SBFT Tool Competition 2024 - Python Test Case Generation
Track

Nicolas Erni Al-Ameen Mohammed Ali Christian Birchler
Zurich University of Applied Sciences Mohammed Zurich University of Applied Sciences
Switzerland Zurich University of Applied Sciences University of Bern
Switzerland Switzerland
Pouria Derakhshanfar Stephan Lukasczyk Sebastiano Panichella
JetBrains University of Passau Zurich University of Applied Sciences
The Netherlands Germany Switzerland

ABSTRACT

Test case generation (TCG) for Python poses distinctive challenges
due to the language’s dynamic nature and the absence of strict
type information. Previous research has successfully explored auto-
mated unit TCG for Python, with solutions outperforming random
test generation methods. Nevertheless, fundamental issues persist,
hindering the practical adoption of existing test case generators.
To address these challenges, we report on the organization, chal-
lenges, and results of the first edition of the Python Testing Com-
petition. Four tools, namely UTBoTPyTHON, KLARA, HYPOTHESIS
GHOSTWRITER, and PYNGUIN were executed on a benchmark set
consisting of 35 Python source files sampled from 7 open-source
Python projects for a time budget of 400 seconds. We considered
one configuration of each tool for each test subject and evaluated
the tools’ effectiveness in terms of code and mutation coverage.
This paper describes our methodology, the analysis of the results
together with the competing tools, and the challenges faced while
running the competition experiments.

KEYWORDS

Tool Competition, Software Testing, Test Case Generation, Python,
Search Based Software Engineering

ACM Reference Format:

Nicolas Erni, Al-Ameen Mohammed Ali Mohammed, Christian Birchler,
Pouria Derakhshanfar, Stephan Lukasczyk, and Sebastiano Panichella .
2024. SBFT Tool Competition 2024 - Python Test Case Generation Track.
In Proceedings of 2024 ACM/IEEE International Workshop on Search-Based
and Fuzz Testing (SBFT °24). ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

This year, we organized the first edition of the Python SBFT Tool
Competition. The competition has the goal to experiment with
testing tools for a diversified set of systems and domains. We invited

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBFT °24, April 14, 2024, Lisbon, Portugal

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

researchers to participate in the competition with their unit test
generation tools for Python [12]. The tools are evaluated against
benchmarks concerning code and mutation coverage as similarly
done in previous SBFT tool competitions for Java [15].

2 THE PYTHON TESTING COMPETITION

The first edition of the Python Testing Tool Competition received
one submitted tool: UTBoTPyTHON [11]. Furthermore, similarly to
previous/contemporary testing competition editions of SBFT [19, 20,
25], we used various different baseline tools, namely Pyncuin [21],
HyproTHESIS GHOSTWRITER [23], and KrAra [5] for comparison.
Each test generation tool has been executed on (i.e., generated
test cases for) 35 Python source code files sampled from 7 open-
source projects on GitHub, which are TensorFlow [10], Django [3],
Flask [4], Numpy [6], scikit-learn [8], Ansible [1], and Spark [9].
Eventually, with the submitted tool and the three baseline tools
evaluated on seven benchmark projects, we get a broad performance
overview of the state-of-the-art test generation tools for Python.

To guarantee a fair comparison among the competing tools, the
execution of the tools for generating test suites and their evaluation
has been carried out by using an infrastructure hosted on GitHub!
and Zenodo [17]. Each tool implements the same interface provided
by the aforementioned infrastructure code. The competing tools
have been compared by using a set of various coverage metrics,
such as line, branch, and mutant coverage. For the comparison, all
tools got a one-time budget of 400 seconds to generate test cases
for the aforementioned benchmark source files.

2.1 Benchmark subjects

Similarly to previous editions of SBFT tool competitions [19, 25],
the selection of the projects and Python files under test to use as
benchmark for test case generation has been done by considering
three criteria: (i) projects must belong to different application do-
mains; (ii) projects must be open-source for replicability purposes;
and (iii) files must not have increasing complexity.

We focused on popular open-source projects on GitHub written
in Python. Specifically, we picked:

e TensorFlow?: an end-to-end open source platform for ma-
chine learning;

!https://github.com/ThunderKey/python-tool-competition-2024
Zhttps://github.com/tensorflow/tensorflow

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/ThunderKey/python-tool-competition-2024
https://github.com/tensorflow/tensorflow

SBFT *24, April 14, 2024, Lisbon, Portugal

Table 1: Description of the benchmarks.

Project # Python Files # Sampled Python Files
TensorFlow 3135 5
Django 27171 5
Flask 82 5
Numpy 581 5
scikit-learn 926 5
Ansible 1559 5
Spark 1134 5
ToraL 10188 35

Django?: a high-level Python web framework to build com-
plex data-driven websites;

Flask*: a lightweight WSGI web application framework;
Numpy?’: a package for scientific computing with Python;
scikit-learn®: is a Python module for machine learning;
Ansible”: an IT automation system for configuration man-
agement, application development, and cloud provisioning;
e Spark®: an analytics engine for large-scale data processing.

Based on the time and resources available for running the compe-
tition, we have only sampled a limited number of files. Specifically
for the third selection criteria, we gathered a dataset of Python files,
ensuring each file contained at least one function and maintained
an average code length of 20 lines. Furthermore, our selection crite-
ria explicitly excluded files that possess the potential to terminate
processes, notably, those leveraging the 0os® module, as well as files
linked to libraries with significant security implications, particu-
larly those with capabilities to alter the file system through write
or delete operations.

2.2 Competing tools

Four tools are competing in the first edition: UTBoTPyTHON [11],
PYNGUIN [21], HYyPoTHESIS GHOSTWRITER [23], and KLARA [5]. We
received one submitted tool, UTBoTPYTHON, and used HYPOTHESIS
GHOSTWRITER, KLARA, and PYNGUIN as baseline tools. All four tools
implement different approaches to generate test cases:

e UTBoTPYTHON [11] generates test cases based on precise
code analysis using a symbolic execution engine paired with
a smart fuzzing technique.

e PYNGUIN [21] is a framework that implements several search-
based unit test generation algorithms. For the competition,
it uses its implementation of the DynaMOSA [24] algorithm,
which is used to emit test suites with the highest coverage val-
ues compared to the other algorithms PYNGUIN provides [22].

e HypoTHESIs [23] is alibrary for creating property-based tests.
Its GHOSTWRITER module provides a way to automatically
generate these property-based testing features.

3https://github.com/django/django
“https://github.com/pallets/flask
Shttps://github.com/numpy/numpy
®https://github.com/scikit-learn/scikit-learn
"https://github.com/ansible/ansible
8https://github.com/apache/spark
“https://docs.python.org/3/library/os.html

Erni et al.

Table 2: Statistics on the number of generated test cases for
each tool and the time budget of 400 s after four runs.

Tool # Test Cases

min mean median max
UTBoTtPyTHON 2 3 3 4
PynGuUIN 1 4.67 3 10
HyroTHESIS GHOSTWRITER 1 5.33 3 12
KrLArRA 1 2.33 3 3

e Krara [5] is a set of static analysis tools to automatically
generate test cases based on AST analysis.

2.3 Methodology

The methodology followed to run the competition is similar to the
one adopted in the previous editions of the SBFT tool competitions
for Java [19, 25]. It is important to remark that, due to time and
resource constraints and the number of competing tools (four also
considering the baseline approaches), we only considered a one-
time budget of 400 seconds.

Public contest repository. The complete competition infras-
tructure is released under a GPL-3.0 license and is available on
GitHub.!? Specifically, the repository contains the set of Python
files contributing to the first edition and the detailed summary of
the results obtained by running each tool for each time budget.
The competition participants are required to implement a given
interface given by the infrastructure code. When implemented in
the provided interface, the infrastructure code can evaluate in a
straightforward manner the test generators based on a set of cover-
age criteria, which are described in more detail below.

Test generation and time budget. Each tool has been exe-
cuted four times against each benchmark target file to account for
the randomness of the test case generation process [13]. All execu-
tions got a time budget of 400 seconds to ensure a fair and feasible
comparison with the available execution environment.

Execution environment. The infrastructure performed a total
of 560 executions, i.e., 35 Python files X 4 tools X 1 time budget x
4 repetitions, to use for statistical analysis. To ensure a fair compar-
ison, we ran each tool on the same dedicated machine, i.e., a virtual
machine instance equipped with four vCPUs, 7.8 GB of RAM and
155 GB of memory running Ubuntu 22.04.3 LTS. For all the compet-
ing tools, we were able to run the planned number of executions.

Metrics computation. We compared the performance of the
competing tools based on line, branch, and mutation coverage met-
rics. Specifically, to compute both line and branch coverage metrics,
we relied on PyTEST [7] and its pPYTEST-cov ! plugin, an open-
source framework for writing unit tests. For mutation analysis, we
relied on MuTPY [14] and Cosmic Ray [2], considering five minutes
as the maximum amount of time available for mutation analysis
for each Python file.

https://github.com/django/django
https://github.com/pallets/flask
https://github.com/numpy/numpy
https://github.com/scikit-learn/scikit-learn
https://github.com/ansible/ansible
https://github.com/apache/spark
https://docs.python.org/3/library/os.html

SBFT Tool Competition 2024 - Python Test Case Generation Track

SBFT ’24, April 14, 2024, Lisbon, Portugal

=
0@ UTBorPrrion [O Pyneuin =
O O Hyrornests Gnostwriter B @ Krara
5 3
- S N) —
0.4 S S . s
g)l) o N
3 o
: i, <
g 2 = ° 1 g
3 = ! 1t =) !
g 0.2+ S IS = S —
3 o
Q
[T
0 =3 =3 o o o - S © o o o S =Y o o o o
T T T T T T T
TensorFlow Django Flask Numpy scikit-learn Ansible Spark
1- ! ! ! ! ! - ! _
® - 0@ UTBorPyrron [O Pyncumy hud
S - = [0 O Hyporuests Grostwrrrer ll B Krara
= o
© © o g
& S s o
& w oo
o] =] ST
S 05 <« <« < -« |
§ . S (ST s S S
o o
3 - 8 oo w N
m © w ©
0 mml]- s ===
T T T T T T T
TensorFlow Django Flask Numpy scikit-learn Ansible Spark
| | | | | | |
S 2 2 2 Oo UTBotPYTHON 0 O Pyxoun
0.6 |- n om v n [O Hyroruesis GuostwriTer B B Krara n —
S 3 S o o
< <«
I < S o
2
15} 0 4 I |
g 0.
2
o
S N N N« T
= s S o o S
g 2«
s 0.2 L -
E g —
<+«
T T T T T T T
ensorFlow jango as umj scikit-learn nsible ar]
Te Fl D Flask Ni Yy kit-1e Ansibl Spark

Figure 1: Average coverage and mutation score for each test generation tool after four runs.

Table 3: Average performance scores of the tools among all
benchmarks.

Tool Coverage (%) Total Score
Line Branch Mutation

PyNnGUIN 26.7 27.4 5.28 1.03

UTBoTtPyTHON 10.1 6.63 6.60 0.498

HyrPoTHESIS GHOSTWRITER 18.0 9.04 2.72 0.470

Krara 3.45 2.41 2.23 0.172

2.4 Competition’s results and analysis

Each tool generates a different number of test cases. We executed
each tool four times with a time budget of 400s. Numbers are
rounded to three significant digits, if appropriate. Table 2 presents
for each tool the minimum, mean, median, and maximum number
of the generated test cases. We observed that HyPOTHESIS GHOST-
WRITER generates, on average, most test cases followed by PYNGUIN,
UTBoTtPyTHON, and then KLARA.

1Ohttps://github.com/ThunderKey/python-tool-competition-2024
Hhttps://pytest-cov.readthedocs.io/en/latest/

We computed different metrics, such as the line, branch coverage,
and mutation score, to evaluate the quality of the generated test
cases. Table 3 reports the average percentage of lines, branches,
and mutants being covered by the tools after four executions. Re-
garding line coverage, PYNGUIN has the highest value with 26.7 %.
Meanwhile, KLArA had the lowest with 3.45 %. In terms of branch
coverage, PYNGUIN also has the highest score with more than 27 %,
while KLARA has again the lowest with 2.41 %. Furthermore, Ta-
ble 3 also reports the average mutation coverage, which is the ratio
between the number of mutants that were killed by at least one
test and the total number of mutants being generated. Eventually,
we report the final scores of the tools based on a time budget of
400 s. The formula [16] for the final score has been created and
improved during the previous editions of the tool competition and
takes into account the line and branch coverage and the mutation
score used by the generator. In terms of ranking, we have PYNGUIN
as first, followed by UTBoTPYTHON, HYPOTHESIS GHOSTWRITER,
and KLARA.

In addition to the general performance evaluation, we also evalu-
ated the tools’ performance for each benchmark project individually.
Figure 1 depicts the various performance metrics of each tool among

https://github.com/ThunderKey/python-tool-competition-2024
https://pytest-cov.readthedocs.io/en/latest/

SBFT *24, April 14, 2024, Lisbon, Portugal

all benchmarks. We observed that the tools could not create any
tests for certain benchmarks. For example, no tool was able to gen-
erate tests for the Spark project. We can see this due to the fact that
all metrics were zero for this specific benchmark. Interestingly, for
the scikit-learn project, we still got some branch coverage but no
line coverage. This observation contradicts the general perception
that no branch can be covered when no line is covered. We think
this branch coverage might occur due to empty if clauses where
the condition is true but no executable statement is in the block
except for the pass keyword. Furthermore, in the case of the Spark
benchmark, only KLARA could cover a small number of lines.

A potential cause for this low line coverage might still be the code
complexity of those aforementioned benchmark projects although
it was already a selection criteria not having an increasing complex-
ity (Section 2.1). We argue for future editions of the competition,
the tools should investigate the feasibility to handle complex file
structures from real benchmark projects. Furthermore, it could be
interesting to investigate to what extent certain newly introduced
Python language features affect the tools in their performances.

3 CONCLUSIONS AND FINAL REMARKS OF
THE PYTHON TESTING TOOL
COMPETITION

This year marks the first edition of the Python Unit Testing Competi-
tion. We received one tool, namely UTBoTPyTHON, which competes
against three baseline tools, namely, PYNGUIN, HYPOTHESIS GHOST-
WRITER, and KLARA. As per results of this year, the best-performing
tool overall is PYNGUIN followed by UTBoTPyTHON, and HYPOTHE-
s1s GHOSTWRITER while KLARA seems to perform the worst on the
selected benchmark subject files. The analysis of collected results
by the organizers of the competition and by the participants re-
vealed that for some of the generated test suites, it was not possible
to generate tests or compute coverage and mutation analysis. The
most likely cause of this is the files are too complex, contain many
relative imports, or lack modularity. We plan to investigate this
issue further to identify the definite root cause of the problem and
to perform a fix for the next editions of the competition in order to
provide better criteria for the right type of files. In addition, we envi-
sion several other possibilities for improvement, such as extending
the list of criteria used for the evaluation, such as performance
awareness [18] and readability [26, 27] scores.

4 DATA AVAILABILITY
We provide all code and detailed results on Zenodo [17].

ACKNOWLEDGMENTS

We thank the participants of the competitions for their invaluable
contribution. We thank the Horizon 2020 (EU Commission) and
Innosuisse support for the projects COSMOS (DevOps for Complex
Cyber-physical Systems, Project No. 957254-COSMOS) and ARIES
(Project 45548.1 IP-ICT).

Erni et al.

REFERENCES

[1] 2024. Ansible. https://github.com/ansible/ansible.
2024. Cosmic Ray. https://cosmic-ray.readthedocs.io/en/latest/.
2024. django. https://github.com/django/django.

2024. Flask. https://github.com/pallets/flask.
2024. Klara. https://github.com/usagitoneko97/klara.

]

|

] 2024. NumPy. https://github.com/numpy/numpy.

[7] 2024. pytest. https://docs.pytest.org/en.

] 2024. scikit-learn. https://github.com/scikit-learn/scikit-learn.

] 2024. Spark. https://github.com/apache/spark.

] 2024. TensorFlow. https://github.com/tensorflow/tensorflow.

] 2024. UTBotPython. https://github.com/UnitTestBot/UTBotPythonSBFT2024.

] Carol V. Alexandru, José J. Merchante, Sebastiano Panichella, Sebastian Proksch,
Harald C. Gall, and Gregorio Robles. 2018. On the Usage of Pythonic Idioms. In
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward! 2018). Association for Computing
Machinery, 1-11. https://doi.org/10.1145/3276954.3276960
[13] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s Guide to Statistical Tests

for Assessing Randomized Algorithms in Software Engineering. Softw. Test. Verif.
Reliab. 24, 3 (May 2014), 219-250. https://doi.org/10.1002/stvr.1486
[14] Anna Derezinska and Konrad Halas. 2014. Experimental Evaluation of Mutation
Testing Approaches to Python Programs. In Seventh IEEE International Conference
on Software Testing, Verification and Validation, ICST 2014 Workshops Proceedings,
March 31 - April 4, 2014, Cleveland, Ohio, USA. IEEE Computer Society, 156-164.
https://doi.org/10.1109/ICSTW.2014.24
[15] Xavier Devroey, Alessio Gambi, Juan Pablo Galeotti, René Just, Fitsum Kifetew,
Annibale Panichella, and Sebastiano Panichella. [n.d.]. JUGE: An infrastructure
for benchmarking Java unit test generators. Software Testing, Verification and
Reliability ([n. d.]), e1838. https://doi.org/10.1002/stvr.1838
Xavier Devroey, Alessio Gambi, Juan Pablo Galeotti, René Just, Fitsum Kifetew,
Annibale Panichella, and Sebastiano Panichella. 2021. JUGE: An Infrastructure
for Benchmarking Java Unit Test Generators. https://doi.org/10.48550/arXiv.
2106.07520
Nicolas Erni, Al-Ameen Mohammed Ali Mohammed, Christian Birchler, Pouria
Derakhshanfar, Stephan Lukasczyk, and Sebastiano Panichella. 2024. SBFT Tool
Competition 2024 - Python Test Case Generation Track. https://doi.org/10.5281/
zenodo.10554259
[18] G. Grano, C. Laaber, A. Panichella, and S. Panichella. 2019. Testing with Fewer
Resources: An Adaptive Approach to Performance-Aware Test Case Generation.
IEEE Transactions on Software Engineering (2019), 1-1.
Gunel Jahangirova and Valerio Terragni. 2023. SBFT Tool Competition 2023 -
Java Test Case Generation Track. In International Workshop on Search-Based and
Fuzz Testing. IEEE, 61-64. https://doi.org/10.1109/SBFT59156.2023.00025
Sajad Khatiri, Prasun Saurabh, Timothy Zimmermann, Charith Munasinghe,
Christian Birchler, and Sebastiano Panichella. 2024. SBFT Tool Competition 2024
- CPS-UAV Test Case Generation Track. In IEEE/ACM International Workshop on
Search-Based and Fuzz Testing, SBFT@ICSE 2024.
[21] Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: automated unit test
generation for Python. In Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Companion Proceedings (ICSE °22). ACM, 168-172.
https://doi.org/10.1145/3510454.3516829
Stephan Lukasczyk, Florian Kroif3, and Gordon Fraser. 2023. An empirical study
of automated unit test generation for Python. EMSE 28, 2 (2023), 36. https:
//doi.org/10.1007/S10664-022-10248-W
[23] David Maciver and Zac Hatfield-Dodds. 2019. Hypothesis: A new approach to
property-based testing. J. Open Source Softw. 4, 43 (2019), 1891. https://doi.org/
10.21105/JOSS.01891
Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44,
2(2018), 122-158. https://doi.org/10.1109/TSE.2017.2663435
Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio.
2021. SBST Tool Competition 2021. In International Workshop on Search-Based
Software Testing. IEEE, 20-27. https://doi.org/10.1109/SBST52555.2021.00011
Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C. Gall. 2016. The impact of test case summaries on bug fixing per-
formance: an empirical investigation. In International Conference on Software
Engineering, ICSE 2016, Laura K. Dillon, Willem Visser, and Laurie A. Williams
(Eds.). ACM, 547-558. https://doi.org/10.1145/2884781.2884847
Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, Andrea Di Sorbo, and
Oscar Nierstrasz. 2021. How to identify class comment types? A multi-language
approach for class comment classification. 7 Syst. Softw. 181 (2021), 111047.
https://doi.org/10.1016/].JSS.2021.111047

[16

=
=

[19

[20

[22

[24

[25

[26

[27

https://github.com/ansible/ansible
https://cosmic-ray.readthedocs.io/en/latest/
https://github.com/django/django
https://github.com/pallets/flask
https://github.com/usagitoneko97/klara
https://github.com/numpy/numpy
https://docs.pytest.org/en
https://github.com/scikit-learn/scikit-learn
https://github.com/apache/spark
https://github.com/tensorflow/tensorflow
https://github.com/UnitTestBot/UTBotPythonSBFT2024
https://doi.org/10.1145/3276954.3276960
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1109/ICSTW.2014.24
https://doi.org/10.1002/stvr.1838
https://doi.org/10.48550/arXiv.2106.07520
https://doi.org/10.48550/arXiv.2106.07520
https://doi.org/10.5281/zenodo.10554259
https://doi.org/10.5281/zenodo.10554259
https://doi.org/10.1109/SBFT59156.2023.00025
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1007/S10664-022-10248-W
https://doi.org/10.1007/S10664-022-10248-W
https://doi.org/10.21105/JOSS.01891
https://doi.org/10.21105/JOSS.01891
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/SBST52555.2021.00011
https://doi.org/10.1145/2884781.2884847
https://doi.org/10.1016/J.JSS.2021.111047

	Abstract
	1 Introduction
	2 The Python Testing Competition
	2.1 Benchmark subjects
	2.2 Competing tools
	2.3 Methodology
	2.4 Competition's results and analysis

	3 Conclusions and Final Remarks of the Python Testing Tool Competition
	4 Data availability
	References

