilber, 2023, p. 334-339).

Implementation

40

5. Implementation

The valuation of lookback options is executed in the Heston volatility model as explained

in Chapter 3.3 and discretised by the finite difference method in two dimensions. First,

the basis of the valuation is provided by the decisive PDE for lookback options in the

Heston model from Leung (2013, p. 146)

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜕𝜕𝑡𝑡𝑉𝑉 +

1
2
𝑣𝑣𝑠𝑠2𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉 +

1
2
𝜎𝜎2𝑣𝑣𝜕𝜕𝑣𝑣𝑣𝑣𝑉𝑉

+𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉 + (𝑟𝑟 − 𝑞𝑞)𝑠𝑠𝜕𝜕𝑠𝑠𝑉𝑉

+𝜅𝜅(𝜃𝜃𝑚𝑚 − 𝑣𝑣)𝜕𝜕𝑣𝑣𝑉𝑉 − 𝑟𝑟𝑟𝑟 = 0 in 𝐺𝐺𝑥𝑥,𝑦𝑦 × [0,𝑇𝑇[

𝜕𝜕𝑠𝑠∗𝑉𝑉(𝑠𝑠, 𝑠𝑠∗, 𝑣𝑣, 𝑡𝑡) = 0 in [0,𝑇𝑇[

𝑉𝑉(𝑠𝑠, 𝑠𝑠∗, 𝑣𝑣,𝑇𝑇) = 𝑓𝑓(𝑠𝑠, 𝑠𝑠∗) in 𝐺𝐺𝑥𝑥,𝑦𝑦

 (5.1)

with the volatility of the variance 𝜎𝜎, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, 𝑠𝑠 > 0, and 𝜔𝜔𝜔𝜔 ≤ 𝑠𝑠∗. The variable 𝑠𝑠∗

represents either 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 for 𝜔𝜔 = −1 or 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 for 𝜔𝜔 = 1. Moreover, the payoff function

𝑓𝑓(𝑠𝑠, 𝑠𝑠∗) is given by

𝑓𝑓(𝑠𝑠, 𝑠𝑠∗) = 𝑠𝑠𝑠𝑠 �ln
𝑠𝑠∗

𝑠𝑠
�

for function g. The dimensions of equation (5.1) are reduced from 4 to 3 by transforming

𝑥𝑥 = ln �𝑠𝑠
∗

𝑠𝑠
� and 𝑈𝑈 = 𝑉𝑉

𝑠𝑠
. First, variable 𝑠𝑠 is multiplied on the left side to yield 𝑠𝑠𝑠𝑠 = 𝑉𝑉.

Thus, the functions are given by

𝑉𝑉(𝑠𝑠, 𝑠𝑠∗, 𝑣𝑣, 𝑡𝑡) = 𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑣𝑣, 𝑡𝑡)

with the variables 𝑠𝑠∗, 𝑠𝑠 being replaced by 𝑥𝑥. The individual terms of equation (5.1) are

transformed by partial derivation, whereby additional derivation rules are applied for the

derivatives of 𝑠𝑠 because of the change in variables. The resulting derivatives are given by

𝜕𝜕𝑡𝑡𝑉𝑉 = 𝑠𝑠𝜕𝜕𝑡𝑡𝑈𝑈

𝜕𝜕𝑠𝑠𝑉𝑉 = 𝑈𝑈 + 𝑠𝑠𝜕𝜕𝑥𝑥𝑈𝑈 ∗
𝑠𝑠
𝑠𝑠∗
∗ (−𝑠𝑠∗) ∗

1
𝑠𝑠2

= 𝑈𝑈 − 𝜕𝜕𝑥𝑥𝑈𝑈

𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉 = 𝜕𝜕𝑥𝑥𝑈𝑈 ∗
𝑠𝑠
𝑠𝑠∗
∗ (−𝑠𝑠∗) ∗

1
𝑠𝑠2
− 𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 ∗

𝑠𝑠
𝑠𝑠∗
∗ (−𝑠𝑠∗) ∗

1
𝑠𝑠2

=
1
𝑠𝑠

(𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 − 𝜕𝜕𝑥𝑥𝑈𝑈)

𝜕𝜕𝑣𝑣𝑉𝑉 = 𝑠𝑠𝜕𝜕𝑣𝑣𝑈𝑈

𝜕𝜕𝑣𝑣𝑣𝑣𝑉𝑉 = 𝑠𝑠𝜕𝜕𝑣𝑣𝑣𝑣𝑈𝑈

𝜕𝜕𝑠𝑠𝑠𝑠𝑉𝑉 = 𝜕𝜕𝑣𝑣𝑈𝑈 − 𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈.

Implementation

41

The transformed equations are given by adding all derivatives to obtain

𝑠𝑠𝜕𝜕𝑡𝑡𝑈𝑈 +
1
2
𝑣𝑣𝑠𝑠2 ∗

1
s

(𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 − 𝜕𝜕𝑥𝑥𝑈𝑈) +
1
2
𝜎𝜎2𝑣𝑣 ∗ 𝑠𝑠𝜕𝜕𝑣𝑣𝑣𝑣𝑈𝑈 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 ∗ (𝜕𝜕𝑣𝑣𝑈𝑈 − 𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈)

+ (𝑟𝑟 − 𝑞𝑞)𝑠𝑠 ∗ (𝑈𝑈 − 𝜕𝜕𝑥𝑥𝑈𝑈) + 𝜅𝜅(𝜃𝜃𝑚𝑚 − 𝑣𝑣) ∗ 𝑠𝑠𝜕𝜕𝑣𝑣𝑈𝑈 − 𝑟𝑟 ∗ 𝑠𝑠𝑠𝑠 = 0

and simplifying the equation by reducing the positive variable 𝑠𝑠 and assorting all partial

derivatives leads to the equation

𝜕𝜕𝑡𝑡𝑈𝑈 +

1
2
𝑣𝑣𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 +

1
2
𝜎𝜎2𝑣𝑣𝜕𝜕𝑣𝑣𝑣𝑣𝑈𝑈 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 − �𝑟𝑟 − 𝑞𝑞 +

𝑣𝑣
2
� 𝜕𝜕𝑥𝑥𝑈𝑈

+ (𝜅𝜅(𝜃𝜃𝑚𝑚 − 𝑣𝑣) + 𝜌𝜌𝜌𝜌𝜌𝜌)𝜕𝜕𝑣𝑣𝑈𝑈 − 𝑞𝑞𝑞𝑞 = 0.
(5.2)

In addition, this transformation removes a further problem. The payoff of lookback

options depends on the maximum for put options and the minimum for call options.

Consequently, only in the case of a put option can 𝑠𝑠∗ be greater than 𝑠𝑠 and only in the

case of a call option can 𝑠𝑠∗ be smaller than 𝑠𝑠. Thus, the variables (𝑠𝑠, 𝑠𝑠∗) are arranged in

a triangle, while the finite difference method requires a quadrilateral area. As shown

above, this problem can be solved by setting 𝑠𝑠∗ and 𝑠𝑠 in proportion and replacing the ratio

with 𝑥𝑥 to result in a quadrilateral area. Hence, the transformation enables the application

of the finite difference method for lookback options.

Figure 5.1: The grid of a Lookback call option with 𝑠𝑠∗ representing the
maximum or minimum process, in reference to Hilber (2023, p. 368).

Implementation

42

Replacing the volatility 𝑣𝑣 = 𝑦𝑦 in equation (5.2) leads to the definitive equation

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝜕𝜕𝑡𝑡𝑈𝑈 +

1
2
𝑦𝑦𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 +

1
2
𝜎𝜎2𝑦𝑦𝜕𝜕𝑦𝑦𝑦𝑦𝑈𝑈

−𝜌𝜌𝜌𝜌𝜌𝜌𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 − �𝑟𝑟 − 𝑞𝑞 +
𝑦𝑦
2
� 𝜕𝜕𝑥𝑥𝑈𝑈

+(𝜅𝜅(𝜃𝜃𝑚𝑚 − 𝑦𝑦) + 𝜌𝜌𝜌𝜌𝜌𝜌)𝜕𝜕𝑦𝑦𝑈𝑈 − 𝑞𝑞𝑞𝑞 = 0 in 𝐺𝐺𝑙𝑙 × [0,𝑇𝑇[

𝜕𝜕𝑥𝑥𝑈𝑈(0,𝑦𝑦, 𝑡𝑡) = 0 in [0,𝑇𝑇[

𝑈𝑈(𝑥𝑥,𝑦𝑦,𝑇𝑇) = 𝑔𝑔(𝑥𝑥) in 𝐺𝐺𝑙𝑙

 (5.3)

Furthermore, equation (5.3) can be rewritten in the form known from (4.48) to enable the

calculation with the introduced concepts and leads to

𝜕𝜕𝑡𝑡𝑈𝑈 + 𝑎𝑎1(𝑥𝑥, 𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 + 𝑎𝑎2(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑦𝑦𝑦𝑦𝑈𝑈 + 𝑎𝑎3(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑥𝑥𝑈𝑈 + 𝑏𝑏1(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑥𝑥𝑈𝑈 + 𝑏𝑏2(𝑥𝑥,𝑦𝑦)𝜕𝜕𝑦𝑦𝑈𝑈

+ 𝑐𝑐(𝑥𝑥,𝑦𝑦)𝑈𝑈 = 0

with its coefficients

𝑎𝑎1(𝑥𝑥, 𝑦𝑦) =
1
2
𝑦𝑦, 𝑎𝑎2(𝑥𝑥,𝑦𝑦) =

1
2
𝜎𝜎2𝑦𝑦, 𝑎𝑎3(𝑥𝑥,𝑦𝑦) = −𝜌𝜌𝜌𝜌𝜌𝜌,

𝑏𝑏1(𝑥𝑥, 𝑦𝑦) = −�𝑟𝑟 − 𝑞𝑞 +
𝑦𝑦
2
� , 𝑏𝑏2(𝑥𝑥,𝑦𝑦) = (𝜅𝜅(𝜃𝜃𝑚𝑚 − 𝑦𝑦) + 𝜌𝜌𝜌𝜌𝜌𝜌),

𝑐𝑐(𝑥𝑥,𝑦𝑦) = −𝑞𝑞.

(5.4)

This form enables the usage of the infinitesimal generator 𝒜𝒜 for discretisation through

the sum of the Kronecker products (4.56).

The two-dimensional grid for lookback options is defined with the two variables 𝑥𝑥 and 𝑦𝑦

and their corresponding increments ∆𝑥𝑥 and ∆𝑦𝑦. The equidistant grid is given by

 𝐺𝐺𝑙𝑙 = ��𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗� � 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑥𝑥, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁𝑦𝑦} (5.5)

with the minimum values (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚), the maximum values (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚), and

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑖𝑖∆𝑥𝑥, ∆𝑥𝑥 =

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑥𝑥

𝑦𝑦𝑗𝑗 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑗𝑗∆𝑦𝑦, ∆𝑦𝑦 =
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑦𝑦

in the grid 𝐺𝐺𝑙𝑙 = [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] × [𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚]. Moreover, the boundary conditions for

lookback options are defined. The value of variable 𝑥𝑥 is the natural logarithm of the ratio

between the minimum or maximum of the asset price and the asset price itself.

Implementation

43

Hence, variable 𝑥𝑥 takes negative values for ratios with 𝑆𝑆∗ < 𝑆𝑆 and positive values for

𝑆𝑆∗ > 𝑆𝑆. Therefore, the lower and upper boundary conditions of 𝑥𝑥 are defined as Neumann

boundary conditions with the first derivative equal to zero. The lower boundary for 𝑦𝑦 is

given by the intrinsic boundary condition of the Heston model. The introduced Feller

condition at the end of Chapter 3.3 reassures that the volatility is positive as long as the

Feller condition is satisfied. Hence, the stochastic term is inapplicable when the variance

touches zero, and the deterministic term increases the value, thus bringing the variance

back into positive terrain. Otherwise, the volatility can assume zero value if the Feller

condition is not satisfied (Austing, 2014, p. 80-82). Supplementary, Ekström and Tysk

(2010, p. 499-503) validate that the volatility equals zero even if the Feller condition is

not satisfied. The upper boundary for the volatility y is defined as Neumann boundary

conditions with the first derivative equal to zero.

⎩
⎪
⎨

⎪
⎧
𝜕𝜕𝑥𝑥𝑈𝑈(0,𝑦𝑦, 𝑡𝑡) = 0

𝜕𝜕𝑥𝑥𝑈𝑈(∞,𝑦𝑦,𝑇𝑇) = 0

𝑈𝑈(𝑥𝑥, 0, 𝑡𝑡) → 𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐵𝐵𝐵𝐵

𝜕𝜕𝑦𝑦𝑈𝑈(𝑥𝑥,∞, 𝑡𝑡) = 0

 (5.6)

5.1. Application in Python

The valuation of lookback options is performed in the programming language Python,

which enables the calculation of complex routines with a short processing time. The

approximation of equation (5.3) first requires the creation of applicable matrices,

including the boundary conditions. For this purpose, the matrixgenerator_BC.py routine

of Hilber (2023, p. 183-185) is utilised to generate the matrices (4.31) with the boundary

matrices dependent on the selected boundary conditions covered in Chapter 4.1.4.

Secondly, the pde_2d_ah_theta.py routine of Hilber (2023, p. 341) is applied to

approximate the solution PDE with the form of (4.48). The pricing formula of lookback

options with the corresponding equation is deduced in the previous intercept and must be

adapted for the routine. The first adaption is the change from time 𝑡𝑡 to the term of maturity

𝜏𝜏 = 𝑇𝑇 − 𝑡𝑡 in the terms (5.4). Thus, applying the chain rule as shown in (3.10) results in

the change of signs 𝜕𝜕𝜏𝜏𝑣𝑣 = −𝜕𝜕𝑡𝑡𝑉𝑉 and the term of maturity is redefined as 𝑡𝑡 for simplicity.

Implementation

44

The new terms with changed signs are given by

𝑎𝑎1(𝑥𝑥, 𝑦𝑦) = −
1
2
𝑦𝑦, 𝑎𝑎2(𝑥𝑥,𝑦𝑦) = −

1
2
𝜎𝜎2𝑦𝑦, 𝑎𝑎3(𝑥𝑥,𝑦𝑦) = 𝜌𝜌𝜌𝜌𝜌𝜌,

𝑏𝑏1(𝑥𝑥, 𝑦𝑦) = 𝑟𝑟 − 𝑞𝑞 +
𝑦𝑦
2

, 𝑏𝑏2(𝑥𝑥, 𝑦𝑦) = −(𝜅𝜅(𝜃𝜃𝑚𝑚 − 𝑦𝑦) + 𝜌𝜌𝜌𝜌𝜌𝜌),

𝑐𝑐(𝑥𝑥,𝑦𝑦) = 𝑞𝑞.

(5.7)

Furthermore, the continuous functions 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝑐𝑐 are transformed into products of

univariate functions. This transformation is executed by separating the terms dependent

on 𝑥𝑥 and 𝑦𝑦. For technical purposes, the function is defined as the variable to the power of

0 if a variable is not present in a term. Finally, the 12 functions are defined via the lambda

function in Python and assigned to the variables 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐:

1 a = [lambda x: x**0, lambda y: -0.5*y,
2 lambda x: x**0, lambda y: -0.5*sigma**2*y,
3 lambda x: x**0, lambda y: rho*sigma*y]
4 b = [lambda x: x**0, lambda y: (r-q+0.5*y),
5 lambda x: x**0, lambda y: -(kappa*(theta_m-y)+rho*sigma*y)]
6 c = [lambda x: q*x**0, lambda y: y**0]

Moreover, the boundary conditions, as defined in (5.6), are adapted for the routine. The

list of boundary conditions is defined as

𝐁𝐁𝐁𝐁 = �𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 ,𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 ,𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦 ,𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦 �

with 𝑛𝑛 ∈ {0, 1, 2, 3} representative for Dirichlet, Neumann first-order, Neumann second-

order or intrinsic boundary condition (Hilber, 2023, p. 340). Therefore, the list with the

defined boundary conditions for lookback options is given by

𝐁𝐁𝐁𝐁 = [1, 1, 3, 1].

The payoff function defined by Leung (2013, p. 146-148) must satisfy the linear

homogeneous property to apply to the formula in (5.1). Floating lookback options fulfil

the linear homogeneous property, while fixed lookback options do not satisfy the

property. Thus, the discretisation can only be conducted for floating lookback options.

Due to the reduction of the dimension to 𝑥𝑥, the new initial payoff function is given for the

floating put option with 𝑥𝑥 = ln �𝑠𝑠
∗

𝑠𝑠
� by

𝑓𝑓(𝑠𝑠, 𝑠𝑠∗) = 𝑠𝑠(𝑒𝑒𝑥𝑥 − 1).

In addition, the transformation in (5.2) from four to three variables with 𝑈𝑈 = 𝑉𝑉
𝑠𝑠
 is

conducted with the 𝑠𝑠 being omitted. Moreover, 𝜔𝜔 is integrated to allow the discretisation

Implementation

45

of put options with 𝜔𝜔 = 1 and call options with 𝜔𝜔 = −1 through the same function. The

calculation of partial lookback options is enabled by inserting 𝜆𝜆 into the payoff function

to receive

𝑓𝑓(𝑠𝑠, 𝑠𝑠∗) = 𝜔𝜔(𝜆𝜆𝑒𝑒𝑥𝑥 − 1).

The matrices, the boundary conditions, and the payoff function remain defined for

different types of lookback options and are not dependent on individual values. The finite

difference grid 𝐺𝐺𝑥𝑥,𝑦𝑦 is defined by the list of boundaries in

𝐆𝐆 = [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚]

with the number of grid points 𝐍𝐍 = �𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦� relating to the x- and y-axis as well as the

number of time steps 𝑀𝑀. The initial x-values for the grid are 𝐆𝐆 = [0, 3, 0.0, 0.8] for put

options and 𝐆𝐆 = [−3, 0, 0.0, 0.8] for call options due to the domain, evident in Figure 5.1.

The grid values can be adjusted, and the number of grid points must be defined

independently for each input.

Further inputs for solving the routine are determined through a Heston model calibration.

They are the continuous risk-free interest rate 𝑟𝑟, the continuous dividend yield 𝑞𝑞, the term

of maturity 𝑇𝑇, the instantaneous variance 𝑣𝑣, the volatility of the instantaneous variance 𝜎𝜎,

the correlation 𝜌𝜌, the mean reversion speed of the variance 𝜅𝜅, the mean reversion level of

the variance 𝜃𝜃𝑚𝑚, and the initial stock price 𝑆𝑆0. The Greek letter 𝜃𝜃 represents the parameter

of the theta method and the model parameter of lookback options for the mean reversion

level. These two parameters are distinguished by denominating the discretisation

parameter theta_d and denominating the model parameter theta_m. The strike price 𝐾𝐾

is only required for the calculation of fixed lookback call options, while 𝜔𝜔 ∈ {−1, 1} is

required to define the type of lookback option and represent either 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚. The

parameter 𝜆𝜆 denoted l can be defined for partial lookback options with 𝜆𝜆 ≥ 1 for call and

0 < 𝜆𝜆 ≤ 1 for put options.

Implementation

46

5.2. Interpolation and Put-Call Parity

The price of floating lookback options can be calculated after all inputs have been

determined and the routine has generated the three matrices 𝐱𝐱, 𝐲𝐲, and 𝐰𝐰. Matrix 𝐱𝐱 contains

all grid points related to variable 𝑥𝑥, matrix 𝐲𝐲 contains all grid points related to variable 𝑦𝑦,

and matrix 𝐰𝐰 contains all option prices at the individual grid points. The calculation of

continuous values within the grid is enabled by interpolating the matrices and generating

a surface representing the option values. Thus, a value can not only be defined at the node

points but also in between the node points for each coordinate. The interpolation in Python

is executed by the function interpn of the NumPy library with the method “pchip”,

which conducts cubic interpolation at every node point and preserves the shape of the

arrangement. The option value would be defined at the lower edge of the grid, but the

grid is limited by the Neumann boundary condition of the first-order at the lower

boundary of x. Thus, the grid points required for the valuation of the price are outside the

grid. This problem can be solved by setting the bounds_error=False and

fill_value=None in the interpn function. Setting bounds_error to “False” activates

fill_value, which extrapolates the values outside the grid for “None”. Consequently,

the function will estimate the node point outside the grid by employing the pchip method.

Figure 5.2: Option prices of floating strike lookback put options.

Implementation

47

The option value is calculated at specific coordinates, which are dependent on the

calibrated parameters. The x-coordinate is indirectly defined by Leung (2013, p. 148) in

the put-call parity. In the parity, the floating lookback put option depends on the time 𝑡𝑡,

the asset price at time 𝑡𝑡 denoted 𝑆𝑆, and the maximum of 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 or strike 𝐾𝐾. Thus, the

maximum of 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 or 𝐾𝐾 replaces 𝑆𝑆∗ in 𝑥𝑥 = ln �𝑠𝑠
∗

𝑠𝑠
�. Therefore, 𝑥𝑥 is given by

𝑥𝑥 = ln�
𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾)

𝑆𝑆
� = ln �𝑚𝑚𝑚𝑚𝑚𝑚 �

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

,
𝐾𝐾
𝑆𝑆
�� ,

given that 𝑆𝑆0 > 0. Moreover, the maximum achieved asset price 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 and the current

asset price 𝑆𝑆 are equal to the initial asset price 𝑆𝑆0 at the valuation date since the term has

not started and there is no recorded lookback period yet. Consequently, the variables are

replaced and transformed as follows.

𝑥𝑥 = ln (max �
𝑆𝑆0
𝑆𝑆0

,
𝐾𝐾
𝑆𝑆0
�

𝑥𝑥 = ln (max �1,
𝐾𝐾
𝑆𝑆0
�

𝑥𝑥 = max �0, 𝑙𝑙𝑙𝑙 �
𝐾𝐾
𝑆𝑆0
��

The y-coordinate is defined by the initial instantaneous variance 𝑣𝑣 given by the calibrated

parameter. Thus, the coordinates for the determination of the price are given by

�max �0, 𝑙𝑙𝑙𝑙 �
𝐾𝐾
𝑆𝑆0
�� , 𝑣𝑣�.

The payoff function of the PDE for lookback options in (5.1) satisfies the linear

homogeneous property only for floating lookback options. Consequently, the price of the

fixed lookback option must be obtained by different means. Leung (2013, p. 148) presents

in his paper a put-call parity relation for lookback options, which enables a fast and

efficient calculation of fixed lookback call options. The option price is received by the

price of the floating lookback put option and a so-called replenishing premium and is

given by

𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡, 𝑆𝑆, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾) = 𝑃𝑃𝑓𝑓𝑓𝑓(𝑡𝑡, 𝑆𝑆, max(𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾)) + 𝑆𝑆𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡) − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡).

The parity for fixed lookback put options is dependent on the price of the floating

lookback call option and is defined by Wong and Kwok (2003, p. 89) as

𝐶𝐶𝑓𝑓𝑓𝑓(𝑡𝑡, 𝑆𝑆, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑆𝑆 − 𝑒𝑒−(𝑟𝑟−𝑞𝑞)(𝑇𝑇−𝑡𝑡)𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡, 𝑆𝑆, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚)

Implementation

48

and can be transposed to

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡, 𝑆𝑆, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚) = 𝐶𝐶𝑓𝑓𝑓𝑓(𝑡𝑡, 𝑆𝑆, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑆𝑆 + 𝑒𝑒−(𝑟𝑟−𝑞𝑞)(𝑇𝑇−𝑡𝑡)𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

with the current asset price 𝑆𝑆. It should be noted that no strike occurs in the put-call parity

for fixed lookback put options. Hence, implementing the interpolation and the put-call

parity in Python yields:

01: from scipy.interpolate import interpn
02:
03: if omega == -1:
04: C_fl = interpn((x[:,0],y[0,:]), w*s0, (np.maximum(np.log(K/s0),0), v),
05: method='pchip', bounds_error=False, fill_value=None);
06: print('floating Call:', C_fl)
07: P_fix = C_fl-s0+np.exp(-(r-q)*T)*s0; print('fixed Put:', P_fix)
08: elif omega == 1:
09: P_fl = interpn((x[:,0],y[0,:]), w*s0, (np.maximum(np.log(K/s0),0), v),
10: method='pchip', bounds_error=False, fill_value=None);
11: print('floating Put:', P_fl)
12: C_fix = P_fl+s0*np.exp(-q*T)-K*np.exp(-r*T); print('fixed Call:', C_fix)
13: else:
14: print('Wrong value for Omega, enter -1 for call or 1 for put options.')

5.3. Craig-Sneyd Method

The calculation of option prices with the finite difference method shown in Chapter 5.1

requires considerable computation power due to large-dimensioned matrices. Especially

the case of tiny ∆𝑥𝑥 and ∆𝑦𝑦 leads to a considerable computation time and can exhaust the

capacity of the computation device. To address this limitation, Craig and Sneyd (1988, p.

341-349) published an implicit method to execute iterative methods in less time with

second-order accuracy and unconditional stability for two and three-dimensional

problems. Furthermore, the method takes advantage of the tridiagonal matrix structure,

allowing specialised algorithms to compute the result considerably faster. For example, a

tridiagonal matrix 𝐌𝐌𝑖𝑖,𝑗𝑗 has elements 𝐌𝐌𝑖𝑖,𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 if |𝑖𝑖 − 𝑗𝑗| ≤ 1 and 𝐌𝐌𝑖𝑖,𝑗𝑗 = 0 if

|𝑖𝑖 − 𝑗𝑗| > 1.

𝐌𝐌 =

⎝

⎜
⎜
⎜
⎜
⎛

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23

𝑎𝑎32 𝑎𝑎33 𝑎𝑎34
⋱

𝑎𝑎𝑖𝑖−1,𝑗𝑗−2 𝑎𝑎𝑖𝑖−1,𝑗𝑗−1 𝑎𝑎𝑖𝑖−1,𝑗𝑗

𝑎𝑎𝑖𝑖,𝑗𝑗−1 𝑎𝑎𝑖𝑖𝑖𝑖 ⎠

⎟
⎟
⎟
⎟
⎞

Implementation

49

The characteristic of tridiagonal matrices implies that every element is zero except the

main diagonal and the diagonals immediately above and below the main diagonal. Hence,

the algorithm can ignore all zero elements and only consider the non-zero elements,

resulting in an accelerated calculation. The software Python provides efficient algorithms

such as the tridiagonal solver in the SciPy library and solves tridiagonal matrices faster

than ordinary matrices due to the particular structure.

Subsequently, the Craig-Sneyd method requires all matrices in the two-dimensional case

to be tridiagonal. The infinitesimal generator 𝒜𝒜 from (4.56) exhibits the matrices

𝐀𝐀 ∶= 𝐌𝐌𝑎𝑎1
𝑦𝑦

(0) ⊗𝐌𝐌𝑎𝑎1𝑥𝑥
(2) + 𝐌𝐌𝑎𝑎2

𝑦𝑦
(2) ⊗𝐌𝐌𝑎𝑎2𝑥𝑥

(0) + 𝐌𝐌𝑎𝑎3
𝑦𝑦

(1) ⊗𝐌𝐌𝑎𝑎3𝑥𝑥
(1) + 𝐌𝐌𝑏𝑏1

𝑦𝑦
(0) ⊗𝐌𝐌𝑏𝑏1𝑥𝑥

(1) + 𝐌𝐌𝑏𝑏2
𝑦𝑦

(1) ⊗𝐌𝐌𝑏𝑏2𝑥𝑥
(0)

+ 𝐌𝐌𝑐𝑐𝑦𝑦
(0) ⊗𝐌𝐌𝑐𝑐𝑥𝑥

(0)

with the tridiagonal matrices 𝐌𝐌𝑎𝑎1
𝑦𝑦

(0) ⊗𝐌𝐌𝑎𝑎1𝑥𝑥
(2),𝐌𝐌𝑏𝑏1

𝑦𝑦
(0) ⊗𝐌𝐌𝑏𝑏1𝑥𝑥

(1), and 𝐌𝐌𝑐𝑐𝑦𝑦
(0) ⊗𝐌𝐌𝑐𝑐𝑥𝑥

(0). These

matrices result from the discretisation of the variable x or the residual term, while the

matrices 𝐌𝐌𝑎𝑎2
𝑦𝑦

(2) ⊗𝐌𝐌𝑎𝑎2𝑥𝑥
(0) and 𝐌𝐌𝑏𝑏2

𝑦𝑦
(1) ⊗𝐌𝐌𝑏𝑏2𝑥𝑥

(0) resulting from variable y are not tridiagonal but

can be transformed into tridiagonal matrices. Only the matrix 𝐌𝐌𝑎𝑎3
𝑦𝑦

(1) ⊗𝐌𝐌𝑎𝑎3𝑥𝑥
(1) originating

from the mixed derivation of variables x and y cannot be transformed into a tridiagonal

matrix. The matrices are regrouped to enable the accelerated calculation and are written

as a sum

𝐀𝐀 = 𝐀𝐀1 + 𝐀𝐀2 + 𝐀𝐀0

with the summands

𝐀𝐀1 = 𝐌𝐌𝑎𝑎1
𝑦𝑦

(0) ⊗𝐌𝐌𝑎𝑎1𝑥𝑥
(2) + 𝐌𝐌𝑏𝑏1

𝑦𝑦
(0) ⊗𝐌𝐌𝑏𝑏1𝑥𝑥

(1) +
1
2
𝐌𝐌𝑐𝑐𝑦𝑦

(0) ⊗𝐌𝐌𝑐𝑐𝑥𝑥
(0)

𝐀𝐀2 = 𝐌𝐌𝑎𝑎2
𝑦𝑦

(2) ⊗𝐌𝐌𝑎𝑎2𝑥𝑥
(0) + 𝐌𝐌𝑏𝑏2

𝑦𝑦
(1) ⊗𝐌𝐌𝑏𝑏2𝑥𝑥

(0) +
1
2
𝐌𝐌𝑐𝑐𝑦𝑦

(0) ⊗𝐌𝐌𝑐𝑐𝑥𝑥
(0)

𝐀𝐀0 = 𝐌𝐌𝑎𝑎3
𝑦𝑦

(1) ⊗𝐌𝐌𝑎𝑎3𝑥𝑥
(1).

The Craig-Sneyd schema starts by conducting the explicit Euler’s method (𝜃𝜃𝑑𝑑 = 0) of

(4.38) on the matrices 𝐀𝐀1 and 𝐀𝐀2. The application of the explicit method in the direction

of the x-coordinate for matrix 𝐀𝐀1 yields

𝐰𝐰𝑗𝑗+1 − 𝐰𝐰𝑗𝑗
∆𝑡𝑡

+ 𝜃𝜃𝑑𝑑𝐀𝐀1𝐰𝐰𝑗𝑗+1 + (1 − 𝜃𝜃𝑑𝑑)𝐀𝐀1𝐰𝐰𝑗𝑗 + (𝐀𝐀2 + 𝐀𝐀0)𝐰𝐰𝑗𝑗 = 0

and rewriting results in

Implementation

50

 (𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀1)𝐰𝐰𝑗𝑗+1 = (𝐈𝐈 − Δ𝑡𝑡(1 − 𝜃𝜃𝑑𝑑)𝐀𝐀1 − Δ𝑡𝑡𝐀𝐀2 − Δ𝑡𝑡𝐀𝐀0)𝐰𝐰𝑗𝑗 (5.8)

with the now tridiagonal matrix 𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀1. The same procedure can be conducted in

the direction of the y-coordinate with

 (𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀2)𝐰𝐰𝑗𝑗+1 = (𝐈𝐈 − Δ𝑡𝑡𝐀𝐀1 − Δ𝑡𝑡(1 − 𝜃𝜃𝑑𝑑)𝐀𝐀2 − Δ𝑡𝑡𝐀𝐀0)𝐰𝐰𝑗𝑗. (5.9)

First, the result for the explicit Euler’s method is defined by 𝐲𝐲0 through

𝐲𝐲0 = (𝐈𝐈 + Δ𝑡𝑡𝐀𝐀)𝐰𝐰𝑗𝑗

and the system of equations (5.8) and (5.9) can be combined. Solving implicitly in the

direction of the x-coordinate returns

(𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀1)𝐲𝐲1 = 𝐲𝐲0 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀1𝐰𝐰𝑗𝑗

with 𝐲𝐲1 corresponding to 𝐰𝐰𝑗𝑗+1 of (5.8). After receiving 𝐲𝐲1 from above, solving in the

direction of the y-coordinate yields

(𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀2)𝐲𝐲2 = 𝐲𝐲1 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀2𝐰𝐰𝑗𝑗.

Moreover, instead of replacing 𝐰𝐰𝑗𝑗+1 with 𝐲𝐲2 to solve the system of equations in the

direction of the y-coordinate, the auxiliary vector 𝐳𝐳0 is defined and given by

𝐳𝐳0 = 𝐲𝐲0 −
1
2
Δ𝑡𝑡𝐀𝐀0�𝐲𝐲2 − 𝐰𝐰𝑗𝑗�.

Repeating the steps above and inserting 𝐳𝐳0 into the system of equations results in

(𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀1)𝐳𝐳1 = 𝐳𝐳0 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀1𝐰𝐰𝑗𝑗,

(𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀2)𝐳𝐳2 = 𝐳𝐳1 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀2𝐰𝐰𝑗𝑗 .

Determining 𝐰𝐰𝑗𝑗+1 = 𝐳𝐳2 and compiling all equations results in the Craig-Sneyd schema

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐲𝐲0 = (𝐈𝐈 + Δ𝑡𝑡𝐀𝐀)𝐰𝐰𝑗𝑗
(𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀𝑖𝑖)𝐲𝐲𝑖𝑖 = 𝐲𝐲𝑖𝑖−1 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀𝑖𝑖𝐰𝐰𝑗𝑗 𝑖𝑖 = 1, … ,𝑑𝑑

𝐳𝐳0 = 𝐲𝐲0 −
1
2
Δ𝑡𝑡𝐀𝐀0�𝐲𝐲𝑑𝑑 −𝐰𝐰𝑗𝑗�

(𝐈𝐈 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀𝑖𝑖)𝐳𝐳𝑖𝑖 = 𝐳𝐳𝑖𝑖−1 + Δ𝑡𝑡𝜃𝜃𝑑𝑑𝐀𝐀𝑖𝑖𝐰𝐰𝑗𝑗 𝑖𝑖 = 1, … ,𝑑𝑑
𝐰𝐰𝑗𝑗+1 = 𝐳𝐳𝑑𝑑

with 𝐰𝐰0 = 𝐠𝐠 and 𝑗𝑗 = 0, … ,𝑀𝑀 − 1. After deriving the schema, the matrix 𝐀𝐀2 must be

transformed into a tridiagonal matrix to enable the fast solving of systems of equations.

Therefore, a permutation matrix is used, and the transformation is illustrated in the

Implementation

51

following example. Two matrices 𝐗𝐗 ∈ ℝ𝑛𝑛×𝑛𝑛 and 𝐘𝐘 ∈ ℝ𝑚𝑚×𝑚𝑚 are defined. Given the two

matrices, the matrix 𝐏𝐏𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 exists with 𝐏𝐏⊤𝐏𝐏 = 𝐏𝐏𝐏𝐏⊤ = 𝐈𝐈 and is valid for

𝐗𝐗⊗ 𝐘𝐘 = 𝐏𝐏(𝐘𝐘⊗ 𝐗𝐗)𝐏𝐏⊤.

Assuming the matrix 𝐗𝐗⊗ 𝐘𝐘 to be not tridiagonal, while the matrix 𝐘𝐘⊗ 𝐗𝐗 is tridiagonal.

Then the tridiagonal matrix can be received by solving the system (𝐗𝐗⊗ 𝐘𝐘)𝐱𝐱 = 𝐟𝐟 as

follows

(𝐗𝐗⊗ 𝐘𝐘)𝐱𝐱 = 𝐟𝐟

𝐏𝐏(𝐘𝐘⊗ 𝐗𝐗)𝐏𝐏⊤𝐱𝐱�
𝐱𝐱�

= 𝐟𝐟

𝐏𝐏⊤𝐏𝐏�
𝐈𝐈

(𝐘𝐘⊗ 𝐗𝐗)𝐱𝐱� = 𝐏𝐏⊤𝐟𝐟�
𝐟𝐟

(𝐘𝐘⊗ 𝐗𝐗)𝐱𝐱� = 𝐟𝐟

The original solution 𝐱𝐱 results from 𝐱𝐱� = 𝐏𝐏⊤𝐱𝐱 and its multiplication with 𝐏𝐏 to receive 𝐏𝐏𝐱𝐱� =

𝐱𝐱. Thus, the not tridiagonal system (𝐗𝐗⊗ 𝐘𝐘)𝐱𝐱 = 𝐟𝐟 can be solved by the tridiagonal

systems (𝐘𝐘⊗ 𝐗𝐗)𝐱𝐱� = 𝐟𝐟 with the multiplications 𝐟𝐟 = 𝐏𝐏⊤𝐟𝐟 and 𝐏𝐏𝐱𝐱� = 𝐱𝐱. This transformation

allows for shortened processing times, and the matrix 𝐏𝐏 is defined for two matrices 𝐗𝐗 ∈

ℝ𝑛𝑛×𝑛𝑛 and 𝐘𝐘 ∈ ℝ𝑚𝑚×𝑚𝑚 as

𝐏𝐏 = �

𝐈𝐈𝑛𝑛 ⊗ 𝟏𝟏1𝑚𝑚⊤

𝐈𝐈𝑛𝑛 ⊗ 𝟏𝟏2𝑚𝑚⊤
⋮

𝐈𝐈𝑛𝑛 ⊗ 𝟏𝟏𝑚𝑚𝑚𝑚⊤
�

with the 𝑥𝑥 × 𝑛𝑛 identity matrix 𝐈𝐈𝑛𝑛 and the column vector 𝟏𝟏𝑗𝑗𝑗𝑗 of length 𝑚𝑚 with input 1 at

the 𝑗𝑗th element and other elements with input 0. The Craig-Sneyd method is

unconditionally stable for 𝜃𝜃𝑑𝑑 ≥
1
2
 and converges quadratically in Δ𝑡𝑡. The examined

methods are implemented in the get_diagonals.py and perm_matrix.py routines and

enable the accelerated discretisation of option prices in the routine pde_2d_ah_cs.py

(Hilber, 2023, p. 345-350).

The difference in processing time is subsequently illustrated by utilising the model

parameters of set A from De Gennaro Aquino & Bernard (2019, p. 738) for fixed

lookback call options. The model inputs remain unchanged while the number of grid

points 𝐍𝐍 = �𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦� and the number of time steps 𝑀𝑀 changes.

Implementation

52

 Theta method 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 Craig-Sneyd 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶

𝐍𝐍 𝑀𝑀 = 40 𝑀𝑀 = 100 𝑀𝑀 = 40 𝑀𝑀 = 100

2’500 0.40591 0.90757 0.07579 0.11668

10’000 2.36468 5.65787 0.17054 0.31715

250’000 152.27192 375.81132 4.31346 9.07174

1’000’000 1’042.99178 2’580.68735 17.77248 37.78199

Table 5.1: The processing time 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 in seconds for the discretisation with 𝑵𝑵 grid points
for the theta and Craig-Sneyd method by the Python function time.time().

The table illustrates the significant reduction of processing time for discretising lookback

options in the Craig-Sneyd scheme. Furthermore, a technical error for large matrices in

the theta method can occur when the discretisation is too extensive for the device to

process. This limitation is considerably shifted outwards with the Craig-Sneyd method

and enables the stable calculation of larger matrices with second-order accuracy.

Implementation

53

5.4. Graphical User Interface

A graphical user interface (GUI) was created with the tkinter library in Python to enable

a user-friendly operation of the model. This allows the user to efficiently enter the

required inputs without searching for the individual variables in the code. The execution

of the GUI_lookback_option.py code opens an additional window, as illustrated below.

First, the type of lookback option can be selected from the dropdown menu with the four

options of floating and fixed, call and put lookback options. Secondly, the user can select

whether the inputs are calibrated for a partial lookback option in a dropdown menu. An

input box on the right side of the dropdown menu is activated if “Yes” is selected.

Otherwise, the box stays deactivated, and the default value 𝜆𝜆 = 1 is automatically

defined. Furthermore, all other required inputs can be entered in the corresponding input

field to the right. An error message automatically occurs when no option in the dropdown

menu is chosen, or a value is not entered. Subsequently, the “Discretise option price”

button can be clicked, and the routine is executed to evaluate the option price. Moreover,

the button is deactivated to prevent multiple executions, and the user is informed about

the ongoing process by a notification in the window. The discretisation is conducted in

the grid 𝐆𝐆 = [0, 3, 0.0, 0.8] for floating lookback put and fixed lookback call options and

grid 𝐆𝐆 = [−3, 0, 0.0, 0.8] for floating lookback call and fixed lookback put options with

Figure 5.3: Graphical user interface with default settings.

Implementation

54

𝐍𝐍 = [1′000,1′000] grid points and 𝑀𝑀 = 100 time steps, which results in an accurate

valuation. After the discretisation is executed, the option price is indicated in the bottom

right corner of the window, rounded to five decimal places, and the button is enabled for

further calculations. In addition, the programme may crash, or the kernel shuts down

when the user clicks on the window while the option price is discretised. Hence, the

library threading was implemented to prevent the programme from being aborted.

Therefore, the window can invariably be clicked or closed during the discretisation

process without causing the kernel to crash.

Figure 5.4: Graphical user interface with entered inputs during
discretisation.

Numerical Analysis and Discussion of Results

55

6. Numerical Analysis and Discussion of Results

The developed model for the evaluation of lookback options is subsequently verified by

discretising the prices for lookback options with calibrated parameters defined by De

Gennaro Aquino & Bernard (2019, p. 738). The Craig-Sneyd scheme is applied for

accelerated processing, and the calibrated parameters with strike 𝐾𝐾 = {90, 100, 110} for

fixed lookback call options are subsequently given.

 r q v 𝜅𝜅 𝜃𝜃 𝜎𝜎 𝜌𝜌 𝑆𝑆0 𝑇𝑇

Set A 0.03 0.00 0.0625 3 0.05 0.25 -0.5 100 1

Set B 0.03 0.00 0.0700 5 0.04 0.50 -0.5 100 1

Set C 0.03 0.00 0.0500 4 0.03 0.40 -0.5 100 1

Table 6.1: Calibrated parameters for fixed lookback call options from Table 6 of De
Gennaro Aquino & Bernard (2019, p. 738).

The discretisation parameter 𝜃𝜃𝑑𝑑 is determined as 0.5 to ensure a stable process with

unconditional stability. In addition, the prices for fixed lookback call options are

calculated using the put-call parity. Thus, the model must discretise a floating lookback

put option, and the parameter 𝜔𝜔 is set as 1. Furthermore, the paper assumes ordinary

lookback options. Consequently, the parameter 𝜆𝜆 is set to 1 to omit the partial lookback

consideration. Moreover, the number of grid points is determined as

𝐍𝐍 = [1′000,1′000] with the number of time steps equal to 𝑀𝑀 = 100, which ensures

sufficient accuracy.

The original paper of De Gennaro Aquino & Bernard (2019, p. 735-738) included values

for the different sets with varying strikes obtained by utilising a Monte Carlo simulation.

These values were intended as reference values to verify the developed finite difference

model. However, the first values obtained in the discretisation with the given parameters

resulted in significantly divergent values. Thus, further research into comparative articles

and studies was conducted, but no other papers with specific reference values for

lookback options in the Heston model were found. Moreover, a very recent correction of

De Gennaro Aquino & Bernard (2022, p. 447-448) about their paper published in 2019

was found. In this correction, the authors admit that they had made a mistake in the joint

density function of the logarithmic asset price and its maximum and minimum values.

The flaw leads to an erroneously averaged variance process, and the provided prices for

lookback options are only non-convergent approximations instead of exact prices.

Numerical Analysis and Discussion of Results

56

Nonetheless, the calibrated parameters for lookback options are not affected by the error

and can therefore be utilised for the determination of option prices. Consequently, this

thesis presents corrected prices for fixed lookback call options with the parameter given

in Table 6.3.

The accuracy of the developed finite difference model is subsequently verified using a

Monte Carlo model, including the “full truncation scheme” of Rouah (2013, p. 177-181).

While the variance 𝑉𝑉(𝑡𝑡) in the Heston model (3.13) follows a CIR process, discrete

simulations generate negative values for 𝑉𝑉(𝑡𝑡), even if the Feller condition is satisfied.

This problem occurs because the Feller condition requires continuous time processes to

hold while the Monte Carlo simulation uses discrete time steps. A constraint on the

volatility at zero called the full truncation scheme is introduced to avoid negative values

and to address this problem. The Monte Carlo model simulates option prices for the

calibrated parameters in Table 6.1. with the number of paths set as 𝑁𝑁 = 200′000 and the

number of time steps set as 𝑀𝑀 = 20′000 in the period [0,𝑇𝑇]. The Monte Carlo prices

underestimate the maximum stock price based on the construction and should therefore

exhibit slightly lower option prices than the finite difference method. The comparison of

option prices for both models is depicted in Table 6.2.

The computed option values exhibit a divergence between −0.01562 and −0.06151,

with the Monte Carlo simulation yielding lower values because of the lower valuated

maximum. Simulations with a higher number of paths and additional time steps yield

more precise results, minimise the deviation, and should confirm the accuracy of the

discretised option price for a subsequent decimal place. A study by Zeng, Guo, and Zhu

(2017, p. 190-193) compared the fundamental divergence between the finite difference

method and the Monte Carlo method and stated the divergence in the third decimal place.

The clear disadvantage of the Monte Carlo simulation is the processing time of over 11

hours for one of the simulations below, compared to about 35 seconds for finite

differences. Furthermore, discretisations with smaller ∆𝑥𝑥 and more time steps only lead

to changes in the third decimal place and thereafter. It should also be noted that the

deviation for strikes 90 and 100 are nearly equal, while the option price with a strike of

110 has a distinctly lower deviation. Consequently, the divergence of both methods

increases for options without intrinsic value. Thus, the developed finite difference model

features high accuracy for the valuation of lookback option prices and possesses superior

efficiency.

Numerical Analysis and Discussion of Results

57

Set A

Strike FDM Monte Carlo Deviation

90 29.52512 29.48611 -0.03901 -0.13213%

100 19.82067 19.78165 -0.03902 -0.19684%

110 11.69203 11.67641 -0.01562 -0.13356%

Set B

Strike FDM Monte Carlo Deviation

90 27.27170 27.21019 -0.06151 -0.22554%

100 17.56724 17.50574 -0.06150 -0.35010%

110 9.58052 9.54938 -0.03114 -0.32499%

Set C

Strike FDM Monte Carlo Deviation

90 25.01696 24.96064 -0.05632 -0.22514%

100 15.31251 15.25618 -0.05633 -0.36786%

110 7.51159 7.47705 -0.03454 -0.45985%

Table 6.2: Comparison of option prices for the finite difference method with a Monte
Carlo simulation.

The proposition of corrected values for De Gennaro Aquino & Bernard (2019, p. 738) is

displayed in the column “reference values” for different strikes in Table 6.3. The

reference values are rounded to three decimal places in the paper, for which reason the

FDM values are equally rounded. The significant deviation of the reference values from

the discretised values originates from the averaged variance process, as written in the

correction of De Gennaro Aquino & Bernard (2022, p. 448). The discrepancy is most

significant for sets B and C and can be explained by elevated values for the volatility of

the instantaneous variance 𝜎𝜎 and the mean reversion speed of the variance 𝜅𝜅 in addition

to reduced values for the mean reversion level 𝜃𝜃. Furthermore, the reference values

exhibit higher values in all calculations with a deviation between +0.521% and +9.284%.

Thus, the average variance process overestimates the prices for fixed lookback call

options.

Numerical Analysis and Discussion of Results

58

Set A

Strike FDM Reference value Deviation

90 29.525 29.679 0.154 0.521%

100 19.821 19.975 0.154 0.779%

110 11.692 11.879 0.187 1.599%

Set B

Strike FDM Reference value Deviation

90 27.272 28.350 1.078 3.954%

100 17.567 18.677 1.110 6.317%

110 9.581 10.470 0.889 9.284%

Set C

Strike FDM Reference value Deviation

90 25.017 25.387 0.370 1.479%

100 15.313 15.742 0.429 2.805%

110 7.512 7.737 0.225 3.001%

Table 6.3: Proposed values for the calibrated parameters of De Gennaro Aquino &
Bernard (2019, p. 738).

Conclusion

59

7. Conclusion

The primary objective of this thesis was to develop an accurate evaluation model for

floating and fixed lookback options in Python. The model evaluates option prices in the

Heston model with the discretisation conducted in a two-dimensional finite difference

grid. Furthermore, the discretisation is accelerated by applying the Craig-Sneyd scheme,

and the option prices are determined at the specified coordinates. The prices for fixed

lookback options are obtained by the conversion of floating lookback option values

through a put-call parity. Based on the numerical analysis and the comparison to the

Monte Carlo simulation, the developed finite difference model delivers highly accurate

option prices with superior efficiency and curtate processing times. In addition, a

graphical user interface was developed to enable higher usability and accessibility.

Moreover, this thesis contributes to research in the field of quantitative finance by

proposing the first amended option prices for calibrated parameters of current literature

and providing them for all sets and strikes.

This thesis clearly illustrates the practical implementation of the finite difference method

and enhanced discretisation processes but also raises the question of whether there is an

alternative to evaluate the option price of lookback options with advanced mathematical

methods more accurately and efficiently. The exerted pricing formula is based on

continuous monitoring, while only discrete monitoring is plausible for real financial

products. Nevertheless, a risk-averse stance should be adopted when considering the risk

management perspective for issuers, and continuous monitoring should instead be applied

for the mitigation of seldom events, influences of human biases or prejudices. In addition,

the prices of fixed lookback options are obtained by a put-call parity, raising the question

of accuracy. The verification of fixed lookback call option prices has shown exact values,

but further research is required to assess the accuracy of the lookback option put-call

parity conclusively.

Moreover, the Heston model excels compared to the Black-Scholes model but exhibits

some imprecision for short maturities. Hence, further extended models, such as the double

Heston model with a two-factor structure for volatility, could be applied for increased

accuracy. The domain of lookback options led to the limitation on the lower boundary of

the asset price, and extrapolation was required to obtain the option value. Although the

accuracy was augmented by progressive extrapolation methods and minute time steps,

some marginal variation remains. Alternatively, other approximation methods could be

Conclusion

60

used but exhibit distinct disadvantages, from prolonged processing times to the

dependence on subjective assumptions. Further research could analyse the deviation of

efficient processes, such as the finite difference method, from more exact but

computationally intensive methods, and a correction for the discretised prices could be

developed to enhance the accuracy to several decimal places.

In summary, the discretisation employing finite differences and the Craig-Sneyd scheme

for pricing lookback options not only elucidate the numerical valuation of complex

financial instruments but also contribute to the field of quantitative finance by proposing

corrected values for existing literature. Furthermore, the aggregation of multiple option

pricing concepts is applied through practical implementation, consolidating the

theoretical concepts in a domain characterised by a limited volume of research.

Ultimately, this thesis serves as a robust foundation for future research focused on

refining or extending the evaluation of lookback options in the Heston model.

Bibliography

61

Bibliography

Austing, P. (2014). Smile Pricing Explained. Palgrave Macmillan UK.

https://doi.org/10.1057/9781137335722

Albrecher, H., Binder, A., & Mayer, P. (2009). Einführung in die Finanzmathematik.

Birkhäuser. https://doi.org/10.1007/978-3-7643-8784-6

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. The

Journal of Political Economy, 81(3), 637–654. https://doi.org/10.1086/260062

Bodie, Z., Kane, A., & Marcus, A. J. (2019). Essentials of Investments (11th ed.).

McGraw-Hill Education.

Craig, I. J. D., & Sneyd, A. D. (1988). An alternating-direction implicit scheme for

parabolic equations with mixed derivatives. Computers & Mathematics with

Applications, 16(4), 341–350. https://doi.org/10.1016/0898-1221(88)90150-2

De Gennaro Aquino, L., & Bernard, C. (2019). Semi-analytical prices for lookback and

barrier options under the Heston model. Decisions in Economics and Finance,

42(2), 715–741. https://doi.org/10.1007/s10203-019-00254-x

De Gennaro Aquino, L., & Bernard, C. (2022). Correction to: Semi-analytical prices for

lookback and barrier options under the Heston model. Decisions in Economics

and Finance, 45(1), 447–449. https://doi.org/10.1007/s10203-021-00360-9

Ekström, E., & Tysk, J. (2010). The Black–Scholes equation in stochastic volatility

models. Journal of Mathematical Analysis and Applications, 368(2), 498–507.

https://doi.org/10.1016/j.jmaa.2010.04.014

EUREX (2023). Market statistics (online) – DAX Options. https://www.eurex.com/ex-

en/data/statistics/market-statistics-

online/100!onlineStats?productGroupId=13394&productId=70044&viewType=

3&cp=Call&month=6&year=2023&busDate=20230301

Hilber, N. (2023). Bewertung von Finanzderivaten mit Python. Springer Gabler

Wiesbaden. https://doi.org/10.1007/978-3-658-39210-9

Leung, K. S. (2013). An analytic pricing formula for lookback options under stochastic

volatility. Applied Mathematics Letters, 26(1), 145–149.

https://doi.org/10.1016/j.aml.2012.07.008

Bibliography

62

Refinitiv (2023). Swiss Market Index (.SSMI) Price History, 01.01.2013-31.12.2022.

https://go.refinitiv.com/?u=Y3B1cmw6Ly9hcHBzLmNwLi9BcHBzL1ByaWNl

SGlzdG9yeS8%2Fcz0uU1NNSSZzdD1SSUM%3D&title=.SSMI%20PH&key=

VbUvk0ZFZ%2B%2FpH7UzagCmUoBP3RZnj7kGMQpIS3RVyYM%3D

Rouah, F. D. (2013). The Heston Model and Its Extensions in Matlab and C#. John Wiley

& Sons.

Rouah, F. D. (2015). The Heston Model and Its Extensions in VBA. John Wiley & Sons.

Seydel, R. (2017). Einführung in die numerische Berechnung von Finanzderivaten (2nd

ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-50299-0

Wong, H. Y., & Kwok, Y. K. (2003). Sub-Replication and Replenishing Premium:

Efficient Pricing of Multi-State Lookbacks. Review of Derivatives Research, 6(2),

83–106. https://doi.org/10.1023/A:1027377228682

Zeng, X. C., Guo, I., & Zhu, S. P. (2017). Pricing european options on regime-switching

assets: A comparison study of Monte Carlo and finite-difference approaches. The

ANZIAM Journal, 59(2), 183-199. https://doi.org/10.1017/S1446181117000335

Appendix

63

Appendix

The appendix provides the relevant Python codes applied in the thesis, the underlying

routines from Hilber (2023) as well as the graphic user interface and the codes for

extensive graphs.

1. Generation of matrices comprising boundary conditions

matrixgenerator_BC.py (Hilber, 2023, p. 183-185)

 1 import numpy as np
 2 from scipy.sparse import spdiags
 3
 4 def matrixgenerator_BC(liste,BC,xl,xr,N,*args):
 5 '''Determines NxN matrices of the form M_y^(k) and M_y^(k,bc), k = 0,1,2.
 6 Example. [Mkj means the jth of the matrices M_y^(k)]
 7
 8 Mat = matrixgenerator(liste,BC,xl,xr,N)
 9
 10 with the list
 11
 12 liste = [["M2",lambda x: x**2],["M2",lambda x: x],["M1",lambda x: x],
 13 ["M0",lambda x: 1]]
 14
 15 gives the finite difference matrices M21 and M22 to x^2*u''(x) and
 16 x*u''(x), the matrix M11 to x*u'(x) as well as the matrix M01 to u(x) over
 17 the interval G = [xl,xr]. In addition, the corresponding matrices
 18 Mkjbc are outputs for the boundary conditions.
 19
 20 matrixgenerator_BC(liste,BC,xl,xr,N,p) returns the same matrices for a
 21 lattice extension phi(x). Here is
 22
 23 p = [phi_x(xl),phi_x(xr),phi_xx(xl),phi_xx(xr)]
 24
 25 where phi_x(z) and phi_xx(z) are the first and second derivatives of the
 26 lattice stretch function phi(x) evaluated at the point x = z.
 27
 28 matrixgenerator_BC(liste,BC,xl,xr,N,1,1,0,0) is the same as
 29 matrixgenerator_BC(liste,BC,xl,xr,N).
 30
 31 The number of matrices in the output vector can be arbitrary but must be
 32 the same as the number of cells in the list.'''
 33
 34 h = (xr-xl)/(N+1); x = np.linspace(xl-h,xr+h,N+4); nl,nr = BC;
 35 hd = lambda x: 0.5*x**2-1.5*x+1; hn = lambda x:-x**2+2*x;
 36 hs = lambda x: 0.5*(x**2-x)
 37 if len(args)>0:
 38 phipl,phipr,phippl,phippr = args;

Appendix

64

 39 else:
 40 phipl = 1; phipr = 1; phippl = 0; phippr = 0; # no lattice stretching
 41
 42 kp = phippl/phipl; km = phippr/phipr;
 43 ap = (10+4*h*kp)/(4+3*h*kp); am = (10-4*h*km)/(4-3*h*km);
 44 bp = (-8-h*kp)/(4+3*h*kp); bm = (-8+h*km)/(4-3*h*km);
 45 cp = 2/(4+3*h*kp); cm = 2/(4-3*h*km);
 46
 47 U = [None]*len(liste)*2; count = 0
 48
 49 # Creating matrices Mjk
 50 for j in range(len(liste)):
 51 count =count+1; v = liste[j]; y = v[1]
 52 if v[0]=="M2":
 53 U1 = 1/(h**2)*spdiags([y(x[2:N+5]),-2*y(x[1:N+3]),y(x[0:N+2])],
 54 [-1,0,1],N+2,N+2).tolil()
 55 if nl==3:
 56 U1[0,0:4] = y(xl)/h**2*np.array([2,-5,4,-1])
 57 else:
 58 U1 = U1[1:,:]; U1 = U1[:,1:]
 59 U1[0,0:3] = y(x[2])/h**2*(hd(nl)*np.array([-2,1,0])+
 60 hn(nl)*np.array([-2/3,2/3,0])+hs(nl)*np.array([ap-2,1+bp,cp]))
 61 if nr==3:
 62 U1[-1,-4:] = y(xr)/h**2*np.array([-1,4,-5,2])
 63 else:
 64 U1 = U1[:-1,:]; U1 = U1[:,:-1]
 65 U1[-1,-3:] = y(x[N+1])/h**2*(hd(nr)*np.array([0,1,-2])+
 66 hn(nr)*np.array([0,2/3,-2/3])+hs(nr)*np.array([cm,1+bm,am-2]))
 67
 68 U[j] = U1.todia()
 69 elif v[0]=="M1":
 70 U1 = 1/(2*h)*spdiags([-y(x[2:N+5]),np.zeros(N+2),y(x[0:N+2])],
 71 [-1,0,1],N+2,N+2).tolil()
 72 if nl==3:
 73 U1[0,0:3] = y(xl)/(2*h)*np.array([-3,4,-1])
 74 else:
 75 U1 = U1[1:,:]; U1 = U1[:,1:]
 76 U1[0,0:3] = y(x[2])/(2*h)*(hd(nl)*np.array([0,1,0])+
 77 hn(nl)*np.array([-4/3,4/3,0])+hs(nl)*np.array([-ap,1-bp,-cp]))
 78 if nr==3:
 79 U1[-1,-3:] = y(xr)/(2*h)*np.array([1,-4,3])
 80 else:
 81 U1 = U1[:-1,:]; U1 = U1[:,:-1]
 82 U1[-1,-3:] = y(x[N+1])/(2*h)*(hd(nr)*np.array([0,-1,0])+
 83 hn(nr)*np.array([0,-4/3,4/3])+hs(nr)*np.array([cm,bm-1,am]))
 84
 85 U[j] = U1.todia()
 86
 87 else:

Appendix

65

 88 U1 = spdiags(y(x[1:N+3]),[0],N+2,N+2).tolil();
 89 if nl<3: U1 = U1[1:,:]; U1 = U1[:,1:]
 90 if nr<3: U1 = U1[:-1,:]; U1 = U1[:,:-1]
 91
 92 U[j] = U1.todia()
 93
 94 # Creating boundary matrices Mkjbc
 95 for j in range(len(liste)):
 96 v = liste[j]; y = v[1]
 97 if v[0]=="M2":
 98 U1 = spdiags(np.zeros(N+2),0,N+2,N+2).tolil()
 99 if nl<3:
100 U1 = U1[1:,:]; U1 = U1[:,1:]
101 U1[0,0] = y(xl+h)*(hd(nl)/h**2+hn(nl)*(-2)/(3*h)*phipl\
102 +hs(nl)*phipl**2*cp)
103 if nr<3:
104 U1 = U1[:-1,:]; U1 = U1[:,:-1]
105 U1[-1,-1] = y(xr-h)*(hd(nr)/h**2+hn(nr)*2/(3*h)*phipr\
106 +hs(nr)*phipr**2*cm)
107
108 U[j+count] = U1.todia()
109
110 elif v[0]=="M1":
111 U1 = spdiags(np.zeros(N+2),0,N+2,N+2).tolil()
112 if nl<3:
113 U1 = U1[1:,:]; U1 = U1[:,1:]
114 U1[0,0] = y(xl+h)*(-hd(nl)/(2*h)+hn(nl)/3*phipl\
115 +hs(nl)*(-h)/2*phipl**2*cp)
116 if nr<3:
117 U1 = U1[:-1,:]; U1 = U1[:,:-1]
118 U1[-1,-1] = y(xr-h)*(hd(nr)/(2*h)+hn(nr)/3*phipr\
119 +hs(nr)*h/2*phipr**2*cm)
120
121 U[j+count] = U1.todia()
122
123 else:
124 d = np.zeros(N); U1 = spdiags(d,0,N,N); U[j+count] = U1
125
126 return U

2. Routine FDM

pde_2d_ah_theta.py (Hilber, 2023, p. 341)

 1 import numpy as np
 2 from scipy import sparse
 3 from scipy.sparse.linalg import spsolve
 4 from matrixgenerator_BC import matrixgenerator_BC

Appendix

66

 5
 6 def pde_2d_ah_theta(a,b,c,T,g,G,BC,N,M,R,theta):
 7 '''[x,y,w] = pde_2d_ah_theta() approximates the solution w(x,y,t) of the
 8 partial differential equation
 9
10 w_t + a1w_xx + a2w_yy + a3w_xy + b1w_x + b2w_y + cw = 0 in G x]0,T]
11 BC = 0
12 w(.,0) = g
13
14 in the domain G =]xl,xr[x]yl,yr[for homogeneous boundary conditions.
15 The functions a1, a2, a3, b1, b2 and c can depend on x and y,
16 but must be the product of univariate functions, for example
17 a1(x,y) = a1x(x)a1y(y).'''
18
19 # Define functions
20 a1x,a1y,a2x,a2y,a3x,a3y = a; b1x,b1y,b2x,b2y = b; cx,cy = c;
21
22 # Define constants
23 xl,xr,yl,yr = G; nxl,nxr,nyl,nyr = BC;
24 hx = (xr-xl)/(N[0]+1); hy = (yr-yl)/(N[1]+1); k = T/M;
25
26 Matx = matrixgenerator_BC([["M2",a1x],["M1",a3x],["M1",b1x],["M0",a2x],
27 ["M0",b2x],["M0",cx]],[nxl,nxr],xl,xr,N[0])
28 Maty = matrixgenerator_BC([["M2",a2y],["M1",a3y],["M1",b2y],["M0",a1y],
29 ["M0",b1y],["M0",cy]],[nyl,nyr],yl,yr,N[1])
30
31 A = (sparse.kron(Maty[3],Matx[0])+sparse.kron(Maty[0],Matx[3])+
32 sparse.kron(Maty[1],Matx[1])+sparse.kron(Maty[4],Matx[2])+
33 sparse.kron(Maty[2],Matx[4])+sparse.kron(Maty[5],Matx[5]))
34
35 I = sparse.eye((N[0]+(nxr==3)+(nxl==3))*(N[1]+(nyr==3)+(nyl==3)))
36 B = I + k*theta*A; C = I - (1-theta)*k*A
37
38 # Define start vector w0 (exercise function)
39 x = np.linspace(xl+(1-(nxl==3))*hx,xr-(1-(nxr==3))*hx,\
40 N[0]+(nxl==3)+(nxr==3))
41 y = np.linspace(yl+(1-(nyl==3))*hy,yr-(1-(nyr==3))*hy,\
42 N[1]+(nyl==3)+(nyr==3))
43 x,y = np.meshgrid(x,y,indexing='ij'); w = g(x,y); w = w.flatten('F')
44
45 # Rannacher method
46 for j in range(R): w = spsolve(I+k/2*A,w)
47 for j in range(int(R/2),M): w = spsolve(B,C*w)
48
49 w = np.reshape(w,(N[0]+(nxl==3)+(nxr==3),N[1]+(nyl==3)+(nyr==3)),order='F')
50
51 return x,y,w

Appendix

67

3. Routine lookback options

lookback_option_theta.py

 1 import numpy as np
 2 from pde_2d_ah_theta import pde_2d_ah_theta
 3 from scipy.interpolate import interpn
 4
 5 # Input of calibrated parameter for lookback option
 6 r = 0.03; q = 0.00; T = 1; s0 = 100; v = 0.0625; sigma = 0.25; kappa = 3;
 7 rho = -0.5; theta_m = 0.05; theta_d = 0.5; omega = 1; K = 100; l = 1
 8
 9 # Definition of univariate functions and payoff function
10 a = [lambda x: x**0, lambda y: -0.5*y,
11 lambda x: x**0, lambda y: -0.5*sigma**2*y,
12 lambda x: x**0, lambda y: rho*sigma*y]
13 b = [lambda x: x**0, lambda y: (r-q+0.5*y),
14 lambda x: x**0, lambda y: -(kappa*(theta_m-y)+rho*sigma*y)]
15 c = [lambda x: q*x**0, lambda y: y**0]
16 g = lambda x,y: omega*(l*np.exp(x)-1)*y**0
17 '''floating lookback call option - omega = -1
18 floating lookback put option - omega = 1'''
19
20 # Definition of grid, boundary conditions, node points, and time steps
21 G = [0,3,0.0,0.8]; BC = [1,1,3,1]; N = [250,250]; M = 100; R = 2
22
23 # Discretisation and generation of matrices
24 x,y,w = pde_2d_ah_theta(a,b,c,T,g,G,BC,N,M,R,theta_d)
25
26 # Calculation of floating and fixed option prices via put-call parity
27 if omega == -1:
28 C_fl = interpn((x[:,0],y[0,:]), w*s0, (np.maximum(np.log(K/s0),0), v),
29 method='pchip', bounds_error=False, fill_value=None);
30 print('floating Call:', C_fl)
31 P_fix = C_fl-s0+np.exp(-(r-q)*T)*s0; print('fixed Put:', P_fix)
32 elif omega == 1:
33 P_fl = interpn((x[:,0],y[0,:]), w*s0, (np.maximum(np.log(K/s0),0), v),
34 method='pchip', bounds_error=False, fill_value=None);
35 print('floating Put:', P_fl)
36 C_fix = P_fl+s0*np.exp(-q*T)-K*np.exp(-r*T); print('fixed Call:', C_fix)
37 else:
38 print('Wrong value for Omega, enter -1 for call or 1 for put options.')

Appendix

68

4. Creation of diagonal matrices

get_diagonals.py (Hilber, 2023, p. 655)

 1 import numpy as np
 2
 3 def get_diagonals(M,*args):
 4 mp1 = np.hstack((0,M.diagonal(1))); m0 = M.diagonal(0);
 5 mm1 = np.hstack((M.diagonal(-1),0)); D = np.vstack((mp1,m0,mm1))
 6
 7 if len(args)>0:
 8 nl = args[0]; nr = args[1]
 9 if nl>1: # upper
10 for j in range(1,nl):
11 #display(np.sum(np.abs(M.diagonal(j+1))))
12 m = np.hstack((np.zeros(j+1),M.diagonal(j+1)));
13 D = np.vstack((m,D))
14
15 if nr>1: # lower
16 for j in range(1,nr):
17 #display(np.sum(np.abs(M.diagonal(-j-1))))
18 m = np.hstack((M.diagonal(-j-1),np.zeros(j+1)));
19 D = np.vstack((D,m))
20
21 return D

5. Permutation matrix

perm_matrix.py (Hilber, 2023, p. 350)

 1 import numpy as np; from scipy import sparse; from scipy.sparse import eye;
 2 from scipy.sparse import vstack
 3
 4 def perm_matrix(n,m):
 5 '''Returns the (nm x nm) permutation matrix P'''
 6 Im = eye(m,m); x = np.zeros(n); x[0] = 1.0; P = sparse.kron(Im,x)
 7
 8 for j in range(1,n):
 9 x = np.zeros(n); x[j] = 1.0; P = vstack([P,sparse.kron(Im,x)])
10 return P

Appendix

69

6. Routine FDM – Craig-Sneyd

pde_2d_ah_cs.py (Hilber, 2023, p. 350-351)

 1 import numpy as np
 2 from scipy import sparse
 3 from scipy.linalg import solve_banded
 4 from matrixgenerator_BC import matrixgenerator_BC
 5 from get_diagonals import get_diagonals
 6 from perm_matrix import perm_matrix
 7
 8 def pde_2d_ah_cs(a,b,c,T,g,G,BC,N,M,theta):
 9 '''Approximates the solution w(x,y,t) of the partial differential equation
10
11 w_t+a1w_xx+a2w_yy+a3w_xy+b1w_x+b2w_y+(c1+c2)w = 0 in G x]0 , T]
12 BC = 0
13 w(.,0) = g
14
15 in the domain G =]xl,xr[x]yl,yr[for homogeneous boundary conditions
16 via the Craig-Sneyd method .'''
17
18 # Define functions
19 a1x,a1y,a2x,a2y,a3x,a3y = a; b1x,b1y,b2x,b2y = b; c1x,c1y,c2x,c2y = c ;
20
21 # Define constants
22 xl,xr,yl,yr = G; nxl, nxr, nyl,nyr = BC ;
23 hx = (xr-xl)/(N[0]+1); hy = (yr-yl)/(N[1]+1); k = T/M;
24 beta = lambda n:1+n-(n>0); diagsx = (beta(nxr),beta(nxl))
25 diagsy = (beta(nyr),beta(nyl))
26
27 Matx = matrixgenerator_BC([["M",a1x],["M1",a3x],["M1",b1x],["M0",a2x],
28 ["M0",b2x],["M0",c1x],["M0",c2x]],[nxl,nxr],
29 xl,xr,N[0])
30
31 Maty = matrixgenerator_BC([["M2",a2y],["M1",a3y],["M1",b2y],["M0",a1y],
32 ["M0",b1y],["M0",c1y],["M0",c2y]],[nyl,nyr],
33 yl,yr,N[1])
34
35 A1 = (sparse.kron(Maty[3],Matx[0])+sparse.kron(Maty[4],Matx[2])+
36 0.5*sparse.kron(Maty[5],Matx[5])+0.5*sparse.kron(Maty[6],Matx[6]))
37 A2 = (sparse.kron(Maty[0],Matx[3])+sparse.kron(Maty[2],Matx[4])+
38 0.5*sparse.kron(Maty[5],Matx[5])+0.5*sparse.kron(Maty[6],Matx[6]))
39 A2t = (sparse.kron(Matx[3],Maty[0])+sparse.kron(Matx[4],Maty[2])+
40 0.5*sparse.kron(Matx[5],Maty[5])+0.5*sparse.kron(Matx[6],Maty[6]))
41 A0 = sparse.kron(Maty[1],Matx[1]); A = A1+A2+A0;
42
43 I = sparse.eye((N[0]+(nxr==3)+(nxl==3))*(N[1]+(nyr==3)+(nyl==3)))
44 B = I-k*A; C1 = k*theta*A1; C2 = k*theta*A2; C0 = 0.5*k*A0;
45 B1 = get_diagonals(I+theta*k*A1,nxl,nxr);

Appendix

70

46 B2t = get_diagonals(I+theta*k*A2t,nyl,nyr)
47
48 P = perm_matrix(N[1]+(nyr==3)+(nyl==3),N[0]+(nxr==3)+(nxl==3)); PT = P.T;
49
50 # Define start vector w0 (exercise function)
51 x = np.linspace(xl+(1-(nxl==3))*hx,xr-(1-(nxr==3))*hx,\
52 N[0]+(nxl==3)+(nxr==3))
53 y = np.linspace(yl+(1-(nyl==3))*hy,yr-(1-(nyr==3))*hy,\
54 N[1]+(nyl==3)+(nyr==3))
55 x,y = np.meshgrid(x,y,indexing ='ij'); w = g(x,y); w = w.flatten('F')
56
57 # Craig-Sneyd method
58 for j in range (M):
59 aux1 = C1*w; aux2 = C2*w;
60 y0 = B*w ; y1 = solve_banded(diagsx,B1,y0+aux1);
61 y2 = solve_banded(diagsy,B2t,PT*(y1+aux2)); y2 = P*y2;
62 z0 = y0-C0*(y2-w); z1 = solve_banded(diagsx,B1,z0+aux1);
63 z2 = solve_banded(diagsy,B2t,PT*(z1+aux2)); w = P*z2;
64
65 w = np.reshape(w,(N[0]+(nxl==3)+(nxr==3),N[1]+(nyl==3)+(nyr==3)),order ='F')
66 return x,y,w

Remark: The univariate functions [c2x, c2y] of 𝑐𝑐 are for the valuation of derivatives for

interest rates and are not used in this thesis and are neutralised.

7. Routine lookback option – Craig-Sneyd

lookback_option_CS.py

 1 import numpy as np
 2 from pde_2d_ah_cs import pde_2d_ah_cs
 3 from scipy.interpolate import interpn
 4
 5 # Input of calibrated parameter for lookback option
 6 r = 0.03; q = 0.00; T = 1; s0 = 100; v = 0.0625; sigma = 0.25; kappa = 3;
 7 rho = -0.5; theta_m = 0.05; theta_d = 0.5; omega = 1; K = 100; l = 1
 8
 9 # Definition of univariate functions and payoff function
10 a = [lambda x: x**0, lambda y: -0.5*y,
11 lambda x: x**0, lambda y: -0.5*sigma**2*y,
12 lambda x: x**0, lambda y: rho*sigma*y]
13 b = [lambda x: x**0, lambda y: (r-q+0.5*y),
14 lambda x: x**0, lambda y: -(kappa*(theta_m-y)+rho*sigma*y)]
15 c = [lambda x: q*x**0, lambda y: y**0,
16 lambda x: 0*x, lambda y: 0*y]
17 g = lambda x,y: omega*(l*np.exp(x)-1)*y**0
18 ''' floating lookback call option - omega = -1
19 floating lookback put option - omega = 1'''

Appendix

71

20
21 # Definition of grid, boundary conditions, node points, and time steps
22 G = [0,3,0.0,0.8]; BC = [1,1,3,1]; N = [1000,1000]; M = 100
23
24 # Discretisation and generation of matrices
25 x,y,w = pde_2d_ah_cs(a,b,c,T,g,G,BC,N,M,theta_d)
26
27 # Calculation of floating and fixed option prices via put-call parity
28 if omega == -1:
29 C_fl = interpn((x[:,0],y[0,:]), w*s0, (np.maximum(np.log(K/s0),0), v),
30 method='pchip', bounds_error=False, fill_value=None);
31 print('floating Call:', C_fl)
32 P_fix = C_fl-s0+np.exp(-(r-q)*T)*s0; print('fixed Put:', P_fix)
33 elif omega == 1:
34 P_fl = interpn((x[:,0],y[0,:]), w*s0, (np.maximum(np.log(K/s0),0), v),
35 method='pchip', bounds_error=False, fill_value=None);
36 print('floating Put:', P_fl)
37 C_fix = P_fl+s0*np.exp(-q*T)-K*np.exp(-r*T); print('fixed Call:', C_fix)
38 else:
39 print('Wrong value for Omega, enter -1 for call and 1 for put options.')

8. Graphical user interface

GUI_lookback_option.py

 1 import tkinter as tk
 2 from tkinter import ttk
 3 from tkinter import messagebox
 4 import numpy as np
 5 from pde_2d_ah_cs import pde_2d_ah_cs
 6 from scipy.interpolate import interpn
 7 import threading
 8
 9 root = tk.Tk() # Open loop
 10 root.title('Pricing of Lookback Options') # Title of window
 11 root.geometry('625x512') # Size of frame
 12 root.resizable(width=False, height=False) # Frame fixed
 13
 14 # Set font for buttons
 15 style = ttk.Style()
 16 style.configure('TButton', font=('Arial', 14))
 17
 18 # Define basic operating mode
 19 operating = 'No'
 20
 21 # Partial option dropdown menu
 22 def p_drop(event):
 23 selected_option = pdrop.get()

Appendix

72

 24 if selected_option == 'Yes':
 25 entry_box.config(state='normal') # Activate the entry box
 26 else:
 27 entry_box.config(state='disabled') # Deactivate the entry box
 28
 29 # Enable simultaneous processes
 30 def perform_b():
 31 thread = threading.Thread(target=perform_calculation)
 32 thread.start()
 33
 34 # Display 'Discretising...' and deactivate button while processing
 35 def perform_calculation():
 36 global operating
 37 if operating == 'No':
 38 operating = 'Yes'
 39 else:
 40 operating = 'No'
 41
 42 processing.grid(row=7, column=4, columnspan=2, padx=5, pady=5)
 43 calc_button.config(state='disabled')
 44 root.update()
 45
 46 if operating == 'Yes':
 47 variables()
 48
 49 processing.grid_remove()
 50 calc_button.config(state='normal')
 51
 52 # Assign inputs, discretise option value, and generate an error message
 53 def variables():
 54 try:
 55 # Assign type of lookback option to process
 56 option_type = drop.get()
 57 o_entry = options[option_type]
 58 if o_entry == 1:
 59 o_entry = -1
 60 elif o_entry == 2:
 61 o_entry = 1
 62 elif o_entry == 3:
 63 o_entry = 1
 64 elif o_entry == 4:
 65 o_entry = -1
 66
 67 # Define variables
 68 omega = float(o_entry)
 69 s0 = float(s0_entry.get())
 70 T = float(T_entry.get())
 71 r = float(r_entry.get())
 72 q = float(q_entry.get())

Appendix

73

 73 v = float(v_entry.get())
 74 sigma = float(s_entry.get())
 75 kappa = float(k_entry.get())
 76 rho = float(rho_entry.get())
 77 theta_m = float(th_entry.get())
 78 K = float(K_entry.get())
 79
 80 selected_option = pdrop.get()
 81 if selected_option == 'Yes':
 82 l = float(entry_box.get())
 83 else:
 84 l = 1.0
 85
 86 # Definition of univariate functions and payoff function
 87 a = [lambda x: x**0, lambda y: -0.5*y,
 88 lambda x: x**0, lambda y: -0.5*sigma**2*y,
 89 lambda x: x**0, lambda y: rho*sigma*y]
 90 b = [lambda x: x**0, lambda y: (r-q+0.5*y),
 91 lambda x: x**0, lambda y: -(kappa*(theta_m-y)+rho*sigma*y)]
 92 c = [lambda x: q*x**0, lambda y: y**0,
 93 lambda x: 0*x, lambda y: 0*y]
 94 g = lambda x,y: omega*(l*np.exp(x)-1)*y**0
 95
 96 # Definition of grid, boundary conditions, node points, and time steps
 97 if omega == 1:
 98 G = [0,3,0.0,0.8]; BC = [1,1,3,1]; N = [1000,1000]; M = 100
 99 elif omega == -1:
100 G = [-3,0,0.0,0.8]; BC = [1,1,3,1]; N = [1000,1000]; M = 100
101
102 # Discretisation and generation of matrices
103 x,y,w = pde_2d_ah_cs(a,b,c,T,g,G,BC,N,M,0.5)
104
105 # Calculate the specified option value
106 if options[option_type] == 1:
107 C_fl = interpn((x[:,0],y[0,:]),w*s0, (np.maximum(np.log(K/s0),0),v),
108 method='pchip', bounds_error=False, fill_value=None)
109 C_fl_c = C_fl.item()
110 V_value.set('{:.5f}'.format(C_fl_c))
111 elif options[option_type] == 2:
112 P_fl = interpn((x[:,0],y[0,:]),w*s0, (np.maximum(np.log(K/s0),0),v),
113 method='pchip', bounds_error=False, fill_value=None)
114 P_fl_c = P_fl.item()
115 V_value.set('{:.5f}'.format(P_fl_c))
116 elif options[option_type] == 3:
117 P_fl = interpn((x[:,0],y[0,:]),w*s0, (np.maximum(np.log(K/s0),0),v),
118 method='pchip', bounds_error=False, fill_value=None)
119 C_fix = P_fl+s0*np.exp(-q*T)-K*np.exp(-r*T)
120 C_fix_c = C_fix.item()
121 V_value.set('{:.5f}'.format(C_fix_c))

Appendix

74

122 elif options[option_type] == 4:
123 C_fl = interpn((x[:,0],y[0,:]),w*s0, (np.maximum(np.log(K/s0),0),v),
124 method='pchip', bounds_error=False, fill_value=None)
125 P_fix = C_fl-s0+np.exp(-(r-q)*T)*s0
126 P_fix_c = P_fix.item()
127 V_value.set('{:.5f}'.format(P_fix_c))
128
129 # Generate error for missing inputs
130 except ValueError:
131 messagebox.showerror('Error', 'Please insert values correctly.')
132 except TypeError:
133 messagebox.showerror('Error', 'Please insert values correctly.')
134
135 # Define the initial value for the option price
136 V_value = tk.StringVar(value='0.00000')
137
138 # Define variables
139
140 # Omega (call/put)
141 o_text = ttk.Label(root, text='Select type of lookback option:',
142 font=('Arial', 14))
143 o_text.grid(row=0, column=0, sticky='w', columnspan=3, padx=5, pady=10)
144 options = {'Please select option': None,
145 'floating lookback call option': 1,
146 'floating lookback put option':2,
147 'fixed lookback call option':3,
148 'fixed lookback put option':4}
149 drop = ttk.Combobox(root, values=list(options.keys()), font=('Arial', 14))
150 drop.current(0)
151 drop.grid(row=0, column=4)
152
153 # Partial lookback option
154 l_text = ttk.Label(root, text='Partial lookback option:', font=('Arial', 14))
155 l_text.grid(row=1, column=0, sticky='w', columnspan=3, padx=5, pady=5)
156 pdrop = ttk.Combobox(root, values=['Please select option', 'Yes', 'No'],
157 state='readonly', font=('Arial', 14))
158 pdrop.current(0)
159 pdrop.grid(row=1, column=4)
160 root.bind('<<ComboboxSelected>>', p_drop)
161 entry_box = ttk.Entry(root, width=7, font=('Arial', 14), justify='right',
162 state='disabled')
163 entry_box.grid(row=1, column=5, padx=5, pady=5)
164
165 # Initial stock price
166 s0_text = ttk.Label(root, text='S\u2080:', font=('Arial', 14))
167 s0_text.grid(row=2, column=0, sticky='w', padx=5, pady=5)
168 s0_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
169 s0_entry.grid(row=2, column=1, padx=5, pady=5)
170

Appendix

75

171 # Time
172 T_text = ttk.Label(root, text='T:', font=('Arial', 14))
173 T_text.grid(row=3, column=0, sticky='w', padx=5, pady=5)
174 T_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
175 T_entry.grid(row=3, column=1, padx=5, pady=5)
176
177 # Continuous interest rate
178 r_text = ttk.Label(root, text='r:', font=('Arial', 14))
179 r_text.grid(row=4, column=0, sticky='w', padx=5, pady=5)
180 r_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
181 r_entry.grid(row=4, column=1, padx=5, pady=5)
182
183 # Continuous dividend yield
184 q_text = ttk.Label(root, text='q:', font=('Arial', 14))
185 q_text.grid(row=5, column=0, sticky='w', padx=5, pady=5)
186 q_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
187 q_entry.grid(row=5, column=1, padx=5, pady=5)
188
189 # Variance
190 v_text = ttk.Label(root, text='v:', font=('Arial', 14))
191 v_text.grid(row=6, column=0, sticky='w', padx=5, pady=5)
192 v_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
193 v_entry.grid(row=6, column=1, padx=5, pady=5)
194
195 # Sigma
196 s_text = ttk.Label(root, text='\u03c3:', font=('Arial', 14))
197 s_text.grid(row=7, column=0, sticky='w', padx=5, pady=5)
198 s_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
199 s_entry.grid(row=7, column=1, padx=5, pady=5)
200
201 # Kappa
202 k_text = ttk.Label(root, text='\u03BA:', font=('Arial', 14))
203 k_text.grid(row=8, column=0, sticky='w', padx=5, pady=5)
204 k_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
205 k_entry.grid(row=8, column=1, padx=5, pady=5)
206
207 # Rho
208 rho_text = ttk.Label(root, text='\u03C1:', font=('Arial', 14))
209 rho_text.grid(row=9, column=0, sticky='w', padx=5, pady=5)
210 rho_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
211 rho_entry.grid(row=9, column=1, padx=5, pady=5)
212
213 # Theta of model
214 th_text = ttk.Label(root, text='\u03b8:', font=('Arial', 14))
215 th_text.grid(row=10, column=0, sticky='w', padx=5, pady=5)
216 th_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
217 th_entry.grid(row=10, column=1, padx=5, pady=5)
218
219 # Strike

Appendix

76

220 K_text = ttk.Label(root, text='K:', font=('Arial', 14))
221 K_text.grid(row=11, column=0, sticky='w', padx=5, pady=5)
222 K_entry = ttk.Entry(root, width=7, font=('Arial', 14), justify='right')
223 K_entry.grid(row=11, column=1, padx=5, pady=5)
224
225 # Create buttons and display option value
226 calc_button = ttk.Button(root, text='Discretise option price',
227 command=perform_b, width=30, state='normal')
228 calc_button.grid(row=10, column=4, columnspan=2, padx=5, pady=5)
229
230 V_text = ttk.Label(root, text='Option price', font=('Arial', 14))
231 V_text.grid(row=11, column=4, sticky='w', padx=5, pady=5)
232
233 display_V = ttk.Label(root, textvariable=V_value, font=('Arial', 14))
234 display_V.grid(row=11, column=5, padx=5, pady=5)
235
236 processing = ttk.Label(root, text = 'Discretising...', font=('Arial', 14))
237
238 quit_button = ttk.Button(root, text='Exit program', command=root.destroy)
239 quit_button.grid(row=12, column=4, columnspan=2, padx=5, pady=5, sticky='e')
240
241 # Close loop
242 root.mainloop()

9. SMI distributions

SMI_distribution.py

 1 import pandas as pd
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 import scipy.stats as st
 5
 6 # Import data from the Excel file
 7 data = pd.read_excel(r'../Python/SMI_PnL.xlsx')
 8 R = data['Log_r']
 9
10 # Maximum likelihood estimation
11 dist_n = st.norm; args_n = dist_n.fit(R); dist_t = st.t; args_t = dist_t.fit(R)
12
13 # Define plot size and limits for x-axis
14 plt.figure(figsize=(8,6))
15 plt.xlim(-0.065,0.065)
16
17 # Create a histogram
18 n, bins, patches = plt.hist(R,bins=60,density=True,histtype='bar',color='w',
19 edgecolor='grey')
20 x = np.arange(bins[0],bins[-1],0.001)

Appendix

77

21
22 # Visualise distributions
23 plt.plot(x,dist_n.pdf(x,*args_n),color='blue', alpha=0.75)
24 plt.plot(x,dist_t.pdf(x,*args_t),color='red', alpha=0.75)
25
26 # Labelling of axes
27 plt.xlabel('x', fontsize=14); plt.ylabel('$f(x)$',rotation=0,labelpad=15,
28 fontsize=14)
29 plt.xticks(fontsize=11); plt.yticks(fontsize=11)
30
31 # Labelling of distributions
32 plt.text(0.014,18,r'$\varphi_{\mu,\sigma}(x)$',fontsize=14);
33 plt.text(0.007,42,r'$f_{\mu,\sigma,\nu}(x)$',fontsize=14);
34
35 # Save plot
36 plt.savefig('SMI_distributions.png')

10. Volatility smile DAX

vola_smile_DAX.py

01 import numpy as np
02 import matplotlib.pyplot as plt
03 from impl_vola import impl_vola
04 from scipy.interpolate import UnivariateSpline
05
06 # Input data
07 VM = [3878.2,3492.6,3110.8,2733.9,2363.7,2002.3,1653.3,1321.3,1011.9,732.2,
08 492.1,301.9,167.2,83.6,39.5,17.9,8.0,3.0,1.2,0.5]
09 K = [11600,12000,12400,12800,13200,13600,14000,14400,14800,15200,15600,16000,
10 16400,16800,17200,17600,18000,18500,19000,19500]
11 s = 15305.02; T = 112/360; r = 0.02783;
12
13 # Compute implied volatility
14 sigma = np.zeros(len(VM))
15 for j in range(len(VM)):
16 sigma[j] = impl_vola(VM=VM[j],s=s,T=T,K=K[j],r=r,q=0,omega=1,init=0.3);
17
18 # Create and plot line
19 Kvec = np.linspace(0.99*min(K),1.01*max(K),200)
20 sigma_spline = UnivariateSpline(K,sigma,k=3,s=0)
21 plt.figure(figsize=(8,6))
22 plt.plot(K,sigma,'.',markersize=10,color = 'blue', alpha=0.75)
23 plt.plot(Kvec,sigma_spline(Kvec),color = 'blue', alpha=0.75 ,linewidth=1)
24
25 # Define labelling and size of labelling
26 plt.xticks(fontsize=11)
27 plt.yticks(fontsize=11)

Appendix

78

28 plt.xlabel('K', fontsize=14, labelpad=5)
29 plt.ylabel(r'$\sigma^{\rm i}$', fontsize=14, rotation=0, labelpad=15);
30
31 # Save plot
32 plt.savefig('vola_smile_DAX.png')

impl_vola.py (Hilber, 2023, p. 18)

01: import numpy as np
02: import scipy.stats as ss
03:
04: def impl_vola(VM,s,K,T,r,q,omega,init):
05: '''Calculates the implied volatility sigma of a call (omega = 1)
06: or put (omega = -1) option with market price VM, exercise price K and
07: maturity T using Newton’s method starting in init.
08: The underlying is s, r is the continuous interest rate,
09: q the continuous yield.'''
10:
11: # Tolerance tol and initial value for sigma
12: tol = 10**-10; sigma0 = init/2; sigma1 = init;
13:
14: # Iterate until tolerance is undercut
15: while abs(sigma0-sigma1)>tol:
16: sigma0 = sigma1
17:
18: # option price of Black-Scholes
19: d1 = (np.log(s/K)+(r-q+sigma0**2/2)*T)/(sigma0*np.sqrt(T))
20: d2 = d1-sigma0*np.sqrt(T)
21: V = omega*(np.exp(-q*T)*s*ss.norm.cdf(omega*d1) \
22: -K*np.exp(-r*T)*ss.norm.cdf(omega*d2))
23:
24: # Vega of Black-Scholes
25: dV = np.exp(-q*T)*s*np.sqrt(T)*ss.norm.pdf(d1)
26: # One Newton-step
27: sigma1 = sigma0 - (V-VM)/dV; #display(sigma1)
28:
29: return sigma1

Appendix

79

11. 2-dimensional FDM grid

grid_finite_differences.py

01 import matplotlib.pyplot as plt
02
03 # Create figure and axis objects
04 fig, ax = plt.subplots()
05
06 # Set x and y limits
07 ax.set_xlim([-0.05, 5.1])
08 ax.set_ylim([-0.05, 5.1])
09
10 # Set ticks and labels for x- and y-axis
11 ax.set_xticks(range(6))
12 ax.set_xticklabels(['$x\u2081$', '$x\u2082$', '$x\u2083$',
13 '$x\u2084$', '$x\u2085$', '$x\u2086$'],
14 fontsize=12)
15 ax.set_yticks(range(6))
16 ax.set_yticklabels(['$y\u2081$', '$y\u2082$', '$y\u2083$',
17 '$y\u2084$', '$y\u2085$', '$y\u2086$'],
18 fontsize=12)
19
20 # Create gridlines
21 ax.grid(True, which='both', color='black', linestyle='-',
22 linewidth=1)
23
24 # Create labels at every node point
25 for i in range(6):
26 for j in range(6):
27 ax.text(i+0.1, j+0.1, f'$w_{i+1},_{j+1}$', ha='left',
28 va='bottom', fontsize=11)
29
30 # Add blue points to nodes
31 for i in range(6):
32 for j in range(6):
33 ax.scatter(i, j, s=20, c='blue', zorder=2)
34
35 # Remove the frame
36 for spine in ax.spines.values():
37 spine.set_visible(False)
38
39 # Add 'delta x'
40 ax.text(1.4,-0.32, '$\u0394x$', fontsize=12)
41 ax.text(-0.32,1.4, '$\u0394y$', fontsize=12);
42
43 # Save plot
44 plt.savefig('FDM_grid.png')

Appendix

80

12. Domain of lookback options

domain_lookback.py

 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3
 4 # Create a range of x-values from 0 to 10
 5 x = np.arange(0, 11)
 6
 7 # Set up a plot and remove frame lines
 8 fig, ax = plt.subplots()
 9 ax.axis('off')
10
11 # Plot the 45-degree line
12 ax.plot(x, x, color='black', linewidth=1)
13
14 # Fill the area above the line with blue
15 ax.fill_between(x, x, 10, where=x>=0, color='dodgerblue', alpha=0.3,
16 interpolate=True)
17
18 # Fill the area below the line with green
19 ax.fill_between(x, x, 0, where=x<=10, color='limegreen', alpha=0.3,
20 interpolate=True)
21
22 # Add arrows
23 ax.annotate('s', xy=(10, 0), xytext=(10, -0.5), ha='center', va='top',
24 fontsize=14)
25 ax.annotate('s*', xy=(0, 10), xytext=(-0.5, 10), ha='right', va='center',
26 fontsize=14)
27 ax.annotate('', xy=(10.25, 0), xytext=(0, 0),
28 arrowprops=dict(arrowstyle='->'))
29 ax.annotate('', xy=(0, 10.25), xytext=(0, 0),
30 arrowprops=dict(arrowstyle='->'))
31
32 # Add 0 for x-axis
33 ax.text(0, -0.5, '0', fontsize=14, ha='center', va='top')
34
35 # Add 0 for y-axis
36 ax.text(-0.5, 0, '0', fontsize=14, ha='right', va='center')
37
38 # Add labels for the coloured areas and the 45-degree line
39 ax.text(2, 6.5, 's \u2264 s* (Put)', fontsize=14)
40 ax.text(5.5, 3, 's \u2265 s* (Call)', fontsize=14)
41 ax.text(10.25, 10.25, 's = s*', fontsize=14);
42
43 # Save plot
44 plt.savefig('domain_lookback.png')

	1. Introduction
	2. Financial Options and Lookback Options
	2.1. Call & Put Options
	2.2. Lookback Options

	3. Option Pricing Models
	3.1. Black-Scholes Model
	3.2. Deficiencies of the Black-Scholes Model
	3.3. Heston Model

	4. Finite Difference Method
	4.1. Finite Differences in One Dimension
	4.1.1. Finite Difference Approximation
	4.1.2. Finite Difference Grid and Matrices
	4.1.3. Theta Method with Application
	4.1.4. Boundary Conditions

	4.2. Finite Differences in Two Dimensions

	5. Implementation
	5.1. Application in Python
	5.2. Interpolation and Put-Call Parity
	5.3. Craig-Sneyd Method
	5.4. Graphical User Interface

	6. Numerical Analysis and Discussion of Results
	7. Conclusion

