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A B S T R A C T

In this paper, we discuss a solution strategy for an overdetermined ODE system that uses
elliptic functions. In particular, we show how an apparently ill-posed ODE system can be made
amenable to treatment by Jacobian elliptic functions by introducing additional free parameters
and still obtain a solution that corresponds well to the physically expected behaviour.

1. Introduction

The mechanical system cubli was first presented in [1,2]. It is a mechanical-dynamic system that can move and balance. As
xplained in [1], inverted pendulum systems already have a long history (for an overview of the history of the research on inverted
pendula see e.g. [3] or [4]), but the development of new algorithms for the control of such systems is still an active area of research,
especially since such systems serve as benchmark systems for new control algorithms. The purpose of the cubli system is therefore not
so much its direct use in an industrial context, but rather as an ‘‘inexpensive, open source test-bed with a relatively small footprint
for research and education in estimation and control’’ [1]. Similar projects were subsequently launched, e.g. the ‘‘Kuutio’’ [5]; the
cubli has very recently also been complemented by the ‘‘One-Wheel Cubli’’ [6].

In [7,8], an iterative method is presented to let the system ‘‘jump up’’ from its flat position. Since this system has rather weak
motors, this jumping-up must be done by slowing down the fast-spinning wheels with mechanical breaks. The iterative process
manipulates a subsequent action of the motors to achieve the upright unstable equilibrium state. The system has 2 degrees of
freedom, the rotation of the rigid body around its corner and the rotation of the flywheel, described by the two coordinates 𝜙1 and
𝜙2. Note, that the angle 𝜙2 is described in the fixed coordinate system of the body (see Fig. 1). Moreover, the system depends on 3
parameters which are generally difficult to determine experimentally.

If we now consider a lifting process, we assume that at the beginning of the process the cuboid is at rest and that the flywheel has
a certain angular velocity, and that at the end of the process both are at rest. From a mathematical point of view, these restrictions
lead to an overdetermined ODE system, so that in general one cannot expect a solution of the system satisfying all restrictions for
an arbitrarily given external moment acting on the cuboid. Usually, the system is investigated with iterative (as mentioned above)
or numerical methods (see also [9] or [10]), or then from the perspective of optimal control of ODE’s. For recent control-theoretic
erspectives on the model, we refer to [11–13]; there is also a vast literature on inverted pendula as control-theory reference models,
ee e.g. the overviews provided by [14,15], but the topic has also seen some (very) recent advances (e.g. [16–23]).
In this paper, we will show that one can nevertheless solve the system analytically by assuming a special form of the external
omentum. The solution will involve elliptic Jacobi functions. While the assumed ansatz for the external momentum does not seem
o be sufficiently motivated by the real-world situation from which the system originates, the three free parameters of the system
entioned above can subsequently be adapted to obtain a member of our 3-parameter family of analytic solutions that corresponds
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Fig. 1. The 2 degrees of freedom are described by 𝜙1 and 𝜙2.

o the results obtained in laboratory experiments. By being able to fit these parameters to real results, we can combine the clarity
f an analytically closed solution with the usefulness in describing a real-world situation with a system that at first sight seems
ll-posed.
The search for exact solutions to ODEs or systems of ODEs remains an active area of research despite the enormous advances in

omputational power that enable increasingly sophisticated numerical methods. The availability of exact solutions in certain special
ases enables and facilitates a structural understanding of these selected problems that is difficult to achieve with numerical and/or
pproximate methods; moreover, systems with exact solutions can also serve as test cases for verifying the accuracy and precision
f numerical and other approximate methods (we note, however, that the superiority of analytical over numerical solutions has
lso been questioned [24]). As can be seen from the (incomplete) list of references, exact solutions have recently been studied and
iscovered in a variety of areas such as Riccati-type equations [25], more general autonomous nonlinear equations [26], nonlinear
DE’s with exact solutions expressable via Weierstrass functions [27], and also in the understanding of the dynamics of neural
etworks [28] or more general network ODE systems with input excitations [29] (which has to be distinguished from using ODE
olvers for dealing with neural networks [30] or even using neural networks to solve ODE’s, see e.g. [31] and the references
herein); for many additional references see the recent review article [32]. Note that in addition to the initial value problems
sually considered, there have also been advances in research on boundary value problems for ODEs, see e.g. [33]. Recently, efforts
ave been made to use symmetry properties of differential equations to obtain explicit solutions, mainly for PDEs, but also for
ertain oscillators modelled by nonlinear ODEs [34]. In a related but slightly different approach, nonlinear ODE systems with stable
quilibria (which mainly occur in mathematical biology) are approximately solved by analytical functions [35].
The value of the analytical solution also lies in its application for educational purposes; however, beyond that, it provides a

eference solution for validating numerical methods developed for solving similar problems. In our view, the analytical solution
s extremely valuable, for example, for the validation of high-fidelity structural models that can be explicitly integrated in time.
urthermore, since the solution is available in parameter space, it also enables the validation of surrogate modelling methods. In
articular, one should therefore be able to successfully match them with appropriate data.
Parametrized differential equation systems such as cubli are widely used in engineering to model time-dependent processes (for
classical introduction to this broad topic see e.g. [36] or [37]). The corresponding parameters are often not given a priori in a

natural way and have to be estimated a posteriori with the help of empirical data. If no analytical solutions are available for the
parametrized differential equation systems, the a posteriori determination of the parameters can be very difficult or very costly, as
the various previous approaches for the cubli system have shown. This is generally the case when the model is non-linear in nature.
In this case, an extensive toolbox of numerical methods is available today to estimate the unknown parameters (for an overview
of this broad field, we recommend [38–40]). The initial situation is greatly simplified when complete analytical solutions for the
nonlinear differential equations are known. This adds additional value to our calculations. However, even in this case the estimation
of the parameters remains challenging, but here the classical methods of nonlinear regression analysis are directly applicable (for this
extensive topic, see also [38–40]). This partly explains the importance of analytical solutions of parametrized differential equation
ystems, even if they involve functions that are not classically called elementary, such as the Lambertian W-function (see [41] for
recent application and [42] for a compilation of models).
In this paper, an analytical solution to a classical benchmark problem from dynamical systems theory is found using elliptic

acobian functions. This result is remarkable because the nonlinear differential equation system of cubli was not previously
onsidered to be analytically treatable. This analytical solution contains three parameters and one should therefore be able to
uccessfully match it with appropriate data. Moreover, it fits into the framework of current engineering research methods in which
nalytical and numerical methods are pragmatically mixed to achieve the desired results (admittedly arbitrarily focused on examples
rom aerodynamics see e.g. [43–46]).

imitations of the study: The issue of stabilization of the proposed exact solution in the final position is not addressed in the study.
reliminary investigations (analytical and experimental) indicate that stability is not sufficiently guaranteed under perturbed initial
onditions, and it is the subject of our ongoing investigations to extend/modify the proposed solution method to also address the
2

tability issue.



Communications in Nonlinear Science and Numerical Simulation 130 (2024) 107762R. Altenburger et al.

a
v

d

f

w

p

b

Overview of the paper In Section 2 we formulate the problem and outline our solution strategy. In Section 3 we formulate the main
result and give its proof, up to the determination of the various parameters that appear in the result, which we then determine in
Section 4; i.e. Section 4 consists entirely of the proof of a theorem stated in Section 3 on the values of the relevant parameters. In
Section 5 we compute our solution numerically and discuss its relation to experimentally available results. Section 6 concludes the
paper.

2. Mathematical formulation

The dynamics can easily be derived from the principle of angular momentum:

𝛩1�̈�1 = 𝑚𝑔 sin(𝜙1) −𝑀Mot(𝑡) (1)
𝛩2

̈̃𝜙2 = 𝑀Mot(𝑡) (2)

Here 𝑚 is the total mass of the cuboid and the flywheel, 𝛩1 and 𝛩2 are the moments of inertia of the cuboid and flywheel, �̃�2 is the
ngle of the flywheel in the world frame, hence �̃�2 = 𝜙1 + 𝜙2. We use the angle 𝜙2 in the body frame from now, since that is the
alue that can be measured directly.
The constant values can be summarized to two values 𝛼 and 𝛽, as the following normed setting shows: We can reformulate the

ynamics described by (1)–(2) by the two coupled ordinary differential equations

�̈�1(𝑡) = 𝛼 ⋅ sin(𝜙1(𝑡)) − 𝑓 (𝑡) (3)
�̈�1(𝑡) + �̈�2(𝑡) = 𝛽 ⋅ 𝑓 (𝑡) (4)

or the two unknown functions

𝜙1(𝑡) ≥ −𝜋
4
, 𝜙2(𝑡) ≥ 0,

ith the seven boundary conditions

𝜙1(0) = −𝜋
4
, 𝜙1(𝜏) = 0, �̇�1(0) = 0, �̇�1(𝜏) = 0 (5)

as well as

𝜙2(0) = 0, �̇�2(0) = 𝜔 (6)

and

�̇�2(𝜏) = 0. (7)

According to the condition 𝜙1(𝜏) = 0 given by (5), 𝜏 is the ending time of the lift-up procedure described in the previous section,
and 𝜔 is an initial angular velocity. These boundary conditions follow from the physical restrictions on the lift-up process described
in Section 1.

Note that when comparing the dimensionless version (3)–(4) of our system with the original physical version (1)–(2), the various
constants are related by 𝛼 = 𝑚𝑔

𝛩1
and 𝛽 = 𝛩1

𝛩2
. In addition, note that our moment function 𝑓 (𝑡) appearing in (3)–(4) is related to the

hysical moment function 𝑀Mot(𝑡) appearing in (1)–(2) by 𝑓 (𝑡) = 𝑀Mot(𝑡)
𝛩1

. A sample computation with numerical values of the
constants will be given in Section 5.

Since a system of two second order ODEs in general admits only 4 additional conditions, the system (3)–(4) is overdetermined,
and we may only hope for solutions if the constant 𝜏 and the function 𝑓 (𝑡) are chosen appropriately.

The system (3)–(4) is half decoupled in the sense that Eq. (3) is an ODE for 𝜙1(𝑡) only. Therefore we firstly focus on (3) together
with the additional conditions (5). Once the function 𝜙1 has been determined Eq. (4) becomes an elementary ODE of second degree
for the function 𝜙2: For given 𝜙1, two additional integration steps suffice to determine the function 𝜙2. The additional conditions (6)
will ensure the uniqueness of the solution function 𝜙2. In the following we will therefore focus on the functions 𝜙1 and 𝑓 , since it
is in the conditions for 𝜙1 where the illposedness of the problem comes into play.

Finally, the condition (7) on 𝜙2 is equivalent to an additional condition on the function 𝑓 (𝑡). Indeed, we have on the one side,
y (6) and (7),

∫

𝜏

0
�̈�2(𝑡)d𝑡 = �̇�2(𝜏) − �̇�2(0) = −𝜔

and on the other side, by (4) and (5),

∫

𝜏

0
�̈�2(𝑡)d𝑡 = ∫

𝜏

0

(

𝛽 ⋅ 𝑓 (𝑡) − �̈�1(𝑡)
)

d𝑡 = 𝛽 ⋅ ∫

𝜏

0
𝑓 (𝑡)d𝑡.

Therefore the function 𝑓 (𝑡) has to fulfil

∫

𝜏

0
𝑓 (𝑡)d𝑡 = −𝜔

𝛽
. (8)

Condition (8) is therefore equivalent to condition (7), and in the sequel we will replace condition (7) by condition (8).
3
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Solution strategy As stated in the previous discussion, the problem (3)–(7) is overdetermined if the parameter 𝜏 and the external
oment function 𝑓 (𝑡) are taken as given, since we are dealing with two second-order ODE’s together with 7 boundary conditions.
he overdeterminacy becomes even clearer if we restrict the discussion to a problem for 𝜙1, namely if we take the (𝜙2-independent)
ODE (3) for 𝜙1 together with the 4 boundary conditions (5) for 𝜙1 and the integral condition (8) on 𝑓 (𝑡). Recall that condition (8)
facilitates the determination of 𝜙2 with 2 simple integrations once we have solved the problem for 𝜙1. Therefore, we consider it
desirable to concentrate all the overdeterminacy of the original given physical problem in the mathematical problem of finding a
solution of a boundary value problem for 𝜙1 with 5 constraints, instead of the 2 constraints normally expected. It is clear that the
3 ‘‘excess’’ constraints can be reduced to 2 ‘‘excess’’ constraints if we allow some freedom in the choice of the parameter 𝜏.

Our main idea now is to introduce 2 additional parameters by prescribing a very special form of the external function 𝑓 (𝑡),
namely that it can be written as a trigonometric polynomial of 𝜙1(𝑡), i.e. in the form 𝑓 (𝑡) = 𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡)). The 2
additional parameters 𝑢 and 𝑣 that occur in this representation of 𝑓 (𝑡) are chosen in such a way that the problem admits a unique
solution for 𝜙1 and is amenable to a treatment by elliptic functions.

Considering the physical origin of the problem, it may seem strange that the external momentum 𝑓 (𝑡) depends on the solution
function 𝜙1 and not vice versa. However, this reversal of dependence seems to be justified by the fact that the solution we
can find under this rather unusual ansatz behaves qualitatively exactly as can be observed in the original laboratory experiment
when ‘‘typical’’ momentum functions are used. Moreover, since the momentum function in the laboratory experiment can also be
prescribed and mechanically implemented to a considerable extent, our restriction of the momentum function is practically much
less relevant than would be expected from a purely mathematical point of view. From the mathematical side, the fact that 𝜙1 is a
monotonic function allows one to use 𝜙1 as a parameter function for 𝑓 (𝑡). In this case of this restriction of 𝑓 (𝑡) with these additional
parameters 𝑢 and 𝑣, the solution 𝜙1 can be found in terms of elliptic functions, and the parameters 𝑢 and 𝑣 are determined by the
boundary conditions (5) on 𝜙1, as well as 𝜏 by the condition (8).

The core idea of giving the moment function 𝑓 (𝑡) a form that allows the use of the toolbox of elliptic functions is, in our view, not
primarily justified by the fact that the problem becomes amenable to an exact analytical treatment, but rather by the fact that these
constraints, which may at first seem physically unmotivated, nevertheless lead to a result that is good for a theoretical understanding
of the laboratory experiment that forms the origin of our seemingly overdetermined mathematical problem.

3. Analytical solution by elliptic functions

As mentioned before, here we make for the moment function 𝑓 an ansatz which is motivated by making the system accessible
to the machinery of elliptic functions but which is, by introducing sufficiently many parameters, at the same time flexible enough
to account for all given conditions, and which leads to solutions closely resembling the laboratory reality, namely that it can be
expressed as a trigonometric polynomial of 𝜙1, which then leads to a closed solution for 𝜙1 by elliptic functions. I.e., we assume
that 𝑓 (𝑡) is of the form

𝑓 (𝑡) = 𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡)) (9)

for parameters 𝑢, 𝑣 yet to be determined. The ODE (3) for 𝜙1, namely

�̈�1(𝑡) = 𝛼 ⋅ sin(𝜙1(𝑡)) − 𝑓 (𝑡)

then reads

�̈�1(𝑡) = 𝛼 ⋅ sin(𝜙1(𝑡)) − (𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡)))

It is well known (see e.g. [47–49]) that 2nd order ODE’s of the form

𝑦′′ = 𝑓 (𝑦)

can be integrated to the separable ODE

𝑦′ = ±
√

2𝐹 (𝑦) + 𝐶, (10)

where 𝐹 (⋅) is an antiderivative of 𝑓 (⋅). After separation of variables, one obtains an implicit solution for the original ODE, which
can only be made explicit in case the corresponding integral is elementary. The purpose of our paper is to show that by making
accessible the original system (3)–(7) to this procedure by the assumption (9), one can cope with the overdeterminedness of the
problem described in the previous section by assuming sufficiently many parameters and then obtain a solution which – for typical
values of the parameters of the original system – matches remarkably well what can be observed experimentally.

Remark. The concept of closed solution is not well-defined in full generality; terminology needs a clarification. In Appendix we
give a list a functions which form the basis of what we henceforth call a closed solution. I.e. any solution of the initial problem that
can be expressed with the help of one of the functions in the list contained in Appendix will be called closed throughout this paper.
4
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Our main result is the following.

heorem 3.1. Let 𝛼, 𝛽, 𝜔 > 0 be fixed. Then there exist constants 𝑢, 𝑣, 𝜏 ∈ R depending only on 𝛼, 𝛽, 𝜔 such that the initial–boundary-
ntegral value problem consisting of the ODE

�̈�1(𝑡) = 𝛼 ⋅ sin(𝜙1(𝑡)) − (𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡))), (11)

he initial–boundary conditions

𝜙1(0) = −𝜋
4

(12)

𝜙1(𝜏) = 0 (13)
�̇�1(0) = 0 (14)
�̇�1(𝜏) = 0 (15)

nd the integral condition

∫

𝜏

0
(𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡)))d𝑡 = −𝜔

𝛽
(16)

dmits a unique solution. It is given by

𝜙1(𝑡) = 2 ⋅ arcsin
(

sn
(

𝜅2 ⋅ 𝑡 − 𝜅0
|

|

|

|

sin−2
( 𝜋
16

))

)

− 𝜋
8

(17)

where 𝜅0 and 𝜅2 also depend only on 𝛼, 𝛽, 𝜔. Here sn(𝑢|𝑚) is one of the Jacobian elliptic functions which are reviewed in Appendix, see
51).

roof. The proof of Theorem 3.1 principally consists of two integration steps, following the general scheme for ODE’s of the
orm 𝑦′′ = 𝑓 (𝑦), but adapted to the present situation of coping with the overdeterminedness: In a first integration, we reduce the
econd-order ODE (11) to a separable first-order ODE, which we then integrate in a second step by using elliptic functions.
Note that we overcome the overdeterminedness of the problem statement (5 conditions instead of 2 conditions as usual for a

econd-order ODE) by introducing 3 parameters already in the problem statement (𝑢, 𝑣, and 𝜏), which we choose in such a way
hat the problem admits a solution. The uniqueness of the solution follows by the constructive nature of our proof. It is evident
rom the problem statement that because of the mixed nature of the problem (initial and boundary values, integral condition,
verdeterminedness), we cannot use existing standard results from ODE theory.

irst integration step: Note that we can rewrite the ODE (11) as

�̈�1 = (𝛼 − 𝑢) ⋅ sin(𝜙1) − 𝑣 ⋅ cos(𝜙1), (18)

A first integral of Eq. (18) is

�̇�2
1
2

= (𝑢 − 𝛼) ⋅ cos(𝜙1) − 𝑣 ⋅ sin(𝜙1) + 𝐶. (19)

For 𝑡 = 𝜏 the boundary conditions (14)–(15) imply

𝐶 = −(𝑢 − 𝛼). (20)

For 𝑡 = 0 conditions (12)–(13) imply, already using (20),

𝑣 = (𝑢 − 𝛼) ⋅ (
√

2 − 1). (21)

Therefore the first integral (19) reads

�̇�1 =
√

2 ⋅ (𝑢 − 𝛼) ⋅
√

cos(𝜙1) +
(

1 −
√

2
)

⋅ sin(𝜙1) − 1, (22)

i.e. we have obtained a separable first order ODE for 𝜙1, in the spirit of (10). Setting

𝛿 =
√

4 − 2 ⋅
√

2 (23)

the separable ODE (22) reads

�̇�1 =
√

2 ⋅ (𝑢 − 𝛼) ⋅
√

𝛿 ⋅ cos
(

𝜙1 +
𝜋
8

)

− 1. (24)

We now reformulate (24) and the boundary conditions (5) in terms of the auxiliary variable

𝜓 = 𝜙 + 𝜋 (25)
5

1 8



Communications in Nonlinear Science and Numerical Simulation 130 (2024) 107762R. Altenburger et al.

o

p

4

and obtain from (24)

�̇� =
√

2 ⋅ (𝑢 − 𝛼) ⋅
√

𝛿 ⋅ cos(𝜓) − 1 (26)

together with the boundary conditions for 𝜓 , which are taken from (12)–(15) and now read

𝜓(0) = −𝜋
8
, 𝜓(𝜏) = 𝜋

8
, �̇�(0) = 0, �̇�(𝜏) = 0.

Second integration step: By separating variables in (26) and using the identity cos(𝜓) = 1 − 2 sin2
(

𝜓
2

)

, we get

∫

𝜓(𝑡)

− 𝜋
8

d𝜓
√

𝛿 ⋅
(

1 − 2 ⋅ sin2
(

𝜓
2

))

− 1
=
√

2 ⋅ (𝑢 − 𝛼) ⋅ 𝑡,

r finally, making the substitution 𝜓 → 𝜓
2 ,

∫

𝜓(𝑡)
2

− 𝜋
16

d𝜓
√

1 − 𝑚 ⋅ sin(𝜓)2
=
√

𝛿 − 1 ⋅
√

2 ⋅ (𝑢 − 𝛼) ⋅ 𝑡
2

(27)

with

𝑚 = 2 ⋅ 𝛿
𝛿 − 1

= sin−2
( 𝜋
16

)

(28)

Using the elliptic integral 𝐹 (𝜙|𝑚), see (50), Eq. (27) may be written in a more compact way as

𝐹
(

𝜓(𝑡)
2

|

|

|

|

𝑚
)

= 𝜅2(𝑢) ⋅ 𝑡 − 𝜅0, (29)

with

𝜅2(𝑢) =

√

𝛿 − 1 ⋅
√

2 ⋅ (𝑢 − 𝛼)
2

(30)

𝜅0 = 𝐹
(

𝜋
16

|

|

|

|

𝑚
)

= 𝐹
(

𝜋
16

|

|

|

|

sin−2
( 𝜋
16

)

)

≈ 0.3094, (31)

using (28) and evaluating the elliptic integral (50). By solving (29) for 𝜓(𝑡) we obtain, using the Jacobian elliptic functions reviewed
in (51),

𝜓(𝑡) = 2 ⋅ arcsin(sn(𝜅2(𝑢) ⋅ 𝑡 − 𝜅0|𝑚)) (32)

and therefore, by (25),

𝜙1(𝑡) = 2 ⋅ arcsin(sn(𝜅2(𝑢) ⋅ 𝑡 − 𝜅0|𝑚)) −
𝜋
8

(33)

This gives the claimed solution formula (17) up to the determination of parameters. Note that 𝑚 and 𝜅0 are given by (28) and (31),
respectively. In addition, by (30), 𝜅2 is given by

𝜅2 =
√

𝛿 − 1
2

⋅
√

𝑢 − 𝛼 (34)

It thus remains to determine the constants 𝑢, 𝑣, 𝑤 stated in Theorem 3.1.

Proposition 3.2. The constants 𝑢, 𝑣, and 𝑤 appearing in Theorem 3.1 are given by

𝑢 = 𝐶𝑢 ⋅
𝛼2𝛽2

𝜔2
+ 𝛼 𝑣 = 𝐶𝑣 ⋅

𝛼2𝛽2

𝜔2
𝜏 = 𝐶𝜏 ⋅

𝜔
𝛼𝛽

(35)

where 𝐶𝑢, 𝐶𝑣, and 𝐶𝜏 do not depend on 𝛼, 𝛽, 𝜔 and can be determined purely analytically.

Assuming Proposition 3.2, this shows that a solution of the boundary–initial-integral value problem stated in Theorem 3.1 must
be of the form (17), with 𝜅0, 𝜅2 given by (31) and (34), as well as 𝑢, 𝑣, and 𝜏 given (35). The uniqueness statement of Theorem 3.1
is thus proven. Conversely, to prove the existence statement, one just takes the solution formula (17) and checks that all claimed
roperties are fulfilled. □

. Analytical computations of the constants

Here we prove Proposition 3.2 on the value of the parameters used in the solution formula of our initial–boundary-integral value
6

theorem.
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Proof of Proposition 3.2. As described in the introduction and as given by (5), the parameter 𝜏 is by definition the first positive
zero of 𝜙1, i.e. the smallest positive solution of 𝜙1(𝜏) = 0. Namely, substituting our preliminary solution formula (33) into 𝜙1(𝜏) = 0,
we get, recalling the formula (31) for 𝜅0 and the definition (51) of the Jacobian elliptic function sn(𝑢|𝑚),

𝜅2(𝑢) ⋅ 𝜏(𝑢) − 𝜅0 = 𝜅0 (36)

nd therefore

𝜏(𝑢) =
2 ⋅ 𝜅0
𝜅2(𝑢)

(37)

This gives 𝜏 as a function of 𝜅2(𝑢); note that 𝑣 is already known as a function of 𝑢, cf. (21). To determine 𝑢 and then 𝜅2(𝑢) by (30),
we first rewrite the integrand 𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡)) appearing in the integral condition (16) in terms of 𝜓(𝑡) = 𝜙1(𝑡) +

𝜋
8 and

et (plugging (21) into the expression)

𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡)) = 𝑢 ⋅ sin
(

𝜓(𝑡) − 𝜋
8

)

+(𝑢 − 𝛼) ⋅ (
√

2 − 1) ⋅ cos
(

𝜓(𝑡) − 𝜋
8

)

= 𝜆1(𝑢) ⋅ sin
(

𝜓(𝑡)
2

)

⋅ cos
(

𝜓(𝑡)
2

)

−𝜆2 ⋅ sin
2
(

𝜓(𝑡)
2

)

+
𝜆2
2

(38)

with

𝜆1(𝑢) = 2 ⋅
(

𝑢 ⋅ cos
(𝜋
8

)

+ (𝑢 − 𝛼) ⋅ (
√

2 − 1) ⋅ sin
(𝜋
8

))

nd

𝜆2 = 2 ⋅
(

−𝑢 ⋅ sin
(𝜋
8

)

+ (𝑢 − 𝛼) ⋅ (
√

2 − 1) ⋅ cos
(𝜋
8

))

= −2𝛼(
√

2 − 1) cos
(𝜋
8

)

. (39)

Now, by our solution formula (32) for 𝜓(𝑡), i.e.

𝜓(𝑡) = 2 ⋅ arcsin(sn(𝜅2(𝑢) ⋅ 𝑡 − 𝜅0|𝑚))

with 𝑚 = sin−2
(

𝜋
16

)

by (28) and again using the definition (51) of the Jacobian elliptic functions, the expression (38) can be recast
s

𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡)) = 𝜆1(𝑢) ⋅ sn(𝜅2(𝑢) ⋅ 𝑡 − 𝜅0|𝑚) ⋅ cn(𝜅2(𝑢) ⋅ 𝑡 − 𝜅0|𝑚)

− 𝜆2 ⋅ sn2(𝜅2(𝑢) ⋅ 𝑡 − 𝜅0|𝑚) +
𝜆2
2

(40)

We now use the integral condition (16), i.e.

∫

𝜏

0
(𝑢 ⋅ sin(𝜙1(𝑡)) + 𝑣 ⋅ cos(𝜙1(𝑡)))d𝑡 = −𝜔

𝛽
(41)

y plugging the right hand side of (40) into the integral on the left hand side of (41) and using the substitution 𝑧 = 𝜅2𝑡−𝜅0 (thereby
using (36) for the treatment of the upper integration limit), we obtain

𝜆2 ⋅ (−𝜂 + 𝜅0) =
𝜔
𝛽
⋅ 𝜅2(𝑢) (42)

with, by (31) and (54),

𝜂 = ∫

𝜅0

−𝜅0
sn(𝑧|𝑚)2d𝑧 = −2 ⋅

𝐸(𝜅0|𝑚)
𝑚

+ 2 ⋅
𝜅0
𝑚

(43)

Note that by (52) and (53)

∫

𝜅0

−𝜅0
sn(𝑧|𝑚) ⋅ cn(𝑧|𝑚)d𝑧 = 0.

Next, we observe that by (30) we can rewrite (42) as

𝜆2 ⋅ (𝜅0 − 𝜂) = −𝜔
𝛽
⋅

√

𝛿 − 1
√

𝑢 − 𝛼
2

his can be solved for 𝑢, and we obtain, using the formula (39) for 𝜆2,

𝑢 = 4𝛼2
(

3 − 2
√

2
)

cos2
(𝜋 )

⋅
2𝛽2(𝜅0 − 𝜂)2 + 𝛼
7

8 𝜔2(𝛿 − 1)
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(

5

o

=
(

4
(

3 − 2
√

2
)

cos2
(𝜋
8

)

⋅
2(𝜅0 − 𝜂)2

𝛿 − 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐶𝑢

⋅
𝛼2𝛽2

𝜔2
+ 𝛼 (44)

and for 𝑣, using (21),

𝑣 = (𝑢 − 𝛼) ⋅ (
√

2 − 1) = (
√

2 − 1)𝐶𝑢
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=∶𝐶𝑣

⋅
𝛼2𝛽2

𝜔2
(45)

Concerning 𝜏, by plugging 𝜅2 =
√

𝛿−1
2 ⋅

√

𝑢 − 𝛼 (see (30)) into 𝜏 = 2⋅𝜅0
𝜅2

(see (37)), we obtain

𝜏 =
2 ⋅ 𝜅0
𝜅2

=
2
√

2 ⋅ 𝜅0
√

𝛿 − 1
√

𝐶𝑢
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=∶𝐶𝜏

⋅
𝜔
𝛼𝛽

(46)

From (44), (45), and (46), the formulas (35) and therefore Proposition 3.2 follow. □

We finally compute the numerical values of the various constants in order to get a realistic assessment of our approach which
can be compared to what is observed experimentally. Plugging

𝜅0 = 𝐹
(

𝜋
16

|

|

|

|

𝑚
)

≈ 0.3094

𝛿 =
√

4 − 2 ⋅
√

2 ≈ 1.0824

𝜂 = −2 ⋅
𝐸(𝜅0|𝑚)

𝑚
+ 2 ⋅

𝜅0
𝑚

≈ 0.011

see (31), (23), (43)) into the formulas for 𝑢 and 𝑣, we get

𝐶𝑢 ≈ 1.266, 𝐶𝑣 ≈ 0.524, 𝐶𝜏 ≈ 2.717. (47)

Concerning 𝜅0 and 𝜅2, note that by (31), 𝜅0 ≈ 0.3094; by (34) and (44), we have

𝜅2 =
√

𝛿 − 1
2

⋅
√

𝑢 − 𝛼 =
√

𝛿 − 1
2

⋅
√

𝐶𝑢 ⋅
𝛼𝛽
𝜔

≈ 0.2277 ⋅
𝛼𝛽
𝜔

(48)

. Numerical discussion

In order to demonstrate that the statement of Theorem 3.1 leads to a physically realistic solution of the initial value problem
riginally stated, we numerically compute the constants 𝑢, 𝑣, 𝜔, whose unique existence we have established in the theorem, and
then plot the formulas for the external momentum 𝑓 (𝑡) and the solution function 𝜙1(𝑡).

Typical values of the constants 𝛼, 𝛽, and 𝜔, which were used in the corresponding laboratory experiment, are

𝛼 = 71.6040, 𝛽 = 6.8407, 𝜔 = 120 (49)

Let us first numerically consider the solution function 𝜙1(𝑡), generally given by (17) in Theorem 3.1. For 𝛼, 𝛽, and 𝜔 as given in
(49), we obtain by (48) 𝜅2 ≈ 0.9297, which together with 𝜅0 ≈ 0.3094 (see (31)) gives for 𝜙1(𝑡)

𝜙1(𝑡) = 2 ⋅ arcsin (sn (0.9297 ⋅ 𝑡 − 0.3094 |26.27) ) − 𝜋
8

For 𝑢 and 𝑣, we obtain by (35) and (47) 𝑢 ≈ 92.59 and 𝑣 ≈ 8.691; for the external moment function 𝑓 (𝑡) this leads to

𝑓 (𝑡) ≈ 92.59 sin(𝜙1(𝑡)) + 8.691 cos(𝜙1(𝑡))

Concerning the ending time 𝜏, we get for these values of the constants and the factor 𝐶𝜏 computed before, see (46) and (47),

𝜏 = 𝐶𝜏 ⋅
𝜔
𝛼𝛽

≈ 0.6656

The functions 𝜙1(𝑡) and 𝑓 (𝑡) on the interval [0, 𝜏] are plotted in the following figures (see Figs. 2 and 3):
As already mentioned before, these plots are totally unspectacular and naturally-looking; however, this is precisely the goal of

our investigation, namely to show that by assuming a rather unnatural-seeming ansatz for the moment function, which is motivated
by the desire to make the problem accessible to an analytic treatment by Jacobian elliptic functions, we can nevertheless produce
a result which corresponds to what one naturally expects from the laboratory experiences.
8
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Fig. 2. 𝜙1(𝑡). Fig. 3. 𝑓 (𝑡).

6. Conclusion

We have shown that by assuming a special form of the external moment function 𝑓 (𝑡) we can make the original, apparently ill-
osed problem amenable to a treatment by Jacobian elliptic functions given by formula (17). The value of such an explicit solution
ies, on the one hand, in its applicability for educational purposes and, on the other hand, in its surprisingly great similarity to the
esults of numerical simulations.
More precisely, by naively fitting the free parameters 𝛼, 𝛽, and 𝜏 to the experiments of the laboratory simulations, we can find
way to describe the system in a way that is both tractable by the analytical method of elliptic Jacobian functions and similar
o what is observed in physical reality. To achieve better results, it should be possible to improve the approximation to reality by
esorting to modern fitting methods.
As far as the pedagogical purpose is concerned, it is clear that the cubli system, from which our ODE system is derived, is a

ather simple system intended to illustrate different models and methods of control theory to students, and not a one-to-one model
or industrial applications. By showing that such a simple model can be made amenable to an analytical treatment by making a
pecial ansatz to the external moment function, we hope that the results will show a way to make more complex control systems
menable to an analytical approach as well.
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Appendix. Closed solutions

As mentioned in the introduction, we consider as closed solution any solution of the initial value problem that can be expressed
y the functions in the following list.

• Incomplete elliptic integral of the first kind 𝐹 (𝜙|𝑚):
If 0 ≤ 𝑚 ≤ sin(𝜙)−2, then Legendre’s representation of 𝐹 (𝜙|𝑚) is

𝐹 (𝜙|𝑚) = ∫

𝜙

0

d𝜑
√

1 − 𝑚 ⋅ sin2(𝜑)
. (50)

• Incomplete elliptic integral of the second kind 𝐸(𝜙|𝑚):
If 0 ≤ 𝑚 ≤ sin(𝜙)−2, then Legendre’s representation of 𝐸(𝜙|𝑚) is

𝐸(𝜙|𝑚) = ∫

𝜙

0

√

1 − 𝑚 ⋅ sin2(𝜑)d𝜑.

• Jacobian elliptic functions sn(𝑢|𝑚), cn(𝑢|𝑚), dn(𝑢|𝑚): They are defined as, using (50),
sn(𝑢|𝑚) = sin

(

𝐹−1(𝑢|𝑚)
)

and cn(𝑢|𝑚) = cos
(

𝐹−1(𝑢|𝑚)
)

, (51)

as well as

dn(𝑢|𝑚) = cn
(

√

𝑚 ⋅ 𝑢
|

|

|

|

1
𝑚

)

. (52)

Remark. The modulus 𝑚 of the elliptic integrals and the Jacobian elliptic functions can be extended to arbitrary values in R.

We also need the following integral formulas:

∫ dn(𝑢|𝑚)d𝑢 = arcsin(sn(𝑢|𝑚)) + 𝐶

∫ cn(𝑢|𝑚) ⋅ sn(𝑢|𝑚)d𝑢 = −
dn(𝑢|𝑚)
𝑚

+ 𝐶 (53)

∫ sn(𝑢|𝑚)2d𝑢 = −
𝐸(𝑢|𝑚)
𝑚

+ 𝑢
𝑚

+ 𝐶 (54)

For a substantial treatment of Jacobi’s elliptic functions 𝑠𝑛, 𝑐𝑛, and 𝑑𝑛, as well as the elliptic integrals 𝐹 (𝜙|𝑚) and 𝐸(𝜙|𝑚) of the
first and second kind see [50], Chapters 16 and 17.
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