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Management Summary 

Credit risk forms an integral part of any financial institution, and the onset of COVID-19 

pandemic warrants assessment of credit risk on priority. Applicability of machine learning 

methods has been increasingly extended to assess credit risk. Assessing the borrower’s 

capability of repaying the loan or categorizing the borrower as high or low risk, is one of 

the many instances where machine learning is applied. However, when the pandemic 

disrupted and halted the economies, most machine learning models tended to fail in 

predicting the defaulting borrowers correctly. 

 

The primary aim of this master’s thesis is to demonstrate the impact of the pandemic on a 

simple decision tree model which is one of the baseline models used by many institutions 

and researchers to assess borrower risk due to its interpretability. Moreover, in the light of 

highly imbalanced nature of the data with majority towards non-defaulters, the impact of 

pandemic can be assessed on various sampling techniques which could be used to produce 

better results. As consumer behavior is affected by their surrounding environment and the 

state of the economy, macroeconomic indicators could provide signals or better predictions 

while predicting borrower defaults. The aim of the thesis extends to incorporating a few 

relevant macroeconomic indicators as independent variables in the models to assess if the 

same increase the predictive performance of the model.  

 

To enable this, mortgage loan performance data from Fannie Mae is utilized from the years 

2015 until 2020 coupled with macroeconomic variables for predicting mortgage loan 

default. Decision tree models are trained and fine-tuned for the loan performance data from 

2015 to 2017 using sampling techniques such as undersampling, and oversampling, and 

evaluated on the following years including the pandemic year 2020. The models are again 

tested in combination with the macroeconomic variables to assess if the predictive 

performance of the models is affected.  

 

The results indicate that although the use of macroeconomic indicators does return better 

results than models without macroeconomic data, when the models are evaluated on out-of-

time data pertaining to the year 2020, the predictive performance declines substantially. 

Based on this, it could be demonstrated that pandemic indeed impacted the performance of 

a model used for mortgage loan default prediction but adding the macroeconomic variables 

as extra independent variables slightly improved the predictions.  
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Further research in this domain can be extended to using superior machine learning methods 

such as ensemble or deep leaning models for an improvement in predicting defaults.  In 

practice, the macroeconomic indicators could be complemented with historical loan 

performance data to improve not only the credit scoring models but also models used for 

predicting probability of default or loss given default. 
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1. Introduction 
Credit risk forms an integral part of lending activities undertaken by traditional banks, 

FinTech firms or peer-to-peer (P2P) lending platforms. Credit risk is a major risk 

encountered by many banks and has become a top priority upon the onset of COVID-19 

pandemic (BIS, 2022). The applicability of machine learning models encompasses credit 

risk assessment through credit scoring models for better evaluating the possibility of default 

by the borrower (Laborda & Ryoo, 2021, p. 1). Lending institutions gather borrower specific 

information to obtain credit scores and establish the risk associated with the individual 

(Turjo ,Rahman, Karim, Biswas, Dewan & Hossain, 2021, p. 125) by using statistical and 

machine learning methods. Consumer behavior is affected by surrounding economic 

environment and hence macroeconomic indicators play an important role for financial 

institution customers (Tang, Thomas L, Thomas S & Bozetto, 2007, pp. 22–38) whilst 

utilizing econometric models.  

 

As COVID-19 pandemic disrupted economies and financial institutions, this master thesis 

aims to demonstrate how COVID-19 affected performance of a machine learning model, 

used for consumer credit risk evaluation. Large datasets can also hinder the predictive 

performance of a machine learning model. Decision tree is the chosen model due to its 

interpretability and easy to understand nature. In addition to this, an interplay of 

macroeconomic indicators with traditional information on loan is utilized to assess 

consumer credit risk. Previously, some research incorporating impact of COVID-19 and 

macroeconomic factors has been done for SME’s and sovereign credit risk but has not yet 

been explored for predicting default of mortgage loans. Macroeconomic factors are 

integrated with historical data of publicly available Fannie Mae single-family loan 

performance data on mortgage credit to study whether the predictive power of machine 

learning model is improved.  

 

1.1. Motivation 

The aim of this thesis is to demonstrate the impact of COVID-19 on the performance of 

credit risk model. In the era of big data, different resampling techniques are also used to 

train and evaluate large datasets. Additionally, macroeconomic indicators are integrated 

together with historical data of mortgage loans to study the impact on performance of credit 

risk model.  It also becomes imperative to understand which factors affect the most in 

predicting mortgage loan default. The thesis lays a foundation on topics of machine learning, 
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credit risk assessment, and relevant macroeconomic factors. The single-family loan 

performance data from Fannie Mae is utilized, models are built, trained, and tested through 

Python programming language.   

 

1.2. Research Question  

Disruption by the COVID-19 pandemic in the financial sector has been noteworthy. As 

lending is a key part in majority of the financial institutions (BIS, 2022), more so in the time 

of crisis such as the COVID-19 pandemic, appropriate evaluation of borrowers becomes 

crucial. Increasing amount of consumer data has also been available for financial institutions 

to leverage for precisely predicting borrower defaults. However, in the time of crisis, it is 

necessary to study if the conventional machine learning models can help achieve the desired 

results as they are originally tuned for non-crisis. Built on this, the foremost research 

question answered by this study is:  

 

Has COVID-19 pandemic impacted the performance of machine learning models for 

predicting mortgage loan default? 

 

With growing data pertaining to not only consumers but also external economic 

environment, it becomes increasingly important to amalgamate data for better 

understanding and evaluating credit risk. Most statistical and economic models consider 

macroeconomic indicators, but machine learning models featuring these indicators for 

mortgage credit risk assessment are less explored. Considering this, this thesis also aims to 

answer the following research question:  

 

Could incorporating macroeconomic indicators into machine learning methods improve 

the performance of credit risk models? 

 

1.3. Scope 

The all-encompassing nature of the topic and limited resources available to the author 

enforces limitations to the work as defined below: 

• The thesis focuses on studying the impact of the pandemic and macroeconomic 

factors on the performance of machine learning models. The machine learning 

method evaluated in this thesis is limited to decision trees. 
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• The datasets perused in the thesis are publicly available and limited by the resources 

available to the author. 

• The macroeconomic data retrieved from various official websites of the U.S 

departments are assumed to be correct and comprehensive as of writing.  

• Open-source Python packages and libraries, none of which are developed by the 

author, are utilized for implementing the algorithms. 

• The thesis is part of author’s master’s degree in banking and finance with a 

specialization in capital markets and data science. Hence, the thesis is presented in 

such a way that the same can be grasped by the students of the aforementioned 

master’s degree.  

 

1.4. Structure of the Research  

The thesis comprises of five sections. The introductory section is followed by the second 

section, which provides an overview of theoretical background and current state of research 

on the topic in discussion. The data assessed in the thesis are described in the third section. 

The fourth section presents the empirical research which includes model implementation 

and model evaluation. The fifth section discusses the results alongside stating the answer to 

the research question. It also presents the limitations of the methodology, recommendations 

for future direction of research and the practical implications.  
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2. Literature Review 
This chapter provides a theoretical background of machine learning methods used by 

financial institutions for credit risk assessment. The theoretical framework allows for 

understanding of terminology and concepts of machine learning perused in this research in 

the context of credit risk. Initially, a brief introduction to machine learning concepts and 

models is laid out. Subsequently, existing research relevant to the study is reviewed, which 

provides an overview of current practices and state of research in credit risk assessment 

through machine and deep learning. Further, for thorough explanations and detailed 

information, the literature referenced in this thesis can be consulted.  

 

2.1. Credit Risk Assessment 

According to BIS (2000, p. 1), credit risk arises when borrowers may potentially fail to 

honor the debt they owe to a financial institution. As credit risk forms a major part of 

financial risk faced by many banks (BIS, 2022), it becomes crucial to manage credit risk for 

an extensive approach to risk management (BIS, 2000, p. 1). Credit risk assessment is a 

continuous process which uses historical data on loans to predict if a borrower 

(individual/company) may default or not, belongs to high/low risk category or becomes 

insolvent (Chen N, Ribeiro, & Chen A, 2016, p. 2). While consumer credit comprises of 

loans such as mortgage, automobile, personal or credit cards (S. Chen, Guo & Zhao, 2021, 

p. 358), loans given to companies are categorized under corporate credit. Usually, the 

criterion for identification of default ranges between 90 days to 180 days past due (DPD) 

for different types of exposures (BIS; BCBS, 2002). However, the more general 90 days 

past due trigger for default of loan is utilized in the thesis.  

 

Lending decisions are made by financial institutions based on credit scoring models used 

for evaluating consumer creditworthiness (S. Chen et al., 2021, p. 358). Model inputs 

comprise of diverse financial and non-financial factors considering institution’s credit 

policies, legal outline and economic situation (E.Saygili, T Saygili & Isik, 2019, p. 161) in 

addition to being consumer relevant. Hence, in pursuit of identification of relevant factors 

for assessing credit risk, research to ascertain the factors influencing credit defaults has been 

swelling after the financial crisis of 2008 (Barbaglia et al., 2021, p. 1). Amongst this, with 

rising use of data and technology particularly machine learning in the financial sector, quest 

for high performing models continues. Proper classification of consumers and assessment 

of credit risk has led to development of different models in financial institutions (Leo, 
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Sharma & Maddulety, 2019, p. 8). Traditionally used models in financial institutions include 

logistic regression (S. Chen et al., 2021, p. 358) and Linear Discriminant Analysis (Shi, Tse, 

Lua, D'addona & Pau., 2022, p. 14327). Since these methods are unable to handle sizeable 

datasets (Shi et al., 2022, p. 14327), usage of big credit datasets has made provisions for 

flexible traditional machine learning and deep learning methods (Shi et al., 2022, p. 14328). 

In research pertaining to credit risk management, models such as Support Vector Models 

(SVM), Random Forest (RF) and Neural Networks (NN) have been the most examined 

algorithms (Leo et al., 2019, p. 11). More light is shed upon the current state of research on 

the drivers of credit default and machine learning models in the sub-section 2.4.  

 

2.2. Machine Learning 

A collection of techniques used to automatically find patterns in data and using those 

patterns for forecasting or carrying out uncertain decision-making is referred to as machine 

learning (Murphy, 2012, p. 1). In short, machine learning is about knowledge extraction 

from data (Müller & Guido, 2016, p. 1). Machine learning can be segregated into three 

categories: supervised learning, unsupervised learning, and reinforcement learning. In 

supervised learning, the algorithm learns from sample data and related target variables to 

further predict the correct response when modeled with new data. When the target variable 

is numeric, it is known as regression problem, whereas, when the target is a tag or a class, 

it is deemed to be a classification problem (Mueller & Massaron, 2021, p. 140). The second 

category of ML i.e., unsupervised learning deals with data which does not contain a target 

response and the patterns in data are decided by the algorithm itself (Mueller & Massaron, 

2021, p. 141). Some of the techniques used in unsupervised learning comprise of clustering 

analysis and transformation of data through dimensionality reduction (Müller & Guido, 

2016, p. 131). While the third category namely reinforcement learning happens when the 

algorithms are presented with data lacking labels similar to unsupervised learning and is 

forced to learn from its failures and make decisions to eventually succeed (Mueller & 

Massaron, 2021, p. 141).  

 

In the case of credit risk assessment, particularly predicting loan default, the relevant 

machine learning category for this thesis is supervised learning. The task of predicting 

whether a loan will default or not is a binary classification problem, and so, various methods 

used under supervised learning can be deployed to solve this binary classification problem. 

Decision tree is one of the few methods serving as a baseline model over the years for credit 
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scoring models while advanced ensemble methods, and neural networks have appeared to 

stand out as ‘challenging’ models delivering superior results (Markov, Seleznyova, & 

Lapshin, 2022, p. 191). Focusing on the conventional models, this thesis uses decision trees 

for the classification problem and demonstrating the impact of pandemic and 

macroeconomic factors on predicting loan default. 

2.2.1. Decision Trees 

Decision trees, also known as Classification and Regression Trees (CART) models, are a 

method used in supervised learning that can be used for regression and classification 

problems. Besides being a simple model, decision trees allow for interpretable decisions 

particularly in classification tasks related to finance or medicine field (Fazlija, 2022). 

Decisions arrived at by a decision tree are through a learning process of sequential if/else 

questions (Müller & Guido, 2016, p. 70). Binary decision trees wherein at each step there 

are only two possible answers such as yes/no, true/false and good/bad are most widely 

applied (Fazlija, 2022). In such a tree-based method the feature (variable/input) space is 

divided into a set of rectangles through recursive binary splitting and a simple model is fit 

into each region (Hastie, Tibshirani & Friedman, 2017, p. 305; Christopher M. Bishop, 

2009, p. 663).In the context of default prediction, the same is depicted in Figure 1.  

 

Figure 1- Partitioning of Input Space in a Decision Tree 

 

 
Note: Two-dimensional division of input space in a tree-based method. Own representation 

based on Christopher M. Bishop (2009, p. 663).  
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The whole input space is divided into two regions i.e., default and non-default, in the first 

step, based on whether 𝔁 1 > 𝒕1 or 𝔁 1 ≤ 𝒕1 where 𝒕1 is a parameter of the model. The resultant 

sub-regions can be further subdivided independently based on more parameters to achieve 

the best fit. For any new input variable 𝔁, the region/section it falls into is identified by 

beginning at the root node (top of the tree) and following the way down to specific leaf 

nodes in accordance with the decision criteria at each node respectively (Christopher M. 

Bishop, 2009, p. 664). The leaf or terminal nodes correspond to the regions denoted by Non-

Default and Default in Figure 2. A decision tree is learned through a greedy algorithm which 

maximizes the results in each step of the optimization process i.e., selecting the best choice 

at each node (Fazlija, 2022; Mueller & Massaron, 2021, p. 181).  

                       

Figure 2 - Binary Tree Structure 

 

           
Note: Binary tree in correspondence with the partitioning depicted in Figure 1. Own 

illustration based on Christopher M. Bishop (2009, p. 664). 

 

In order to grow the tree, measures such as entropy or Gini index are used (Hastie et al., 

2017, p. 310) to find the features and splitting point at each node to split the given classes 

or tags in best possible way (Fazlija, 2022).Additionally, information gain explains how a 

decision tree can easily identify a way to increase predictive ability at a certain split (Mueller 

& Massaron, 2021, p. 181). Entropy, on which the information gain formula is based on, 

describes the expected value from the information in a message:  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑝) = 𝐻(𝑝) = 	−0𝑝! log"(𝑝!)
#

!$%
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Also known as cross-entropy, 𝐻(𝑝) is the entropy of set of probabilities 𝑝 ={𝑝%, 𝑝", … . 𝑝#} 

summing up to 1 in class 𝑖, representing percentage of each class where log"	is the base 2 

logarithm. In a set of features, entropy measures the amount of impurity (Fazlija, 2022) or 

disorder or uncertainty. Information gain determines the importance of an attribute in a 

feature vector to proceed with the classification. The feature with the highest information 

i.e., highest entropy is chosen at every node for each consecutive question (Fazlija, 2022). 

For instance, information gain for a feature 𝑉 in the dataset 𝑆 is calculated as: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝐺𝑎𝑖𝑛	(𝑆, 𝑉) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆) − 0
|𝑆'|
|𝑆| 𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆')

'∈')*+,-(/)

 

Where |𝑆' | is the number of elements in 𝑆 which have the value 𝑣 for feature 𝑉 and 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆') is calculated as the entropy 𝑆 with datapoints for which the feature 𝑉 has 

values 𝑣 (Fazlija, 2022). The information gain measures the reduction in entropy or 

uncertainty once the dataset is split. Higher the reduction in uncertainty, more information 

is gained.  

 

Gini index also known as Gini impurity can also be used instead of cross-entropy for 

learning of Decision Trees. It is computed as:  

𝐺(𝑝) =0𝑝!(1 − 𝑝!)
#

!$%

 

Gini index is the expected error rate wherein 𝑝! is the probability that an element in the leaf 

node belongs to class 𝑖 and (1 − 𝑝!) is the probability of being misclassified (Murphy, 2012, 

p. 548). The node which contains datapoints with the same target value or class is known to 

be pure. Either Gini index or cross-entropy can be used for splitting the data and this 

partitioning of the data is continued until each region contains a single class value, i.e., the 

terminal node is pure. For completeness both the measures have been presented but for 

consistency purposes, entropy will be used in the analysis.  

 

A question always remains that how large the tree should be grown? If the tree is grown to 

its full size, then it may become deep i.e., complex, and prone to poor generalization 

performance on unseen data and eventual overfitting. To avoid overfitting, the growth of 

trees is halted by stopping addition of nodes when the reduction in cross-entropy/Gini index 

(for a classification tree) and residual error (for a regression tree) falls below some threshold 

(Christopher M. Bishop, 2009, p. 665). This is called pruning the tree. In practice, the tree 

is grown to be deeper, and pruning is applied until a good generalization performance is 
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achieved (Fazlija, 2022). According to Christopher M. Bishop (2009, p. 665), for pruning, 

denoting the starting tree by 𝑇1, a subtree 𝑇	⊂ 𝑇1 can be defined which can be obtained by 

pruning nodes from 𝑇1. The leaf nodes indexed by t = 1,….,|𝑇| representing a region ℛ2 of 

the input space contain 𝑁3 data points with |𝑇| being the total number of leaf nodes. Then 

the ideal prediction for ℛ2 is provided by: 

𝑦2	 =
1
𝑁3

0 𝑡#
4!∈ℛ"

 

Where it is assumed that the starting point was with labeled data of form (𝑥#, 𝑡#) (Fazlija, 

2022). In the case of a regression problem, the resulting contribution to the residual sum of 

squares would be   

𝑄t(𝑇) = 0 (𝑡# − 𝑦2	)"
4!∈ℛ"

 

For a classification problem the resulting contribution 𝑄t(𝑇)	would be to 𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑝) or 

Gini index 𝐺(𝑝)	already defined above. The pruning criteria then goes on to be:  

𝐶(𝑇) =0𝑄t(𝑇) + 𝜆|𝑇|
|3|

2$%

 

The optimal tradeoff between the residual loss/cross entropy/Gini index and model 

complexity i.e., number of leaf nodes is determined by the regularization parameter 	𝜆 whose 

value is chosen through cross-validation. The depth of the tree influences the generalization 

performance of the model on unseen data and hence the max depth of the tree can be chosen 

through hyperparameter tuning. The process for cross-validation is presented in the section 

2.2.2. The Bias Variance Trade-off and Cross-Validation 

When a model is learned, the prediction capability of that model i.e., the generalization 

performance relates to an independent test dataset (Hastie et al., 2017, p. 219). This means 

that the data is split between training and test set, where the model is learned on the former. 

During the process of learning, the parameters of the model are optimized based on a 

performance metric score and then the model is fed with test data. The generalization 

performance i.e., out of sample performance is evaluated by comparing the ground truth 

with the predicted output. The assessment of this performance guides the model choice and 

the key method includes the trade-off between bias, variance and model complexity (Hastie 

et al., 2017, p. 219). 
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For instance, during the learning of a model by the algorithm, as the complexity if the model 

grows, it is possible for it to memorize the data and fit the in-sample data well with low 

errors and low bias (Hastie et al., 2017, p. 221). However, when the model is tested out of 

sample (test set), the prediction or errors alter significantly as compared to when relearning 

from the same data through a distinctive approach resulting in overfitting (Mueller & 

Massaron, 2021, p. 161). In this scenario, any minor changes in the training data would 

produce an erratic prediction on the unseen test data. In contrast, when the model becomes 

too simple, they are unable to map the appropriate relationship between the input variables 

and target variable inducing high bias errors and lower variance (Mueller & Massaron, 2021, 

p. 160). This is the classic case of underfitting.  

 

Figure 3- Overview of Bias Variance Trade-off with Model Complexity 

 

 
Note:  Own illustration. Adapted from Hastie et al. (2017, p. 220)  

 

Figure 3 depicts that as complexity of the model increases, even though the training error 

declines, the test error increases. Hence the ideal spot where the model generalizes well on 

both the training and out of sample test set, is determined to be at an intermediate point, 

which provides minimum expected test error. This is the point where the early stopping 

criterion on a decision tree is applied through pruning.  
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Therefore, in order to choose the optimal model or assess the model for its generalization 

capabilities, Cross-Validation (CV) technique can be applied. K-fold cross-validation relies 

on randomly splitting the dataset into k number of distinct folds of equal size and using each 

fold as a test set while the others as training set (Mueller & Massaron, 2021, p. 166). An 

error estimate is produced at each iteration using different folds as test beside the others 

used for training. The resulting k number of errors are averaged to compute the prediction 

error or the cross-validation sore (Mueller & Massaron, 2021, p. 166; Fazlija, 2022). The 

same process can be done for calculating the average performance metric instead of 

prediction errors (Fazlija ,2022). The main advantage of this method is that each observation 

is tested, and a mean score can provide a probabilistic approximation of the predictive 

performance. Figure 4 describes a 4-fold cross-validation as an example.  

 

Figure 4 - 4-Fold Cross-Validation Framework 

 

 
Note: Own illustration. Adapted from Mueller & Massaron (2021, p. 166)  

2.2.3. Handling Imbalanced Dataset 

Usually, in the credit datasets, the ratio of defaults vis-à-vis non-defaults remains low which 

poses problems for model training and estimations. As the minority class may not be 

recognized by the learning algorithms, chances of predicting of all loans classified as non-

default remain high. To address the issue of imbalanced data, many resampling methods 

such as under sampling, oversampling, and Synthetic Minority Oversampling Technique 

(SMOTE) can be deployed. For instance, when the minority class is oversampled using 

replacement i.e., causing duplicate records of minority class, it is known as oversampling 

as opposed to under sampling where the majority class is downsized to match the minority 
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class. SMOTE has been one of the most generally used approach to address the problem of 

imbalanced dataset (Shi et al., 2022, p. 14333). SMOTE is an oversampling technique which 

utilizes the k-nearest neighbors to give new records based on the distance between the rare 

class and randomly selected nearest neighbors (Moscato et al., 2021, p. 4).  All these 

techniques provide a balanced dataset, but under-sampling and oversampling could lead to 

loss of valuable information and overfitting respectively.  

2.2.4. Performance Measurement Methods 

Numerous evaluation metrics are present depending on the business use case. The most 

widely used evaluation metric in literature has been accuracy i.e., the fraction of correctly 

classified sample. However, an appropriate measure capturing the expected business impact 

of choosing a model over another should be employed (Müller & Guido, 2016, p. 276). 

Accuracy may not be a good measure of predictive performance when the dataset is highly 

imbalanced (Müller & Guido, 2016, p. 279). The algorithm might just be predicting the 

more often represented class while the business use case focus might lie on predicting the 

minority class. Hence, alternative metrics become helpful in measuring the predictive 

performance of a model. For binary classification, which is the case at hand for the thesis, 

the most comprehensive way to exemplify the result of evaluation is a confusion matrix.  

 

Table 1- Confusion Matrix 

 Predicted 

Positives Negatives 

Actual Positives True Positives (TP) False Negatives (FN) 

Negatives False Positives (FP) True Negatives (TN) 

Note: Elaboration of confusion matrix based on Dastile et al. ( 2020, p. 9) 

 

Since reporting a single performance measure may not capture enough information and 

portray a wrong picture of how the model performs in a binary classification, confusion 

matrix becomes a vital instrument in analyzing the performance of a classification machine 

learning algorithm (Fazlija, 2022). Table 1 depicts a confusion matrix consisting of True 

Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) from 

which different metrics can be calculated. In the context of credit scoring classification, TP 

and TN are the number of borrowers correctly classified as defaults and non-defaults 

respectively. FP is the number of non-defaulted borrowers incorrectly classified as defaults, 
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whereas, FN is the number of defaulters incorrectly classified as non-defaults (Dastile et al., 

2020, p. 9).  

 

Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Sensitivity or True positive rate or Recall measures the correctly classified positive samples 

out of all the positive samples (Tharwat, 2020, p. 172). This measure is important when the 

need to identify all positive samples arises i.e., avoiding false negatives (Müller & Guido, 

2016, p. 283. In the context of loan default prediction, this measure is the most important as 

the cost of classifying defaulters as non-defaulters is more than classifying non-defaulters 

as defaulters. 

 

Specificity 

𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 

Specificity, also known as True Negative Rate evaluates the accuracy of the negative classes 

in the dataset (Moscato et al., 2021, p. 5).   

 

AUC ROC and Balanced Accuracy 

In the binary classification cases, the Area Under the Curve (AUC) for Receiver Operating 

Characteristic (ROC) curve can be measured for classification performance. In case of 

probabilities or score predictions, the ROC curve takes into consideration all possible 

thresholds for a classifier and plots the true positive rate and false positive rate (Müller & 

Guido, 2016, p. 293). It measures how well the classifier can distinguish correctly between 

the classes and is a probability curve. Closer the curve to 1, better is the quality of the 

classifier. To summarize the ROC in a single number, it can be referred to as AUC. Higher 

the AUC, the better is the model in classifying. 

 

In the case of binary predictions, the AUC mentioned above is measured as the arithmetic 

mean of sensitivity or recall (true positive rate) and specificity (true negative rate) (Scikit-

learn, n.d.). In Scikit-learn library of Python, it is equivalent to balanced accuracy score.  

𝐴𝑈𝐶 =
W	 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 +

𝑇𝑁
𝑇𝑁 + 𝐹𝑃X

2  
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According to Scikit-learn, this measure avoids performance estimates which could be 

inflated due to imbalanced datasets. Hence, when the datasets are balanced, this term 

reduces to accuracy. 

 

Other Metrics: 

 

Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

Also known as positive predictive value, precision measures how many samples predicted 

as positive are truly positive. This metric is used when the end goal it to limit the number of 

False Positives (Müller & Guido, 2016, p. 283).  

 

F-measure 
2	 × 	𝑅𝑒𝑐𝑎𝑙𝑙	 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

 

F1-score summarizes the precision and recall together calculated by their harmonic mean. 

High values of F-measure indicate a high classification performance (Tharwat, 2020, p. 

172). F1 score can be utilized if a balance must be stricken between the precision and recall 

score.  

 

Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 

Accuracy is the ratio between the number of correctly classified records and all the samples. 

As mentioned before, it is an unreliable measure if the dataset is unbalanced. This research 

presents accuracy but does not consider it in evaluation of the model due to class imbalance. 

 

2.3. Macroeconomic Indicators 

Representing the tendencies of economic movements between expansion to contraction, 

macroeconomic variables are closely related to the economic cycle (Xia, Li, He, Xu, & 

Meng, 2021, p. 3). This section presents a general description of four specific 
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macroeconomic variables utilized in the study in addition to a theoretical overview of their 

role in the economy, interdependencies, and impact on credit risk.  

 

Gross Domestic Product (GDP) 

The volume of production within a country’s geographical boundaries i.e., value of goods 

and services produced in an economy is measured by GDP (Krugman et al., 2018, p. 39). 

This output comprises of consumption expenditure, investment expenditure, government 

expenditure and current account (Krugman et al., 2018, p. 488). Hence, changes in these 

elements would impact the output in the country. For instance, during a downturn in the 

economy, a reduced demand for goods and services would be followed by a phase of less 

production of goods and services, leading to less labor requirements (decreasing 

employment) and a reduced level of output in the economy, making it difficult for people 

to repay their debt. Most of the researchers have a consensus that both household and firms 

are more inclined to meet their financial obligations during favorable economic conditions 

(Naili & Lahrichi, 2022, p. 338). The real estate non-performing loans tend to decrease with 

inflation-adjusted GDP i.e., real GDP growth (Ghosh, 2017, p. 35), thereby decreasing 

credit risk.  

 

Consumer Price Index 

Rising price levels in an economy is termed as inflation (Krugman et al., 2018, p. 434). It is 

measured by changes in Consumer Price Index (CPI) of a country. Theoretically, if the 

demand for goods and services is higher, the increased production of goods and services 

would increase the demand for labor and eventually raise the wages with a rise in production 

costs. Hence, if prices were to rise more for basic commodities than a borrower’s income, 

then a borrower must be left with less income to repay their debt obligations. According to 

Naili & Lahrichi (2022)’s review, few researchers argue that higher inflation puts pressure 

on the level of non-performing loans, as the withering real value of debtor's income leads to 

non-repayment. Whereas, some researches point out a negative relation between inflation 

and credit risk citing reasons such as an increase in income because of high inflation leads 

to better repayment capacity (Naili & Lahrichi, 2022, p. 338). This was also corroborated 

by the results of Ghosh (2017) in the single-family residential loan context. Hence, the 

impact of inflation seems to be ambiguous.  
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Unemployment Rate 

The number of unemployed people i.e., people not having a job but available to work, 

represented as a percentage of labor force is known as unemployment rate (U.S. Bureau of 

Labor Statistics, n.d.-b). The impact of unemployment rate on credit risk has been found to 

have a positive relationship (Naili & Lahrichi, 2022, p. 338). Referring to Lawrence (1995), 

Naili & Lahrichi (2022, p. 338) indicated that low income earners are prone to risks of 

unemployment and subsequent difficulties in repayment of debt. In the real estate mortgage 

context, the level of defaulting loans rises with an upturn in unemployment rates (Ghosh, 

2017, p. 37).  

 

Housing Price Index 

The Housing Price Index (HPI) built by the Federal Housing Finance Agency captures the 

price movements of US single-family houses as it measures the “average price changes in 

sales or refinancing on the same properties” (FHFA, n.d.). A rise in housing price index 

improves the value of collateral thereby reducing default in real estate and individual loans 

(Ghosh, 2017, p. 35). Hence, a rise in housing price index indicates a rise in financial wealth 

of the homeowners and vice versa. A decline in financial wealth with declining housing 

prices might render a housing loan borrower to default on loans due to the risk of not 

fulfilling loan obligations.  

 

Interest/Lending Rates 

The interest rates are a prime instrument of any central banks’ monetary policy (Krugman 

et al., 2018, p. 441). Any increase or decrease in interest rates affect the lending rates set by 

the lending institutions in the same direction. For instance, a decrease in interest rate would 

make loans less expensive and more attractive to borrowers. As people would consume 

more, GDP growth is stimulated with eventual rise in inflation (Krugman et al., 2018, p. 

441). In the context of credit risk, probabilities of loan default increase as loan repayments 

become costly due to rise in interest rates of the loans (Ghosh, 2017, p. 32). However, as 

interest rate fluctuations do not affect fixed rate loans, repayment capacity of borrowers 

maintains status quo (Naili & Lahrichi, 2022, p. 341). Since the data perused in this thesis 

pertains to U.S mortgage data, to consider changes in the interest rate, Spread-at-origination 

(SATO), the difference between the original interest rate on the mortgage loans and 30/15-

year mortgage rates in the U.S are utilized. The SATO can be representative of credit 

quality, as an increased spread would indicate a risky borrower and vice versa. If the spread 

tends to be high, the borrower may find it difficult to repay their obligations due to high 
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burden of loan repayments. Hence this variable may not be directly treated as a 

macroeconomic indicator.  

 

2.4. State of Research on Credit Risk Assessment through Machine Learning Methods 

Ample studies have been conducted for evaluating credit risk through machine learning 

methods recently. The most extensive analysis was conducted by Chen, Guo, and Zhao 

(2021) wherein the performance of 13 machine learning models were investigated for 

predicting mortgage early delinquency probabilities. They used the Fannie Mae public 

dataset of mortgage loans together with macroeconomic variables over many post-crisis 

periods between 2009 to 2016 with the focus on model predictive accuracy and out-of-time 

analysis instead of scrutinizing factors influencing the early delinquency/default in 

mortgages. For risk classification, ensemble methods and Neural Network (NN) 

outperformed the other methods including decision trees but predictive accuracy remained 

a challenge for mortgage portfolios as none of the machine learning models could seize 

predictive accuracy precisely (S. Chen et al., 2021, p. 370). Prior to this Sirignano, Sadhwani 

and Giesecke (2018) deployed a deep neural network to model multi period-mortgage 

delinquency for 120 million mortgages over a period of 20 years (1995-2014) along with 

examination of loan, borrower-specific, and macroeconomic factors influencing mortgage 

delinquency. The non-linear dependencies on borrower behaviour are captured by their 

work which had not been addressed by previous research (Sirignano et al., 2018, p. 3). 

Incorporating these non-linear effects allowed the authors to improve accuracy of out-of-

sample mortgage risk forecasts.  

 

Mamonov, and Benbunan-Fich (2017) also used the Fannie Mae public mortgage dataset 

for 4th quarter of 2007 as the default rate was the highest during the time. To capture the 

pattern of defaults, 6 models namely logistic regression, decision tree, RF, SVM, boosted 

trees and Artificial Neural Network (ANN) were applied wherein ANN performed better in 

predicting delinquencies but at the expense of low precision, i.e., positive predicted values 

(Mamonov & Benbunan-Fich, 2017, p. 246). For the european mortgage market, Barbaglia, 

Manzan and Tosetti (2021) applied boosted tree-based algorithms such as Gradient tree 

Boost (GB) and Extreme Gradient Boosting (XGB) in addition to logistic regression, NN, 

RF and Naïve Bayes (NB). The comparison by authors resulted in XGB and GB 

outperforming other methods irrespective of performance metrics considered, while NN and 

NB performed weakly.  
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Studies on application of ML models for consumer credit risk assessment are prevelant and 

not just limited to the mortgage market. Alonso, and Carbó (2021) perused anonymized 

consumer credit data from a major Spanish bank to compare predictive performance of 

logistic regression with ML models such as lasso penalized logistic regression, CART or 

decision tree, RF, XGB, and Deep Neural Network (DNN) for predicting credit defaults. 

XGB and RF outperformed the other models whereas CART and DNN had performances 

alike (Alonso & Carbó, 2021, p. 22). Another comparison of 5 ML models with a logistic 

regression was conducted by Aniceto, Barboza, and Kimura (2020) examining consumer 

loans of a major Brazilian bank’s credit portfolio where AdaBoost (ADA) outperformed the 

other tested models viz., SVM, RF, decision tree, and bagging. Research by Turjo, Rahman, 

Karim, Biswas, Dewan, and Hossain (2021) employed bank loan status data from Kaggle 

to 6 ML models viz., k-nearest neighbors, logistic regression, GB, XGB, ADA, and ANN, 

to find out that GB method gave the highest accuracy to predict if an individual is eligible 

for credit. Hamori, Kawai, Kume, Murakami and Watanabe (2018) applied NN with 

different activation functions in comparison with boosting methods on credit card default 

data from Taiwan only to discover that boosting method outperformed NN with respect to 

prediction accuracy, AUC and F-score. Credit risk has also become relevant for peer-to-

peer lending (P2P) platforms owing to rising FinTech companies for predicting loan default. 

While examining machine learning methods such as RF, GB, XGB, and ANN on data from 

Renrendai.com, RF exceeded performance in predicting occurrence of default while NN 

performed weakly (Xu, Lu, & Xie, 2021, p. 16). The superior prediction performance of RF 

method was also supported by results of Liu, Yang, Wang, Li, Xiong, and Li (2022). Hence, 

in different application of credit risk assessment, no single ML model seemed to outperform. 

However, the most frequently used method has been the logistic regression.  

2.4.1. Impact of COVID-19 Pandemic on Credit Risk Assessment  

For corporate credit default risk prediction, Nehrebecka (2021) estimated various machine 

learning models using Polish non-financial enterprise data spanning from 2015-2020, which 

includes COVID-19 pandemic transition period. Bankruptcy prediction for select US firms 

has also been examined for the period of COVID-19 pandemic using machine learning 

models such as RF, XGB and SVM by Narvekar and Guha (2021), where XGB 

outperformed the rest of the tested models. A research paper was recently published by 

Saudi Central Bank examining the impact of COVID-10 pandemic on consumer credit 

scoring covering the period between 2018 and 2020. Decision tree was deployed by the 
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authors to determine different characteristics of borrowers before and after the pandemic 

and that the default rate had substantially increased in the pandemic year 2020 (Bouaguel et 

al., n.d., pp. 33–34). There is still dearth of research which considers the impact of COVID-

19 pandemic on the performance of machine learning methods for consumer credit risk 

assessment. The same is pointed out by Markov, Seleznyova, and Lapshin (2022, p. 193) in 

their comprehensive review of research pertaining to credit scoring in the past 5 years  from 

2016-2021.  

2.4.2. Macroeconomic Factors and Credit Risk in a Machine Learning Environment  

The economic environment is influenced by consumer behavior which can ultimately have 

implications on credit risk assessment. For instance, using varying logistic regression 

models, Carvalho, Curto and Primor (2022) evaluated non-financial firm data from 

Eurozone along with macroeconomic variables to study its influence on probability of 

default. Incorporating macroeconomic variables, particularly the GDP variable, was found 

to be bolstering the accuracy of models forecasting credit default, (Carvalho et al., 2022, p. 

2070). Moreover, unemployment rate suggestively contributed to probability of default risk 

(Carvalho et al., 2022, p. 2065). The study by Sirignano et al.(2018) perusing the US 

mortgage dataset from CoreLogic combined with various macroeconomic variables to 

model a DNN and analyze borrower behavior, likewise, found that unemployment rate had 

the highest explanatory power among other variables. Another research, incorporating 

unemployment rates alongside housing price index and credit spreads to the Fannie Mae 

U.S mortgage dataset, Chen, Guo, and Zhao (2021) suggested that it was necessary to use 

all the three macroeconomic variables else the results had sizable prediction errors in ML 

models.  

 

In the European context, a sharp decline in GDP or unemployment rates in some countries 

suggested that the economic conditions and its interactions with loan-specific characteristics 

had an indirect impact on loan defaults rather than a direct one (Barbaglia et al., 2021, p. 

22). On the contrary, macroeconomic variables did not seem to enhance predictions on data 

for Italian SME’s  to predict bankruptcy (Corazza et al., 2021, p. 331) which used an ANN 

model. While in the Chinese context, online consumer lending data together with multilevel 

macroeconomic variables, estimated through RF, gradient boosted decision trees, and linear 

regressions, achieved better predictive performance than standalone consumer lending data 

in the study by Xia, Li, He, Xu, and Meng (2021).  
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Even though the reviewed studies for effect of macroeconomic variables are recent, none of 

the studies have deployed data covering the COVID-19 pandemic period. Moreover, during 

this period, the area of consumer credit risk assessment is also under-researched with respect 

to integration of macroeconomic variables with loan and borrower specific information. 

Prior to this period, exclusion of macroeconomic variables in credit scoring literature has 

also been pointed out by Dastile, Celik and Potsane (2020, p. 13).   

 

2.5. Libraries 

The analysis of data and programming for this master thesis was carried out in the open-

source Python programming language. The packages necessary for the empirical research 

are enumerated in this sub-section. 

2.5.1. Pandas 

An open-source package of Python, Pandas, became open-sourced in 2009 after its 

development by AQR Capital Management (Pandas Developers, 2022). The library allows 

for reading and writing data with data manipulation. In short, it is used for data analysis and 

modeling (Python, 2022).   

2.5.2. NumPy 

NumPy library offers scientific computing tools such as mathematical functions and random 

number generators whilst being accessible and productive for people with diverse 

backgrounds (NumPy, 2022).  

2.5.3. Matplotlib and Seaborn 

Matplotlib library supports the visualization of data in Python through quality plots, layouts 

and customizable visual style (Matplotlib, 2022). Seaborn, based on Matplotlib, also 

provides exploration of data through a high-level interface for statistical graphics (Seaborn 

Pydata, 2022).  

 

2.5.4. Scikit-learn 

Scikit-learn is quite a popular tool and one of the prominent libraries in Python containing 

state-of-the-art machine learning algorithms (Müller & Guido, 2016, p. 5). It is available as 

an open-source project with comprehensive documentation for all the algorithms (Müller & 

Guido, 2016, p. 6).   
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3. Data 
This section describes the datasets used in the thesis for conducting the assessment and 

evaluation of the research problem. The data sources and data preparation steps deployed 

are presented along with a focus on the selection of the features and exploratory data 

analysis.  

 

3.1. Single-Family Loan Performance Data 

Fannie Mae publishes monthly performance data of a portion of loans they acquire through 

various mortgage sellers. The dataset consists of Fannie Mae's 30-year and less, fully 

amortizing, full documentation, single-family, conventional fixed-rate mortgages (Fannie 

Mae®). New fixed-rate mortgage loan acquisitions and latest performance data at loan level 

are publicly available and published quarterly with a four-month lag. For instance, the data 

published under July 2020 would reflect acquisitions and performance through Q1 2020. 

The data published is anonymized by Fannie Mae to prevent identification of individual 

borrowers. For the thesis, loans originated in and after year 2015 until the year 2020, having 

at least 12-month performance period, are analyzed. It is pertinent to mention that this period 

encompasses the pre-pandemic (2015 to 2019) and pandemic period (2020 to 2021). The 

original dataset contains 108 features, of which 38 features are not applicable to the 

performance dataset according to the Fannie Mae loan glossary. The same are eliminated in 

first step. Out of the remaining 70 features, relevant static and dynamic variables chosen for 

data preparation and further analysis are described under Table 2. The features chosen for 

modelling are specified later in section 3.4 Table 5.  

 

Table 2- Description of Relevant Variables of Fannie Mae Dataset 

Variable Name Description 

Loan Identifier  Unique ID for a mortgage loan. 

Monthly Reporting 

Period  

The as-of month and year (MMYYY) for loan information 

in the record. 

Original Interest Rate  The original interest rate as per the mortgage note. 

Current Interest Rate The rate of interest in effect for the periodic installment due. 
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Variable Name Description 

Original UPB (Un-paid 

Balance) 

The dollar amount of loan stated on the note at the time of 

loan origination. 

Current Actual UPB The current outstanding unpaid principal balance of the loan. 

Original Loan Term The number of months in which the monthly borrower 

payments are due since the loan origination.  

Origination Date The date of each individual note in MMYYYY format.  

First Payment Date The date of the first scheduled loan payment to be made by 

the borrower in MMYYYY format. 

Loan Age The number of calendar months since the loan’s origination 

date. It is also calculated using the reporting period minus 

the first payment date. 

Remaining Months To 

Maturity 

The number of calendar months remaining until the 

outstanding balance of the loan amortizes to zero balance.  

Original Loan to Value 

Ratio (LTV)  

Amount of loan at origination divided by the value of 

property; expressed as a percentage. 

Number of Borrowers  The number of individuals obligated to repay the loan.  

Debt-To-Income (DTI)  The ratio of borrower’s total monthly debt expense to the 

total monthly income at the time of loan origination.  

Borrower Credit Score 

at Origination  

Credit score in terms of a numerical value assigned to 

evaluate quality of borrower’s credit. 

Co-Borrower Credit 

Score at Origination  

Co-borrower’s credit score as per definition mentioned 

above. 

First Time Home Buyer 

Indicator  

An indicator which denotes if the borrower or co-borrower 

qualifies as a first-time homebuyer. (Y-Yes, N-No) 

Loan Purpose  An indicator that reflects whether the mortgage loan is either 

a refinance mortgage or a purchase money mortgage.  

Property Type  An indicator that reflects whether the property type is a 

condominium, co-operative, planned urban development 

(PUD), manufactured home, or single-family home.  

Number of Units  The number of dwelling units comprising the related 

mortgage property.  
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Variable Name Description 

Occupancy Status The classification reflecting whether the property occupancy 

status at the time of loan origination was principal, second , 

investor or unknown.  

Property State  Two-letter abbreviation indicating the state within which the 

property is located. 

Mortgage Insurance 

Percentage  

The original percentage of mortgage insurance coverage for 

the loan.  

Current Loan 

Delinquency Status  

The number of months the obligor is delinquent as 

determined by terms of loan. (00=Current, 01= 30-59 days, 

02= 60-89 days, 03= 90-119 days, 04= 120-149 days, XX= 

unknown) 

Loan Payment History  The coded string of values that reflects the payment 

performance of the loan over the most recent 24 months 

from right to left.  

Modification Flag  Indicator denoting if the mortgage loan has been modified. 

(Y/N) 

Zero Balance Code  A code which indicates the reason the loan’s balance was 

reduced to zero or experienced a credit event, if applicable. 

Zero Balance Effective 

Date  

The date on which the loan balance reduced to zero. 

UPB at the Time of 

Removal  

The unpaid principal balance amount at the time of loan 

hitting the zero-balance code or is liquidated.  

Foreclosure Date The date on which the legal action of foreclosure was 

completed. Also referred to as the liquidation or sale date.  

Note: Own representation, Source: Fannie Mae® Single-Family Loan Performance Data 

Glossary and File Layout 

 

3.2. Macroeconomic Data 

In addition to the historical credit information on loans, five macroeconomic variables are 

also analyzed in the thesis. These additional macroeconomic variables differ in terms of the 

periodicity and granularity. Real GDP, Unemployment rates and HPI are available at a more 

refined level i.e., at state (50 states and District of Columbia) level, while CPI is available 

at regional (West, South, Midwest, and Northeast) level. The 30-year and 15-year mortgage 
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interest rates are available at a national level. The time-varying macroeconomic variables 

are retrieved for 7-year period starting from 2014 up to 2021 to supplement the loan 

performance dataset for predicting loan defaults and are described in Table 3. The data has 

been retrieved from Federal Reserve Bank of St. Louis (FRED)  through pandas DataReader 

package in python and an Application Programming Interface (API) key from FRED. Only 

macroeconomic data pertinent to the years of reporting of loans are used. 

 

Table 3 - Description of Macroeconomic Variables 

Variable Description Level Frequency Source 

GDP Real Gross Domestic Product 

measuring state of economic 

performance 

State Quarterly U.S. Bureau of 

Economic 

Analysis 

UR Unemployment Rate measured 

by number of unemployed as a 

% of labor force 

State Monthly U.S. Bureau of 

Labor Statistics 

CPI Consumer Price Index 

measuring change in prices of a 

basket of goods and services 

Region Monthly U.S. Bureau of 

Labor Statistics 

HPI All-Transactions Housing Price 

Index measuring movement of 

house prices 

State Quarterly U.S. Federal 

Housing Finance 

Agency 

Interest 

Rates 

30-year and 15-year fixed rate 

mortgage interest rates 

National Weekly Freddie Mac 

Note: Own representation 

 

3.3. Data Preparation  

Since the size and dimensionality of the data is a substantial challenge, preparation of data 

is deemed to be necessary before the machine learning model is implemented. The necessary 

steps taken to clean and organize the data are presented in this sub-section. The historical 

loan performance data had 70 features out of which 30 relevant features as per Table 2 were 

singled out to aid the analysis. The dataset consists of a mix of static variables available at 

origination of the loan and dynamic variables that change monthly. In the quarterly 

published acquired loan data files, each loan’s monthly performance data from the 
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origination date until mortgage liquidation or maturity with the cut-off date of March 2022 

is tracked. The data preparation would ensure that all the monthly observations through the 

year 2015 till 2021 are compressed into one record for one loan format.  

 

Initially, the loans are filtered based on the single-family home indicator of ‘Property Type’ 

feature as the focus lies on single-family mortgage loans. Thereafter, the next step is to only 

incorporate loans originated in and after 2015 through 2020 having a performance period of 

12 months (ending 2021), and are, hence, filtered based on the ‘Origination Date’, ‘First 

Payment Date’, ‘Monthly Reporting Period’ and ‘Loan Age’ columns. The dataset’s index 

is fixed by the monthly reporting period i.e., the status date and other columns mentioned 

above are not used for modelling. The dataset consists of various loan terms, out of which, 

loans with original term of 360 months (30 year) and 180 months (15 year) are filtered. The 

data for each quarter from 2015 and 2020 having approximately 273 million monthly 

observations is merged and a cross-sectional dataset is obtained with one observation for 

each loan. The resultant dataset after checking for duplicate values based on the Loan 

Identifier feature, had 7,825,919 unique records each representing one mortgage loan which 

either defaulted or not within 12 months of performance period. The dataset has missing 

values in the feature columns as depicted in Table 4 .  

 

Table 4- Percentage of Missing Values 

Features Percentage Missing 

Foreclosure Date 100.00 

UPB at the Time of Removal 100.00 

Zero Balance Effective Date 100.00 

Zero Balance Code 100.00 

Mortgage Insurance Percentage 71.47 

Loan Payment History 55.60 

Co-Borrower Credit Score at Origination 51.12 

HPI 0.17 

Real GDP 0.17 

Unemployment Rate 0.17 

Borrower Credit Score at Origination 0.062 

Debt-To-Income (DTI) 0.018 
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Features Percentage Missing 

CPI 0.004 

Region 0.004 

Remaining Months to Maturity 0.001 

First Time Home Buyer Indicator 0.00002 

Note: Own calculations using python. 

 

The columns with more than 50% missing values are eliminated as they would not serve 

any purpose in predictions. Since 51.12% loans did not have more than 1 borrower, the 

borrower and co-borrower credit score features are transformed into 1 feature column ‘FICO 

score’ by determining the minimum of the two credit scores. After merging the two 

columns, the Fair Isaac Corporation (FICO) score contained only 0.04% missing values.  

 

Figure 5 - Correlation Heatmap of Numerical Features 

Note: Own illustration.  

Features such as ‘Current Interest Rate’, ‘Current Actual UPB’ and ‘Remaining months to 

Maturity’ are heavily related to ‘Original Interest Rate’, ‘Original UPB’ and ‘Original Loan 
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Term’ respectively, and are, therefore, dropped. Loan Identifier would also be dropped as it 

is not relevant for default prediction. 

 

The macroeconomic data as per Table 3 is mapped to the loan level data based on states, 

and regions, by the date of scheduled first payment date of the loan. The Real GDP and All-

transactions HPI were available quarterly while CPI and Unemployment Rates were 

available monthly. The mortgage interest rates were available weekly and down sampled to 

get average monthly interest rates. The Real GDP and HPI were linearly interpolated and 

up sampled to have monthly observations. Every macroeconomic variable is represented in 

year-over-year percent changes except the mortgage interest rates. The national 30 and 15-

year mortgage interest rates are used to derive SATO by deducting the market mortgage 

interest rate on the mortgage loan from the actual interest rate of the mortgage loan by the 

date of loan origination. To accommodate the geographic effect on defaults, the United 

States (US) states are already present in the credit dataset. However, having more than 50 

states as a categorical variable for input in machine learning model, this high cardinality 

might make interpretations more complicated and therefore are grouped into four regions 

West, North-East, Mid-West, and South in the United States, as per the classification of US 

Census Bureau.  

 

The target variable ‘Default’ in the dataset is derived from the ‘Current Loan Delinquency 

Status’ variable. The dependent or target variable is labeled ‘1’ (i.e., ‘default’) if the current 

delinquency status is equal to 90 days or more within the first 12 months of loan repayment, 

and labeled ‘0’ otherwise (i.e., no default). Loans which have curated later in their running 

time have not been considered as non-default. 

 

The instances or loan records pertaining to the territories not contained in the region 

classification or for which macroeconomic data is not available accounted for 0.17% of the 

records according to Table 4. As the DecisionTreeClassifier() function of scikit learn library 

in python, does not intake null values even while predicting in the test set and that the rows 

with 1 or higher null values accounted for only 0.22% of 7,825,919 records, dropping them 

all was considered the best option to train an unbiased model. Subsequently, the final dataset 

consists of 7,808,584 mortgage loans sorted based on the last reporting period and 19 

features (including target variable) as per Table 5. The descriptive statistics are presented in 

the next section.  
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Table 5- Features Selected for Modelling 

Variable Name Characteristic Values 

Original Interest Rate  Loan-specific Continuous 

Original UPB Loan-specific Continuous 

Original Loan Term Loan-specific 180, 360 

Original Loan to Value Ratio (LTV)  Loan-specific Continuous 

Number of Borrowers  Borrower-specific 1, 2, 3, 4, 5, 6, 8 

Debt-To-Income (DTI)  Borrower-specific Continuous 

FICO Score Borrower-specific Continuous 

First Time Home Buyer Indicator  Borrower-specific (Y-Yes, N-No) 

Loan Purpose  Borrower-specific C=Cash-out Refinance, R= 

Refinance, P=Purchase 

Number of Units  Loan-specific 1, 2, 3, 4 

Occupancy Status Borrower-specific P= Principal, S=Second, I= 

Investor 

Region  Loan-specific West, North-East, Mid-West, 

and South 

Default  Loan-specific 0=No Default, 1=Default 

Modification Flag  Loan-specific (Y-Yes, N-No) 

DHousing Price Index Macroeconomic Continuous 

DReal GDP Macroeconomic Continuous 

DConsumer Price Index Macroeconomic Continuous 

DUnemployment Rate Macroeconomic Continuous 

Spread-at-origination (SATO) Macroeconomic Continuous 

Note: Own representation. 

 

The decision tree has an advantage when it comes to handling data with outliers (Breeden, 

2021, p. 17). The trees usually also have another advantage that the dataset does not require 

standardization or normalization, hence the same have not been applied. Additionally, 

before the variables are fed as input into the algorithm, the categorical variables namely 

‘First Time Home Buyer Indicator’, ‘Loan Purpose’, ‘Occupancy Status’, ‘Modification 

Flag’ and ‘Region are one-hot encoded. The one-hot encoding creates new binary columns, 

indicating the presence of each possible element from the original categorical column. The 
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same is done by pd.get_dummies() function of pandas library in Python. The function is 

performed separately on the training set while training the model and on the test sets while 

validating or predicting the results.  

3.4. Exploratory Analysis  

The summary statistics for the full dataset is presented under Table 6. The descriptive 

statistics are presented for the pre-pandemic period (2015-2019) and the year 2020 marked 

as the pandemic year to show the variations in the data pre and post crisis. Due to the high 

number of loans in 2021 and an offsetting effect on the data from 2020, to evaluate the 

models out-of-time on the pandemic period, loans for the year 2020 will be utilized.  

 

Table 6- Summary Statistics of Numeric Variables based on Full Dataset 

A) Pre-pandemic (2015-19) 

Features 

 

Mean 

 

Std Dev 

 

25th Pctl 

 

50th Pctl 

 

75th Pctl 

Original Interest Rate 4.16 0.61 3.75 4.12 4.56 

Original UPB 229337.78 124350.01 134000 204000 304000 

Original Loan Term 329.47 67.55 360 360 360 

Original (LTV) 75.18 17.04 67 80 90 

Number of Borrowers 1.5 0.52 1 1 2 

Debt-To-Income (DTI) 34.41 9.26 28 36 42 

Number of Units 1.05 0.29 1 1 1 

FICO score 743.11 48.15 708 751 784 

DUnemployment Rate -9.96 7.38 -15.22 -10.81 -5.71 

DReal GDP 2.43 1.74 1.21 2.38 3.66 

DHPI 5.59 2.29 3.77 5.54 7.05 

DCPI 1.61 1.05 1.03 1.62 2.38 

SATO 0.32 0.37 0.06 0.25 0.53 

 

B) Pandemic (2020) 
     

 
Features Mean Std Dev 25th Pctl 50th Pctl 75th Pctl 

Original Interest Rate 4.15 0.64 3.75 4 4.5 

Original UPB 266440.18 139862.11 158000 241000 352000 

Original Loan Term 336.6 60.53 360 360 360 
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Features Mean Std Dev 25th Pctl 50th Pctl 75th Pctl 

Original (LTV) 74.75 17.42 65 79 90 

Number of Borrowers 1.48 0.52 1 1 2 

Debt-To-Income (DTI) 35.3 9.48 29 36 43 

Number of Units 1.03 0.25 1 1 1 

FICO score 746 45.26 714 753 783 

DUnemployment Rate 15.88 73.69 -9.52 -4.65 2.22 

DReal GDP 1.31 2.74 0.51 2.07 2.99 

DHPI 4.68 1.19 3.8 4.7 5.37 

DCPI 1.91 0.69 1.41 1.8 2.64 

SATO 0.39 0.45 0.11 0.3 0.61 

Note: Own calculations in Python. 

 

The descriptive statistics conveys that the average loan unpaid balance in pre-pandemic 

period stood at $ 229,338 whereas increased to $ 266,440 in the pandemic year. On the 

contrary, the mean Debt to Income (DTI) ratio declined while an increase in the average 

FICO score. 

 

Figure 6- Loan Defaults in Pre and Post Pandemic Years 

 
Note: Cumulative default rate for the years 2015 to 2019 and 2020 to 2021. 

 

The number of loan records in the performance period of 2015 till 2019 stood at 4,176,549, 

while in the years 2020 and 2021 the number of loans stood at 1,254,020 and 2,378,015 

respectively. The percentage of default in these periods is depicted in Figure 6 whereas 

yearly individual loan observations are mentioned under Table 7 and illustrated in Figure 7.  
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Table 7- Number of Loans and Defaults 

Year Observation Count Number of Defaults 

2015       11,686 324 

2016      949,210 1538 

2017      1,154,864 3247 

2018      1,012,195 2861 

2019      1,048,594 2933 

2020     1,254,020 51015 

Note: Own calculations. 

 

Figure 7 depicts that even though the number of loans increased in the year of 2020, the 

number of defaults increased simultaneously, accelerating the percentage of default in the 

years 2020-21. But 1.67% of default in the post pandemic years is lower than expected due 

high number of loans in 2021 and less defaults in that year.  

 

Figure 7- Number of Loans and Default rate 

 

Note: Own calculations and representation. Source: Fannie Mae single-family loan 

performance data. 

The highest annual default rate peaked at approximately 4% for the year 2020 evidently due 

to the pandemic. However, despite the pandemic, the number of loans originated in 2020 

increased and, therefore, the number of loans in the reporting period of 2021 are at elevated 
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levels. As the default levels in the year 2020 were affected by the pandemic, so was the state 

of economy as can be seen in Figure 8. The real GDP dropped more than 8% while 

unemployment rate increased manyfold. The CPI also declined but increased within months 

after the pandemic struck. The increasing loans in the year 2020 and afterwards could be 

attributed to the growing housing price index which reflects changes in the housing prices. 

It is necessary to mention that the CPI reported here is based on four regions of the U.S 

while the unemployment rate, HPI and real GDP are collected on a state level.    

 
Figure 8 - Overview of Macroeconomic Indicators 

 
Note: Own representation. Source: FRED. 
 

Figure 9 - Bar Plots of Categorical and Numerical Variables 

 
Note: Own representation.  
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Since the number of states was fifty, they are clustered together based on the region and the 

categorical variable of ‘Region’ was derived. Figure 9 (a) shows that majority of the 

properties mortgaged for loans are situated in the West region with 34.3% of the loans 

followed by the South and Midwest region. The mortgage loans differ over the purpose for 

which the loan was availed. The same is depicted by ‘Loan Purpose’ in Figure 9 (b) where 

close to 45% loans are availed for purchase money mortgage, 31% are refinance mortgages 

and 24% are cash-out refinances. When the loan originates, the ‘Occupancy Status’ is 

classified as the principal residence, second home, or an investment property. 

Approximately 89% of the loans in the dataset has occupancy status as principal. The loan 

dataset also states whether the buyer is purchasing the home for the first time, which is the 

case in approximately 80% of the loans as depicted in Figure 9 (d). The number of borrowers 

is almost balanced between 1 and 2, while more than 3 borrowers are very rare according 

to Figure 9 (f). Lastly, the number of dwelling units in the property are depicted in Figure 9 

(e). Some other illustrative examples which may explain the relationship between specific 

variables and loan defaults are also presented in Figure 10 and 11 to cultivate some intuition 

for the data and the algorithms.  

 

Figure 10 - Box Plots of Continuous Variables 

 
Note: Own representation.  
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Figure 10 (a) shows that the average loan to value ratio at the time of loan origination has 

remained stable over the years, but the defaulting loans have had a higher ratio of loan to 

value of the property on an average. The average Loan to Value (LTV) ratio has been 

approximately 75% before the pandemic and improved slightly to 74% in the pandemic 

year. The Original UPB of the loan has been higher for non-defaulters until 2019 after which 

the defaulters had a higher unpaid balance on an average as evident from Figure 10 (b). The 

FICO score, a scoring which is highly indicative of defaults, has been intuitively lower 

throughout all years for the defaulters. But the level of FICO scores increased in the 

reporting years 2020 onwards. For non-defaulters, the average FICO scores have been stable 

across all years as depicted in Figure 10 (c). The average FICO score before the pandemic 

stood at 743 and ranged from anything between 488 (high risk) to 850 (low risk). 

Subsequently, the DTI ratio, indicating borrower risk which represents the proportion of 

monthly income used to pay the debt, has been on average higher for defaulters rather than 

non-defaulters for all the years as per Figure 10 (d). The same ranged between 28 to 58, 

with an average of 34.41. 

 

The individual box plots and distributions of the variables in Figures 8 and 10 are displayed 

in Appendix I. Lastly, Figure 11 depicts the interest rate and the spreads at the time of loan 

origination. Both the interest rates and the spreads at origination have been lower for non-

default loans as opposed to defaulting loans. This is instinctive as an increase in interest 

rates raises the debt burden on borrowers.  

 

 

Note: Own representation.  

 

Figure 11 - Histogram for Interest Rates and SATO 
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Even though a few categorical variables such as Occupancy Status, First Time Home Buyer 

Indicator, and Modification Flag and numerical variables such as Number of Units are 

highly inclined towards a single category, the features are still used as inputs into the 

machine learning algorithm. Later, the resultant feature importance of the decision tree can 

be used to verify whether these variables are important in loan default prediction. The next 

section describes the methods and implementation of the machine learning model using the 

data described in this section.  
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4. Empirical Research 
This chapter provides the necessary steps taken to implement and evaluate the decision tree 

models to assess the model performance pre and post pandemic along with impact of 

macroeconomic factors. The analysis is performed using Python programming language. 

The aim of the research is to show the impact of pandemic on the performance of a machine 

learning model namely decision tree. Moreover, traditional credit performance data is 

integrated with macroeconomic variables to test for any improvement in the machine 

learning model. In order to achieve this, decision tree models are tested using different 

scenarios over different time periods to capture the impact of pandemic and the 

macroeconomic variables. Different sampling techniques are employed due to the dataset 

consisting of extremely imbalanced classes. The decision tree models are implemented 

using no resampling, under-sampling, and oversampling techniques both with and without 

macroeconomic variables. Thereafter, based on the results, the importance of the features is 

discussed. The sub-section 4.1 provides the overview on splitting of the dataset into training 

and test set based on the reporting years of the loan. In sub-section 4.2 the implementation 

of decision tree models using different sampling techniques is discussed which peruse loan 

performance data with and without macroeconomic variables. In sub-section 4.3, the 

resulting important features are presented. The results are consolidated in section 5.   

  

4.1. Train-Test Split 

The model building and testing through different sampling techniques is done using data 

from 2015 till 2020 and split according to Table 8. Due to splitting the data based on the 

reporting years, the in-sample and out-of-sample split results in a ratio of 51:49. Moreover, 

as the pandemic hit in the year 2020, the same is used as out of time test set to study the 

model performance when predicting out of time. Many financial institutions build their 

credit scoring models to implement out-of-time in actual business activities. Additionally, 

any consumer related model built on historical data would be sensitive to any drastic 

changes in the future consumer behavior. Hence, due to this reason, along with the 

pandemic, the emphasis lies on the out-of-time analysis. The models built are henceforth 

tested on out-of-sample data and out-of-time data. This technique can also serve as an 

indicator about the stability of a model over time. The training, test and out of time split in 

the Table 8 would be used in the scenarios where the model is evaluated using different 

sampling techniques with and without macroeconomic data.  
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Table 8 - In-sample, Out-of-sample, and Out-of-time Period for Different Sampling 

Techniques 

 Period Number of Observations 

In-sample Period 01-01-2015 to 01-12-2017 2,115,760 

Out-of-sample Period 01-12-2018 to 01-12-2018 2,060,789 

Out-of-time Period 01-01-2020 to 01-12-2020 1,254,020 

 

To assess the influence of macroeconomic factors along with loan performance data, the 

models are evaluated using two datasets. The dataset simply created with the historical loan 

performance data is named Ensemble I, and second dataset created with the historical loan 

performance data complemented with macroeconomic data is named Ensemble II.  

 

4.2. Decision Tree Model with Different Sampling Techniques 

Various resampling techniques are utilized to address the problems posed by imbalanced 

classes in predictions. Moreover, the size of dataset also influences the learning process of 

algorithms. In this section, the model setting for training of a decision tree using various 

sampling techniques are presented. The models are then evaluated on out of sample and out 

of time data as exhibited in Table 8 of sub-section 4.1.  

 

If the parameters of a decision tree are not optimized, the tree can grow to its full size i.e., 

depth and lead to overfitting. Hence, the hyperparameter of max_depth for the decision tree 

is fine-tuned during fitting of the models on the training data. The default setting in the 

DecisionTreeClassifier is kept as ‘entropy’ for criterion of node splits and the class weights 

as ‘balanced’ to address the data imbalance issues by the model internally assigning the 

weights to classes inversely proportional to their corresponding frequencies. When tested 

with class weights as not balanced, all the ratios were at a minimal level and accuracy was 

the highest. The value range for max_depth is provided in Table 9 for different sampling 

techniques used. The range is different for SMOTE technique due to excessively high 

amount of data. 
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Table 9 - Range of Tested Hyperparameters 

Sampling Technique Value/Range for max_depth parameter 

No resampling 1 to 15 

Undersampling 1 to 15 

Oversampling 2 to 10 

 

For implementing SMOTE and hyperparameter tuning together, the GridSearchCV method 

of Scikit-learn is used with 10-fold cross-validation. The model simulates different decision 

trees with the distinct range of values for the hyperparameter according to Table 9, 

simultaneously cross-validating them and in the end outputs the decision tree model with 

the best cross-validated score. This outputted model with the highest cross-validated score 

is then fitted on the training data for subsequent predictions. Similarly, for no resampling 

and undersampling techniques, the cross validated scores are computed at each iteration of 

a 10-fold cross validation on the training set for the values of the specified hyperparameters 

and the hyperparameter with the best average score is selected to further fit the model on 

the training set and predict on out-of-sample and out-of-time data. The score on which the 

models are optimized can be one of many performance metrics mentioned in section 2.2.4. 

For the analysis, recall score is used as the performance metric to optimize the decision tree 

models. All these sampling techniques are used on Ensemble I i.e., simple loan performance 

data, as well as on Ensemble II i.e., loan performance data complemented with 

macroeconomic variables. The out of sample and out of time dataset are not resampled and 

used as they are. The same steps were also followed for optimizing decision tree based on 

balanced accuracy score and the summarized results are present in section 5.1 

 

4.2.1. No Resampling  

The training dataset of Ensemble I from the year 2015 till 2017 is used to optimize the 

decision tree based on methods described in section 4.2. In order to avoid over or under 

fitting, the cross validated recall score is calculated corresponding to the hyperparameter 

maximum depth of the decision tree, and the highest mean cv-recall score is obtained with 

the hyperparameter.  
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Figure 12 - Cross-validated Recall Scores and Hyperparameter 

 
Note: Own illustration 

 

For instance, Figure 12 displays the mean cv-scores across a range of 1 to 15 depth of the 

tree and the optimal max depth is obtained where the mean cv-recall score is the highest. In 

this case, the highest cv-recall score corresponds to the max depth of 4. The same method 

is true for all the models and hence only an example in this section is shown. 

     

 
Parameters In-sample  Out-of-sample Out-of-time 

Recall 0.746 0.802 0.426 

Balanced Accuracy 0.746 0.694 0.563 

Specificity 0.746 0.586 0.701 

Description Value   

Max_depth 4 

Out-of-sample Out-of-time 

Figure 13- Out-of-sample and Out-of-time Confusion Matrix for No Resampling Technique 

on Ensemble I 
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CV-Recall Score 0.760 

Standard Deviation 0.07 

Note: Own illustration. 

 

The Figure 13 consists of recall, specificity, and balanced accuracy scores reported for out-

of-sample and out-of-time evaluation of the model after the fitting of best model on the 

training data. To have a base comparison of how the model is performing out-of-sample and 

out-of-time, the performance metrics for the training set are also provided. The 

corresponding confusion matrices are also illustrated in Figure 13.  

 
It is observed that the out of sample recall score slightly gets better when evaluating on out-

of-sample data, while the balanced accuracy only slightly declines. This is attributed to the 

fact that the in-sample and out-of-sample data both belong to the same pre-pandemic period 

and the model is able to generalize well on the out-of-sample data for the year 2018-2019. 

As soon as the model is evaluated on out-of-time data from the pandemic year 2020, the 

recall declines by 50% to a mere 0.423. This means that when predicted out of time during 

the pandemic, the model is not able to predict loan defaults as well as it did it for the out-

of-sample period. It is imperative to mention that as the test size increases, even though the 

ability to predict defaults was better in out-of-sample period, this came at a cost of 

drastically increasing false positives which can be captured by the specificity measure. This 

also implies that the precision score and F1 score suffered significantly. Since the focus lies 

on detecting the defaults correctly, the scores reported are recall and balanced accuracy. 

However, the precision and F1 scores can be easily calculated using the classification matrix 

and formulae as per section 2.2.4. 

 

To assess whether incorporating macroeconomic variables with the loan performance data 

can enhance the predictive power of the decision tree both out-of-sample and out-of-time, 

Ensemble II is used to build the model, train, and evaluate out-of-sample and out-of-time. 

The same procedure as listed in the previous section of hyperparameter tuning is applied. 

Figure 14 depicts the confusion matrices corresponding to the out-of-sample and out-of-

time evaluation of the model.  
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Figure 14- Out-of-sample and Out-of-time Confusion Matrix for No Resampling Technique 

on Ensemble II 

 
Parameters In-sample  Out-of-sample Out-of-time 

Recall 0.815 0.916 0.522 

Balanced Accuracy 0.787 0.651 0.564 

Specificity 0.758 0.388 0.606 

Max_depth 6 

CV-Recall Score 0.752 

Standard Deviation 0.15 

Note: Own illustration 

 

In contrast to the Ensemble I, out-of-sample evaluation of this model gives a higher recall 

with classifying correctly 91.6% of the loans that defaulted. The recall score was also better 

on evaluating out-of-time as compared to Ensemble I, but the model was able to capture the 

decline in predictive performance due to pandemic. The “max_depth” parameter increased 

from 4 in Ensemble I to 6 in Ensemble II. This indicates that a deeper tree was formed as 

more data was fed into the model. Even though the models were not optimized based on the 

AUC-ROC curve but based on the recall score, the comparison with respect to the AUC-

ROC score among both the models for out-of-sample and out-of-time performance is 

depicted in Figure 15. Despite the recall score of the Ensemble II being better, Figure 15 

depicts that the balance between the true positive rate and false positive rate is better for no 

resampling technique with Ensemble I i.e., the quality of model’s predictions is better.  

 

Out-of-sample Out-of-time 



Master Thesis 

 
Sugandhita  42 

Figure 15 - Receiver Operating Characteristic Curve- No Resampling 

 
Note: Own illustration. 
 

4.2.2. Under sampling 

Due to the imbalanced classes, the training set from Ensemble I is under sampled to have 

1% of the majority class observations without replacement and 100% of the minority class. 

Due to this the training data is reduced by a considerable size without touching the out-of-

sample and out-of-time set. Choosing 1% of the majority class still does not equate the 

majority and minority class numbers but reduces the proportion of majority to minority class 

substantially. Again, the hyperparameters are tuned for the decision tree based on methods 

described in section 4.2.  Figure 16 depicts the confusion matrices along with the parameters 

of the model and performance measurement metrics. 



Master Thesis 

 
Sugandhita  43 

Figure 16 - Out-of-sample and Out-of-time Confusion Matrix for Undersampling Technique 

on Ensemble I 

 
Parameters In-sample  Out-of-sample Out-of-time 

Recall 0.752 0.807 0.428 

Balanced Accuracy 0.747 0.690 0.560 

Specificity 0.742 0.572 0.692 

Max_depth 4 

CV-Recall Score 0.767 

Standard Deviation 0.08 

Note: Own illustration. 

 

It is observed that the scores for Ensemble I in undersampling almost mimic the results from 

no resampling technique with Ensemble I. The out of sample and out-of-time performance 

both are similar along with the recall and accuracy scores. However, with Ensemble II, the 

recall score is lower than the no resampling technique with Ensemble II. Moreover, addition 

of the macroeconomic variables only slightly adds value than with no macroeconomic 

variables when compared within the undersampling techniques. This is observed both in 

out-of-sample and out-of-time performance. The impact of pandemic remains consistent on 

the performance of the model wherein the score declines by approximately 50%. The 

difference in the features deemed important by the decision tree using different sampling 

styles are discussed in the section 4.3. Figure 17 depicts the confusion matrices 

corresponding to the out-of-sample and out-of-time evaluation of the model on the 

macroeconomic data or Ensemble II. Alongside, the balance accuracy, specificity, and recall 

scores are also mentioned in Figure 17. 

 
 

Out-of-sample Out-of-time 
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Figure 17 - Out-of-sample and Out-of-time Confusion Matrix for Undersampling Technique 

on Ensemble II 

 
Parameters In-sample  Out-of-sample Out-of-time 

Recall 0.764 0.816 0.428 

Balanced Accuracy 0.765 0.672 0.573 

Specificity 0.766 0.527 0.724 

Max_depth 4 

CV-Recall Score 0.745 

Standard Deviation 0.12 

Note: Own illustration. 

 

Figure 18 - Receiver Operating Characteristic Curve- Undersampling 

 
Note: Own illustration 

Out-of-sample Out-of-time 
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Both the models using undersampling technique were able to correctly predict 

approximately 81% of the loans defaulting out of the total defaults in the out-of-sample 

performance. Likewise, the out-of-time performance was alike, though underwhelming, for 

both the Ensemble I and Ensemble II in undersampling. The ROC curve is depicted for 

comparison between the models in Figure 18.  

4.2.3. Oversampling (SMOTE) 

Scikit-learn has a feature of SMOTE that can be applied to data which can synthetically 

replicate the minority class based on k-nearest neighbors. The default value of k=5 is 

utilized, and the data is oversampled. The technique is combined with the GridSearchCV 

using pipeline in Python. This allows for oversampling within the cross-validation folds and 

not on the whole training set. The best cross-validation score and the corresponding 

hyperparameter is derived and described in Figure 19. 

  

Figure 19 - Out-of-sample and Out-of-time Confusion Matrix for SMOTE Technique on 

Ensemble I 

 
Parameters In-sample  Out-of-sample Out-of-time 

Recall 0.560 0.582 0.288 

Balanced Accuracy 0.68 0.612 0.508 

Specificity 0.804 0.641 0.727 

Max_depth 4 

CV-Recall Score 0.550 

Standard Deviation 0.03 

Note: Own illustration 

 

Out-of-sample Out-of-time 
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The oversampling method did worse than the other sampling techniques. Upon evaluating 

on the out-of-sample Ensemble I data, only 58% of the loans were correctly classified as 

defaulting meaning the ratio of false negatives was extremely high. Similarly, it performed 

even worse on out-of-time data. The cross-validated recall score is only 0.55 when 

compared to other sampling techniques with the score of more than 0.70 with approximately 

the same depth of tree. Figure 20 depicts the results of oversampling with the 

macroeconomic data Ensemble II. 

 
Figure 20 - Out-of-sample and Out-of-time Confusion Matrix for SMOTE Technique on 

Ensemble II 

 
 
Parameters In-sample  Out-of-sample Out-of-time 

Recall 0.613 0.783 0.342 

Balanced Accuracy 0.703 0.634 0.485 

Specificity 0.789 0.486 0.628 

Max_depth 4 

CV-Recall Score 0.584 

Standard Deviation 0.14 

Note: Own illustration 

 
Despite the cross-validated recall score of 0.58, the out-of-sample performance with 

macroeconomic data returned a recall score of 0.78. The varying nature of macroeconomic 

data could induce variance in the data and therefore the scores fluctuate immensely. 

Compared to other techniques, this technique with and without macroeconomic data 

performed the poorest. This could also be attributed that due to oversampling on already 

large data, the algorithm may have not been able to learn properly upon the training and 

validation of the model. The balanced accuracy scores were also not up to the mark for both 

Out-of-sample Out-of-time 
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the oversampling models with and without macroeconomic data. The ROC curve depicted 

in Figure 21 represents the trade-off between the true and false positive rates at different 

thresholds for the probabilities predicted for loan default.  

 

Figure 21- Receiver Operating Characteristic Curve- Oversampling (SMOTE) 

 
Note: Own illustration 

 
It is worth mentioning that as the focus of the models was on recall scores, due to large 

amount of data, the F1 and precision scores of all the models ranged between 0.004 to 0.10 

only when evaluated on out-of-sample and out-of-time data.  

 

4.3. Feature Importance and Interpretations 

The decision tree can capture the non-linear relations in the data and can be easily visualized 

after the model if fitted. Figure 22 shows the Decision Tree which was trained and fine-

tuned with no resampling technique with Ensemble I i.e., only loan performance data. Due 

to space constraints the maximum depth of 3 is displayed. At the first node, the best feature 

is chosen by the fitted decision tree model and the quality of the split is determined by 

entropy. The best result is derived by maximizing the information gain after every split.   
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Figure 22 - Decision Tree of Ensemble I Data- No resampling 

 
Note: Own illustration. 

True False 
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For instance, in the decision tree diagram of Figure 22, FICO score is chosen as the best 

feature and the sample splitting cutoff chosen by the algorithm stands at 720.5 FICO score. 

The line of samples shows the number of samples at that node whereas the value provides 

the number of samples in each class. 

 

It is noteworthy that equal number of classes are displayed in the first node despite 

imbalanced dataset, as in python function, the class weights were chosen as balanced while 

fitting the model.  Further, if FICO score is less than or equal to 720.5, i.e., satisfies the 

condition, the path towards the left is chosen and further split upon the Original Interest 

Rate feature. The corresponding entropy and the majority class is displayed on the nodes. 

The darker the shade of the nodes, more the purity in the nodes. Hence as the depth of the 

tree increases, more refined split criterions are decided by the algorithm. The tree in Figure 

22 has a maximum depth of 4 and features marked as important by the algorithm can be 

derived from the feature importance function in scikit-learn. 

 
The importance of a feature is measured as a fall in node impurity (entropy) brought about 

by the feature. A score is assigned to the input variables based on how useful they are at 

predicting a target variable. Higher the value, higher is the importance. Thus, feature 

importance can provide insights into the data. Features which were deemed to be important 

for the decision tree model using no resampling technique are plotted in Figure 23. These 

correspond to the tree displayed in Figure 22 using Ensemble I data.  

 
Figure 23 - Feature Importance corresponding to Decision Tree in Figure 22 

 
Note: Own illustration. 
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Figure 24 - Decision Tree of Ensemble II Data- No resampling 

 
Note: Own illustration.

True False 
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Out of 22 variables (including encoded variables) in Ensemble I, the decision tree 

considered only 5 variables to be important as the feature importance coefficient was zero 

for the other variables. The highest importance was placed to FICO scores followed by the 

interest rates of the mortgages both of which are rather intuitive. Thereafter, the South 

region in which the property is situated was considered for node splitting criterion as can be 

seen on the right path of the decision tree at the first depth in Figure 22. Finally, the number 

of borrowers and DTI were given the penultimate and last importance.  

 

Similarly, the decision tree built using the no resampling technique on Ensemble II is 

displayed in Figure 24 and corresponding important features are displayed in Figure 25. 

Incorporating the macroeconomic variables seemed to have an influence on the decision-

making criteria of the tree model. The depth of the optimized tree model was 6. As can be 

seen in Figure 24, the first node is split at FICO score which has the highest importance. 

CPI which has the second highest score can be seen at the second depth of the tree. 

According to Figure 25, the HPI and Unemployment rate are also ranked at 6th and 7th in 

feature importance. Although with a miniscule coefficient, Real GDP is also ranked at 11th 

position.  

 

Figure 25 - Feature Importance corresponding to Decision Tree in Figure 24 using 

Ensemble II 

 
Note: Own illustration. 

 

Hence in a tree with a higher depth, more features are considered important at nodes for 

splitting, but majority of these features had a minor coefficient of importance. However, all 

the four macroeconomic variables were present in the feature importance ranking. In 
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addition to the FICO score and interest rates, most of the features as depicted by the feature 

importance variables are intuitive in prediction loan defaults. For example, a higher debt to 

income ratio or a higher loan to value ratio does indicate more risky behavior than the loans 

having lower ratios. If the original loan amount i.e., the unpaid balance is higher, the burden 

on the consumer is higher which is riskier if coupled with a higher interest rate.  

 

Likewise for the macroeconomic indicators, increase in inflation puts pressure on the prices 

of all other goods which could impact the ability to honor debt obligations. The same is the 

case if a person gets unemployed. These impact the debt-to-income ratio indirectly. 

Unemployment rate was also found to be important in other research of Sirignano, 

Sadhwani, and Giesecke (2018); Carvalho, Curto, and Primor (2022); Chen, Guo, and Zhao 

(2021). While the HPI has a positive impact as growing prices would increase the value of 

the houses and indirectly improve the loan to value ratios and vice versa. According to Chen 

et al., (2021), HPI was important to be included in their assessment of credit risk as well. It 

was rather surprising that the SATO was not considered by the algorithm to be important 

for predictions even though intuitively, higher the SATO, higher is the riskiness of a 

borrower. 

 

As envisaged, the variables ‘Occupancy Status’, ‘First Time Home Buyer Indicator’, 

‘Modification Flag’ and ‘Number of Units’ being more inclined towards one category in the 

dataset were not deemed to be important in predicting defaults. The model with 

undersampling or a model with macroeconomic data with a smaller depth returned lesser 

features to be important, however, inflation was still present as the second most important 

feature after FICO score and before original interest rate. This implies that incorporating 

macroeconomic features can help in relevant and better predictions in line with the existing 

literature. The feature importance figure for the undersampling techniques with both 

Ensemble I and Ensemble II are present in the Appendix II. 
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5. Conclusion 
The consolidated results of the analysis are presented in this section for comprehensive 

comparison and discussion. Different decision tree models were tested based on different 

sampling techniques. Moreover, macroeconomic data was also used to assess its impact on 

loan default prediction. The different sampling techniques were not only evaluated on out 

of sample data, but also were used to predict on out-of-time data. The out-of-time data 

comprised of the year of pandemic i.e., 2020. While predicting default, the most important 

performance metric is recall which aims at accurately classifying all the positive classes, 

i.e., the defaults. The results derived from the models optimized according to the recall score 

are presented in sub-section 5.1 with a brief overview on the results. Furthermore, the 

limitations of the study are acknowledged followed by recommendations for future research 

and practical implications of the findings 

5.1. Summary of Results 

Table 10 displays the consolidated results based on optimized recall scores for prediction of 

loan defaults using various techniques with and without macroeconomic data as discussed 

in section 4.2.  

 

The different simulations done using all the data from 2015 to 2020 through various 

resampling techniques exhibited that the no-resampling and undersampling techniques 

displayed similar results. The large size of the dataset particularly, out-of-sample and out-

of-time affected the performance of the model with respect to minimizing the false positives. 

It is observed that in each of the sampling techniques used, the recall score enhances when 

the respective model is evaluated on out-of-sample data but comes at a cost of classifying 

false positives i.e., non-defaults as defaults. The undersampling technique displays similar 

results as a no-resampling technique when evaluated for Ensemble I data i.e., loan data 

without macroeconomic data. A decent recall score of approximately 81% is achieved by 

both these techniques upon testing out-of-sample. This implies that 81% of the loans that 

defaulted were classified correctly. On the contrary, SMOTE is the worst performer among 

the sampling strategies. Adding macroeconomic data does increase the recall score in all the 

sampling techniques when evaluated on out-of-sample data but it comes at a cost of 

decreased balanced accuracy in no-resampling and undersampling strategies. This indicates 

that even though the classifier can majorly correctly predict loan default i.e., true positives, 

the true negatives decrease with a simultaneous increase in the false positives.
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Table 10 - Summary of Results based on Decision Trees Optimized for Recall Scores 

Metric  

 Method 
 

No Resampling 
 

Undersampling SMOTE 

 Data 
In-Sample 
(2015-17) 

Out-of-
Sample 
(2018-19) 

Out-of-
time 
(2020) 

In-Sample 
(2015-17) 

Out-of-
Sample 
(2018-19) 

Out-of-
time 
(2020) 

In-Sample 
(2015-17) 

Out-of-
Sample 
(2018-19) 

Out-of-
time 
(2020) 

Recall* Ensemble I 0.746 0.802 0.426 0.752 0.807 0.428 0.561 0.582 0.288 

Specificity Ensemble I 0.746 0.586 0.701 0.742 0.572 0.692 0.804 0.641 0.727 

Balanced 
Accuracy Ensemble I 0.746 0.694 0.563 0.747 0.690 0.560 0.682 0.612 0.508 

Recall* Ensemble II 0.815 0.916 0.522 0.764 0.816 0.424 0.618 0.783 0.342 

Specificity Ensemble II 0.758 0.388 0.606 0.766 0.527 0.724 0.789 0.486 0.628 

Balanced 
Accuracy Ensemble II 0.787 0.652 0.564 0.765 0.672 0.574 0.704 0.634 0.485 

Note: (*) denotes that the recall score was optimized during fine tuning of the model. The highest out of sample scores within a row for one type of data 

across the 3 different sampling schemes is highlighted in blue, while the highest out-of-time score is highlighted in yellow. The highest recall scores 

between the two data types for the respective sampling technique represented by a grid is highlighted in green 
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Table 11- Summary of Results based on Decision Trees Optimized for Balanced Accuracy Scores 

Metric  

 Method 
 

No Resampling 
 

Undersampling SMOTE 

 Data 
In-Sample 
(2015-17) 

Out-of-
Sample 
(2018-19) 

Out-of-
time 
(2020) 

In-Sample 
(2015-17) 

Out-of-
Sample 
(2018-19) 

Out-of-
time 
(2020) 

In-Sample 
(2015-17) 

Out-of-
Sample 
(2018-19) 

Out-of-
time 
(2020) 

Recall Ensemble I 0.809 0.871 0.477 0.785 0.798 0.442 0.561 0.582 0.288 

Specificity Ensemble I 0.717 0.530 0.649 0.744 0.598 0.694 0.804 0.641 0.727 

Balanced 
Accuracy* Ensemble I 0.763 0.701 0.563 0.764 0.698 0.568 0.682 0.612 0.508 

Recall Ensemble II 0.815 0.916 0.522 0.758 0.834 0.420 0.617 0.780 0.342 

Specificity Ensemble II 0.758 0.388 0.606 0.840 0.483 0.701 0.790 0.487 0.628 

Balanced 
Accuracy* Ensemble II 0.787 0.652 0.564 0.799 0.659 0.561 0.703 0.634 0.485 

Note: (*) denotes that the recall score was optimized during fine tuning of the model. The highest out of sample scores within a row for one type of data 

across the 3 different sampling schemes is highlighted in blue, while the highest out-of-time score is highlighted in yellow. The highest recall scores 

between the two data types for the respective sampling technique represented by a grid is highlighted in green 
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The scores optimized based on balanced accuracy score are displayed in Table 11. Although, 

yielding better recall scores when optimized by balanced accuracy score, it came at a cost 

of classifying more false positives and were prone to overfitting returning longer depth of 

the tree while tuning the hyperparameter.  

 

To the extent that the impact of COVID-19 pandemic is envisaged, all the models with 

different sampling techniques, whether incorporating macroeconomic data or not, did not 

perform well when evaluated on out-of-time pandemic period. Although, generalizing well 

on the data from years 2018 and 2019, these data- driven pattern perception methods tend 

to fail when the past patterns in data are not extrapolative to future behavior, as did the 

changing distributions within the data after the lapse of 2019 and beginning 2020 induced 

by the pandemic. Testing the model on out-of-time unseen data concerning the pandemic 

period demonstrated the adverse impact of pandemic on the predictive performance of the 

model answering the first research question positively that, pandemic did impact the 

performance of the machine learning model affecting the ability to correctly predict 

mortgage loan default. 

 

Including macroeconomic indicators, particularly the CPI, did increase the recall scores 

while testing out-of-sample and out-of-time in comparison to data without macroeconomic 

indicators. Although very small, the contribution of Unemployment rate, HPI and real GDP 

cannot be ruled out while the model was tested with no resampling technique. This benefit 

of including the macroeconomic factors falls in line with the related literature. This answers 

the second research question, could incorporating macroeconomic indicators into machine 

learning methods improve the performance of credit risk models? as yes. However, this 

answer comes with a reservation that the non-defaulters were not predicted as accurately as 

the loans that actually defaulted were predicted. The balance between the true negatives and 

true positives was slightly lacking.  

 

Other findings suggest that handling a large dataset with a huge imbalance in the classes 

was a difficult task which affected the ability of decision tree to perform as accurately as it 

could have been with other machine learning algorithms.  
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5.2. Acknowledgement of Limitations 

The thesis aimed to demonstrate the impact of pandemic on the predictive performance of 

widely used decision tree models. The selection of model was limited due to computational 

resources required to process large datasets and its ability to provide interpretable results. 

However, due to limited ability of decision tree to handle big data, the evaluation of 

pandemic’s impact and the macroeconomic factors can be further performed using more 

advanced and robust ensemble or deep learning methods. Additionally, the macroeconomic 

variables used for the predictions were subject to availability on a regular basis to better 

integrate into the loan performance data. More macroeconomic variables, capturing the 

behavior of the consumer can be obtained to integrate into the loan performance data for 

better prediction of mortgage loan defaults. The focus on predicting loan defaults correctly 

on a huge dataset comes at a cost of predicting non-defaulters as defaulters.  

 

5.3. Recommendations for Further Research 

As acknowledged in the limitations, more stable models could be built with ample 

computational resources whilst being able to provide better explanations on drivers of 

mortgage default. The duration of periods tested are long and may be further evaluated with 

shorter time windows. More refined loan performance data with relevant borrower-specific 

features and macroeconomic data addressing changes in consumer behavior can be used to 

improve default predictions. The evaluations can also be extended to other countries or 

different products such as credit cards, vehicle loans, agricultural loans which could provide 

validity to the methods externally.  

 

5.4. Implications of Findings 

The conclusions of the thesis point towards the inability of machine learning model such as 

the decision tree to embrace the impact of a crisis such as the pandemic. However, the 

addition of macroeconomic factors does lead to better default prediction than just using 

traditional loan performance data. Hence, supplementing historical data with relevant 

additional data can help in better credit risk assessment especially for enhancing loan 

prediction models. Further, cost-benefit analysis can be conducted based on the 

classification performance when predicting a loan defaulter correctly is more important than 

predicting non-defaulters as defaulters. The macroeconomic data inclusion can also be 

extended beyond credit scoring models to other credit risk assessment methods.  
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Appendix I: Graphs as a Part of Exploratory Data Analysis 

 

Figure A 1 - Distribution and Box Plot for Macroeconomic Variables 

 
Note: Own illustration. 
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Figure A 2- Distribution and Box Plots for Continuous Variables 

 
Note: Own illustration. 
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Appendix II: Feature Importance for Undersampling Techniques for Section 4.3 

 

Figure A 3 - Feature Importance for Undersampling Technique on Ensemble I 

 
Note: Own illustration. 

 

 

Figure A 4- Feature Importance for Undersampling Technique on Ensemble II 

 
Note: Own illustration. 

 

 




