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ABSTRACT
While simulation-based testing is critical for ensuring the safety of
autonomous Unmanned Aerial Vehicles (UAVs), it has not been ade-
quately researched yet. The UAV Testing Competition organized by
the Search-Based and Fuzz Testing (SBFT) workshop is an initiative
designed to inspire and encourage the software testing Community
to direct their attention toward UAVs as a rapidly emerging and
crucial domain. It provides a simple software platform and case
study to facilitate their onboarding in the UAV domain and help
them develop their first test generation tools for UAVs.

In this first edition of the competition, 7 tools were submitted,
evaluated, and compared extensively against each other and the
baseline approach. We evaluated their test generation performance
for 6 different case studies using our novel benchmarking infras-
tructure. The generated test suites were scored and ranked based on
the number and severity of the revealed faults, and the complexity,
diversity, and execution time of the test cases. This paper describes
the competition context, its platform, the competing tools, and the
evaluation process and results.
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1 INTRODUCTION
Simulation-based testing is critical for ensuring the safety of au-
tonomous unmanned aerial vehicles (UAVs). Over the years, support
for UAV developers has increased with open-access projects for
software and hardware such as the autopilot support provided by
PX4 [2, 10]. However, despite the necessity of systematically testing
such complex and automated systems to ensure their safe opera-
tion in real-world environments, there has been relatively limited
investment in this direction so far.

Previous studies have shown that many UAV bugs can be poten-
tially detected before field tests if proper simulation-based testing is
in place [13]. This suggests the need for further research on setting
up simulation environments that test UAVs’ behavior in diverse,
complex, and realistic scenarios [2, 15]. However, the engineering
complexity of UAVs and the physical test environment, as well as
the challenges in setting up realistic simulation environments that
effectively capture the same bugs, represent relevant obstacles [6, 7].

In the first edition of the UAV Testing Competition, we aim
to provide software testing researchers with a simple platform

Figure 1: A failing test case

to facilitate their onboarding in the UAV domain. Using the pro-
vided platform and case studies, the goal is to use search-based
techniques for generating challenging test cases for autonomous
vision-based UAV navigation systems. Inspired by previous SBFT
tool competitions [1, 5, 11], we invited researchers to participate in
the competition with their system-level test generation tools for
UAVs and compete against the current state-of-the-art approach [6].

2 COMPETITION DESIGN
The objective of the competitors is to develop a test generator for
our UAV system under test, a vision-based autonomous flight sys-
tem called PX4. Participants are required to submit a robust test
generation tool capable of generating diverse and effective test
suites to uncover vulnerabilities within the system. This involves
manipulating obstacle sizes and placements within the test environ-
ment, with the ultimate goal of either causing the UAV to crash or
taking an unsafe path, as demonstrated in Figure 1. The effective-
ness of the generated tests are measured based on the minimum
distance of the drone to the obstacles during the flight.

To guarantee a fair comparison among the competing tools and
to ease their development, we provided the participants with an
open-source, extensible test infrastructure [7] hosted on GitHub:

https://github.com/skhatiri/UAV-Testing-Competition

https://github.com/skhatiri/UAV-Testing-Competition
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2.1 Benchmarking Platform
The software under test in the competition is PX4 [10], a vision-
based UAV autopilot system that has been studied in previous re-
search [6] while the testing process has been facilitated by Aerial-
ist [7], a UAV test bench developed on top of PX4.

2.1.1 PX4 Platform. PX4 is an open-source autopilot software stack
widely used in the UAV industry for a range of vehicle types, from
quadcopters to VTOL vehicles. It offers capabilities for navigation,
stabilization, and autonomous mission planning and is compatible
with various hardware platforms. An integral part of this ecosystem
is the PX4 Avoidance module, which equips UAVs with autonomous
obstacle detection and avoidance capabilities, crucial for safe oper-
ation in complex environments. PX4 internally logs comprehensive
operational data and telemetry including GPS coordinates, sensor
data, and flight modes which can be used for flight analysis. It also
supports multiple software in the loop simulation environments
(e.g., Gazebo) to allow a safe and controlled development and test-
ing environment for novel UAV control systems including mission
planning and obstacle avoidance.

2.1.2 Aerialist. Aerialist 1 (unmanned AERIAL vehIcle teST bench)
is a novel test bench for UAV software that automates all the neces-
sary UAV testing steps: setting up the test environment, building
and running the UAV firmware code, configuring the simulator with
the simulated world properties, connecting the simulated UAV to
the firmware, applying proper UAV configurations, scheduling and
executing runtime commands, monitoring the UAV at runtime for
any issues, and extracting the flight log after the test completion [7].
With Aerialist, competition participants have an easy-to-use plat-
form to automate tests on the simulated UAVs, allowing them to
conduct the experiments required in their test generation approach.

Aerialist models a UAV test case with a set of test properties
and uses a YAML structure to describe the test including the drone
properties (software configurations, mission plan, etc.), simulation
properties (simulator, environment, obstacles, etc.), and the com-
mands sent at runtime to the drone. It also supports large-scale
experiments by deploying the test execution in a Kubernetes cluster.

2.2 Rules and Restrictions
The competition participants were expected to submit a test gen-
erator that generates challenging test cases for a given case study.
The case studies are simple Aerialist test description YAML files
including predefined drone configurations and a mission plan, as
well as simulation environment settings without any obstacles. The
test generators are only allowed to manipulate the simulation envi-
ronment by adding obstacles. For simplicity, we only consider up
to 4 box-shaped obstacles. An obstacle is defined by its size (length,
width, height) and position in the simulation environment (x,y,z)
in meters and its rotation angle (r) in degrees.

The drone is expected to safely navigate all possible environ-
ments, avoid any obstacles on the path, and complete the mission
plan. Given a case study, the competition goal is to generate al-
ternative variants of the surrounding environment (i.e., obstacles)
to make it more challenging for the drone to safely navigate the
environment. The introduced obstacles may force the UAV to fly
1https://github.com/skhatiri/Aerialist

unsafely close to the obstacles (less than the 1.5m safety thresh-
old investigated in previous work [6]) while still completing the
mission, or even crash into them; a failing test that needs proper
investigation by the UAV developers (as demonstrated in Figure 1).

Participants are expected to use search-based methods to find
challenging obstacle configurations and the generated test cases
(following Aerialist modeling) must respect these considerations:

• The obstacle configurations are expected to keep the mission
physically feasible. The test cases that make it impossible for
the UAV to find its path (e.g., by creating a long wall on the
path) without any safety violation are considered invalid.

• All obstacles are expected to fit in a given rectangular area
as stated in the case study.

• Maximum four obstacles can be placed in the environment.
They must be placed directly on the ground (𝑧 = 0), be taller
than the UAV flight height (ℎ > 10𝑚), and must not overlap.

3 EXPERIMENTS AND RESULTS
3.1 Competing Tools
Seven tools were submitted to the competition, and with one re-
tracted tool, six tools competed against the baseline in the first edi-
tion of the UAV Testing Competition: AmbieGen [4], CAMBA [9],
DeepHyperion-UAV [17], TAIiST [16], TUMB [12], and WOGAN-
UAV [14]. Similar to the previous SBFT competitions [1, 3, 5, 11],
we used the state-of-the-art UAV test generation approach, Surreal-
ist [6], as the baseline.

AmbieGen [4] leverages a surrogate (approximate) fitness func-
tion to represent system behavior and guides the test generation
with an evolutionary algorithm, prioritizing test scenarios using an
RRT* path planning algorithm. Intuitively, test cases with longer
paths to the target should be more challenging for the UAV.

CAMBA [9] employs a cost-aware, mutation-based test case
generation algorithm that sequentially learns from the previous
flight logs and positions two obstacles in the environment to make
the drone crash.

DeepHyperion-UAV [17] leverages the key advantages of Il-
lumination search to find diverse misbehavior-inducing test cases
(obstacle configurations) spread across the cells of a map represent-
ing the feature space of the system.

TAIiST [16] leverages the capabilities of LLMs to intelligently
simulate a wide range of real-world scenarios and interactions that
UAVs may encounter. This includes interpreting and responding to
dynamic environmental changes, unexpected obstacles, and real-
time decision-making processes.

TUMB [12] relies onMonte Carlo Tree Search (MCTS) to explore
different placements of obstacles in the environment. Increasing the
tree depth corresponds to adding a new obstacle to the environment,
while adding a new node in the current tree level corresponds to
optimizing the placement and dimensions of the last added obstacle.

WOGAN-UAV [14] is an online test generation tool based on
Wasserstein generative adversarial networks. The WOGAN algo-
rithm is a general-purpose black-box algorithm, and as such can be
used on any given deterministic system that has real-valued signal
inputs and outputs.

https://github.com/skhatiri/Aerialist
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Surrealist [6] employs an iterative adaptive greedy search ap-
proach to generate test cases that maximize a difficulty measure
defined based on the drone’s minimum distance to the obstacles.

3.2 Evaluation Process
The evaluation of the tools was done in two steps: First, each of
the tools was used to generate a test suite for our evaluation case
studies. Then, the generated test suites were evaluated and scored.

3.2.1 Test Generation Phase.

Case Studies. To ensure the generalizability of the test generation
approaches, we evaluated the tools with 6 different case studies
with increasingly challenging settings. 2 of them were derived from
the sample case studies provided in the competition call (CS2, CS3)
while 4 new ones were specifically created for the evaluation. The
case studies vary in the number of waypoints (3-6), the shape of
the mission plan (triangular, rectangular, diamond, etc.), and their
overlap with the valid obstacle area. Figure 1 plots a sample flight
in CS2 with 3 waypoints and a triangular shape.

Tool Execution. We employed various measures to ensure an
identical execution environment for all the tools. We Dockerized
and deployed the tools in our evaluation Kubernetes cluster with
fixed resources (1.5 vCPUs, 15 GB RAM). Each tool was given a
simulation budget of 200 (maximum allowed test cases to simulate)
for each case study and the test cases were simulated in separate
isolated containers under fixed resource allocations (6 vCPUs, 4
GB RAM). A 500-second timeout was enforced for each simulation,
after which the simulation was interrupted, and logs were extracted.
After their execution, the tools were supposed to output a test suite,
consisting of the failing tests they found during their execution.
The reported test cases were then used for the final evaluation.

3.2.2 Test Suite Evaluation Phase. Due to time and computational
constraints, the high number of competing tools (7), and the large
size of some of the generated test suites (up to 151 tests), we limited
the evaluations to 20 test cases per tool per case study (eval_set),
randomly selected from the test suites. These test cases were first
checked for compliance with the competition rules (e.g., allowed
obstacle area, obstacle size). Each valid test case was then executed
(simulated) 5 times to minimize non-determinism effects and all of
the executions were pointed independently based on the minimum
distance of the drone to the obstacles (min_dist) during the flight
according to Formula 1.

𝑝𝑜𝑖𝑛𝑡 (𝑠𝑖𝑚) =


5, if𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 (𝑠𝑖𝑚) < 0.25𝑚
2, if 0.25𝑚 ≤ 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 (𝑠𝑖𝑚) < 1𝑚
1, if 1𝑚 ≤ 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 (𝑠𝑖𝑚) < 1.5𝑚
0, if𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 (𝑠𝑖𝑚) ≥ 1.5𝑚

(1)

The average point (avg_point) of each test case is then used
to formulate its test_score in Formula 2. Here, we estimate the
complexity of the test cases using the number of obstacles (#obst)
in the environment and the average test execution time (avg_time).

𝑡𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 (𝑡) = 𝑎𝑣𝑔_𝑝𝑜𝑖𝑛𝑡 (𝑡) × 10
#𝑜𝑏𝑠𝑡 (𝑡)2 × 𝑎𝑣𝑔_𝑡𝑖𝑚𝑒 (𝑡)

(2)

To estimate the scores for the non-simulated test cases in suites
containing more than 20 tests, we assign half of the average value
of the evaluated cases (avg_test_score) to each of the remaining
tests. This accounts for the increased likelihood of encountering
similar and lower-quality test cases in larger test suites.

𝑟𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 (𝑠) =
{
(#𝑡𝑒𝑠𝑡𝑠 (𝑠) − 20) × 𝑎𝑣𝑔_𝑠𝑐𝑜𝑟𝑒 (𝑠)

2 , if #𝑡𝑒𝑠𝑡𝑠 (𝑠) > 20
0, if #𝑡𝑒𝑠𝑡𝑠 (𝑠) ≤ 20

(3)
To encourage test diversity and ensure fairness in the scoring,

too similar test cases were penalized. Two test cases are considered
too similar if their flight trajectories are almost identical, calculated
using the Dynamic Time Warping (DTW) distance of their average
trajectories (among the 5 simulations).

𝑠𝑖𝑚_𝑝𝑒𝑛(𝑠) = 1 − #𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑡𝑒𝑠𝑡𝑠 (𝑠)
#𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑_𝑡𝑒𝑠𝑡𝑠 (𝑠)) (4)

The above-calculated metrics are then integrated into a final
score for the whole test suite, generated by the given tool for the
given case study.

𝑠𝑢𝑖𝑡𝑒_𝑠𝑐𝑜𝑟𝑒 (𝑠) = (∑𝑡 𝑡𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 (𝑡) + 𝑟𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 (𝑠)) × 𝑠𝑖𝑚_𝑝𝑒𝑛(𝑠)
(5)

3.3 Results and Ranking
Table 1 summarizes the total number of reported test cases, and the
obtained suite_score of the tools for each case study. The case study
scores are summed up for each tool, and used to form the final,
overall ranking of the tools. The sum of the individual case study
rankings, and the number of obstacles used in test cases generated
by each tool, are also reported. More details including the case study
definitions, evaluated test suites, flight plots, and scoring details
are included in the evaluation artifacts [8].

All of the evaluated tools were able to generate valid failing
test cases (𝑠𝑐𝑜𝑟𝑒 > 0) for at least 3 case studies. All competitors
outperformed the baseline [7] in this matter, with 3 tools being
successful in all 6 case studies, and the remaining 3 tools in 5 of
them. The sum of the individual tool scores for each case study can
give us some insights into their difficulty. Lower values for CS4 and
CS5 suggest that they were the hardest, while CS3 and CS6 with
the highest sum seem to be the easiest. CS3 and CS4 report also the
highest number of unsuccessful tools (2) as well.

The competition saw a tight race between the top tools, with
WOGAN-UAV and TUMB leading the pack. WOGAN-UAV, securing
the first position, achieved an overall score of 53.69 points and
dominated in three of the case studies. TUMB, closely trailing and
clinching the second overall spot with 52 points, demonstrated its
strength by ranking first in two of the other case studies.

The next tools in order, CAMBA and DeepHyperion-UAV, dif-
fer from the other competitors by putting only two obstacles in
the environment, making the test cases more realistic and less
complicated to set up in the real world. CAMBA achieves a compet-
itive performance with a score of 41.11 points, while failing in just
one case study, and ranking 2 or 3 in all the others. Interestingly,
DeepHyperion-UAV was ranked first in CS4; the hardest case study
where most of the other tools scored poorly. AmbieGen with a close
overall performance of 18.47 points, was successful in all the case



Khatiri et al.

Table 1: Ranking of the tools

Tool Name #Obst. CS2 CS3 CS4 CS5 CS6 CS7 Rank
Sum

Score
Sum

Final
Rank# score # score # score # score # score # score

WOGAN-UAV 3 61 12.55 72 14.00 81 2.35 39 8.40 71 4.81 90 11.57 12 53.69 1
TUMB [1-4] 69 0.12 113 15.59 135 7.12 114 2.73 151 15.32 125 11.12 16 52.00 2
CAMBA 2 36 11.84 30 8.50 33 0 11 3.16 102 12.92 22 4.69 18 41.11 3
DeepHyperion 2 2 1.22 28 8.31 10 7.74 22 1.08 7 0 14 2.96 28 21.31 4
AmbieGen [1-4] 30 2.82 46 2.00 36 0.86 65 1.22 151 10.07 30 1.51 26 18.47 5
Surrealist 2 10 5.03 1 0 10 0 1 0.75 19 3.88 2 0 34 9.67 6
TAIiST [2-4] 7 0.81 13 0 6 0.43 11 1.57 29 1.67 22 1.33 33 5.81 7

SUM 215 34.40 303 48.39 311 18.51 263 18.91 530 48.67 305 33.19

studies, succeeded by the baseline tool, Surrealist, with 9.67 and
TAIiST with 5.81 points.

4 CONCLUSION AND FINAL REMARKS
This year marks the first edition of the CPS-UAV Testing Compe-
tition. We evaluated and compared six tools namely AmbieGen,
CAMBA, DeepHyperion-UAV, TAIiST, TUMB, and WOGAN-UAV,
and used Surrealist as a baseline. As per the results of this year, the
best-performing tool is WOGAN-UAV closely followed by TUMB.

This year’s competition was constrained to the deployment of
box-shaped obstacles. For the upcoming years, we envisage intro-
ducing other kinds of obstacles such as trees, and buildings, as
well as other environmental factors including wind and lighting
conditions. Furthermore, we anticipate adjustments to the evalu-
ation process and criteria, such as introducing a size limit for the
test suites to make sure we can evaluate all the test cases. The
participants will then be required to select only the top test cases.
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