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A B S T R A C T

The importance of waste management, including collection, separation, recovery, and recycling, increases with
the growing amount of waste. Technological innovations such as smart connected products, the Internet of
Things, and digital twins are driving the development of smart management systems. Investments in necessary
product-service systems are justified by cost savings and improved service quality, especially in affluent
societies like Switzerland. However, there is a trade-off between cost savings and service quality that raises
the question of optimal balance. Using a Swiss municipality as an example, this paper models the trade-off
between cost savings and service quality using waste bin sensor modules. Simulation results demonstrate the
impact of cost savings on service quality reduction and that substantial cost savings are possible without a
service quality compromise. We also introduce a digital process twin as a decision support system that is able
to leverage a growing database. These results contribute to research, firstly through the field study with 98
waste bins equipped with fill level sensor modules, secondly through the model-based analysis of the trade-off
between cost savings and service quality, and thirdly by conceptualizing a digital twin-based decision support
system. The results further contribute to practice, firstly by providing benchmarks for implementing similar
systems in other municipalities without having to create their own simulations, secondly by presenting an
innovative key performance indicator to measure service quality, and thirdly with a model that can be used
for simulations to determine the individual optimum between costs and service quality.
1. Introduction

1.1. Relevance

Waste management is one of the three main objectives of the
European Union’s (EU) waste policy for protecting the environment and
human health while promoting its transition to a circular economy [1].
Waste management deals with various activities, from waste collection
and separation to waste recovery and recycling. It is a vital issue as
the volume of waste is increasing rapidly due to steadily rising living
standards and rapid urbanization [2] as well as industrial development
and changing consumer behavior [3]. In 2018, the total waste gener-
ated by all households in the EU amounted to 698 million tons. The
collection and management of this enormous quantity imposes huge
costs, both economically and with respect to human resources, time,
and environmental impact [1]. Switzerland is the focus of this study,
as an innovation project from the municipality of Herzogenbuchsee in
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the Canton of Bern was the basis for the case study presented later in
this paper. Switzerland is located in the heart of Europe, and its waste
management challenges are comparable to other heavily populated
regions of Western Europe. Considering such densely populated and
highly developed economies such as Switzerland, it can be observed
that the amount of waste per capita has stagnated for more than a
decade after a phase of sizeable increase from 300 kilograms per year
in 1970 to 700 kilograms per year in 2006, as seen in Fig. 1 [4].
This means that even in a small municipality like Herzogenbuchsee,
with just under 10,000 inhabitants, more than 7000 tons of waste is
generated annually. Due to the growing population in Switzerland, the
absolute amount of waste continues to increase, which is why efficient
waste management is becoming more relevant [5].

At the same time, large and dense residential areas and the urgent
need for urban environmental protection create difficult conditions
for waste management [6]. Therefore, to improve the quality of life
for citizens and minimize the negative impact on the environment,
efficient and proper waste management is a fundamental challenge [3].
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Fig. 1. Municipal waste per capita in Switzerland, 1970–2020 [4].
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o achieve efficient waste management, stakeholders and operators
ust critically address the issues of cost and cost-effectiveness of
nfrastructure and processes.

.2. Technologies and concepts

Information and communication technologies (ICT) offer a broad
ange of opportunities for developing solutions to the problems and
hallenges of waste management. Developments and progress in ICT
ransform traditional products into smart, connected products (SCP) by
onnecting them to the Internet of Things (IoT), which in turn trans-
orms ecosystems and competition in many industries [7,8]. Therefore,
he IoT is expected to change municipal waste management fundamen-
ally in many areas, such as adaptive schedules for equipment use and
aintenance, waste collection, and vehicle routing [9]. Furthermore,
oT and related concepts and technologies play a vital role in waste
anagement systems as they allow for processing various types of in-
ormation and thus help optimize the whole system [9]. SCP and smart
ystems allow for smart waste management (SWM) and are, therefore,
onsidered an important part of smart city concepts [10]. The concept
f the digital twin (DT), originated by Grieves [11], can be defined as
digital representation of a real-world counterpart, which can receive
nd provide data to create value within a use case [12]; despite this,
here is still no common definition in the industry when it comes to the
erm DT [12,13]. With DTs, companies seek to create value in both the
nternal dimension (internal processes regarding product lifecycle) and
he external dimension (during the usage phase in the market) [14–16].
he counterpart of a DT is often a physical object. However, in prac-
ice, any real-world entity with a recognizably distinct existence and
elevance for creating value can be digitally represented by a DT [12].
n the case of processes, the term digital process twin (DPT) is used
ccordingly [17]. A real-world entity’s representation in the digital
ealm can be categorized into two subsets. The first encompasses DTs
ymbolizing physical assets, frequently called ‘‘equipment twins’’. The
econd category, contrastingly, represents non-physical entities and is
ften referred to as ‘‘DPT’’. Such DPTs are more abstract, encapsulating
rocesses, systems, or services instead of physical objects. They offer
2

an innovative approach to visualizing, tracking, and enhancing various
operational or business processes, thereby improving efficiency and
productivity.

1.3. Research questions and innovative contribution

The focus of existing publications in the field of SWM concerns
either maximizing profits, minimizing costs, or minimizing environ-
mental impact through emissions by optimizing the routes of waste
collection vehicles. The impact of SWM on service quality has been
insufficiently explored until now, and the trade-off between cost sav-
ings and service quality has not yet been elaborated. It is, therefore,
of great relevance to investigate the application of new technologies
and concepts, such as DPT, in SWM with respect to their impact on
cost savings and service quality. In this paper, we make an innovative
contribution to ongoing research by addressing the following research
questions:

RQ 1 How can decision-makers balance the trade-off between cost
savings and service quality in waste management?

RQ 2 How can a DPT, in combination with an area-wide sensor mod-
ule system, create value for decision-makers in waste manage-
ment companies?

RQ 3 How can a DPT be designed, and what specific functions are
essential for a DPT to create value?

.4. Structure of the paper

The remainder of this paper is structured as follows: First, we
resent a literature review (Section 2), elaborating on the key research
nd findings regarding SWM and the process by which we derived the
esearch gaps and composed the research questions. Section 3 presents
the methods and the research procedure used to answer the research
questions, while Section 4 introduces and explains the use case for
this study. In Section 5, the results are presented along with the main
topics of data resources, the generated SWM model, and achieved
optimizations. Section 6 then discusses the major findings along with
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the research questions and in reference to existing research in this field.
Finally, in Section 7, we conclude by elaborating on our contribution
to practice and science, conceding limitations, and suggesting avenues
for further research.

2. Literature review

This paper aims to contribute significantly to two fields: (i) SWM,
which serves as the primary focus, and (ii) the DT concept, which
forms the foundation for our novel decision support system approach.
Concerning SWM, the emphasis is placed on enhancing customer sat-
isfaction and reducing costs by optimizing collection routes. A com-
prehensive exploration of this perspective on SWM can be found in
Section 2.1 below. As our literature review shows, the focus of existing
publications concerns either maximizing profits, minimizing costs, or
minimizing environmental impact by optimizing the routes of waste
collection vehicles. Very few publications address the impact on service
quality, and we found no work elaborating on the trade-off between
cost savings and service quality. Additionally, the concept of the DT
will be examined in Section 2.2, with a specific focus on the notion of
DPTs as a distinct subclass of DTs and the methodology employed in
their structure.

2.1. Smart waste management

According to Jatinkumar Shah et al. [3], studies that have ad-
dressed information technology-based waste collection objectives can
be categorized into four main groups:

1. Studies that have focused on the development of data acquisi-
tion technologies such as sensor-based technology, geographic
information systems (GIS), and image processing technologies;

2. studies that have discussed data transformation platforms for
transferring data collected through data acquisition technologies
to central control platforms used by municipalities;

3. studies that have developed analytical models to demonstrate
the application of capabilities of IoT-enabled technologies for
proper waste collection activities; and

4. studies that have shown the capabilities of information technol-
ogy in real case studies.

However, not all studies can be easily assigned to one of these
four categories; most make contributions in more than one. In the
following section, we summarize the pivotal and recent studies across
the four groups defined by Jatinkumar Shah et al. [3]. Table 1 shows
an overview of the relevant papers, which SMW topics they cover,
their focus, main findings, and gaps. At the end of this Chapter, the
distinguishing features and innovative contributions of this paper are
elaborated.

2.1.1. Data acquisition technologies
Vicentini et al. [6] designed a testing prototype of four intelligent

waste bins for Pudong, Shanghai. This early study focused on measuring
the composition (weight, density, and water content) and quantity of
waste per site. Waste bin collection was triggered when the bin was
full, and no consideration was given to the threshold when a waste
container should be considered for the next collection so that it would
not be overfull at the time of collection. Moral et al. [18] presented
a methodology to automatically generate geolocated waste container
maps using algorithms that analyzed a video sequence and provided
automatic discrimination between images with and without containers.
Pardini et al. [19] developed an IoT-based sensor system to display fill
levels in real-time to attempt to influence the littering behavior of the

public.

3

2.1.2. Data transformation platforms
Vasagade et al. [20] developed a dynamic, intelligent waste man-

agement system by integrating RFID, GSM, and GIS to manage waste in
an automatic waste monitoring system. Lozano et al. [21] introduced a
waste monitoring and management platform for a rural environment in
the region of Salamanca in Spain and were able to demonstrate a 28%
reduction in distance driven to collect waste. Barth et al. [22] followed
a holistic approach, combining technology and process development to
increase the effectiveness and efficiency of multiple processes in the
SWM ecosystem in Switzerland. Baldo et al. [23] developed a multi-
layer approach for data transfer via LoRaWAN in SWM product-service
systems (PSS). Ijemaru et al. [24] proposed an Internet of Vehicles
(IoV)-based technique as an energy-efficient alternative to IoT-based
data collection and transmission techniques for waste management
applications in smart cities. For further information on IoT-based tech-
nologies, frameworks, and solutions for waste management in smart
cities, we refer readers to the comprehensive review offered by Ijemaru
et al. [24].

2.1.3. Analytical models
Most studies on IoT-enabled SWM have focused on optimizing the

routing and deployment of waste collection vehicles in smart cities [3].
However, studies in recent years have focused on developing dynamic
models with the goal of reducing overall cost, time, and distance.
Two relatively early studies dealing with dynamic routine models for
waste collection in smart cities were developed by Anagnostopoulos
et al. [26,27]. Anagnostopoulos et al. [32] also presented an extensive
review paper of an analytical model for route optimization for waste
collection vehicles in smart cities in 2017. Asimakopoulos et al. [28]
proposed several algorithms to solve dynamic routing problems using
real-time monitoring of the fill level of waste bins. Sharmin and Al-
Amin [29] developed an ant colony algorithm to find the shortest route
for waste collection vehicles in a smart city to minimize transportation
costs. Mohammadi et al. [48] achieved a 32% cost reduction compared
to the previous static routing by employing a discrete choice model to
streamline the process of re-optimization in dynamic vehicle routing
problems in a use case. Hashemi-Amiri et al. [49] designed a multi-
objective model to maximize the probabilistic profit of a SWM network
while minimizing the total travel time and transportation costs. Rah-
manifar et al. [46] proposed a two-echelon waste management system
to minimize operational costs and environmental impact. They also em-
ployed existing meta-heuristic algorithms and several novel heuristics
developed based on the problem’s specifications and compared their
performance based on a network of eight waste bins.

Some studies have pursued other goals besides minimizing op-
erating costs through route optimization. For example, Rada et al.
[25] investigated the waste separation efficiency and cost reduction in
several aspects of a Web-GIS application in multiple municipalities in
northern Italy. Others, such as Anghinolfi et al. [30], aimed to minimize
costs and environmental impact. To our knowledge, they were among
the first to explicitly define a key performance indicator (KPI) for
‘‘quality of service’’ and even presented considerations to quantify
the trade-off with cost savings. Ali et al. [39] showed that IoT-based
SWM PSS are more effective than traditional methods and introduced
a pollution ratio KPI as an approach to quantify service quality. Dereci
and Karabekmez [43] applied multiple heuristics and meta-heuristic
algorithms to find the optimal routes for waste collection vehicles with
two scenarios — an optimal route focus or a customer satisfaction
focus. Roy et al. [44] presented an innovative approach to increase the
service quality in SWM PSS by introducing a time-dependent penalty

for operators.
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Table 1
Overview and comparison of smart waste management literature.
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[6] 2009 ◗ ◗ IoT-based SWM in Shanghai, China. Design of data acquisition and
information flow including necessary
hardware.

Old and short paper; no route
optimization.

[25] 2013 ◗ ◗ ◗ ◗ Four case studies comparing
developed (Italy) and emerging
economies (China, Malaysia) for
feasibility of Web GIS systems.

Aspects related to the
implementation of a Web-GIS based
system are analyzed and the
economies compared.

Old and short paper; no route
optimization; service quality not
considered.

[26] 2014 ◗ ● New framework for SCP in SWM. Comprehensive overview of existing
efforts in using IoT for SWM.

No case study; no real data; data
acquisition not covered.

[27] 2015 ● ◗ Extending the dynamic routing
process by collecting high-priority
bins immediately to comply with
service quality.

Improved pathfinding in the case of
high-priority bins.

Data acquisition and transformation
not covered.

[28] 2016 ◗ ◗ Efficient algorithms for dynamic
routing of collection trucks.

Theoretical cost savings of 50,000
Euros.

Data interpretation not covered; no
clear case study.

[29] 2016 ◗ ● Finding optimal routes with ant
colony optimization approach using
sensor data.

Algorithm for pathfinding based on
fill level of bins.

Very short paper; no real-life data;
experiments based on small artificial
network.

[30] 2016 ● ● Tactical planning of SWM logistics of
recycling for Italian municipalities,
considered ‘‘quality of service’’ (QS)
and acknowledged a trade-off
between QS and cost reduction.

A multiobjective optimization model
is proposed, aimed at minimizing
both operational costs and negative
environmental impacts. Cost savings
of 23%.

Data acquisition and transformation
are not covered; use case without
IoT-system.

[31] 2016 ◗ ◗ ◗ ◗ Design and implementation of a
novel agent-based platform for SWM.

Present prototypes of low-cost sensor,
route system and mobile application
for SWM.

Holistic but short paper; no real-life
case study; service quality not
considered.

[20] 2017 ● ◗ Sensor design for smart bins. Fully automated, sensor-based SWM
system to optimize collection and
encourage proper bin use.

No model using sensor data; no
real-life case study.

[32] 2017 ◗ ◗ ◗ ◗ Meta-case study; ICT-enabled SWM
models for efficient planning of
collection activities.

SWM taxonomy; strengths and
weaknesses of various models.

Meta-review; service quality not
considered.

[33] 2017 ● ◗ Algorithms to optimize the routes of
a recyclable SWM system for Moron,
Argentina.

An integer programming model with
a solving procedure built around a
subtour-merging algorithm and
elimination constraints; now, 100%
of the city blocks are covered
compared to 84% before.

Data acquisition and transformation
are not covered; use case without
IoT-system.

[34] 2017 ◗ ● Discrete-event simulation model to
optimize zones and routes of solid
waste collection in Phuket, Thailand.

Trips for solid waste collection
reduced by 9.1%; average distance
by 7.4%; and time by 7.1%.

Short paper, data acquisition, and
processing are not covered; use case
without IoT-system.

[35] 2017 ◗ ◗ IoT architecture and multi-agent
platform to simulate real-time
monitoring and collection decisions
in SWM.

Simple Netlogo multi-agent
simulation.

Service quality not considered;
collection frequency not changed;
simple route optimization; no use
case.

[36] 2017 ◗ ◗ ● Real use case with 200 waste
containers equipped with sensor
modules to measure fill level.

Cost savings of 30%. Very short paper; service quality not
considered; collection frequency
unchanged.

[3] 2018 ● Stochastic optimization model to
minimize the total transportation cost
while maximizing recovery of value.

New model for value recovery aspect
in waste collection.

Data acquisition and transformation
are not covered; no real-life case
study.

[21] 2018 ● ● ◗ ● Introduces a waste monitoring and
management platform for rural
environments.

Distance saving of 28% through
route optimization.

Service quality not considered;
collection frequency unchanged.

[10] 2019 ◗ ◗ Smart city development in Russia. Formalization of logistic optimization
for modeling of autonomous
intelligent agents in Any Logic.

Very short paper; service quality not
considered.

[37] 2019 ● Green and smart cities; recycling. Where to locate waste-sorting
stations and how to involve citizens
in SWM implementation.

Data acquisition, transformation, and
analytical models are not covered.

[38] 2020 ◗ ◗ ◗ ◗ Challenges related to wireless data
transfer, battery lifetime, and IoT
infrastructure for SWM,

Hardware & software architecture;
filling behavior for glass containers;
strategies to overcome challenges.

Short paper; route optimization not
explained; cost savings not
quantified.

[19] 2020 ● ◗ ◗ Using IoT sensors to show fill levels
of smart bins to the public.

Proven positive influence on citizens’
littering behavior.

No solutions for waste collection.

(continued on next page)
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Table 1 (continued).
[39] 2020 ◗ ◗ ● Efficiency and cost of IoT-based

SWM solutions; pollution ratio as
service quality KPI.

Showed that collection with
IoT-based SWM is more effective
with traditional methods.

Theoretical use case; no route
optimization; per-day costs decrease
but distance driven increases.

[22] 2021 ◗ ● ◗ ◗ Holistic approach from data to
services.

Optimized collection routes reduces
working time by 14% and total cost
by 16%.

Short paper; simple route
optimization.

[40] 2021 ◗ ◗ ● Analyzed 40 cases of urban digital
twin applications.

Classified cases according to four
criteria and discussed future
direction with three perspectives.

No waste management focus.

[23] 2021 ◗ ● ● SWM infrastructure based on the
LoRaWAN.

Multi-layer approach to data transfer
via LoRaWAN.

Only surveillance solution; no
improvement in waste collection.

[18] 2022 ● ◗ Visual model for waste container
detection; evaluated in eleven
Spanish cities.

A methodology to automatically
generate geolocated waste container
maps.

Data transformation and analytical
models not covered; no route
optimization.

[24] 2022 ● ◗ ◗ Comprehensive literature review;
focus on energy consumption;
analyzed different routing algorithms.

Proposal of IoV (V=vehicles) to
reduce energy consumption of data
transmission; ant-based routing
algorithms for energy efficient SWM.

No case study.

[41] 2022 ● Holistic and comparative assessment
of volume reduction, segregation,
and collection costs of waste in 16
Polish cities.

Volume of waste per capita and cost
for waste management increasing in
most cities; smart cities are among
the least effective.

Meta-case study, data processing,
transformation, and analytical models
not covered; service quality not
considered.

[42] 2022 ● Longitudinal Finnish case study. Evolution from one-bag dumping to
SWM PSS.

Technical aspects of PSSs, route
optimization, and cost savings are
not covered.

[43] 2022 ● ◗ Optimal routes in a real case study
with two scenarios: optimal route
focus and citizen satisfaction focus.

Comparison of different (meta-)
heuristic algorithms to determine
optimal routes.

Data acquisition and transformation
not covered; only historical data and
collection frequency unchanged.

[44] 2022 ◗ ● ◗ IoT-based waste bin allocation with
monitoring system and ant colony
based vehicle routing algorithm.

Innovative approaches to increase
service quality (time-dependent
penalty) and collection efficiency
(collection of neighboring bins if
vehicle has capacity).

Data processing and transformation
not covered; limited use case (15
locations).

[45] 2022 ◗ ● SWM for 32 bins with dashboard for
decision-makers; correlation between
fill levels and date or month.

Reduced collections from 28 to 6
times per month (80% reduction).

Very short paper; no route
optimization.

[46] 2023 ● Two-echelon SWM system to
minimize operational costs and
environmental impact.

Several meta-heuristic algorithms to
optimize a capacitated vehicle
routing problem are analyzed and
ranked.

No holistic approach: no case study;
cost savings not quantified; service
quality not considered.

[47] 2023 ◗ ◗ Zero-defect concept for value chains
and the notion of DT enabled
planning to reduce food waste in
grocery retail.

Juxtaposition of causes of food waste
and DT capabilities.

No route planning; no collection;
municipal waste not in focus.

[48] 2023 ● ◗ Discrete choice model to streamline
re-optimization of dynamic vehicle
routing problems; use case with 220
bins and seven trucks.

Several algorithms are applied to the
problem and compared; 32% cost
reduction by changing from static to
dynamic routing.

Data acquisition and transformation
not covered; service quality not
considered.

[49] 2023 ● SWM framework based on IoT. Multi-objective model to maximize
the probabilistic profit of network
while minimizing total travel time
and transportation costs.

No real data used; data
transformation and transmission from
bins to model not covered.

[50] 2023 ◗ ◗ ● DT model to experiment with a
garbage collection mechanism using
wind blowers and pipes.

Delivers the practice of designing,
experimenting, and calibrating a DT
system for SWM.

Different system with no collection
vehicles; no quantification of savings.

[51] 2023 ● ● Collection routing problem with
workload concerns in SWM; large
case study with 800 bins.

Solution methodology consisting of
two phases (when and which bins to
collect).

Data acquisition and transformation
not covered; service quality not
considered.

[52] 2023 ◗ ◗ Context ontology. Provides a unified model for SWM
contextual data, a solution to
implement IoT according to different
waste contexts, waste objectives, and
waste activities.

Very short paper.

This paper 2023 ◗ ◗ ● ● Holistic approach; complete process
from data acquisition to value
creation explained in a use case with
98 bins covering the whole collection
area; trade-off between service
quality and cost savings.

DPT to optimize collection frequency
and routes; quantified trade-off
between cost savings and service
quality; defined a new KPI to
measure service quality.

Simple route optimization.

Key: ● = category in focus, ◗ = category covered, empty = category not covered.
.1.4. Case studies
Many studies are based on real cases; for example, Braier et al.

33] presented a waste collection case from Morón, Argentina, and
roposed an integer programming model to optimize the dynamic
outes of collection vehicles. Banditvilai and Niraso [34] developed a
euristic approach for assigning waste collection zones and routings,
5

and proposed a simulation framework for modeling the night shift solid
waste collection in Phuket, Thailand. Oralhan et al. [36] presented
the results of a relatively large real use case with 200 waste bins
equipped with sensor modules, which achieved a 30% reduction in
waste-collection costs. In a Russian case study, Mingaleva et al. [37]
analyzed where to locate waste-sorting stations and how to involve
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Fig. 2. Application-oriented definition of DT according to Schweiger and Barth [12].
citizens in successfully implementing SWM PSS. Zakharova and Fe-
dorova [10] showed automation directions for solving environmental
problems in the Sverdlovsk region and data of Yekaterinburg. Jonek-
Kowalska [41] investigated what results smart cities in Poland have
achieved regarding waste volume reduction, waste separation, and
collection costs. Peura et al. [42] presented a longitudinal case study
that elucidates how waste management in a Finnish region evolved
from a one-bag system towards PSSs. An et al. [45] demonstrated
the potential of IoT and dashboards for decision-makers to reduce the
amount of waste collection in a case study with 32 smart waste bins
in an Australian municipality. Yun et al. [50] used a DT model to
experiment with a garbage collection mechanism using wind blower
and pipes instead of collection vehicles in Sejong City, South Korea. An
exceptionally large case study with 800 waste bins was conducted by de
Morais et al. [51] who presented a solution methodology consisting of
two phases to decide (i) when and (ii) which bins to collect.

2.1.5. Innovative contribution of this paper
Our study can predominantly be assigned to the fourth category

(see above) but contains elements from the other three categories. It
contributes through its holistic approach covering the whole process
from data acquisition to value creation in SWM PSSs. Our study differs
from other studies as it does not focus on optimizing the routing but
considers possible cost savings by reducing the number of collection
trips per week and the number of waste bins included in the tours
depending on the threshold fill level. We also introduce an innovative
approach to measure and quantify the service quality level; this topic is
often overlooked, with a KPI influenced by the number of overfull waste
bins. Furthermore, our study is based on data from a field test with 98
waste bins, which cover the entire collection area of the community in
question. In contrast, many previous studies with field tests had only a
limited number of bins or did not cover the whole collection area.

2.2. Digital process twins

The DT concept, initially introduced by Grieves [11] from NASA,
has evolved since its inception in a 2003 PLM lecture. NASA’s 2012 def-
inition described DTs as multiphysics, multiscale, probabilistic simula-
tions relying on historical, real-time, and physical model data [53]. This
definition is still being discussed and developed further by many differ-
ent researchers (e.g., [54–56]). A significant debate revolves around the
nature of the DT counterpart. While early definitions predominantly
6

emphasized the exclusive representation of physical entities, recent
perspectives have shifted towards a more inclusive interpretation of
what a DT can embody [55]. Schweiger and Barth [12] investigated
the defining characteristics and properties of DTs in scientific research
and by industrial companies and presented an application-oriented
definition. The definition shown in Fig. 2 is detailed and, at the
same time, generic enough to be used in various application areas.
In their publication, Meierhofer et al. [57] proposed a distinction
between the equipment twin and the DPT as two sub-components of
the DT. They contend that a logical dependency exists between these
elements within a company’s decision-making process. According to
their perspective, value creation occurs through a series of steps that
begin with the equipment twin and inherently evolve into a DPT. The
approach outlined by Meierhofer et al. [57] was further examined in a
study by Schweiger et al. [58], which highlighted the close relationship
between the term DPT and the concept of symbiotic simulations, as
employed, for example, by Onggo et al. [59]. Additionally, Schweiger
et al. [58] demonstrated that the different sub-components of the DT,
as described in Meierhofer et al. [57] under the term ‘‘DT sequence’’,
possess intrinsic value individually. The development process for a DPT
is elaborated on in a publication by Schweiger et al. [17], in which
they advocate the use of the term DPT, drawing support from Verdouw
et al. [60] and Tjahjono and Jiang [61]. However, with the industry,
especially a service-focused one, attempting to fully automate service,
it becomes increasingly important to standardize and fully understand
the processes. According to Ganz and West [62], this lays the founda-
tion for automated services. Here, the DPT could support this general
development. In conclusion, Schweiger et al. [17] emphasized that
further investigation is needed to understand the integration and inter-
action between equipment twins and DPTs to maximize their potential
benefits within decision support systems [63] for companies.

2.3. Research gap

Although many studies address vehicle routing for waste collection
in the literature, the number dealing with this topic is insufficient,
according to Dereci and Karabekmez [43]. Furthermore, as shown by de
Morais et al. [51], the objective of those studies is either maximizing
profits, minimizing costs, or minimizing environmental impact caused
by emissions. We have found only two studies that also offer an
innovative approach to measure and optimize the service quality of a
SWM system [39,44].
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Our review of the existing literature in the relevant field reveals
several key studies and approaches concerning decision analytics (in-
cluding, e.g., [24,32] for the topic of waste management and, e.g., [59,
60] for DPTs). While these contributions have advanced our under-
standing of the field, they are not without limitations. The most notable
gaps in the current body of research on SWM systems and DPTs include
the following:

RG 1 A trade-off analysis that shows the relationship between cost
savings and service quality.

RG 2 A field study that includes an area-wide sensor module usage in
the collection area.

RG 3 A prototype of a DPT showing how equipment twins and DPTs
generate value in combination.

Addressing these gaps is crucial for the continued development
of decision analytics in waste management. By deepening the under-
standing of the interaction between cost reduction and service quality,
studying the waste collection system behavior under real-life circum-
stances, and improving the understanding of the value creation of
DPTs in combination with equipment twins, we contribute to a better
understanding of the complex system of waste collection in communal
areas under the restriction of cost efficiency and service quality (in
the sense of no overfilled or even overflowing bins). In this paper,
we propose a novel approach that aims to fill these identified gaps,
thereby advancing the field of decision analytics and contributing
to more effective decision-making processes in the domain of waste
management.

2.4. Research questions

In this section, we formulate three research questions that directly
address the three identified gaps in the field of waste management.
By establishing clear and concise research questions, we guide our
investigation towards meaningful and beneficial findings. The resulting
research questions are:

RQ 1 How can decision-makers balance the trade-off between cost
savings and service quality in waste management?

RQ 2 How can a DPT, in combination with an area-wide sensor mod-
ule system, create value for decision-makers in waste manage-
ment companies?

RQ 3 How can a DPT be designed, and what specific functions are
essential for the DPT to create value?

These research questions serve as the foundation for our investiga-
tion, helping us to explore the research gaps identified.

3. Methodology

3.1. Case study

The basis of our research was a single case study, which allowed us
to study the development, use, and value creation of a DPT with real
data. The case study is described and elaborated in detail in Section 4.
According to Yin [64], one of the rationales for a single case study, as
opposed to a multiple-case design, is the availability of a representative
or typical case, where the objective is to capture the circumstances of an
everyday or commonplace situation. Furthermore, the essence of a case
study is to illuminate a decision or set of decisions to answer questions
such as why they were taken, how they were implemented, and with
what results [65].

In the case of optimizing waste management in a residential area
by using SCPs and DT applications, a single case study illuminating
such decisions can produce transferable findings for other cases. This is
because the challenges and constraints of why and how to realize such
an intelligent PSS, as well as the desired results, are similar worldwide.
A single case study with in-depth analysis is, therefore, a suitable

method to contribute to closing the research gaps identified.

7

3.2. Reference framework

Two specific methods were applied in the case study. First, the
application-oriented conceptual reference framework for the value cre-
ation with DTs by Barth et al. [16] was used to develop the envisioned
system conceptually. The framework incorporates primary dimensions
of external and internal value creation and data resources. It also dis-
cusses the product life cycle, the real-world counterpart, value creation
in the ecosystem, and the generational aspect of the DTs.

3.3. Mixed model simulation

Second, we employed a mixed-model simulation approach, com-
bining an agent-based simulation (ABS) model with discrete event
simulation (DES) elements. We utilized AnyLogic® as the modeling
tool due to its suitability for our purposes, as highlighted by Abar
et al. [66]. AnyLogic® is a versatile graphical model editor that inte-
grates discrete event, agent-based, and system dynamics models within
a single modeling environment. Moreover, AnyLogic® facilitates in-
corporating geographic information system (GIS) maps, enabling the
simulation of agent behavior on realistic travel routes in a true-to-life
environment. The GIS environment relies on OpenStreetMap (OSM)
as its map provider. The specific model used in this paper will be
presented in Section 5.2. The baseline model construction approach, the
foundation for subsequent simulations and experiments, was published
by Schweiger et al. [17]. The model structure was similarly employed
by Ding et al. [67].

3.3.1. Data collection
Data for the model were sourced from industry partners or collected

during field visits. Industry partners provided information on smart bin
locations, vehicle counts, and routing details. Data collected from field
visits included emptying schedules for the smart bins and incineration
plants. Furthermore, we used our industrial partner’s platform to obtain
the sensor data for the smart bins on which we based the filling
behavior of the bins. Due to confidentiality, this data, as well as the
validation data, will not be shared.

3.3.2. Experiments
We conducted an optimization experiment using the pre-designed

optimization experiment feature of AnyLogic® based on the waste man-
agement system model. Such optimization experiments aim to discover
optimal solutions while examining system behavior under specific con-
ditions. This approach enabled us to determine the optimal fill levels for
smart bin collection. AnyLogic® employs the OptQuest® optimization
engine, which utilizes metaheuristics to guide its algorithm towards
a solution closer to the optimum. The engine integrates tabu search,
scatter search, integer programming, and neural networks into a sin-
gle, efficient algorithm for identifying optimal scenarios. Additionally,
we used the AnyLogic® parameter variation experiment to show the
different results depending on the collection threshold for the smart
bins.

We focused exclusively on simulating the service ecosystem, com-
prising waste bins, collection vehicles, and disposal points. Instead of
recalculating routes using a traveling salesman algorithm or a bin-
packing algorithm, we utilized predefined routes provided by our in-
dustry partners. Our model then identified the waste bins that could
be skipped, thereby optimizing the collection process. The results were

validated based on historical data from the industrial partners.
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Fig. 3. Sensor module (top left), waste bin (bottom left), and analytic platform (right).

. Case study

The project that served as a basis for the case study was enti-
led ‘‘Development of the Waste Management Ecosystem based on a
mart Connected Product-Service-System (PSS)’’. It was funded by the
wiss Innovation Agency Innosuisse and conducted by a consortium
f institutes from the Zurich University of Applied Sciences and four
rivate companies over two years between 2020 and 2022. The goal
f the project was to initiate a SWM ecosystem in Switzerland. The
asis was provided by a dense network of existing waste bins equipped
ith sensor modules to measure various data regarding their status
e.g., fill level) and transmit this information for analysis and process
ptimization (cf. Fig. 3).
To achieve this, a new, smart PSS was developed and validated to

igitally map, analyze, and optimize cross-company processes in waste
anagement. According to the five proposed development phases of
raditional products into smart systems of systems in the seminal model
y Porter and Heppelmann [7,8], the project aimed to realize SCPs
ccording to phase three and thus to form the basis for a SWM system
ccording to phase four, as seen in Fig. 4. At the core of the integrated
SS of phase four is a DT of the PSS consisting of waste bins, collection
ehicles, and waste recyclers or incineration plants. Starting from the
nitial situation, the following main tasks were carried out:

1. Developing reliable technical measurements in the waste bins
(raw data collection using sensors).

2. Designing the processing and analysis processes for the gener-
ated data (processing the raw data into information).

3. Developing models and workflows for decision-making (using
the information to determine actions).

The focus was on existing processes regarding managing waste
ollection bins, their maintenance, and the emptying and collection
rocesses. However, by taking a holistic view of the waste management
cosystem, further innovation potential regarding the integration into
ubsequent and higher-level systems such as smart cities was also con-
idered and advanced. To develop and depict the value creation with
Ts of smart connected waste containers conceptually, an application-
riented DT framework (DTF) was used. For a detailed explanation
f this application-oriented DTF, its parts, and their interaction, we
efer to the publication by Barth et al. [16], which also includes an
nstantiation of the DTF for a use case with a digital twin for a ship. To
nstantiate the framework for the case at hand, first, the current state
f the SWM processes was analyzed according to the dimensions and
pecifications of the application-oriented DTF and graphically depicted.
ith this basis, the framework was complemented in workshops with
he project partners and other stakeholders of the ecosystem with

dditional elements to depict the desired future system. The resulting

8

framework in Fig. 5 depicts the whole PSS for SWM, with the parts
covered in this article highlighted by a green frame. The physical
counterparts of the DT, referred to as things, are depicted in the bot-
tom section. These are one of the three data source categories (next
to internal and external systems) and provide DT applications with
information about the real world. The smart analysis box is where the
data are structured and interpreted to receive information and make
necessary decisions to realize services that, in turn, create value in the
three categories of availability, performance, and quality.

This paper focuses on the simulation-based DPT developed for the
service of static route optimization provided to external users. How-
ever, as seen in Fig. 5, a range of other services have been developed
and partially implemented, some of which are only used by internal
users. For example, field service employees can use bin asset man-
agement applications connected to the DT to locate installed waste
bins, call up service checklists, and document their work visibly for the
customer, for example, by providing smartphone images.

All three categories of value creation could be improved for the
municipality in the pilot project. However, a trade-off between (i)
performance and (ii) quality (cf. Fig. 5) was identified for route op-
timization based on the fill levels of the waste bins in regard to
cost savings as a (i) performance measurement and service quality as
a (ii) quality measurement. We, therefore, simulated scenarios using
different thresholds of fill levels to find the individual optima in this
trade-off. On the part of the practice partners, the optimum was defined
as minimizing costs as much as possible while allowing for a maximum
of 1% overfilled waste bins.

Many of the developed services have already been enabled by the
smartness maturity level ‘‘Control’’ (cf. [14,16]). The allocation of
individual waste bins to the next collection tour based on the current
fill level and the threshold defined with the help of the simulation
functions entirely automatically. This means that the interpretation of
pre-structured data is carried out purely by the DPT, and no human
intervention is required.

However, for most services assigned to the smartness maturity level
‘‘Optimization’’, humans are still required for an interpretation step.
Based on the collected data over a more extended period, the DT can
suggest how the static route planning (i.e., the frequency of collection
tours and their routes) could be optimized. However, a human still
makes the final change in the route planning as this decision influences
many other factors, such as employee capacity planning and short-
term traffic restrictions due to construction sites or other unforeseen
events. When enough data have been collected in the DT, the quality
of interpretations by the DPT will become sufficiently high for humans
to trust its decisions, allowing these services to be carried out without
human intervention. After this intermediate step, it is planned not only
to carry out static but also dynamic route optimizations independently
with the help of the DTs, namely the route being adapted in real-time
based on fill levels, traffic, and other factors during the collection tour.

The smartness maturity levels, together with the seminal model
by Porter and Heppelmann [7,8], which shows the development phases
from a simple product to a system of systems, outline the long-term
development directions of the project.

5. Research results

In this Chapter, we present the results regarding the service of
static route optimization with the DPT. The structure of this Chapter
is based on the process shown in the smart analysis box in Fig. 6, which
is an extract of Fig. 5, where incoming raw data are first processed
and structured before they can be interpreted by the DT. Section 5,
therefore, has the following sections: The section on data resources
5.1 explains how the raw data is collected and structured, the next
Section 5.2 explains how this data is interpreted with the help of a

DPT, and Section 5.3 presents the findings from the case study.
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Fig. 5. Value creation with DTs in the SWM ecosystem; topics covered in this paper are highlighted by a green frame.
.1. Data resources

This section describes how the raw data is obtained, processed, and
tructured in the use case.

.1.1. Data collection
In this project, a large quantity of data from different sources were

onnected with the DT, as shown in Fig. 5. In addition to information
bout the waste bins, collection vehicles, and the waste incineration
lant generated directly by the things, other data from internal and
xternal systems were used. These included the standard routes for
aste collection from the municipalities or the locations and capacities
f the waste bins. However, the most significant challenge in the project
nd the central information for the DPT (in making decisions for the
9

service of static route optimization) were the fill levels of the waste
bins (cf. Item 1 in Fig. 7), which is why these sections focus on the
generation and processing of these data.

Several types of sensors can be used to measure a fill level in
a waste bin. We tested ultrasonic sensors, radar sensors, and time-
of-flight sensors in the project (cf. Item 2 in Fig. 7). Ultrasonic and
radar sensors did not provide reliable data because waste is a very
heterogeneous mass, with materials of different densities and reflective
properties, and also forms cones of dump (cf. Item 3 in Fig. 7). For
these reasons, a time-of-flight sensor of the type Espros 611 with 64
distance measuring points was chosen to obtain the raw data (cf. Item
4 in Fig. 7).
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Fig. 6. Smart analysis with a simulation-based digital process twin.

5.1.2. Data structuring
The unstructured data generated do not yet form a sufficient basis

for interpretations and decisions. To achieve this, incoming sensor data
must be structured and processed to ensure the DT reproduces reality
in the desired manner. In the SWM project, another sensor in the form
of a wildlife camera was used for labeling the fill levels measured by
the time-of-flight sensor. With a scale placed in the waste container, an
assistant entered the actual fill levels to label the measured values with
‘‘ground truth’’ values. Item 5 in Fig. 7 shows how the initial sensor
values (dashed red line) were approximated to the ground-truth level
(blue line) in several stages. In the first step, the approximation to the
real fill levels was achieved with weighted exponential smoothing to
reduce the noisy signal of the data and a simple rule to discard heavy
outliers. By generally discarding heavy outliers at low-fill levels and
with a smoothing factor of 𝛼 = .2, the raw sensor values were brought
much closer to the ground-truth values (solid red line). When analyzing
the results, it became apparent that the solid red line representing
the structured fill level data represented the real values much more
precisely although it suffered from a systematic deviation towards the
bottom. Therefore, in the final step, the results obtained were increased
by 13% to compensate for this. As seen in Item 5 of Fig. 7, the resulting
structured data of the fill level (yellow line) is sufficiently close to the
ground-truth value for interpretation and decision-making by the DPT.

5.2. Data interpretation with a process twin

Once the data of the fill levels were available in a sufficiently
structured format, they could be interpreted with a DPT. In this project,
the DPT was built with a mixed method model based on an ecosys-
tems analysis of the use case described in Section 4 and as described
in Schweiger et al. [17]. The model incorporates the following SCPs or
systems, which are also depicted in Fig. 5: smart waste bins, collection
vehicles, and a waste incineration plant. These components operate
within a GIS environment facilitated by AnyLogic®. In the subsequent
sections, we will introduce the model, input data, KPIs, optimization
experiment, and resulting findings.

5.2.1. Model description
For the model 𝑀(𝑡) of a communal waste management system, let

𝐵𝑏(𝑡) denote the 𝑏th smart bin at time 𝑡, where 𝑏 ∈ {1, 2,… , 𝑛𝐵} and 𝑛𝐵
is the total number of smart bins in the population. Similarly, let 𝑉𝑣(𝑡)
denote the 𝑣th collection vehicle at the time 𝑡, where 𝑣 ∈ {1, 2,… , 𝑛𝑉 }
and 𝑛𝑉 is the total number of collection vehicles in the population.
Let 𝐼 denote the waste incineration plant and 𝐺𝐼𝑆 denote the GIS
environment for the model. Then, the state of the overall model at time
𝑡 can be represented by the time-dependent set:
𝑀(𝑡) = {𝐵(𝑡), 𝑉 (𝑡), 𝐼, 𝐺𝐼𝑆} (1)
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Table 2
Sets and indices of model 𝑀 .
Sets and indices Description

𝐵 Set of smart bins
𝑉 Set of collection vehicles
𝐼 Set of waste incinerators
𝑏 Smart bins index
𝑣 Collection vehicle index

Table 3
Parameters of model 𝑀 .
Parameter Description

𝑔𝑏 Category of 𝐵𝑏
𝑡𝑏 Tour index of 𝐵𝑏
𝑘𝑏 Capacity of 𝐵𝑏
𝑑𝑏 Discharge time of 𝐵𝑏
𝑠𝑏 Sensor in 𝐵𝑏
𝑙𝑏 Location of 𝐵𝑏
𝑘𝑣 Capacity of 𝑉𝑣
𝑐ℎ,𝑣 Cost per hour of 𝑉𝑣
𝑐𝑘,𝑣 Cost per kilometer of 𝑉𝑣
𝑡𝑣 Tour of 𝑉𝑣
𝑑𝑣 Discharge time of 𝑉𝑣
𝑑𝑖 Discharge time of 𝐼𝑖
𝑙𝑖 Location of 𝐼𝑖

Table 4
Variables of model 𝑀 .
Variable Description

𝑓𝑏(𝑡) Fill level of 𝐵𝑏
𝑓𝑣(𝑡) Fill level of 𝑉𝑣
𝑣𝑣(𝑑) Speed of 𝑉𝑣
𝑙𝑣(𝑡) Location of 𝑉𝑣

where 𝐵(𝑡) = {𝐵1(𝑡), 𝐵2(𝑡),… , 𝐵𝑛𝑏 (𝑡)} is the state of the smart bins
at time 𝑡, 𝑉 (𝑡) = {𝑉1(𝑡), 𝑉2(𝑡),… , 𝑉𝑛𝑉 (𝑡)} is the state of the collection
vehicle at time 𝑡 (cf. Table 2).

Each 𝐵𝑏 has the following parameters and variables: category de-
noted by 𝑔𝑏, tour denoted by 𝑡𝑏, capacity in liters denoted 𝑘𝑏, fill level
in liters denoted by 𝑓𝑏(𝑡), discharge time denoted by 𝑑𝑏, sensor denoted
by 𝑠𝑏, location denoted by 𝑙𝑏. Similarly, each 𝑉𝑣 has the following
parameters and variables: speed in km/h denoted by 𝑣𝑣(𝑑) where 𝑑
is the distance to the next 𝐵𝑏, capacity in kg denoted by 𝑘𝑣, fill level
in 𝑘𝑔 denoted by 𝑓𝑣(𝑡), the cost per km denoted by 𝑐𝑘,𝑣, the cost per
hour denoted by 𝑐ℎ,𝑣, the location denoted by 𝑙𝑣(𝑡), tour denoted by
𝑡𝑣 where {𝑡𝑣 ∈ 𝐵 ∣ 𝑡𝑏 = 𝑥}, and the discharge time denoted by
𝑑𝑣. Furthermore, the waste incineration plant 𝐼(𝑡) has the following
changing parameters: location denoted by 𝑙𝑖, and the discharge time
denoted by 𝑑𝑖 (cf. Tables 3 and 4).

5.2.2. Heuristic of route provider
In the context of our model, the route provider plays a key role,

acting as the planning entity of the waste collection organization. This
agent is responsible for evaluating the fill level 𝑓𝑏(𝑡) of each bin 𝐵 and
determining the collection sequence to be followed by the collection
vehicles 𝑉 .

Our project revealed that waste collection organizations already
have routes optimized for their collection vehicles, considering the
practical restrictions of road layouts and other geographical factors.
To make our model simpler and more efficient, we have incorporated
this pre-existing collection sequence. The route provider utilizes this
sequence as a foundational framework, removing any bins with a
fill level 𝑓𝑏(𝑡) lower than a predefined threshold from the list before
forwarding the updated sequence to the collection vehicles 𝑉 .

The process of generating a new collection sequence is initiated
daily. All existing lists carrying data from the previous day are purged
to ensure a clean slate for the new day’s operations. Next, each bin is
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Fig. 7. From sensor to decision in a SWM system.
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pinged to relay its current fill level 𝑓𝑏(𝑡), facilitating the creation of a
new collection list composed of each bin 𝐵𝑏 and their respective fill
levels. Subsequently, a set threshold filters out any 𝐵𝑏 with fill levels
lower than the cut-off value from the collection list. Then, a function
queries each bin for the date it was last emptied. Any bin 𝐵𝑏 that has
not been emptied in the past two weeks is added to the collection list
to prevent unpleasant odors and ensure regular cleaning of the bins.
To prevent any bin 𝐵𝑏 from being serviced multiple times in a single
day, we adhere to the collection order provided by the waste collection
company. This is accomplished by sorting the collection list according
to day 𝑡𝑏, a numeric value representing the collection sequence. Once
sorted, this finalized collection list is stored and then transferred to the
collection vehicles 𝑉𝑣, directing them where to collect waste from the
bins 𝐵𝑏. This methodical process ensures efficient waste management,
adhering to the principles of both sustainability and practicality.

Heuristic of route provider:

1. Request fill level 𝑓𝑏(𝑡) from smart bins 𝐵 at time 𝑡, immediately
before the collection.

2. Add all 𝐵, from the tour 𝑡𝑗 , to the collection list that are overdue,
and all that have not been emptied for 14 days.

3. Add all 𝐵 from the 𝑡𝑗 to the collection list whose level is above
the threshold.

4. Sort them by the day-tour index.
5. Transmit the list to the collection vehicle.

Algorithm 1 Route Provider Heuristic
1: procedure Route provider(𝑡, 𝑥, 𝑡𝑓 𝑙, 𝑉 , 𝐵)
2: 𝑉 .collectionList ← ∅
3: for each bin 𝐵𝑏 in 𝐵 do
4: 𝑓𝐵𝑏

(𝑡) ← RequestFillLevel(𝐵𝑏, 𝑡)
5: if 𝑓𝐵𝑖

(𝑡) > threshold or not emptied for 𝑥 days then
6: 𝑉 .collectionList ← 𝑉 .collectionList ∪ {𝐵𝑏}
7: end if
8: end for
9: 𝑉 .sortedList ← SortByDayTourIndex(𝑉 .collectionList)
10: HandOverToCollectionVehicle(𝑉 .sortedList)
11: end procedure
11
5.2.3. Input data
The model introduced utilizes a set of input data to set the initial

state denoted as 𝑒0. For each 𝐵𝑏(0), a location 𝑙𝑖 is set by loading the
oordinates from a database of the internal data management system of
he waste management company. Similar to the location of the smart
ins, a starting location for each 𝑉𝑣(0) is loaded from internal data
management systems as 𝑙𝑣(0). Furthermore, the initial fill level 𝑓𝑏(0) for
each 𝐵𝑏 is loaded from the sensor data of each smart bin. For strategic
simulations, the 𝑓𝑏(𝑡) can also be simulated in order to replicate more
than one week.

5.2.4. Key performance indicators
The model can calculate several KPIs; for example, each 𝐵 returns

one of the following levels for each point in time: good, critical, and
overfull. Those levels are based on the fill level of the 𝐵 as the thresh-
olds are >60% for critical and >90% for overfull. Other available KPIs
include, but are not limited to, kilometers driven by the 𝑉 during trips,
included 𝐵 in a collection tour 𝑡𝑣, the yearly cost of waste collection
ased on 𝑐𝑘,𝑗 and 𝑐ℎ,𝑗 and the respective hours of each 𝑉 . The following
KPIs of the model are used in our analysis:

The yearly cost of waste collection is based on 𝑐𝑘,𝑗 and 𝑐ℎ,𝑗 and the
respective hours each 𝑉 was working and how many kilometers were
driven. The total distance driven by vehicle 𝑉𝑣 in a week is denoted
as 𝐷𝑣, and the total hours worked by vehicle 𝑉𝑣 in a week is denoted
as 𝐻𝑣. Then the cost for vehicle 𝑉𝑣 in a week, denoted as 𝐶𝑣, can be
calculated as:

𝐶𝑣 = 𝑐𝑘,𝑣 ⋅𝐷𝑣 + 𝑐ℎ,𝑣 ⋅𝐻𝑣

The total yearly cost for all vehicles is then the sum of the costs for
each vehicle:

𝐶total =
𝑛𝑉
∑

𝑣=1
𝐶𝑣 =

𝑛𝑉
∑

𝑣=1
(𝑐𝑘,𝑣 ⋅𝐷𝑣 + 𝑐ℎ,𝑣 ⋅𝐻𝑣)

Let 𝐻𝑏 denote the number of hours a week that bin 𝐵𝑏 has a fill
level greater than 90%. The mean average of hours of all bins with
𝑓𝑏(𝑡) >90% can be calculated as:

𝐻avg =
1

𝑛𝐵
∑

𝐻𝑏
𝑛𝐵 𝑏=1
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The percentage of time a bin has a fill level of ≥90% is then
alculated as:

≥90% =
𝐻avg ⋅ 𝑛𝐵
168 ⋅ 𝑛𝐵

× 100%

This simplifies to:

≥90% =
𝐻avg

168
× 100%

The following numerical example should help to understand the
efined KPI for service quality 𝑄. Assuming there are exactly 100 bins,
value of 1% can result only if one bin has a fill level above 90% the
hole week or if all 100 bins have a fill level above 90% during 1% of
he week.
The selection of the KPIs is based on the requirements of the

ecision-makers of the waste management company described in the
ase study in Section 4 and also in respect of the first research question
n Section 2.4.

.3. Digital process twin output

To assist decision-makers in evaluating the trade-off between cost
avings and service quality, we simulated various scenarios. These
imulations enabled a comparative analysis of varying runs where
he waste collection schedules were adjusted in terms of days and
requency.
For instance, in Fig. 8, we juxtaposed two scenarios — one where

aste collection is conducted once a week, in this case specifically on
riday, and another where the collection occurs three times a week, on
onday, Wednesday, and Friday. This comparative approach provides
nuanced understanding of the impacts of different collection sched-
les on both service quality and cost-effectiveness, thereby guiding
ore informed decision-making.
To ensure the reliability of our simulations, multiple replications

f each scenario were executed using varying seeds. This approach
enerated results with a 95% confidence interval, ensuring that our
indings were statistically significant and robust to random variations.
Fig. 9 illustrates the multiplicity of replications and the subse-

uent boxplot derived from the results of each simulation run. This
isualization not only provides an aggregate representation of our
imulation outputs but also offers insights into the statistical dispersion
12
nd skewness of our data, further bolstering the credibility of our
indings.
We also conducted a more granular examination based on the

ptimal scenario identified through our previous comparative analysis.
e utilized smaller step sizes in parameter variation for the smart
in collection threshold to locate the precise ‘‘sweet spots’’ that best
alance the cost savings and service quality trade-off.
The results of this analysis are shown in Fig. 10. At a collection

hreshold of 𝑓𝑏(𝑡) = 36%, the service quality KPI 𝑄≥60% reaches 1%.
y using 𝑓𝑏(𝑡) = 36% as the threshold to trigger collections, the yearly
ollection cost can be reduced by 54.2% from CHF 60,756 to CHF
7,812.
At a collection threshold of 𝑓𝑏(𝑡) = 70%, the service quality KPI

≥90% reaches 1%, i.e., the maximum percentage of overfull waste bins
ccepted by the practice partners. At this threshold, the service quality
PI 𝑄≥60% reaches 23.8%. Using 𝑓𝑏(𝑡) = 70% as the threshold to trigger
collections, the year collection cost can be reduced by another 20%,
lowering the total yearly cost to CHF 16,203. This translates to a total
cost reduction of 73.3% when compared to the initial cost of CHF
60,756.

By executing this detailed analysis, we not only affirm the po-
tential benefits of a strategically set collection threshold but further
demonstrate its capability to enhance service quality while significantly
reducing costs.

6. Discussion

The first section of this Chapter summarizes and discusses the major
findings along with the research questions posed at the outset. The
second section highlights and discusses the contribution of the findings
to practice and research.

6.1. Major findings

To discuss the major findings, we revisit and answer the research
questions derived from the research gaps identified in the literature
review (cf. Section 2.4).

RQ 1 How can decision-makers balance the trade-off between cost
savings and service quality in waste management?
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Fig. 9. Multiple simulation runs per threshold.
Fig. 10. Trade-off between cost savings and service quality KPI.
To balance this trade-off, decision-makers need suitable KPIs to
valuate and compare cost saving versus service quality in different
cenarios. Only then can they use simulation models to evaluate the
mpact of different scenarios, such as using a different number of
ollection days per week or different fill level thresholds to assign a
aste bin for the next collection trip. In cooperation with our project
artners, we defined a KPI that provides a suitable representation of
he service quality of a waste management system (cf. Section 5.2.4).
We established two different thresholds with the stakeholders in the
project to evaluate the fill level status of the waste bins and facilitate
the interpretation for corresponding decisions. The first threshold value
was set to 60% of the maximum fill level. This threshold was chosen
because having just two statuses of waste bin (‘‘full’’and ‘‘not full’’)
was deemed insufficient. It was important for the decision-makers to
have an additional status in between, where the waste bin had reached
13
a certain fill level but was not yet full. This results in a much more
differentiated view when considering the statuses of waste bins in a
system with different thresholds for collection (see, for example, Fig. 8).
The value for this threshold was set at 60% at the beginning of the
project when the optimal fill level threshold to trigger a collection
was still unknown. Throughout the project, this threshold value for
status change became established in discussions with the stakeholders
and retained accordingly. The second threshold evaluates whether the
status of a waste bin reduces service quality because it is (potentially)
overfull. In the case study presented in this paper, the threshold value of
this second threshold was set to 90% rather than 100% for the following
reasons: First, for a fill level of more than 90%, it might already be
impossible to dispose of certain larger objects. In such a case, the public
already perceives the bin to be full and no longer usable. Second, the
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waste container aperture is slightly below the maximum possible fill
level, and a buffer allows for small measurement inaccuracies.

RQ 2 How can a DPT, in combination with an area-wide sensor mod-
ule system, create value for decision-makers in waste manage-
ment companies?

A DT of a SWM ecosystem with DPTs and area-wide sensors module
provides the basis for various services that, in turn, create value in
different categories (cf. Fig. 5). If the static route optimization service
is considered in isolation, it becomes evident that value is created
in all three categories, i.e., availability, performance, and quality. The
availability of waste bins and collection vehicles is increased by only
emptying bins with a certain fill level, thus avoiding unnecessary trips.
In addition to better capacity utilization, this also frees up time that can
now be used for maintaining and servicing waste bins and collection
vehicles to avoid unscheduled downtime. By reducing the number of
trips, varying levels of costs and resources can be saved depending on
the selected threshold for collecting the waste bins, which increases
the performance of the system. In addition to monetary savings due to
lower costs for vehicles, fuel, labor costs, and material costs such as
waste bags, the impact on the environment is also reduced accordingly.
We have shown that with a fill level threshold of 70%, cost savings of
73.3% are achievable (cf. Fig. 10). These results are similar to other
studies; for example, An et al. [45] reported that in their use case,
the average monthly collection was reduced by an impressive 80%.
However, there is no indication of whether this massive reduction has
affected the service quality of trips. In contrast, through the defined
service quality KPI and quantifying the trade-off with costs with the
DPT, our results enable PSS providers to assure customers that cost-
cutting is not so aggressive as to compromise their individually defined
service quality expectations.

In reality, most municipalities and companies will not be able to
reduce costs significantly, as they are unwilling to accept the decrease
in quality above a certain fill level threshold. By measuring the fill level
and correspondingly managed collection processes, full and overfull
waste bins can be avoided. This reduces the amount of improperly
disposed waste in the vicinity of the waste bin, thereby improving
the area and increasing the quality of life of the population. Reducing
environmental impact can also lead to a perceived increase in quality
of the system; if, for example, this results in defined sustainability goals
being achieved and this is actively communicated to the general public,
satisfaction increases through the knowledge that the SWM system is
reducing the collective ecological footprint.

However, probably the most important value is created by revealing
and quantifying the trade-off between cost savings as a performance
measurement and service quality as a quality measurement. For many
municipalities, especially in Switzerland, the perceived quality of the
system is more important than cost savings. Accordingly, authorities
are still hesitant to make large investments in SWM systems. Using the
simulation presented in our paper, this trade-off can be simulated for
an individual system. This makes it possible to estimate the savings and
return on investment achievable without falling short of the individual
quality requirement. In turn, this reduces uncertainties regarding a
decision for or against investment in a SWM system. The new service
quality KPI 𝑄 defined in this paper also enables municipalities to
stipulate service level agreements with PSS providers to ensure that
the level of quality they require is met. Once a SWM system with area-
wide sensor modules and DPTs has been installed, it is also possible to
increase the values described or even create new values. After a given
time, historical data can be used for further analyses, for example, to
define individual fill level thresholds for each waste bin or optimize the
size and location of waste bins in existing or new systems.

RQ 3 How can a DPT be designed, and what specific functions are
essential for the DPT to create value?
14
This paper presents a mixed-method model for simulating a waste
management system that measures waste bin fill levels with sensor
modules to optimize the planning and execution of static collection
vehicle routes. Decision-makers can determine the optimal number of
collection days per week and collection-triggering fill levels of the
waste bins according to their needs regarding service quality and
performance regarding cost reduction.

An important function of the DPT is that it can provide a decision-
making basis using both simulated and real fill level data. With simu-
lated fill level data, the DPT can provide the necessary decision-making
basis even before system implementation, for example, in terms of
return on investment, possibly leading to investment in a corresponding
SWM system not otherwise envisaged. With the DPT, decision-makers
can simulate the effects of different thresholds for triggering waste bin
emptying on the service quality and performance of the system with
simulated and real data, thereby determining the optimal threshold ac-
cording to individual requirements. After implementing the system, the
DPT can provide decision-makers with the waste bins to be collected
and the shortest route for each collection day, using real fill level data.
Initially, a human decision-maker would need to review and interpret
the decision-making basis. By recording interpretations made by human
decision-makers and comparing these with the DPT-proposed decisions,
non-human proposals can be further improved over time.

For a DPT to possess these functions, it needs to access not only
the fill levels of waste bins but also additional data from internal
and external information systems. Furthermore, it requires human-to-
machine interfaces to communicate with human decision-makers, as
well as machine-to-machine interfaces to communicate with other DTs
and SCPs in the waste management product service system. Addition-
ally, a DPT can only unleash its impact when seamlessly integrated into
existing or new decision-making processes.

6.2. Contribution

This section highlights the significance and contribution of the
results to practice and research.

6.2.1. To practice
The results of the use case presented in this paper and the ac-

companying DPT are relevant and provide valuable contributions to
decision-makers in waste management systems, regardless of the digital
maturity level of their own PSSs. The following itemized points briefly
outline the contributions of different groups of practitioners.

1. Contribution to general discussion in practice.

Smart waste systems that measure fill levels using sensors have been
available for over a decade. However, implementing such systems is
still not widespread in practice due to a lack of practical experience and
empirical validation with real data. This often leads to the prevailing
opinion in discussions with practitioners that such systems are not yet
mature enough and still too expensive. The results obtained with the
DPT presented in this paper – implemented in a real use case with
nearly 100 sensor modules covering a whole collection area – confirm
the enormous potential for cost-saving and associated environmental
impact while maintaining the desired service quality. The results, there-
fore, contribute substantially to the general discussion concerning the
impact of implementing such SWM PSSs in practice.

2. Contribution for practitioners who cannot implement a DPT
themselves.

The results presented in this paper are also valuable for practitioners
unable or unwilling to use a simulation-based DPT themselves, owing
to its cost, for example. As the challenges and requirements for SWM
systems are similar throughout the world, the results are globally
transferable. As long as users can measure the fill levels in their waste
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bins, they can orient themselves based on the thresholds calculated in
our study to optimize their static route planning without an explicit
need for their own simulation and DPT. However, in such a case, they
will be unable to optimize fully the trade-off between cost savings and
service quality. Nevertheless, as our results have shown, even with very
conservative threshold values below 50% of the maximum fill level,
relatively large cost savings could still be realized without running the
risk of a noticeable decline in service quality (cf. Fig. 10).

3. Contribution for practitioners who wish to implement their own
DPT.

The cost savings demonstrated in this use case can serve as a
reference for practitioners to estimate the return on investment when
they receive a quote for implementing their own PSS. For the dissem-
ination and acceptance of such systems, it is crucial to demonstrate
a positive return on investment after implementation and pacify the
critics. Jonek-Kowalska [41], for example, found that the cost of waste
management in self-declared ‘‘smart’’ cities in Poland was actually
higher than in some other Polish cities. Our results contribute to
developing systems that provide a positive return on investment by
demonstrating how the cost-saving potential can be maximized using
a DPT and by helping practitioners estimate whether it is worthwhile
for their collection area and cost structure to invest in such a system.

4. Contribution for practitioners who already have a similar sys-
tem.

Our findings are also valuable for practitioners managing waste with
a similar PSS or a DPT. The KPI developed for service quality and the
thresholds for evaluating the fill levels of waste bins, along with the
plots illustrating the trade-off between costs and service quality, help
decision-makers determine the optimal threshold for triggering waste
bin collection. If users already have data from their own collection
areas, corresponding calculations and assessments can be conducted.
If a fully functional system consisting of area-wide sensor modules and
DPTs has already been implemented, its performance can be compared
to the results of our study to identify any potential for improvement.
Furthermore, the new KPI for service quality 𝑄 defined in this paper
enables the definition of quantified service level agreements and a
measurement of compliance.

6.2.2. To research
Our findings also contribute to ongoing research, which, until now,

has focused on technical feasibility and achievable optimizations. How-
ever, the concepts of a DPT, cost savings, and their trade-off rela-
tionship with service quality have had limited presence in research.
After demonstrating the technical feasibility and implementations using
common simulation software such as Anylogic®, future research should
increasingly focus on the qualitative and quantitative values that can
be created. Although this paper focuses on the well-explored topic of
route optimization through fill level measurements, it also presents
elements that have been hitherto less explored. Here, we have defined
an appropriate KPI that can comprehensibly represent the service qual-
ity of a waste management system. This allows for the examination
and comparison of different decision-making approaches not only in
terms of cost and resource savings but also in terms of their impact on
critically important service quality in practice. The proposed approach
for deriving a threshold that triggers waste bin collection can comple-
ment the analyses of other researchers, such as Rahmanifar et al. [46],
who have been working with experiential-based thresholds in their
studies. Furthermore, the holistic view and presentation of the use case
with additional relevant services for stakeholders in the ecosystem (cf.
Fig. 5) provide important points of reference for researchers to integrate
previously isolated research topics and optimization problems, which
may rely on the same data, through the concept of a DT of the SWM
system. By conceptually linking different interdisciplinary research
areas, we contribute to their integration, which, in turn, can advance
the realization of the corresponding network effects in practice, for

example, with smart cities.

15
7. Conclusion

In this final Chapter, we first acknowledge the limitations of this
present study before suggesting avenues for further research.

7.1. Limitations

The following non-exhaustive list of limitations in our research must
be acknowledged.

7.1.1. Time frame
One limitation arises from the limited time frame in which data

could be collected during the field test. Although data for our project
were collected over several months, permitting a meaningful analysis,
comprehensive data for an entire calendar year are unavailable. Ow-
ing to this lack of historical data, we could not adequately capture
the seasonal nature and effects of waste disposal before the project
deadline.

7.1.2. Extraordinary events
The restricted time frame is a further limitation that has to be

acknowledged. In the simulation, rare but still regularly occurring
extraordinary events were not simulated and thus not considered.
These include, for example, extraordinary cleaning and repair work
due to vandalism and events that lead to atypical fluctuations in filling
behavior. Such fluctuations could be due to large public events or
objects becoming stuck in the bin aperture that subsequently render
it unusable, either temporarily or until the next collection.

7.1.3. Route optimization
Another limitation arises from a somewhat simplistic approach to

route optimization. If a waste bin has not yet reached the chosen
fill level threshold, it is simply bypassed and the collection vehicle
proceeds to the next waste bin via the shortest route. The resulting
route is usually shorter than the standard route, but there is no separate
optimization of the route based on the reduced number of waste bins
being emptied. This factor was omitted because the standard routes in
existing collection areas had already been optimized based on years
of experience, and thus, the described approach already produced
excellent results. However, especially in cases where many bins are
removed from the route and only a few are collected, a new collection
route created independently from the standard route would probably
be even more efficient.

7.1.4. Return on investment
For a final assessment of the cost-effectiveness and return on in-

vestment, any savings made need to be balanced against the cost of the
PSS. Although the costs for purchasing and installing the equipment
were known in the project, they were not utilized in this analysis as
they were expected to be optimized for serial production. Furthermore,
the costs for ongoing operations and maintenance were inadequately
recorded as the processes in a field test differ significantly from those
in continuous operation.

7.2. Further research

The use case and the simulation developed can be the starting
point for further research. In the following section, we discuss a non-
exhaustive selection of points that specifically address our acknowl-
edged limitations.

7.2.1. Time frame
The collection and analysis of data over an extended period, ide-

ally several years, will lead to additional insights and enable further
optimization of the DPT and PSS. Of great interest, for example, are
seasonal variations in waste generation depending on weather condi-
tions and other factors. Additionally, historical data can be utilized to
forecast the waste volume for specific bin locations, thereby allowing

for individual determination of fill level thresholds for collection.
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7.2.2. Extraordinary events
Extraordinary events could be considered in a variety of ways.

For example, large social events that have a significant impact on
waste generation in a region could be sourced from an external third
party and used to improve the simulation of the DPT. Other, more
unpredictable events, such as the deliberate destruction of smart bins,
are harder to predict. However, with a sufficiently large data set, the
average effect of these occurrences on the overall system could be ex-
trapolated and used for decision-making, such as return-on-investment
decisions.

7.2.3. Route optimization
Another factor to consider in the ongoing development of the PSS

is the integration of the DPT with additional relevant data and more
advanced methods for route optimization. The ultimate goal is to
achieve dynamic real-time route optimization. However, this requires
not only up-to-date information on traffic conditions, road construction
sites, and other variables but also specialized road-map data, since
collection vehicles may, for example, have special access permission
into pedestrian zones that they cannot use owing to their physical size.

7.2.4. Return on investment
Our research has demonstrated that combining DPTs and PSSs in

waste management can lead to significant cost savings. However, to
promote the adoption of PSSs for SWM in practice, it is crucial to
provide evidence of a positive return on investment after a short period
of operation. To maximize the credibility of the calculated return on
investment, the database should be from a real case and an independent
team of researchers should perform the calculation. Based on the model
presented, further possibilities emerge to simulate optimizing other
resources, such as fuel and waste bags, and the resulting reduced
environmental impact. In addition, the satisfaction levels of local resi-
dents could be simulated, for example, by integrating the influence of
cleanliness or reduced noise pollution into the model.
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