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ABSTRACT

Test case generation (TCG) for Python poses distinctive challenges
due to the language’s dynamic nature and the absence of strict
type information. Previous research has successfully explored auto-
mated unit TCG for Python, with solutions outperforming random
test generation methods. Nevertheless, fundamental issues persist,
hindering the practical adoption of existing test case generators.
To address these challenges, we report on the organization, chal-
lenges, and results of the first edition of the Python Testing Com-
petition. Four tools, namely UTBoTPyTHON, KLARA, HYPOTHESIS
GHOSTWRITER, and PYNGUIN were executed on a benchmark set
consisting of 35 Python source files sampled from 7 open-source
Python projects for a time budget of 400 seconds. We considered
one configuration of each tool for each test subject and evaluated
the tools’ effectiveness in terms of code and mutation coverage.
This paper describes our methodology, the analysis of the results
together with the competing tools, and the challenges faced while
running the competition experiments.
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1 INTRODUCTION

This year, we organized the first edition of the Python SBFT Tool
Competition. The competition has the goal to experiment with
testing tools for a diversified set of systems and domains. We invited
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researchers to participate in the competition with their unit test
generation tools for Python [12]. The tools are evaluated against
benchmarks concerning code and mutation coverage as similarly
done in previous SBFT tool competitions for Java [15].

2 THE PYTHON TESTING COMPETITION

The first edition of the Python Testing Tool Competition received
one submitted tool: UTBoTPyTHON [11]. Furthermore, similarly to
previous/contemporary testing competition editions of SBFT [19, 20,
25], we used various different baseline tools, namely Pyncuin [21],
HyproTHESIS GHOSTWRITER [23], and KrAra [5] for comparison.
Each test generation tool has been executed on (i.e., generated
test cases for) 35 Python source code files sampled from 7 open-
source projects on GitHub, which are TensorFlow [10], Django [3],
Flask [4], Numpy [6], scikit-learn [8], Ansible [1], and Spark [9].
Eventually, with the submitted tool and the three baseline tools
evaluated on seven benchmark projects, we get a broad performance
overview of the state-of-the-art test generation tools for Python.

To guarantee a fair comparison among the competing tools, the
execution of the tools for generating test suites and their evaluation
has been carried out by using an infrastructure hosted on GitHub!
and Zenodo [17]. Each tool implements the same interface provided
by the aforementioned infrastructure code. The competing tools
have been compared by using a set of various coverage metrics,
such as line, branch, and mutant coverage. For the comparison, all
tools got a one-time budget of 400 seconds to generate test cases
for the aforementioned benchmark source files.

2.1 Benchmark subjects

Similarly to previous editions of SBFT tool competitions [19, 25],
the selection of the projects and Python files under test to use as
benchmark for test case generation has been done by considering
three criteria: (i) projects must belong to different application do-
mains; (ii) projects must be open-source for replicability purposes;
and (iii) files must not have increasing complexity.

We focused on popular open-source projects on GitHub written
in Python. Specifically, we picked:

e TensorFlow?: an end-to-end open source platform for ma-
chine learning;

!https://github.com/ThunderKey/python-tool-competition-2024
Zhttps://github.com/tensorflow/tensorflow
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Table 1: Description of the benchmarks.

Project # Python Files # Sampled Python Files
TensorFlow 3135 5
Django 27171 5
Flask 82 5
Numpy 581 5
scikit-learn 926 5
Ansible 1559 5
Spark 1134 5
ToraL 10188 35

Django?: a high-level Python web framework to build com-
plex data-driven websites;

Flask*: a lightweight WSGI web application framework;
Numpy?’: a package for scientific computing with Python;
scikit-learn®: is a Python module for machine learning;
Ansible”: an IT automation system for configuration man-
agement, application development, and cloud provisioning;
e Spark®: an analytics engine for large-scale data processing.

Based on the time and resources available for running the compe-
tition, we have only sampled a limited number of files. Specifically
for the third selection criteria, we gathered a dataset of Python files,
ensuring each file contained at least one function and maintained
an average code length of 20 lines. Furthermore, our selection crite-
ria explicitly excluded files that possess the potential to terminate
processes, notably, those leveraging the 0os® module, as well as files
linked to libraries with significant security implications, particu-
larly those with capabilities to alter the file system through write
or delete operations.

2.2 Competing tools

Four tools are competing in the first edition: UTBoTPyTHON [11],
PYNGUIN [21], HYyPoTHESIS GHOSTWRITER [23], and KLARA [5]. We
received one submitted tool, UTBoTPYTHON, and used HYPOTHESIS
GHOSTWRITER, KLARA, and PYNGUIN as baseline tools. All four tools
implement different approaches to generate test cases:

e UTBoTPYTHON [11] generates test cases based on precise
code analysis using a symbolic execution engine paired with
a smart fuzzing technique.

e PYNGUIN [21] is a framework that implements several search-
based unit test generation algorithms. For the competition,
it uses its implementation of the DynaMOSA [24] algorithm,
which is used to emit test suites with the highest coverage val-
ues compared to the other algorithms PYNGUIN provides [22].

e HypoTHESIs [23] is alibrary for creating property-based tests.
Its GHOSTWRITER module provides a way to automatically
generate these property-based testing features.

3https://github.com/django/django
“https://github.com/pallets/flask
Shttps://github.com/numpy/numpy
®https://github.com/scikit-learn/scikit-learn
"https://github.com/ansible/ansible
8https://github.com/apache/spark
“https://docs.python.org/3/library/os.html
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Table 2: Statistics on the number of generated test cases for
each tool and the time budget of 400 s after four runs.

Tool # Test Cases

min mean median max
UTBoTtPyTHON 2 3 3 4
PynGuUIN 1 4.67 3 10
HyroTHESIS GHOSTWRITER 1 5.33 3 12
KrLArRA 1 2.33 3 3

e Krara [5] is a set of static analysis tools to automatically
generate test cases based on AST analysis.

2.3 Methodology

The methodology followed to run the competition is similar to the
one adopted in the previous editions of the SBFT tool competitions
for Java [19, 25]. It is important to remark that, due to time and
resource constraints and the number of competing tools (four also
considering the baseline approaches), we only considered a one-
time budget of 400 seconds.

Public contest repository. The complete competition infras-
tructure is released under a GPL-3.0 license and is available on
GitHub.!? Specifically, the repository contains the set of Python
files contributing to the first edition and the detailed summary of
the results obtained by running each tool for each time budget.
The competition participants are required to implement a given
interface given by the infrastructure code. When implemented in
the provided interface, the infrastructure code can evaluate in a
straightforward manner the test generators based on a set of cover-
age criteria, which are described in more detail below.

Test generation and time budget. Each tool has been exe-
cuted four times against each benchmark target file to account for
the randomness of the test case generation process [13]. All execu-
tions got a time budget of 400 seconds to ensure a fair and feasible
comparison with the available execution environment.

Execution environment. The infrastructure performed a total
of 560 executions, i.e., 35 Python files X 4 tools X 1 time budget x
4 repetitions, to use for statistical analysis. To ensure a fair compar-
ison, we ran each tool on the same dedicated machine, i.e., a virtual
machine instance equipped with four vCPUs, 7.8 GB of RAM and
155 GB of memory running Ubuntu 22.04.3 LTS. For all the compet-
ing tools, we were able to run the planned number of executions.

Metrics computation. We compared the performance of the
competing tools based on line, branch, and mutation coverage met-
rics. Specifically, to compute both line and branch coverage metrics,
we relied on PyTEST [7] and its pPYTEST-cov ! plugin, an open-
source framework for writing unit tests. For mutation analysis, we
relied on MuTPY [14] and Cosmic Ray [2], considering five minutes
as the maximum amount of time available for mutation analysis
for each Python file.
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Figure 1: Average coverage and mutation score for each test generation tool after four runs.

Table 3: Average performance scores of the tools among all
benchmarks.

Tool Coverage (%) Total Score
Line Branch Mutation

PyNnGUIN 26.7 27.4 5.28 1.03

UTBoTtPyTHON 10.1 6.63 6.60 0.498

HyrPoTHESIS GHOSTWRITER 18.0 9.04 2.72 0.470

Krara 3.45 2.41 2.23 0.172

2.4 Competition’s results and analysis

Each tool generates a different number of test cases. We executed
each tool four times with a time budget of 400s. Numbers are
rounded to three significant digits, if appropriate. Table 2 presents
for each tool the minimum, mean, median, and maximum number
of the generated test cases. We observed that HyPOTHESIS GHOST-
WRITER generates, on average, most test cases followed by PYNGUIN,
UTBoTtPyTHON, and then KLARA.

1Ohttps://github.com/ThunderKey/python-tool-competition-2024
Hhttps://pytest-cov.readthedocs.io/en/latest/

We computed different metrics, such as the line, branch coverage,
and mutation score, to evaluate the quality of the generated test
cases. Table 3 reports the average percentage of lines, branches,
and mutants being covered by the tools after four executions. Re-
garding line coverage, PYNGUIN has the highest value with 26.7 %.
Meanwhile, KLArA had the lowest with 3.45 %. In terms of branch
coverage, PYNGUIN also has the highest score with more than 27 %,
while KLARA has again the lowest with 2.41 %. Furthermore, Ta-
ble 3 also reports the average mutation coverage, which is the ratio
between the number of mutants that were killed by at least one
test and the total number of mutants being generated. Eventually,
we report the final scores of the tools based on a time budget of
400 s. The formula [16] for the final score has been created and
improved during the previous editions of the tool competition and
takes into account the line and branch coverage and the mutation
score used by the generator. In terms of ranking, we have PYNGUIN
as first, followed by UTBoTPYTHON, HYPOTHESIS GHOSTWRITER,
and KLARA.

In addition to the general performance evaluation, we also evalu-
ated the tools’ performance for each benchmark project individually.
Figure 1 depicts the various performance metrics of each tool among
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all benchmarks. We observed that the tools could not create any
tests for certain benchmarks. For example, no tool was able to gen-
erate tests for the Spark project. We can see this due to the fact that
all metrics were zero for this specific benchmark. Interestingly, for
the scikit-learn project, we still got some branch coverage but no
line coverage. This observation contradicts the general perception
that no branch can be covered when no line is covered. We think
this branch coverage might occur due to empty if clauses where
the condition is true but no executable statement is in the block
except for the pass keyword. Furthermore, in the case of the Spark
benchmark, only KLARA could cover a small number of lines.

A potential cause for this low line coverage might still be the code
complexity of those aforementioned benchmark projects although
it was already a selection criteria not having an increasing complex-
ity (Section 2.1). We argue for future editions of the competition,
the tools should investigate the feasibility to handle complex file
structures from real benchmark projects. Furthermore, it could be
interesting to investigate to what extent certain newly introduced
Python language features affect the tools in their performances.

3 CONCLUSIONS AND FINAL REMARKS OF
THE PYTHON TESTING TOOL
COMPETITION

This year marks the first edition of the Python Unit Testing Competi-
tion. We received one tool, namely UTBoTPyTHON, which competes
against three baseline tools, namely, PYNGUIN, HYPOTHESIS GHOST-
WRITER, and KLARA. As per results of this year, the best-performing
tool overall is PYNGUIN followed by UTBoTPyTHON, and HYPOTHE-
s1s GHOSTWRITER while KLARA seems to perform the worst on the
selected benchmark subject files. The analysis of collected results
by the organizers of the competition and by the participants re-
vealed that for some of the generated test suites, it was not possible
to generate tests or compute coverage and mutation analysis. The
most likely cause of this is the files are too complex, contain many
relative imports, or lack modularity. We plan to investigate this
issue further to identify the definite root cause of the problem and
to perform a fix for the next editions of the competition in order to
provide better criteria for the right type of files. In addition, we envi-
sion several other possibilities for improvement, such as extending
the list of criteria used for the evaluation, such as performance
awareness [18] and readability [26, 27] scores.

4 DATA AVAILABILITY
We provide all code and detailed results on Zenodo [17].
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