
Upscaling of Reactive Mass Transport through Porous Electrodes
in Aqueous Flow Batteries
Jakub K. Wlodarczyk,1,z Roman P. Schärer,1 K. Andreas Friedrich,2,3 and Jürgen
O. Schumacher1

1Institute of Computational Physics, Zurich University of Applied Sciences, 8400 Winterthur, Switzerland
2German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Electrochemical Energy Technology, 70569
Stuttgart, Germany
3Institute of Building Energetics, Thermal Engineering and Energy Storage (IGTE), University of Stuttgart, 70569 Stuttgart,
Germany

Porous electrodes (PEs) are an important component of modern energy storage devices, such as lithium-ion batteries, flow batteries
or fuel cells. Their complicated multiphase structure presents a considerable challenge to modeling and simulation. In this paper,
we apply the volume-averaging method (VAM) as an efficient approach for the evaluation of effective macroscopic transport
parameters in PEs. We consider the transport of electro-active species coupled to heterogeneous Butler-Volmer type reactions at
the electrode surface. We identify the characteristic scales and dimensionless groups for the application to aqueous flow batteries.
We validate the VAM-based model with direct numerical simulation results and literature data showing excellent agreement.
Subsequently, we characterize several simplified periodic PE structures in 2D and 3D in terms of hydraulic permeability, effective
dispersion and the effective kinetic number. We apply the up-scaled transport parameters to a simple macroscopic porous electrode
to compare the overall efficiency of different pore-scale structures and material porosity values over a wide range of energy
dissipation values. This study also reveals that the Bruggeman correction, commonly used in macroscopic porous electrode models,
becomes inaccurate for realistic kinetic numbers in flow battery applications and should be used with care.
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Symbols and Acronyms

Acronym Explanation
1D, 2D, 3D 1,2,3-dimensional
BC Boundary condition
BCC Body-centered cubic
BV Butler-Volmer
DNS Direct numerical simulation
FB Flow battery
FCC Face-centered cubic
H Hexagonal
LBM Lattice Bolzmann method
LCOS Levelized cost of storage
PDE Partial differential equation
PE Porous electrode
PEMFC Proton-exchange membrane fuel cell
PNM Pore-network model
REV Representative elementary volume
SC Simple cubic
VAM Volume-averaging method
VFB Vanadium flow battery
XCT X-ray computed tomography
Latin Symbols
Symbol Explanation
Aβσ Interfacial surface between phases β and σ
βσ Interfacial surface area between phases β and σ
aa, ac Anodic and cathodic terms of the BV equation
av Electrode specific surface area
c Molar concentration
D Diffusion coefficient
d Fiber diameter
Deff Effective diffusion tensor
D* Total dispersion tensor
E Electrode polarization
Eeq Equilibrium potential

e(i) ith unit basis vector
F Faraday constant (96485 C mol−1)
f= F/RT Inverse thermal voltage
f Field variable
f, g Closure variables
j Current density
j0 Reference exchange current density
k Heterogeneous reaction rate
K Permeability tensor
k0′, k1′ Kinetic constants (variable transformation)
Ki Kinetic number
n Number of electrons transferred
n Unit vector
p Pressure
Pe Péclet number
R Universal gas constant (8.3145 J mol−1 K−1)
r Position vector
ri Production term
Re Reynolds number
s Reaction rate
Sc Schmidt number
T Temperature
v Velocity
V Unit-cell domain
 Total volume
Greek Symbols
Symbol Explanation
α Transfer coefficient
ε Porosity
ηref overpotential with respect to a reference state
ηdiss Specific dissipation energy
ηS Local surface overpotential
μ Dynamic viscosity of the electrolyte
ν Kinematic viscosity of the electrolyte
τ Tortuosity
Subscripts
Symbol Explanation
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σ Solid phase
red Reduced species
ox Oxidized species
ref Reference
eq Equilibrium
l Nondimensionalization based on unit cell size
d Nondimensionalization based on fiber diameter
M Nondimensionalization based on macroscale

parameters
T Total
p Particle
Superscripts
Symbol Explanation
0 Characteristic quantity
′ Transformed variable
β Refers to the liquid electrolyte phase
σ Refers to the solid electrode phase
⋆ Alternative formulation
i Species i
a, c Anodic, cathodic
BV Refers to BV-type reaction
eff Effective

Porous electrodes (PE) are ubiquitous in industrial electrochem-
istry, as they allow for the application of high currents, while
maintaining a relatively compact size of the electrochemical reactor.
Moreover, for certain energy storage devices in which the active
material is incorporated into the electrode itself, utilising porous
materials aids to increase not only their power density, but also
energy density, like in the case of Li-ion batteries.

In recent years, one particularly interesting application of PE
gained popularity in novel devices for large-scale energy storage,
referred to as (redox) flow batteries (FB). Such industrial-scale
systems, although being still an emerging technology, constitute one
of the most promising solutions to the problem of electric grid
instability, caused by a rapidly expanding share of intermittent
renewable energy sources.1,2 Flow battery technology is one of the
main candidates for storing large amounts of electric energy on sites,
where the construction of established grid imbalance-equalising
solutions, such as pumped-hydro storage, is not feasible.

In contrast to Li-ion technologies, FBs promise long-duration
storage capabilities (over 20 years) without considerable capacity
loss.1 This is due to the fact that the electro-active material in flow
batteries is stored in tanks outside the battery stack. The electrolyte
is brought in contact with non-reactive electrodes only for a short
time by circulating it through an engineered, highly-porous and
electrically conductive material (usually carbon-based) by means of
forced convection (pumping).

The flow distribution inside such porous structures plays an
important role in the overall performance of FB systems. This is less
of an issue in Li-ion batteries, in which the electrolyte is quiescent
and the main transport mechanism of lithium is diffusion and
migration. In FBs, electrochemical reactions occur at the surface
of a porous medium. Electro-active species dissolved in the
electrolyte are transported in the liquid bulk and to/from the
electrode surface by convection, diffusion and migration. In general,
all of these phenomena are strongly coupled and highly non-linear,
which largely complicates the theoretical description of FB
operation.3

Modeling and simulation of electrochemical devices has become
important not only for scientific investigations, but also for industrial
product development and prototyping. In FBs, physical and chemical
phenomena occur on a disparity of scales, ranging from electric
double layer effects (nanometres), through stagnant diffusion layers
(tenths of micrometres), up to cells, stacks and full systems
(centimetres to metres).

To accurately simulate a FB cell (or, in principle any electro-
chemical flow cell, such as electrolyzers or electrochemical synthesis
reactors), the impact of the PE microstructure needs to be carefully
conveyed to larger-scale models in the process of increasing the
model abstraction.3 In the upscaling process, however, not all
information from the pore-scale is retained in the macroscopic
formulation (e.g. volume-averaging filters only the relevant informa-
tion). Simulating an entire macroscopic cell using the full microscale
pore resolution would require prohibitively large computational
resources, even for modern computer clusters. Instead, various up-
scaling techniques can be employed to incorporate essential pore-
scale related properties into macroscopic cell models.

In this paper we investigate the application of the volume-
averaging method to the simulation of PEs with convective and
diffusive mass transport coupled to a Butler-Volmer (BV) type
heterogeneous reaction at the electrode surface. Here we consider
simplified, periodic PE geometries at the pore-scale with a focus on
studying the effect of the pore-scale geometry on macroscopic
transport properties. After presenting the dimensional analysis and
upscaling methodology we show verification results of the effective
transport parameters against published results. We then discuss the
effective transport properties, such as the dispersion and effective
reaction rate of several simplified pore-scale geometries. We high-
light modeling errors that result from often-used oversimplified
analytical solutions in cell-scale FB models. Finally, we present the
application of the effective material properties to the mass transport
of electro-active species through a macroscopic electrode, where the
pore-scale geometries are compared in terms of the resulting energy
dissipation and overall reaction rate allowing for an assessment of
the overall efficiency of the porous materials.

State of The Art

Porous electrodes applied to flow batteries.—The big picture.—
In a FB, energy is stored in fluids (electroactive solutions, suspen-
sions, gases) that are kept in external reservoirs. The fluids are
forced through a battery stack, in which PEs are enclosed and sealed.
The electrolyte comes into contact with the surface of the PE at the
micro-scale, where reversible charge transfer occurs, allowing for
discharging and charging of the FB. PEs directly determine the
battery performance: not only do they provide active sites for
electrochemical reaction, but also paths for electrolyte mass trans-
port and electronic conduction (current collection).4 PEs also play a
crucial role in determining the mechanical properties of a stack.
When subjected to mechanical compression, PEs deform, influen-
cing the transport properties such as the contact resistance between
the bipolar plates and the PEs.

Currently, high cost of storage is one of the main factors
prohibiting the ubiquitous spread of FB technology on the market.
Thus, to lower the levelized cost of storage (LCOS), it is highly
desired to design more robust FB systems with superior character-
istics: higher power density, reduced system size, and competitive
round-trip efficiency.1

In fact, re-designing, engineering and optimisation of FB
electrodes is one of the core ideas toward improving the battery
performance. Focusing on PE only, two main performance enhance-
ment methods can be distinguished.5 On the one hand, the fibers’
surface may be functionalized with deposited nanomaterials (e.g.
carbon nanorods) or thermal pre-treatment. The fiber precursor itself
may also be changed (polyacrylonitrile, rayon, biomass), producing
fiber characteristics dissimilar to that in commercial materials. Such
methods can enhance their electrochemical performance, increase
stability and surface area, and tailor specific properties, leading to
improved efficiency in energy storage or conversion processes.5 On
the other hand, the morphology of the PE can be varied, such that
desired structural features appear in a cascade of length scales. In
this paper, we turn our attention to computationally analyze the latter
idea.
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Engineered pore structures can help to approach the ideal
electrolyte transport process: convection to meso-scale pores
through micro-scale pores, then diffusion into nanoscale pores and
heterogeneous reaction.4,6 Such gradient-pore oriented graphite felt,
manufactured with pore sizes spanning from nano- to micro-scales,
has demonstrated improved energy efficiency of a vanadium flow
battery (VFB) by nearly 20%, compared to pristine graphite felt
electrodes.4 Novel materials with gradients of porosity within their
volumes were found to be capable of delivering 69% higher
discharge capacity than conventional VFB electrode design.7

Key metrics of porous electrodes.—Porous materials, whether
natural or synthesized, are characterized by a complicated mor-
phology of the solid material and the complementary void volume
through which the electrolyte flows. The geometry, connectivity and
orientation (topology) of these domains are typically disordered.
Thus, these porous domains can be analyzed in terms of statistical
descriptions.

The most fundamental geometric property of a porous electrode
is porosity ε ∈ (0, 1), which is the ratio of void volume to the total
volume of the porous material. The total geometric surface area of
the void-matrix interface divided by the total volume which encloses
this surface is referred to as specific surface area, av (m

2 m−3). The
surface area available for redox reactions may in principle be
different from the geometric one due to e.g. steric effects of the
molecules.8 Tortuosity, τ, is another often-used parameter, which
describes the length of the effective path of transport (of mass,
charge, heat, etc.) across the PE divided by the geometric distance.

Porosity, tortuosity and specific surface are, as expected,
correlated.9 In macroscopic electrode models, the tortuosity factor
is often defined as8

D D , 1eff ε
τ

= [ ]

where D denotes the molecular diffusivity and Deff is the effective
diffusivity at the macroscale, which depends on the pore-scale
morphology and transport processes. The well-known Bruggeman
relation for random porous media used for more than 50 years is
given by

, 2n1τ ε= [ ]−

where n= 1 for materials composed of randomly distributed
cylinders and n= 2 for spheres.8 Thanks to its simplicity, the
Bruggeman relation has been used extensively in FB modeling
literature (cf. e.g.10–12). We note that there exists an abundance of
other correlations, see e.g.13

Despite the popularity of the Bruggeman approach in the porous
electrode theory literature, experimental studies on Li-ion batteries
indicate great deviations of tortuosity values predicted by Eq. 2 from
measured data due to the complexity of the porous structures.9 There
are numerous reasons for this discrepancy. First, real PEs are
characterized by a range of tortuosities, rather than a single, average
value. Moreover, microstructural variations can locally increase the
tortuosity by a factor of three.14 Other explanations are sought in
randomness in particle (solid matrix) packing and local non-
homogenities. The Bruggeman relation was originally derived
assuming spherical obstruction to transport,8 whereas porous elec-
trodes in FB consist of oblong fibers, which casts further doubts on
the applicability of this relation to FB modeling. To date, no good
correlation between microstructure and macroscopic tortuosity has
been found.9

Incorporating meso- and micro-scale effects into component,
stack and cell-types of models is vital not only for increasing model
predictability, but also for improving the understanding of processes
occurring within PEs.15 Current techniques allow for manufacturing
PEs with well-controlled micro- and nanostructure features. The

remaining question persists: what is the optimal pore architecture to
maximize power efficiency?15

Established methods for simulating porous electrodes.—
Continuum models with simplified closure relations.—In the most
typical FB modeling approach, the momentum, mass, heat and
charge conservation equations are resolved in one to three spatial
dimensions to virtually represent different parts of the flow cell or
stack (e.g. flow fields, through-plane transport). The balanced
quantities are treated as a macroscopic continuum (Newman-type16

models), meaning that the governing equations are written for
averaged (over the representative elementary volume, REV) depen-
dent variables, rather than for their intrinsic (intra-pore)
counterparts.17,18 Transport properties (such as the diffusion coeffi-
cient or electrical conductivity) in the constitutive relations need to
be corrected for the fact that the considered balanced quantities in
liquid solution or gas phase (e.g. concentration) are in fact averaged
over a domain consisting of both electrically conductive solid
electrode phase (the so-called matrix) and void phase (taken by
the liquid electrolyte or gas). However, such corrections are not
particularly rigorous and only aim to better approximate the
empirical data.

There are numerous examples of continuum modeling ap-
proaches using simplified relations for the transport parameters in
the literature of FB modeling. For example Zhang et al.2 simulated a
VFB cell in 2D using the Brinkman equation for electrolyte flow
with the Kozeny-Carman relation to estimate hydraulic permeability
of the electrode, and the Bruggeman correction for diffusion
coefficient and electric conductivity.

Albeit so common, such simple corrections of the intrinsic
transport properties should be critically assessed, and the underlying
assumptions verified for particular PE structures.17,19 It is common-
place that microstructure parameters, such as porosity or specific
surface area remain fitting parameters at the macroscopic level to
better match model results with macroscopic observables (e.g.
polarization curves).20 Evidently, such an approach may jeopardize
the predictive power of macroscopic continuum model simulations.
To mitigate this problem, the evaluation of macroscopic transport
properties via lower-scale electrode models is desired.

Pore-scale resolved models.—Pore-scale models of electroche-
mical energy devices have gained attention due to advancements in
computational resources.13,20 PEs have been studied using (1) direct
numerical simulations (DNS) with common discretization methods,
(2) lattice Boltzmann method (LBM), and (3) pore network models
(PNM) for efficient meso-scale characterization.

In the first approach (1), X-ray computer tomography (XCT) is
used to analyze a small part of a PE and a digital electrode geometry
with solid and void voxels is reconstructed or a synthetic, computer-
generated electrode morphology with structured or unstructured
matrix fiber arrangement can be created.21–23 The geometry is then
discretized and a mesh is created to solve conservation law equations
in both solid and void phases with numerical schemes (e.g. finite
volume, element, or difference).23–25

In the LBM approach (2), fluid motion is modeled using a system
of discrete mass distribution functions on a lattice. It has been
applied in many fields including PEMFCs and FBs.26–30 PNM
models (3) simplify the complicated porous structure by approx-
imating it with a network of voids connected by pores, preserving
only the relevant mesostructure. This allows for rapid solutions of
governing equations, even on single-core machines, at the cost of
certain details being lost in the simplification process.20,31,32

Pore-scale models can estimate mass transport and effective
transport properties, a valuable input for macrohomogeneous
models, avoiding empirical correlations.2 PE morphologies analyzed
on sub-micrometre scale provide information on surface area,
porosity, and tortuosity.18,20 There is a trade-off between detail
resolved by the DNS method and computational effort.
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Up-scaling methods.—When dealing with the disparity of
physical length scales in PEs, trade-offs must be sought to allow
for obtaining accurate results at affordable computational costs.
“Brute-force” modeling of the whole PE volumes (e.g. hundreds of
cm3) used in industrial FBs to resolve micrometre pores is
impractical (or even impossible), due to prohibitively long computa-
tion times and memory usage. On the other hand, simulating FB
electrodes using the computationally efficient macrohomogeneous
approach requires additional subgrid-scale models to capture the
electrode morphology effects on cell performance.

Mathematical upscaling methods can be used to rigorously
determine the effective parameters in macroscopic transport equa-
tions, which reflect the effect of the pore-scale processes.13,33

Various up-scaling methods exist and have been applied in
numerous fields of science. All methods, however, share two
common goals: (1) deriving macroscopic balance laws and (2)
formulating closure problems for transport parameters to be used in
the balance laws. In fact, many macroscopic models were first
devised from empirical observations (e.g. Darcy’s law, Brinkman
equation) and only later derived using the formal mathematical
upscaling.34

In this work, we develop a numerical tool to analyze porous
electrode structures by means of VAM-based model, in which flow
phenomena coupled to heterogeneous chemical or electrochemical
reaction interface (of BV-type) occur. We focus particularly on the
modeling of FBs, albeit the procedures discussed herein can be
applied to other electrochemical flow cells, such as electrolyzers.

The VAM is used to derive spatially homogeneous representa-
tions of conservation laws in porous media. Processes in these media
usually occur over various length scales, and the information from
the smaller scale is systematically conveyed to the larger scale in the
volume averaging process. This up-scaling procedure has been well
documented in the literature35–37 and applied in a variety of fields,
for instance chemical engineering38 or groundwater hydrology.39

Literature studies on the VAM most relevant for the application
to FBs concern up-scaling of inertial and creeping flow in porous
media,40 dispersion of mass,41 advection-diffusion-reaction equa-
tions (heterogeneous and homogeneous, zeroth and first order
reactions),37,42 and non-linear reactions: homogeneous43 and
heterogeneous.44

In the matter of electrochemistry, Le et al.15 developed an up-
scaled PE model of a chronoamperometric experiment, in which
electron transfer was described using the BV equation and the mass
transport at the pore-scale was assumed to be dominated by Fickian
diffusion. Ultimately, however, the non-linear BV equation em-
ployed as the boundary condition in this study was simplified to a
linear Tafel-like equation. For a given sufficiently high and constant
overpotential, the surface reaction term was thus reduced to a first-
order reaction. The authors used the VAM to derive effective
parameters in representative, periodic PE consisting of spheres in
simple cubic (SC), body-centered cubic (BCC) and face-centered
cubic (FCC) geometric arrangements. The effective parameters
resulting from the VAM were employed in a simplified 1D geometry
to simulate the transient chronoamperometric response. The VAM
results were then compared with a DNS of the same electrode
structures and the agreement was excellent. Le et al. achieved
roughly 3100 times speed-up of the 1D upscaled model compared to
the DNS approach.

Model Outline

Transport phenomena within PEs are inherently of a multi-scale
nature, as depicted in Fig. 1, where a hierarchy of scales is exhibited,
starting from the macroscale in panel (A), over the mesostructure
(B), the microstructure (C), to the surface phenomena (D).

We are interested in macroscopic transport models for PEs,
which allow for the efficient simulation over large electrode domains
with a characteristic length scale L. On the other hand, the pore-scale

structure has a characteristic length scale l, which is assumed to be
much smaller compared to the macroscopic scale. By means of the
VAM the effects of the pore-scale morphology and transport are
incorporated into the macroscopic description.

In the VAM, the structure of micro-pores and the related
phenomena (diffusion, migration in them) shown in panel (C) or
surface phenomena schematized in panel (D) are commonly
assumed35 to be captured by a boundary condition (BC) at Aβσ, as
designated in Fig. 2B.

Pore-scale transport modeling.—The electrode geometry is
assumed to be rigid and spatially periodic, so that the electrode
material is generated by translational copies of a periodic unit cell. In
Fig. 2A we show an exemplary periodic porous electrode structure
generated by a simple unit cell geometry displayed in Fig. 2B. The
unit cell domain is partitioned into an electrode domain Vσ and
electrolyte domain Vβ, separated by an interface domain Aβσ.

At the pore-scale we assume the flow velocity to be small enough
for inertial effects to be negligible. Furthermore, we assume dilute
concentrations of the electro-active species. Assuming a Newtonian
fluid, the convective flow can be described in terms of the Stokes
equation

p Vv v r0, 0, , 32∇ − ∇ = ∇⋅ = ∈ [ ]β

where p is pressure and v is the fluid velocity. We use no-slip
boundary condition at the electrode surface.

To simplify the governing equations we assume the ohmic
resistivity to be negligible both within the electrode material and
the electrolyte phase. In practice, the latter condition can be realized
experimentally by the usage of a supporting electrolyte.
Additionally, the diffusion potential variation in the electrolyte
bulk is assumed to be negligible. In this work we assume isothermal
conditions and set the temperature to T= 298.15 K. Furthermore, we
assume the average separation of the pore-scale electrode structures
to be much larger compared to the Debye length, which allows to
impose the electroneutrality condition within the electrolyte phase.
These simplifications allow the mass transport of the electroactive
species i to be described in terms of an advection-diffusion equation

c D c Vv r, , 4i i
2·∇ = ∇ ∈ [ ]β

where D denotes a diffusion coefficient, which is assumed to be
constant and equal for all electro-active species. The coupling to the
heterogeneous reactions at the electrode-electrolyte interface can be
stated generally as

D c r c c An r, , , , 5i i N1− ∇ ⋅ = − ( … ) ∈ [ ]βσ βσ

where nβσ is the unit vector pointing from the electrolyte into the
solid electrode phase (see Fig. 2B) and ri denotes a general
production term due to the electrochemical reaction.

Electrochemical reactions.—In the electrochemical context of
this work, we consider the reversible one-electron transfer redox
reaction

Ox e Red. 6+ ⇌ [ ]

We model the kinetics of Reaction 6 using the “practical form”
45 of

the Butler-Volmer equation

j
j

c
e c e c , 7f f0,ref

ref

1
red oxref ref= ( − ) [ ]α η α η( − ) −

where j is the current density at the electrode surface (A m−2), cref
denotes a fixed reference concentration (mol m−3), α is the transfer
coefficient, and
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Figure 1. The cascade of length scales involved in FB models. A) Macro-scale featuring the characteristic macroscopic length scale L (practical modeling
applications and system optimisation); B) Meso-scale structure featuring the characteristic pore-scale length l with the representative elementary volume (REV)
of a simplified porous electrode with the characteristic length l at pore scale (e.g. fiber diameter); C) Micro-pore scale, where the dominant transport mode is
molecular diffusion and migration in the electric field; D) Surface phenomena on the atomistic scale (e.g. adsorption, surface transport, EDL, catalyst
degradation, electron exchange).
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j Fkc E E c f
F

RT
, , , 80,ref ref ref eq refη= = − ( ) = [ ]

are the reference exchange current density, the overpotential with
respect to a reference state, and the inverse thermal voltage (V−1). In
Eq. 8, k denotes the heterogeneous reaction rate constant (m s−1), E
is the electrode polarization (V), and Eeq is the equilibrium potential
of the considered redox reaction.

Here we choose a reference state based on the reference inflow
condition c c cref ox,ref

in
red,ref
in= = and assume for simplicity a symmetric

reaction with α= 0.5 in the rest of this work. In this work we adopt the
convention that anodic currents and overpotentials have a positive sign.

Note that the local surface overpotential (measured just outside
the double layer structure), ηS = E− Eeq, still depends in general on
the local electrolyte composition, since Eeq is a function of the local
species concentrations: Rewriting Eq. 7 in terms of the local surface
overpotential yields

⎜ ⎟
⎛
⎝

⎞
⎠

E E E E
f

c

c

1
ln 9S eq eq,ref

red

ox
η = − = − + [ ]

with the current density

j j e e , 10f f
0

1 S S= ( − ) [ ]α η α η( − ) −

where j Fkc c j c c c c0 red ox
1

0,ref red ref ox ref
1= = ( / ) ( / )α α α α( − ) ( − ) is the local

exchange-current density.
Thanks to the assumption of negligible electrostatic potential

gradients within the electrode and electrolyte bulk domains, the
electrode polarization E is spatially constant along the electrode-
electrolyte interface. Thus, according to Eq. 8 also the overpotential
ηref is constant. Therefore, for a given reference concentration,
overpotential, and symmetry coefficient, the electric current density j
is a linear function of the species concentrations. As we show in
detail further below, this property allows to recast the BV equation
to a linear reaction law

j Fkc 11A= − [ ]

corresponding to the reaction

A B. 12→ [ ]

Characteristic scales and dimensionless groups.—In the fol-
lowing analysis it is convenient to cast all governing equations into
their dimensionless equivalents. Such an approach has an advantage
over dimensional formulation when working with a disparity of
different scales as it reveals the dimensionless groups parametrising
the physiochemical processes.

Let us introduce the nondimensional quantities

c
c

c l v
p

p

p

j
j

j V
E

E

V

r
r

v
v

, , , ,

, , 13

0 0 0 0

0 0 0
η η

¯ = ¯ = ¯ = ¯ =

¯ = ¯ = ¯ = [ ]

defined with respect to the characteristic molar concentration c0,
length-scale l0, velocity v0, pressure p0, current density j0, and
voltage V0given by

c c l l v
l p

p l p

j
DFc

l
V

RT

F

, , ,

,

, , 14

x
0

ref
0 0

0 0

0 0

0
0

0
0

μ
= = =

= |∇〈 〉 |

= = [ ]

β

where cref = 1 mol L−1 is the characteristic species concentration, lx
denotes the size of a unit cell in the x-direction, ∣∇〈p〉β∣ is the norm
of the volume-averaged pressure gradient to be defined later, and V0

is the thermal voltage.
One of the most important aspects of a dimensionless formulation

is the identification of critical scaling parameters. Since for a given
applied pressure difference the flow velocity is not known a priori,
we define an alternative Reynolds number40

l
pRe 15l

0 3

2

ρ
μ

= ( ) ∣∇〈 〉 ∣ [ ]β⋆

based on the applied pressure gradient, where ρ is the (constant)
electrolyte density (kg m−3) and μ denotes the (constant) dynamic
viscosity (Pa s). Based on Rel

⋆, we define the Péclet number

v l

D
Pe Re Sc, 16l l

0 0
= = [ ]⋆ ⋆

where DSc ν= / denotes the Schmidt number and ν= μ/ρ is the
kinematic viscosity of the electrolyte (m2 s−1). Since we consider
here aqueous electrolytes, we set Sc= 1000 in the remainder of this
work.

The transport of the electroactive species i in the β-phase is then
described by the diffusion-advection equation given in nondimen-
sional form as

c c Vv rPe , . 17l i i
2¯ ·∇̄ ¯ = ∇̄ ¯ ¯ ∈ ¯ [ ]β

⋆

The dimensionless scaling parameter controlling the importance of
the electrochemical reaction with respect to diffusive transport is

kl

D
Ki . 18l

0
= [ ]

The nondimensional reactive boundary condition for the linear
reaction law in Eq. 12 is then given by

c c An rKi , . 19A l A−∇̄¯ ⋅ = ¯ ¯ ∈ ¯ [ ]βσ βσ

Similarly, to cast the BV-type reaction given in Eq. 7 and the
respective boundary condition into dimensionless form, we define
the anodic and cathodic kinetic numbers as

kl

D
a a

kl

D
a a

a e a e

Ki Ki , Ki Ki with

, , 20

l l l l

f f

a
0

a a
c

0

c c

a
1

cref ref

= = = =

= = [ ]α η α η( − ) −

Figure 2. (A) Macroscopic representation of a simplified porous electrode—
a periodic medium composed of conductive fibers, (B) the corresponding
representative elementary volume.
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so that the dimensionless form of the BV equation reads

j c c ArKi Ki , 21l l
a

red
c

ox¯ = ¯ − ¯ ¯ ∈ [ ]βσ

with the corresponding reactive boundary conditions

c j c j An n r, , . 22red ox−∇̄¯ · = ¯ −∇̄¯ · = −¯ ¯ ∈ [ ]βσ βσ βσ

To simplify the notation we will drop the overline symbol in the
following to denote nondimensional quantities.

Upscaling the transport equations.—In the VAM approach, the
pore-scale transport equations are averaged over a REV (here
corresponding to a unit cell) to derive the governing macroscopic
transport equation and effective transport parameters.

We introduce the intrinsic averaging operator for any field
variable f defined over the electrolyte domain Vβ

35

f f dV
1

, 23
V

∫〈 〉 ≔ [ ]β

β β

where dV1
V

 ∫=β
β

is the volume of the liquid phase. The electrode

porosity can be then expressed as  ε = β , where  is the total
unit-cell volume. Defining analogously the intrinsic averaging
operator over the solid electrode domain Vσ allows to express the
total volume as   = +β σ .

In the process of VAM, f is decomposed into an intrinsic average,
〈f〉β, and a spatial deviation, f̃ , given by

f f f , 24= 〈 〉 + ˜ [ ]β

to which we shall return later.
Furthermore, we define the superficial averaging operator as:

f f dV
1

, 25
V

∫〈 〉 ≔ [ ]
β

Accordingly, it follows from Eq. 23 and Eq. 25 that 〈f〉= ε〈f〉β.
In a similar way, we define the interfacial surface average

operator

f f dA
1

, 26
A

∫〈 〉 ≔ [ ]βσ
βσ

βσ
βσ

where dA1
A

 ∫=βσ βσ
βσ

is the interfacial surface area between

phases β and σ within the unit cell, so that the electrode specific
surface area is av  = βσ .

Comprehensive derivations of the VAM are available in the
literature (see e.g.35,37,40), therefore in the following we will focus
on presenting the main results relevant for the current study.

Momentum conservation.—The electrolyte flow is governed by
the incompressible Stokes equation, which can be written in
nondimensional form as40

p p Vv v r0, 0, , 272∇〈 〉 + ∇˜ − ∇ = ∇· = ∈ [ ]β
β

where the pressure field is decomposed as

p p p . 28= 〈 〉 + ˜ [ ]β

The pressure deviation field p̃ satisfies the periodic boundary
condition

p p lr l r l e, with , 29i i
i
i˜ ( + ) = ˜ ( ) = [ ]( )

where e(i) is the ith unit basis vector and li is the corresponding unit
cell length. As a result, the volume-averaged dimensionless pressure
gradient in Eq. 27, p∇〈 〉β, is a unit vector (due to the selection of l0
as the characteristic length) and its orientation dictates the direction
of the electrolyte flow.

The electrolyte is assumed to have zero velocity at the fiber
surfaces (no-slip condition) and the velocity field is periodic over the
REV, that is

v r l v r . 30i( + ) = ( ) [ ]

Upscaling of the Stokes equation with the VAM yields the well-
known Darcy law, see e.g.46, which can be expressed in nondimen-
sional form as

pK v , 31l·∇〈 〉 = −〈 〉 [ ]β

where Kl is a symmetric and positive-definite permeability tensor,
which is nondimensionalized with the characteristic scale
K ll

0 0 2= ( ) .

First-order heterogeneous chemical reaction.—The application
of the intrinsic volume averaging operator to the advection-diffusion
equation coupled to a first-order heterogeneous chemical reaction
and subsequent simplifications yields the macroscopic transport
equation37

⎡
⎣
⎛
⎝

c c
a

c

c a c c

v n

v

Pe

Pe Ki , 32

l i i
l v

i

l l v l i i

,

,

ε ε
ε

∇⋅(〈 〉 〈 〉 ) = ∇ ⋅ ∇〈 〉 + 〈 ˜ 〉 )

− 〈˜ ˜〉 ] − (〈 〉 +〈 ˜ 〉 ) [ ]

β β β
βσ βσ

β β
βσ

⋆

⋆

where al,v is the electrode specific surface area scaled with unit cell
length. This transport equation is unclosed, since the deviation fields
c v,˜ ˜ are not known at the macroscale.

To derive a closed-form macroscopic transport equation, a
closure ansatz is used for the deviation fields, e.g. for the
concentration fields the ansatz

c c g cf 33i i i˜ = ·∇〈 〉 + 〈 〉 [ ]β β

is inserted into the unclosed form of the transport equation, where f
and g are unknown closure variables. As shown in37 this results in
the following periodic closure problems

v v f f f
a

r VPe Ki , , 34l l
l v2 ,

ε
( ˜ + ⋅∇ ) = ∇ + 〈 〉 ∈ [ ]βσ β

⋆

An f f n rKi , , 35l− ·∇ = + ∈ [ ]βσ βσ βσ

V if r f r l r , 1, 2, 3, 36i( ) = ( + ) ∈ = [ ]

f 0, 37〈 〉 = [ ]β

and

g g g
a

Vv rPe Ki 1 , , 38l l
l v2 ,

ε
⋅∇ = ∇ + ( + 〈 〉 ) ∈ [ ]βσ β

⋆

g g An r1 Ki , , 39l− ·∇ = ( + ) ∈ [ ]βσ βσ

g g V ir r l r , 1, 2, 3 40i( ) = ( + ) ∈ = [ ]

g 0. 41〈 〉 = [ ]β
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The closed equation now reads

c c

a c

v DPe

Ki , 42
l

l v l,
eff

*ε ε∇·(〈 〉 〈 〉 ) = ∇·( ·∇〈 〉 )
− 〈 〉 [ ]

α
β β

α
β

α
β

⋆

where D* and Kieff are the dimensionless total dispersion tensor and
the effective kinetic number, respectively, both of which depend on
the closure variables f and g and are determined by

a

g

D I n f fvPe ,

Ki Ki 1 , 43

l v
l

l l

,

eff

*
ε

= + 〈 〉 − 〈 ˜〉

= ( + 〈 〉 ) [ ]

βσ βσ
β

βσ

⋆

where I is the identity matrix. Note that the total dispersion tensor
combines the effect of the heterogeneous reaction (second right-hand
side term) and hydrodynamic dispersion (third right-hand side term)
on mass transport, so that in the case of no convective flow (i.e.
Pe 0l =⋆ ), the dispersion tensor reduces to the effective diffusion
tensor, since

D D fvPe . 44l
eff* = − 〈 ˜〉 [ ]β⋆

Simplification of the reactive transport equations.—The transport
equations for the electroactive species can be simplified by con-
sidering a change of variables from the individual species concen-
trations (cox, cred) to the pair (cT, cox), where cT denotes the total
species concentration cT = cox + cred, which satisfies the transport
equation

c c Vv rPe , , 45l T T
2·∇ = ∇ ∈ [ ]β

⋆

c An r0, , 46T−∇ ⋅ = ∈ [ ]βσ βσ

where we used the simplifying assumption of equal and constant
diffusion coefficients of the electroactive species. Clearly, any
constant function for the total species concentration cT that satisfies
the boundary conditions is a valid solution. This allows to reduce the
transport problem to the equation

c c Vv rPe , 47l ox
2

ox·∇ = ∇ ∈ [ ]β
⋆

c c c c An rKi Ki , . 48l T lox
a

ox
c

ox−∇ ⋅ = − ⋅( − ) + ⋅ ∈ [ ]βσ βσ

The boundary condition of Eq. 48 can be written equivalently as

c n k k c r A, , 49ox 0 1 ox−∇ ⋅ = − + ∈ [ ]βσ βσ
′ ′

where k cKil0
a
T′ = and k Ki Kil l1

a c′ = + . Finally, using the variable
transformation

c c
k

k
c c, , 50T Tox ox

0

1
= ′ + ′

′
= ′ [ ]

allows to write the transport equation with a linear reaction law as

v c c x VPe , , 51l ox
2

ox⋅∇ ′ = ∇ ′ ∈ [ ]β
⋆

c n k c x A, . 52ox 1 ox−∇ ′ ⋅ = ′ ∈ [ ]βσ βσ
′

This allows to reduce the problem of up-scaling the advection-
diffusion equation coupled to a BV-type reaction law to the case of a
linear reaction law.

The closed-form macroscopic transport equation immediately
follows as

v c D c

a k g c

Pe

1 , 53
l

l v

ox ox

, 1 ox

′ ′
′ ′

ε ε∇⋅( 〈 〉 〈 〉 ) = ∇⋅( ∇〈 〉 )
− ( + 〈 〉 )〈 〉 [ ]

β β β

βσ
β

⋆ ∗

which can be stated in terms of the species concentration variable cox
as

c c

a c c

v DPe

Ki , 54
l

l v l

ox ox

,
BV,eff

ox ox
eq

ε ε∇⋅( 〈 〉 〈 〉 ) = ∇⋅( ∇〈 〉 )
− (〈 〉 − 〈 〉 ) [ ]

β β β

β β

⋆ ∗

where we have introduced the effective kinetic number for the BV
reaction at the interface

k g gKi 1 Ki 1 55l l
BV,eff

1
BV′= ( + 〈 〉 ) = ( + 〈 〉 ) [ ]βσ βσ

with

e eKi Ki 56l l
BV 1ref ref= ( + ) [ ]αη α η− ( − )

and the averaged equilibrium concentration

c
k

k
c

e

1

1
, 57Tox

eq 0

1 ref

′
′

〈 〉 = =
+

[ ]β
η−

which is a function of the overpotential ηref.

Alternative dimensionless scaling parameters.—Using the pre-
viously defined scaling parameters, we introduce the classical
Reynolds and Péclet numbers

l

l

D

v
v

v
v

Re Re ,

Pe Pe 58

l l

l l

0

0

ρ
μ

= ∣〈 〉∣ = ∣〈¯〉∣

= ∣〈 〉∣ = ∣〈¯〉∣ [ ]

⋆

⋆

defined with respect to the superficial average flow velocity, where
we again employ overline symbols to differentiate nondimensional
from dimensional quantities.

To facilitate the analysis and comparison of different pore-scale
structures we additionally introduce dimensionless scaling para-
meters defined with respect to the fiber diameter d, which is
considered fixed in this study.

The corresponding Reynolds, Péclet, and kinetic numbers defined
with respect to d are given by

d d dRe Re , Pe Pe , Ki Ki , 59d l d l d l= ¯ = ¯ = ¯ [ ]

where d d l0¯ = is the dimensionless fiber diameter. Other dimen-
sionless quantities, such as the permeability tensor, are defined
analogously, e.g. dK Kd l

2¯ = ¯ / ¯ .

BV-type reaction in terms of a linear reaction law.—Since the
upscaling of the BV-type reaction considered here can be expressed
in terms of a linear reaction law, we present, if not stated otherwise,
results based on the linear reaction law. The relation between the
kinetic number of the linear reaction law and the parameters of the
BV-type reaction can be expressed as

e eKi Ki , 60d d
BV 1ref ref= ( + ) [ ]αη α η− ( − )

where Kid
BV is the kinetic number of the corresponding linear

reaction law, which captures the dependency on the kinetic number
and overpotential. Figure 3 displays the corresponding pairs of
kinetic numbers and overpotentials (Kid, ηref) for given values of
Kid

BV as isocontours.
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Direct numerical simulation.—Complementary to the VAM
approach, we perform a direct numerical simulation (DNS) to
validate the VAM for a few given cases of the diffusion-advec-
tion-reaction equation. For a given geometry of the periodic unit cell,
we create an array of N cells along the x-axis, as depicted in the
lower panel of Fig. 4. Next, we resolve the pore-scale transport
equations (Eq. 27, together with Eq. 17 and Eq. 19 for the first-order
reaction or Eq. 52 for the BV-type reaction).

At the macroscopic inlet boundary we prescribe a fixed electro-
lyte concentration and impose a standard no diffusive flux BC at the

outlet, i.e. for species i we set

c c A c Ar r n r, , 0, . 61i i i
in

e
in

e e
out= ( ) ∈ −∇ · = ∈ [ ]β β β

Lastly, we impose symmetry BCs on the remaining upper and lower
faces of the macroscopic domain according to

c A An v rPe 0, , . 62le i e
up

e
down− ·( − ∇ ) = ∈ { } [ ]β β β

⋆

Periodic unit cells.—To study the impact of different PE
microstructures (e.g. fiber alignment or porosity) on the effective
transport properties, we generate synthetic periodic PE geometries in
2D and 3D, which are juxtaposed in the upper panel of Fig. 4 for
different porosity values.

The 2D geometries include the simple cubic (SC) and hexagonal
(H) geometries composed of fibers with disc (d) and square (s) cross-
sections. The 3D geometries include the mono-fiber SC in cross-flow

Figure 3. Isocontours of the reaction number Kid
BV in terms of the kinetic

number Kid and the overpotential η, see Eq. 60.

Figure 4. Upper panel: Simple periodic porous electrode geometries considered in this study in 2D and 3D: SC = simple cubic, H = hexagonal, FCC = face-
centered cubic, BCC = body-centered cubic; d = fibers with disc cross-section, s = fibers with square cross-section (for literature study validation only),
cf = cross-flow, pf = parallel flow. Lower panel: a PE geometry consisting of N SCd single cells for a DNS. Gray volume symbolizes voids filled with
electrolyte.

Figure 5. Specific surface areas of the considered geometries.
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(cf) and parallel-flow (pf) arrangements, face-centred cubic (FCC)
and body-centred cubic (BCC) geometries, all of which have disc
cross-sections.

The SCs geometry is only used to validate the result with the
available data in the literature. For all other studies, we employ the
disc cross-section as the square is rather unlikely to correspond to an
actual carbon fiber shape in the PE for FB applications.

The specific surface area of PEs that are either composed of
spherical particles with mean sphere diameter d or cylindrical
filaments of diameter d can be stated in analytical form as13

a b 1 , 63d v, ε= ( − ) [ ]

where b= 6 for spherical particles and b= 4 for cylindrical
filaments47 and a a dd v l v, ,= ¯ is the dimensionless specific surface
area scaled with the fiber diameter. In Fig. 5 we show the specific
surface areas ad,v of the considered geometries, where ad,v coincides
with Eq. 63 for the SCd, SCh, and SCpf geometries. However, for
the FCC and BCC structures the specific surface area is reduced,
which is due to the overlapping region of the fibers.

Dimensionless numbers in FB systems.—Electrochemistry deals
with reaction constants k ranging over more than ten orders of
magnitude. Single electron transfer reactions of k 10( ) = cm s−1

without molecular structure reorganisation have been reported and can
be regarded as relatively fast.48 On the other hand, sluggish reactions
with k 10 9( ) = − cm s−1 are not uncommon in electrochemistry.48

In most FB applications, k does not need to be extremely high, as
the reaction rate is enhanced electrochemically by applying suffi-
ciently large overpotentials.48 However, k should also not be too low
to prevent excessive activation polarization and irreversibility of the
redox reactions.

Based on given requirements of a FB system, such as high round-
trip efficiency, cell voltage, specific surface area, electrolyte
concentration, and conversion rate of electro-active species, Weber
et al.49 proposed a value k= 10−5 cm s−1 as the minimum rate
constant for practical FB applications.

In Table I we show reported values of the reaction rate, diffusion
coefficient and the dimensionless kinetic number Kid for a range of
different FB systems. The listed values indicate that the reported
redox-active organic molecules have a kinetic number in the range of

1< Kid < 10, while e.g. the kinetic rates of the inorganic vanadium
and bromine-based species are significantly smaller satisfying
Kid < 0.1.

FBs with relatively slow electrode kinetics such as VFBs require
higher operating overpotentials in order to maintain high electro-
chemical reaction rates. From56 (Fig. 2 therein) we estimate a typical
activation loss in VFB system to be in the order of 350 mV, which at
298.15 K yields the dimensionless overpotential of η= 13.6. For
other systems with faster kinetics the maximum expected η will be
lower.

To estimate the ranges of Péclet numbers Ped encountered in actual
FB applications, we explored the available literature on (preferably
experimental) FB studies. Milshtein 57 used a symmetric iron FB cell
with carbon paper as the PE (25AA from SGL, assuming ε= 0.75).
The cell operated at flow rates from 0.5 up to 10 mLmin−1 (super-
ficial velocity was estimated from the volumetric flow rate and
electrode width and height). Milshtein et al. assumed a typical
diffusion coefficient of ions in aqueous solution of 5·10−6cm2 s−1,
which yields the range of Péclet numbers 51< Ped< 1057 for the
characteristic fiber diameter d= 1× 10−5 m used in this work.

Finally, it is crucial to determine whether the electrolyte flow
inside a real FB can be modeled as creeping in order for Eq. 27 to
hold. Xu et al.58 studied flow through disordered and ordered 2D
media with square pore cross-section using the LBM. By analysing
the dependence of hydraulic permeability, K, on Red (with the
characteristic length d defined as the side length of the square fiber
and the velocity being intrinsic), Xu et al. determined the critical Red
at which K is not any more independent of Red , indicating the onset
of the inertial regime. Based on the simulation results of Xu et al.
(Fig. 6 therein) the critical Red depends significantly on both ε
(critical Red increasing with decreasing ε) and the fiber alignment.
However, the condition Re 1d < in general ensures that inertial
effects are insignificant, which for Sc= 1000 is satisfied when
Ped < 1000, since Pe Re Scd d= .

Lastly, to estimate the practical ranges of ε for our simulations,
we refer to the study by Zenyuk et al.59 to conclude that the porosity
of various carbon materials in FB applications normally spans
between ε= 0.6 and ε= 0.9, depending strongly upon compression.

The above estimations serve as a basis for selecting ranges of the
values of dimensionless numbers in parameter studies presented in
the next section.

Table I. Comparison of standard heterogeneous reaction rate constants, diffusion coefficients, and the resulting kinetic numbers for a number of
different redox active species commonly used in flow batteries. Estimations of Kil are based on l0 = 30μm. Typical values for common redox pairs in
electrochemistry are given for reference.

Flow battery
system Redox-active species k/(cm s−1) Di/(10

−6cm2 s−1) Kil/(-) Electrode Comments Source

Vanadium VO2+/VO2
+ 1.35·10−5 2.26 0.018 Planar

glassy
carbon

in 2 M H2SO4 50

Bromine-based Br2/Br
− 5.80·10−4 1.60 0.109 Vitreous

carbon
Mean diffusion coefficient of
bromine and bromide in
water 51

49

Aqueous organic,
acidic

Anthraquinone-2,7-disulfonic
acid (2,7 AQDS)

7.20·10−3 3.80 5.68 Glassy
carbon

in 1 M H2SO4 52

Aqueous organic,
alkaline

1,8-Dihydroxyanthraquinone
(1,8-DHAQ)

1.690·10−2 8.43 6.01 Glassy
carbon

in 1 M KOH 53

Aqueous organic,
neutral

4-HO-TEMPO 5.13·10−2 19.1 8.06 Glassy
carbon

in 1 M KCl 54

— Ru(NH3)6
3+/Ru(NH3)6

2+ 0.8 7.90 303 Pt in 1 M KCl 55
— Fe(CN)6

4—/Fe(CN)6
3— 0.14 6.30 66.7 Pt in 1 M NaCl 55

Lower bound of k
° in practical
FB

— 1.00·10−5 1.00 0.03 — the typical diffusion coeffi-
cient of redox species in
electrolyte solutions

49
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Results and Discussion

In this section we present numerical studies of the effective
parameters determined by the VAM-based approach described
previously. As we are interested in studying the effects of convec-
tion, diffusion and reaction on the macroscopic effective parameters,
we focus here for simplicity on 1D flow problems over domains
along the x-axis. This allows a reduction of the permeability,
diffusion, and dispersion tensors to the scalar variables Kd,xx, Dxx

eff ,
and Dxx* , respectively.

Model verification with literature data.—To verify our imple-
mented VAM-based upscaling method, we present the relevant
effective parameters for a range of operating conditions against
published results in Fig. 6.

Permeability.—First, we simulate electrolyte flow in a periodic
SCd geometry. We set Re 10l

4=⋆ − and determine the xx-component
of the dimensionless permeability tensor, Kxx. We then compare Kxx

with the results provided in60 (Fig. 2a therein), and plot them in
Fig. 6a.

We conclude that the results of the current study are in excellent
agreement with the reference data, which allows us to simulate the
Stokes flow in other periodic geometries with confidence.

Total dispersion in a non-reactive system.—Next, we consider a
system in which no reaction is taking place at the electrode surfaces
and the fluid is allowed to flow (Re 0.2, 2000l ∈[ ]⋆ ) and diffuse in the
SCd spatially periodic geometry (ε= 0.37). We then evaluate Dxx*
from the VAM and compare with the corresponding results obtained
in61 (Fig. 12 therein), which is depicted in Fig. 6b. Following the
reference source,61 we plot the total dispersion against the particle
Péclet number, defined as

a
Pe 6

Pe
. 64p

d

d v,
= [ ]

Overall, we observe an excellent agreement with the literature
reference over a very broad range of Pep. While in the limiting case
of no convective flow Pep → 0 the dispersion coefficient converges
to the effective diffusion, we observe a quadratic increase in Dxx* for
large Péclet numbers, which coincides with the Taylor-Aris disper-
sion relation, see e.g.62

Total dispersion: diffusion and 1st order reaction.—To simulate
a reactive system without macroscopic flow and a 1st-order chemical
reaction assumed at the fiber surfaces, we impose a no convective
flow condition by setting Re 10l

12=⋆ − and sweep the kinetic number
over the range Kil ∈ [0.01, 100] for the SCd and SCs geometries

Figure 6. Verification studies of the VAM-based results showing (a) simulated dimensionless permeability Kd,xx vs ε and a comparison with reference data
from;60 (b) simulated dimensionless effective diffusivity Dxx* vs Pep and a comparison with reference data from;61 (c) simulated dimensionless total dispersion
Dxx* vs Kil; and (d) simulated dimensionless effective kinetic number vs Kil and a comparison with reference data from.37
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with ε= 0.8. The resulting total dispersion multiplied by ε, together
with the reference data37 (Fig. 4a therein), is shown in Fig. 6c.

In the limit of small reaction rates, Kil → 0, the effective
diffusion converges to a constant that depends only on the pore-
scale geometry. On the other hand, in the limit of dominating
reactions, Kil → ∞, the effective diffusion converges toward the
molecular diffusion.37

Total dispersion.—We then simulate the coupled system with
convection, diffusion and a 1st-order heterogeneous reaction. For
this, we perform a parameter sweep over Kil ∈ [0.01, 1000] and
Re 1.6, 1900l ∈[ ]⋆ , which corresponds to Pep values between 1 and
1000, and set ε= 0.37 for the SCs geometry. We present the results
of an evaluated ratio Kil

eff , together with the reference data from37

(Fig. 9 therein), in Fig. 6d.
The effective reaction rate can be observed to increase linearly

for small kinetic numbers until a plateau is reached in the limit of
large kinetic numbers for all values of Pel, due to diffusional
transport limitations. While slight discrepancies at high kinetic rates
(Kil > 100) and particle Péclet numbers (Pep > 100) can be ob-
served, which may be caused by different numerical discretisation
errors, the results of this study agree well with the published data.

Sherwood number.—Hamid and Smith63 used a similar upscaling
strategy to derive the effective mass transport in porous electrodes,
for which they assumed facile electrochemical kinetics, which
corresponds to the limiting case of large kinetic numbers.

The Sherwood number, defined as Sh= kmd/D, where km is the
mass transfer coefficient (m s−1), is the ratio of the diffusion
timescale d2/D to the mass transport timescale d/km, indicating the
importance of the mass transport with respect to diffusive transport.
In the limiting case of large current densities we find that the
Sherwood number is directly related to the effective kinetic number
by Sh Kid

eff= . Figure 7 shows the Sherwood number over a large
range of Péclet numbers for the SCd geometry and several porosity
values, where we used a high kinetic number of Kid = 1000 to
approximate the limiting case studied in63 illustrated as black
symbols in the plot.

We conclude that the agreement with the reference data is
excellent. Hamid and Smith noticed effects relevant for our further
study: from the mass transport perspective alone, due to the
redistribution of the diffusive flux at 1< Ped < 15 and a dramatic
increase of Sh, low porosity media are preferred in flow cells
applications. However, low porosity media suffer from low hy-
draulic permeability, increasing pumping losses. We will reconsider
these competing effects in an optimisation study further below.

Validation of the VAM against the DNS.—To investigate the
validity and accuracy of the VAM approach we compare the
resulting macroscopic solution with fully-resolved DNS results.
For this we consider the solution to the reactive mass transport
problem over a one-dimensional domain shown in Fig. 2.

For the considered transport problem we set the inflow concen-
tration c 0.5ox

in =( ) , the Péclet number Pel = 20.1, and employ the
BV-type reaction with kinetic number Kil = 1 and overpotential
ηref = 0.5. The pore-scale geometry is SCd with porosity ε= 0.9.

In Fig. 8 we show the intrinsic average species concentration of
cox of the upscaled macroscopic transport equation, together with the
projected DNS solution c xox

DNS〈 〉β, which is evaluated by averaging the
concentration of cox over the y-axis as

Figure 7. Variation of Sh with Ped for SCd geometry for different porosities
and a comparison to published results,63 Fig. 7c therein (black symbols).
Lines connecting the points serve as a guide to the eye only.

Figure 8. Intrinsic concentration averages of the VAM-approach and the DNS result over 10 and 30 repeated unit cells.

Figure 9. Comparison of VAM and DNS approaches for different Pel (other
parameters remain the same as in Fig. 8). The lines represent cox

VAM〈 〉β, while
the symbols represent the per-cell average, cox

DNS〈 〉β.
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Assuming a fiber diameter of 10 μm, the corresponding dimen-
sional unit cell length is 28 μm, so that the overall domain lengths
for N= 10 and N= 30 unit cells are 280 μm and 841 μm,
respectively.

The reference DNS reveals repetitive fluctuations of the species
concentration over the unit cells due to the production of oxidized
species at the electrode surface. Clearly, the resolution of these
concentration fluctuations becomes infeasible over large macro-
scopic domains. On the other hand, the upscaled macroscopic
transport equation does not show any fluctuations as expected, but
follows the DNS in an averaged sense.

It is also desirable to verify the applicability of the VAM method
at different flow velocities. Hence, we keep the same parameters and
geometry (for N= 10) and repeat the simulation for various Pel
values, as shown in Fig. 9.

A comparison of the VAM solution (lines) with the cell-averaged
DNS solution (symbols) reveals a good agreement for smaller Péclet
numbers. The visible discrepancy for larger Péclet numbers is
expected as the solution to high Péclet number flows through porous
materials can depend strongly on the macroscopic boundary condi-
tion. As the VAM assumes a local spatially periodic solution

independent of macroscopic boundary conditions, it fails in repre-
senting such transport problems accurately close to the macroscopic
boundary.

Numerical study of the effective parameters.—In this section,
we present additional numerical studies of the effective parameters
over transport parameter ranges relevant for FB applications.

Hydraulic permeability.—Pressure drop is one of the key
characteristics of FB systems as it is directly related to the parasitic
losses due to the energy spent on pumping. Our model is capable of
predicting the hydraulic permeability of the PE given the periodic
unit cell geometry and porosity. In Fig. 10 we present the xx-
component of the dimensionless hydraulic permeability tensor for all
studied periodic geometries as a function of porosity, setting
Re 10l

4=⋆ − .
The problem of predicting the permeability, for a given pore-

scale structure, has been discussed to a great extent in the
literature.40,46,60,64–67 In general, the largest relative difference in
the permeability occurs at small porosities (e.g. below 0.5).

The evaluated permeabilities for the different structures fall in the
same range of values determined by Kok et al.28 for a carbon felt
material, where permeability values in the range Kd,xx ∈ [0.33, 0.58]
were computed for estimated porosity values ε ∈ [0.87, 0.93].

Effective diffusion and dispersion.—The total dispersion tensor in
PEs is affected by four factors: (1) the intrinsic, molecular diffusion

Figure 10. Dimensionless hydraulic permeability Kd,xx of porous electrodes composed of different simple periodic structures as a function of porosity.

Figure 11. (a) Effective diffusion as a function of Kid in the passive diffusion case and (b) the total dispersion along the x-axis as a function of Ped for several
simplified periodic geometries (for other constant parameters cf. text).
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coefficient, (2) the meso-structure geometry, (3) the convective mass
transport in the electrode as well as (4) the reactions in the PE.

In Fig. 11a we show the dependency of the effective dispersion
coefficient Dxx

eff on Kid for a passive diffusion transport (Ped= 0)
using different geometries at constant ε= 0.9. For the flow-aligned
fiber structure SCpf we find that the electrochemical reaction has no
effect on the diffusion as D 1xx

eff = , since the flow-aligned structure
allows species to diffuse unhindered in straight paths along the
x-direction, so that the effective diffusion rate equals the molecular
diffusion. For all other investigated structures, we observe a
reduced effective diffusion rate due to the blockage of the species
transport by the fibers, which leads to longer effective diffusion
paths.

In Fig. 11b we show the total dispersion Dxx* as a function of Ped
for all considered geometries with constant ε= 0.9 and a small
kinetic number Kid = 0.1. We observe that the dispersion increases
quadratically in Ped for all considered unit cells. Furthermore, we
note a significant variation in the dispersion between the studied
structures, where the flow-aligned structure shows the smallest
dispersion, while the more complex FCC and BCC structures exhibit
the highest dispersion.

Volumetric effectiveness factor.—To quantify PE structures in
terms of the combined effect of the provided specific surface area
and the effectiveness of the mass transfer to the electrode surface, we
introduce the volumetric effectiveness factor

a g1 . 66v d v
eff

,η = ( + 〈 〉 ) [ ]βσ

The volumetric effectiveness factor can be interpreted as repre-
senting an effective specific surface area in direct contact with the
reactant species at its bulk concentration, so that the electrochemical
reaction is only limited by reaction kinetics.

Clearly, v
effη depends directly on the pore-scale geometry through

the term ad,v. Additionally, it is also indirectly affected by the
operating conditions, such as the Péclet number Ped and the applied
overpotential η, through the scalar closure variable g, defined in
Eq. 33.

The volumetric effectiveness factor v
effη is shown in Fig. 12a as a

function of the kinetic number Kid for the passive diffusion scenario
(Ped = 0). In the limit of small kinetic numbers Kid → 0 we find
〈g〉βσ→ 0, so that the volumetric effectiveness factor tends toward
the specific surface area ad,v. On the other hand, in the limit of large

Figure 12. Volumetric effectiveness factor as a function of Kid for the passive diffusion case (a) and with convection (b).

Figure 13. (a) Simulated effective diffusivity (VAM) as a function of Kid without convective flow for different porosities and compared with the Bruggeman
relation of D Dxx

eff 1.65ε= (black, broken lines); (b) Simulated effective diffusivity as a function of porosity for several values of Kid compared with three different
power laws, including the Bruggeman correction for non-overlapping, randomly placed cylinders. Both Figs. generated using the BCC geometry.
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kinetic numbers, the volumetric effectiveness factor tends to zero, as
the overall reaction rate becomes limited by the diffusive transport.
We note a clustering of the results in two groups: The SCd, Hd, and
SCpf structures show a very similar effectiveness factor and perform
significantly better in comparison to the FCC and BCC structures.
This difference can be explained by a lower specific surface area of
the FCC and BCC structures.

Figure 12b displays the relative increase of v
effη due to convective

flow over a range of Péclet numbers, for a constant Kid = 1. While
the effectiveness factor does not increase at higher Péclet numbers
for the flow-aligned fiber structure SCpf, all other investigated
structures display an increase in the effectiveness factor, which is
most pronounced for the BCC structure.

Comparison of the VAM with the Bruggeman correction.—
Next, we simulate a mass transport problem in the BCC geometry
with no convective flow. From the VAM, we calculate the total
dispersion and compare with the predictions of the effective
diffusion coefficient from Eq. 1 and Eq. 2, which is a common
ansatz utilized in the FB modeling literature. Figure 13a shows the
effective dispersion coefficient for a range of electrode porosities
and kinetic numbers Kid. For each simulated curve (colored lines),
we provide the corresponding prediction of the effective diffusion
coefficient from the Bruggeman model with D Dxx

eff 1.65ε= (black
horizontal lines). The effective diffusion predicted by VAM shows a
non-linear behavior across the whole range of Kid and ε. This
contrasts with the Bruggeman model, which only considers the
impact of porosity on the effective diffusion.

In the limiting case of small kinetic numbers (ε→ 0), the
effective diffusion is determined by the tortuosity. Here we find a
good agreement of the predicted effective diffusivity and the
Bruggeman-type relation D Dxx

eff 1.65ε= . However, as the kinetic
number increases, the Bruggeman relation largely underestimates the
effective diffusion tensor. This is due to the fact that the Bruggeman
correction does not account for the coupled effect of diffusion and
heterogeneous reactions.

Next, in Fig. 13b, we show Dxx
eff plotted over a range of ε values

for four different values of Kid and compare with Eq. 2 for three
different exponent values which are used to correct the diffusion
coefficient.

For these particular conditions, we find that the typically used
Bruggeman relation D Dxx

eff 1.5ε= for the effective diffusion to well
approximate a reaction with Kid ≈ 0.36. However, depending on the
Kid value, the Bruggeman relation either over- or underestimates the
result of VAM, which shows the shortcoming of the former.

Furthermore, the effect of convective flow (dispersion) on Dxx
eff is

also not included in the Bruggeman relation Eq. 1. However, this
effect is not negligible for Ped > 1, as shown previously in Fig. 11b
and is not captured by standard macrohomogeneous FB models.

In general, we find that using the VAM method allows evaluating
the effective total dispersion parameter, which is sensitive to
geometry, macroscopic flow conditions (dispersion), and heteroge-
neous reaction. Such dependency is a major weakness of the
modeling approaches utilising the Bruggeman relation.8,9

Optimisation study of the pore-scale structure.—Let us apply
the up-scaling methodology to the problem of determining optimal
pore-scale geometries that maximize the overall efficiency of a
porous electrode. For this we consider the simplified macroscopic
one-dimensional porous electrode illustrated in Fig. 14, where the
electrolyte concentrations of the electroactive species at the inlet
boundary is given by Dirichlet boundary conditions and simple
natural Neumann boundary conditions are imposed on the outlet
boundary.

With the abbreviations c ≡ 〈c〉β, ceq ≡ 〈ceq〉β, the one-dimen-
sional mass balance equation can be expressed as

c c a c c

c c c L

Pe Ki ,

0 , 0, 67
M d v M

x

,
BV,eff eq

0

′ ″
′

ε= − ( − )
( ) = ( ) = [ ]

where PeM = Ped/D
* and DKi KiM d

BV,eff BV,eff= / ∗ denote the Péclet
and kinetic numbers scaled with respect to the effective macroscopic
total dispersion.

For the above one-dimensional transport problem, the specific
energy dissipation rate68 (defined as the dissipation rate of energy
per mass of fluid flowing in the porous medium) can be stated in
non-dimensional form by

v

K
. 68

d xx

diss
2

,
η

ε
= 〈 〉 [ ]

The analytical solution to Eq. 67 allows for a closed-form
expression of the spatially averaged reaction rate

s a
L

c x cKi
1

dx. 69d v d
x

L

,
BV,eff

0

eq
x∫〈 〉 = ( ( ) − ) [ ]

Figure 14. Illustration of macroscopic 1D porous electrode domain.

Figure 15. Average reaction rate over a range of specific energy dissipation values for the considered pore-scale structures with ε = 0.6 (left) and ε = 0.85
(right).
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In the following we set the macroscopic domain size to Lx = 103,
which corresponds to a length of 1 cm. Additionally, we set the
dimensionless inflow concentration of the reactant to c0 = 0.5 with
an equilibrium concentration of c 1 1 expeq

refη= ( + (− )), where
ηref =− 1, and a kinetic reaction number of Kid = 0.44.

Figure 15 displays the averaged reaction rate over a wide range of
specific energy dissipation values for the considered pore-scale
geometries at a fixed porosity values of ε= 0.6 (left) and ε= 0.85
(right). We find that the averaged reaction rates level off in the limit
of small specific energy dissipations. In this limit the Péclet number
converges to zero, so that the transport becomes fully diffusion-
driven.

Ordering the structures from highest to lowest average reaction
rate yields

SCpf Hd SCd FCC BCC 70> ≈ > > [ ]

for small specific dissipation energy values, whereas the ordering
changes to

BCC SCpf FCC Hd SCd 71≈ ≈ > > [ ]

at high values of ηdiss. These changes can be explained by the
different permeability values of the structures: While the cross-flow
aligned Hd and SCd structures allow for a high reaction rate
compared to the FCC and BCC at low dissipation rates, their
comparatively lower permeability leads to increased energy dissipa-
tion rates at high flow velocities, where both the FCC and BCC
become favourable. Overall, the flow-aligned fiber structure SCpf
shows very good performance.

To investigate the impact of the porosity on the reaction rate, we
show in Fig. 16 the performance of the flow-aligned structure SCpf

for different porosity values. The results indicate that higher porosity
values are favourable at lower specific energy dissipation values,
whereas lower porosity values allow for an increased average
reaction rate at higher dissipation rates thanks to their increased
specific surface areas.

Surrogate model.—In this work we have assumed the pore-scale
geometry and transport conditions to be spatially homogeneous.
However, the results presented here can also be applied to
inhomogeneous materials or transport problems with spatially (or
temporally) varying conditions, given that material property gradi-
ents occur over macroscopic length scales much larger compared to
a single unit cell, see.35

When simulating transport problems through porous electrodes
with variable material properties, such as spatially inhomoge-
neous porosity values in graded materials, there is a need for
repeated evaluation of the effective parameters. To avoid the
necessity for multiple numerical solutions for the effective
parameters when solving the macroscopic PDE, we propose a
two-step approach: First, the effective parameters are solved for a
set of parameter values that are sampled over a parameter space.
For each effective parameter a surrogate model is constructed
using the evaluated effective transport coefficients at the sampled
parameters. Second, the surrogate model is used to evaluate the
required effective parameters when solving the macroscopic
transport equation.

Here we use the Kriging approach to provide a fast evaluation of
the effective parameters, see e.g.69,70 The Kriging estimator inter-
polates the given sample values and provides an estimation at the
unsampled points based on a weighted average of the sampled values
located in a neighbourhood, together with an estimate of the
uncertainty. To generate and evaluate the Kriging model, we make
use of the Surrogates.jl Julia package.71 For the effective parameters
Kid

eff and Dxx* we generated a Kriging model from N= 103 samples
over the parameter space (ε, Ped, Kid). An open-source implementa-
tion of this procedure is maintained in a Github repository.72

Figure 17 shows the predictions of the surrogate model for the
effective dispersion and kinetic number (contour lines) for the SCd
structure at ε= 0.83, together with the corresponding errors when
compared to a direct evaluation of the up-scaling problem (dots).
Here the surrogate model has been constructed with N= 103 quasi-
random samples generated from a Sobol sequence over the sampling
space

, Pe , Ki 0.6, 0.95 10 , 10 10 , 10 , 72d d
2 2 2 2ε( ) ∈ [ ] × [ ] × [ ] [ ]− −

which allows for an approximation with a relative error on the order
of O(10−3).

Figure 17. Predictions of the effective dispersion (left) and effective kinetic number (right) using the surrogate model, including the prediction error evaluated
on a regular grid.

Figure 16. Average reaction rate over a range of specific energy dissipation
values for the SCpf geometry with different porosity values.
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Conclusions and Outlook

Summary.—In this work, we presented an application of the
VAM to the mass transport in PEs with a BV type electrochemical
reaction. The simplifying assumptions allowed a reduction of the
coupled transport problem to a single advection-diffusion equation
coupled to a linear reaction law by using a suitable variable
transformation.

We performed a dimensional analysis of the transport problem,
which revealed the critical transport scaling parameters Ped, Kid, Sc,
where we fixed Sc= 1000 in this study. Subsequently, we analyzed
the highly non-linear dependency of the effective transport para-
meters Kd,xx, Dxx* , and Kid

eff on the scaling parameters and the
geometry, for which we studied two 2D and four 3D periodic
structures parameterized by the porosity.

Validation studies for the predicted effective transport parameters
showed good agreement with published results. Furthermore, the
numerical studies revealed the predicted permeability value for the
investigated structures to be in a realistic range when compared to
simulation results of technical felt electrodes performed by Kok et
al.28 We challenged the periodicity assumption of the VAM by
comparing simulation results at higher flow rates with the DNS
approach. As expected, the VAM approach fails to predict accurate
concentration profiles close to the macroscopic boundary for larger
Péclet number values, which is due to the underlying assumption of
a spatially periodic solution that neglects the influence of macro-
scopic boundary conditions. A detailed analysis of conditions for the
validity of homogeneous macroscopic descriptions of reactive mass
transport has been provided in Ref. 73.

The results presented in this work indicate that the ubiquitous
usage of the analytical Bruggeman relation for the effective diffusion
should be used with care when applied to FB applications as the
relation neglects the effect of the PE geometry, heterogeneous
reactions and convective flow on the effective total dispersion
tensor.

In real-world engineering settings, such as fuel cells and flow
batteries, porous electrode materials are sought that simultaneously
exhibit high permeability and mass transfer rates, which itself is a
highly relevant optimisation topic.58 Here, we applied the evaluated
effective parameters for a simple 1D macroscopic transport problem
through a porous electrode, for which we determined the overall
spatially averaged reaction rate and energy dissipation. This allowed
to elucidate the trade-off between mass transport and energy
dissipation for the considered pore-scale structures and porosity
values. The results indicate that the optimal pore-scale structure
depends on the operating conditions, where fibers aligned orthogon-
ally to the convective flow direction are preferred at lower flow rates
and fibers aligned parallel to the flow are preferred at higher flow
rates. Additionally, the optimal porosity value was found to correlate
inversely with the energy dissipation rate.

Finally, we constructed a surrogate model based on the Kriging
method, which allows for an efficient evaluation of the effective
transport numbers for a given set of dimensionless transport and
geometrical parameters. The surrogate model is especially useful in
case of inhomogeneous materials with spatially or temporally
varying properties, for which the effective parameters must be
evaluated over a range of transport parameters. We published a
reduced porous electrode model as open-source software,72 which
allows for an efficient usage of the effective porous electrode
parameters in macroscopic porous electrode models.

Since models using simple pore-scale geometries have been
shown to often well-describe experimental data of more complicated
geometries,35 we consider this paper to be a valuable contribution to
modeling the macroscopic reactive mass transport through porous
electrodes in flow batteries.

Further research.—Further studies could explore the application
of the VAM to non-linear reaction laws, where the conductivity in
the electrolyte and solid electrode phase are taken into account.

Additionally, the inclusion of non-ideal effects of highly concen-
trated electrolytes, which are typical in industrial FB applications,
would be a valuable extension. Furthermore, the consideration of
more complex pore-scale geometries and anisotropy, based e.g. on
micro CT scans, would be highly relevant to bridge the gap between
the highly simplified structures considered in this study and technical
porous electrode structures.

This study lays the groundwork for future research on the design
of porous electrodes, such as gradient or lamellar materials, tailored
for particular applications in electrochemistry. Through experi-
mental validation of our findings, it would be possible to expand
upon this study and establish guidelines for the manufacturing of
porous electrodes.
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