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Societies and legislations are moving towards automated decision-making based on measured data in safety-
critical environments. Over the next years, density and frequency of measurements will increase to generate
more insights and get a more solid basis for decisions, including through redundant low-cost sensor deployments.
The resulting data characteristics lead to large-scale system design in which small input data errors may lead to
severe cascading problems including ultimately wrong decisions. To ensure internal data consistency to mitigate
this risk in such IoT environments, fast-paced data fusion and consensus among redundant measurements need
to be achieved. In this context, we introduce history-aware sensor fusion powered by accurate voting with clustering
as a promising approach to achieve fast and informed consensus, which can converge to the output up to 4X
faster than the state of the art history-based voting. Leveraging three case studies, we investigate different voting
schemes and show how this approach can improve data accuracy by up to 30% and performance by up to
12% compared to state-of-the-art sensor fusion approaches. We furthermore contribute a specification format for

easily deploying our methods in practice and use it to develop a pilot implementation.

1. Introduction

Automated decision-making based on interpretations of data from
the real world [9,12] is a growing trend across societies, especially
in digitally transformed economies and legislations. This trend entails
a number of ethical concerns around mispredictions and wrong deci-
sions, economic trade-offs related to investment into data acquisition
equipment and maintenance, as well as technical challenges associ-
ated to ensuring proper quality of the acquired data. Data cleaning
and cleansing techniques [37] are commonly used on a single mea-
surement source, on a single time series to mitigate device downtimes
and transmission errors, as well as and to eliminate unsuitable data
records, effectively increasing the data quality. These ex post cleans-
ing techniques can however not prevent wrong observations that result
from combining multiple sources with potentially diverging or conflict-
ing views. In addition to the above techniques that are applied to each
individual data stream, we need to perform multi-view data fusion [43]
to arrive at a common ground truth across multiple data sources be-
forehand, especially in the case of redundant sensors. In this context,
we employ voting-based data fusion to merge observations from multi-
ple sensors that, in ideal conditions, would produce identical outputs. In

cases where independent ground truth measurements are not available
or affordable, we dynamically assign the role of ground truth to the lat-
est agreement among candidate the values. These additional steps are
shown in Fig. 1, which shows where our methodology fits in a system
that uses IoT devices to obtain observations.

The necessity for higher-quality sensor data applies especially to
emerging digitalised systems, such as smart cities, industrial produc-
tion and other cyber-physical domains. They involve large amounts of
continuous data streams aggregated from a multitude of sensors, used
as data sources. Sensor-based measurements are common especially in
the Internet of Things (IoT) for triggering data-driven decisions. Qual-
ity issues in such distributed measurements [45] have profound adverse
effects on systems leverage, and by extension, on humans and society,
as shown in irresponsible AI community discussions [27]. Consequently,
steps to improve input data quality within the data pre-processing step
and in conjunction with data fusion are necessary to achieve better
decisions and overall more reliable applications. Data fusion in gen-
eral is a technique of merging different inputs [31] in an application-
independent middleware to obtain a holistic view of physical objects.
Data sources used as inputs to a data fusion system can have partial
information that becomes meaningful once combined, or the complete
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Fig. 1. Positioning of data fusion, voting and deriving the ground truth in a
typical IoT data pipeline.

information but with potential conflicts between sources. Different tech-
niques can be applied to each of these cases. Voting is an approach
to fuse sensor data for the purposes of reliability and error mitiga-
tion [24,21] in safety-critical environments. For instance, in avionics,
three redundant physical sensors are mandated for each logical sen-
sor [21], and vehicles with autopilot abilities have configurations such
as eight cameras (including three forward ones) to achieve redundancy
on the critical data acquisition path. Thus, in the absence of external
ground truth (i.e. a fully trusted and accurate data source, often too
expensive in practice), voting is a pragmatic substitute as it leads to in-
ternal ground truth upon which critical decision-making can be based.

In this work, we study and observe state-of-the-art voting ap-
proaches for sensor data fusion, applying them to three IoT data cap-
turing scenarios relying on redundant sensor measurements: (i) light
sensors in a smart building setting, (ii) Bluetooth Low Energy (BLE)
beacons to track vehicle position in a (simulated) tunnel and (iii)) an
indoor positioning experiment, also using BLE beacons, emulating a
smart shopping scenario. We focus on voting algorithms used to reach
data-centric consensus[18] on numerical values, as these are relevant
when merging sensor readings and leverage historical records to factor
in the reliability of individual sensors. In §7 we conduct three exper-
iments on such IoT setups for real-time validation and pre-recorded
data for the purpose of reproducibility. We exploit our findings to con-
tribute a generic specification format that can be used to define voting
schemes for several applications, particularly optimized for IoT and
cyber-physical applications. We argue that such a format aids the de-
velopment of distributed analytics applications by making them more
needs-focused and reliable, while shielding software engineers from the
voting implementation. Moreover, the increased robustness of the data,
induced by multi-view data fusion implemented through the use of
voting, facilitates the input data quality in data-centric artificial intel-
ligence, a recent research direction aimed at overcoming misprediction
due to lack of input data assurance [39]. We replicate and evaluate the
state-of-the-art history-based voting algorithms, i.e. voting algorithms
in which the weight of votes is determined by past performance of the
candidate in terms of agreement with the consensus. We observe the
need for a method to bootstrap the algorithms to be more accurate be-
fore the history has been established, which would also improve the
number of voting rounds it would take for the weights to converge to
stable values representative of the reliability of the sensors.

Our contributions are twofold: (1) AVOC (Accurate Voting with
Clustering), a novel bootstrapping method for initializing history-based
voting systems, which we fully implement and evaluate with three prac-
tical IoT scenarios; (2) VDX, a new voting definition specification that
precisely defines application requirements and allows users to select ap-
propriate parameters for software voters.

The article extends and refines our previous work on AVOC [17]
in multiple ways. First, it adds a dimension of performance and scal-
ability, as discussed in 7 and 8. We evaluated the performance of the
voting compared to state-of-the-art data fusion approaches and exam-
ined how it affects the scalability of the sensor fusion setup in terms
of increased numbers of modules. Second, it details the third scenario
of reliable indoor positioning, as detailed in §6. This scenario allows
us to compare with Kalman Filtering, a state-of-the-art approach for
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multilateration-based postitioning, in terms of performance and accu-
racy. Based on this experiment, we also discuss the implications on
performance of scaling our system versus scaling the existing solutions.
Third, it presents additional details about our effort to replicate history-
aware voting algorithms and implement them within our VDX software,
prior to modifying them with AVOC.

The rest of the article is structured as follows. §2 surveys state-of-
the-art voting algorithms, data fusion and data quality issues relevant
to IoT. §3 investigates voting algorithms used to reconcile redundant
data values. §4 presents AVOC, our approach. We describe the pro-
posed format VDX for defining the voting process in §5. In §6 we detail
our use-case scenarios and how we built our hardware prototypes. §7
presents our experimental evaluation using both a reference scenario
dataset and our experimental setup. Our findings are discussed in §8.
We conclude in §9 by discussing our findings and prospect future re-
search directions in redundancy-based data quality in IoT.

2. Related work

Data-driven decisions [16] are key elements of cyber-physical sys-
tems and digitalised applications of all scales and domains (e.g., smart
cities, mobility, industrial production, home automation, etc.). In many
such systems, incoming data are subject to real-time analysis and sub-
sequent decision-making. However, while systems research has allowed
dealing with the volume, velocity and variety of multi-source data in-
volved in the processing chain [36], issues still emerge regarding data
quality, value and veracity. In this work, we focus on the accuracy (ie.,
quality) for sensor measurements [34]. Data fusion across multiple ho-
mogeneous or heterogeneous sensors has been utilised to tackle the
challenges induced by problematic data, improving analytics reliability
through a variety of techniques (e.g., data association, state estimation,
decision fusion, classification, prediction, machine learning and analyt-
ics [25]). Initial efforts exist to create standards and frameworks for
data management and interoperability, for instance in the smart city
space [20,22]. However, they currently lack a common framework and
standardized format. Our work proposes a new interoperable format to
define voting-related data fusion.

Voting algorithms increase the reliability of measurements [24] in
safety-critical domains, e.g. aviation [21] or self-driving cars [8]. We
focus on reconciling numeric data using software voters, with either
result selection or amalgamation techniques [24]. Specifically, we con-
sider history-based voting algorithms [23] that weigh values based on
the historical performance record of the candidate sensor. History-Based
Weighted Average [23] weights the historical data to compute an out-
put value. To improve the granularity of historical records, [14] uses
a soft dynamic threshold. In [5], authors apply a hybrid approach us-
ing module elimination and dynamic threshold. We further detail these
approaches in §3. Our approach, AVOC, extends the hybrid algorithm
from [5] with a clustering component to improve performance before
there is a long enough historical record, as well as to speed up conver-
gence of the weights to stable values.

Some voting-based data fusion frameworks rely on specific de-
scription languages to define algorithmic details [6]. However, these
approaches ignore history-based measurements. We also observe that
modern voting algorithms are too complex to be represented in such
terms. Where [6] defines voting as three-step process (reaching quorum,
excluding outliers and calculating results), modern algorithms often in-
clude further steps like weighing and updating historical records, or
optimising reliability metrics [26]. We argue that a customisable vot-
ing framework serves as encapsulation for sensor-fusion applications if
built atop state-of-the-art approaches, as shown next, when we present
our proposal for a generic definition specification for voting algorithms,
VDX. A further benefit of our approach is that it can then be integrated
into data-centric tooling, such as ETL (Extract-Transform-Load) tools.
Such tools, e.g. Singer.io [3] and Node-RED [4] are gaining popular-
ity, but still have no support for voting-related data cleansing methods,
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Table 1
Comparison of state-of-the-art voting schemes. MNN: Mean Nearest Neighbour.
Module Dynamic Output

Algorithm Elimination = Threshold  Selection
History-Based Weighted Average (STANDARD - §3.1) X X Mean
Module Elimination Weighted Average (ME- §3.2) v X Mean
Soft-Dynamic Threshold Weighted Average (SDT- §3.3) X v Mean
Hybrid History-Based Weighted Average (HYBRID- §3.4) v v MNM

which we argue would be beneficial for IoT data integration with con-
current streams from redundant sensors.

3. History-aware voting algorithms

To combine values from uncalibrated redundant sensors, the history-
based averaging algorithm (i.e., the STANDARD algorithm [23]) either
chooses a sensor output value or creates an amalgamation of these
values. This approach can be optimized by temporarily ignoring val-
ues produced by modules with below average historical records. This
variant, i.e. Module Elimination Weighted Average (ME), assigns zero-
weights to the discarded values in the voting until their historical
records improve by submitting better values, even if discarded in the
voting itself.

The Soft Dynamic Threshold History-Based Weighted Average (SDT)
introduces a finer grain definition of agreement, beyond the binary-
only definition [14]. Values between 1 and O can be assigned if values
are not in agreement based on the accepted error threshold, but are in
agreement based on a multiple of it. The magnitude of the multiple is
defined by a parameter of the algorithm that can be tuned according to
the needs of the specific use case.

We further consider Hybrid History-Based Weighted Average (hence-
forth HYBRID [5]). It combines ME and SpT, while utilising agreement-
based and not history-based weights. The HyBRID algorithm allows to
choose a winning value rather than assigning the resulting average,
using the mean nearest neighbour approach. Table 1 recaps these alter-
natives and their supported optimizations, which we describe in further
details in the reminder of this section. We discuss our findings on the
output quality of all algorithms in §7.

3.1. History-based weighted average - STANDARD

In the STANDARD variant [23], agreement of two values x;,x; of a
set of N values is defined when they satisfy the inequality:

d,-/-=|x,-—xj|<a (@D)]

where « is a pre-selected margin.

When a value x; is in agreement with at least (N —1)/2 other values,
then we set S; = 1 otherwise S; = 0. Hence, .S; = 1 represents an input in
agreement with the majority. When »n runs are completed, the historical
record of a module is defined as:

n
Hm =Y S0 2
I=1
This value is then normalised by » to obtain the state indicator P:
H;(n)
Pim)=—— 3)

During a voting round, each module’ weight is based on its state
indicator:

w; = Pl,2 (4)
Finally, the weighted average is calculated as:

N
2,-:1 Ww;x;
Yo="oN ®)
Z,—=1 wi

3.2. Module elimination weighted average - ME

This optimization, described further in [23], eliminates modules (i.e.
sensors in our case) that perform below the average from the vote, as-
signing each of them a weight of zero. Specifically, a P,,, is calculated
as follows:

p _Zih
avg N
The weight calculation is modified by setting the weight w; of a
module to zero when it performs below average, i.e. its P, is below P,
as follows:

vg
(6)

vg

0 if P.<P,
W= @
P; otherwise

Finally, the average calculation relies on Equation (5).
3.3. Soft dynamic threshold weighted average - SDT

The Soft Dynamic Threshold algorithm [14] replaces the margin «
with a dynamic variant v, based on the input x, computed as:

v, =px (8)

Where p is a proportional constant, i.e. the error margin is a pro-
portion of the input value and not an absolute value for all inputs. The
algorithm then replaces the Boolean definition of Si defined above.
Rather than two modules i, with a distance of d;;, the parameter S, i

ij?
becomes:
1 ifd;; <v,
d;; .
S = (k%)(l—k*’ul) ifv, <dj; <kxv, ©)
0 ifd; 2 k=v,

The parameter k is tunable, and chosen on a use-case basis to de-
termine how permissive the algorithm is to considering values to be in
partial agreement.’

Then §; is calculated by normalising:

N
X1 Si
S =—
N-1
H;(n) and P;(n) are calculated as before in Equation (2) and Equa-
tion (3).
Hence, SDT computes the weights, where w; is obtained as:

(10)

2P(n)  if05<S,<1
w;=1PXn)  if0<S;<05 an
0 if §;,=0

Finally, the output is calculated with Equation (5).

1 In this context, we refer to partial agreement when the value is outside of
the agreement threshold v, but within the tunable and more tolerant k * v,.
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Algorithm 1: Soft-Threshold 1-D Clustering.

Input : Values: V, threshold-factor: f
Output: Clusters: C

1 Create-cluster(C,[])
2 for value in V do
3 for Cluster in C do
4 if (1 — f) X avg(Cluster) < value < (1 + f) X avg(Cluster) then
5 | cluster.add(value)
6 end
7 end
8 else
9 | Create-cluster(C, [value])
10 end

3.4. Hybrid history-based weighted average - HYBRID

The HYBRID variant combines the Module Elimination algorithm and
the Soft Dynamic Threshold algorithm. S;; and S; are computed by
Equation (9) and Equation (10) with the change that v, is once again
replaced with « as in the standard algorithm.

Weights are calculated similarly to the Module Elimination algo-
rithm:

0 if Si=00r P,'(n)<Pavg(”)
w; = 2[]11 ; (12)

o otherwise

However, the final output y of the vote is not the average y but
rather the input x; closest to it.

The final difference is the calculation of the history, based on the
final output y and computed in a similar manner to S;;:

1 ifd,, <a
B =4(E1 - 22)  ifa<d,<k+a 13)
0 ifd,>2k+*a

The history of the module for n rounds is:

N
Hy(n)=")" hy(n) (14)

i=1

Finally P;(n) is calculated as in Equation (3).
4. AVOC: accurate voting with clustering

History-based algorithms typically fall back to standard average (or
a similar unweighted approach) on the first round until a historical
record is established or when the weights become 0 due to severe issues
with the data. Weights can drop to O after a series of disagreements,
which results in notorious disagreers being rated as untrustworthy by
the system applying the algorithm. To counteract these issues, we intro-
duced AVOC [17], which we aim to investigate and evaluate in greater
depth in this work. AVOC builds atop the HyBRID algorithm by apply-
ing a simplified clustering algorithm during the first round when the
weights are all 0. The clustering step eliminates obvious outliers, im-
proving the accuracy of that round compared to mean average, with
little performance overhead and faster convergence speed. In this work,
we further evaluate how AVOC performs in comparison to the state-of-
the-art voting algorithm, and how it can be combined with it to achieve
optimal performance in an indoor positioning scenario.

Algorithmic approach.

For the clustering step, we leverage a similar logic to the agreement
calculation in voting algorithms: we check for values within a given
scaling threshold of each other (which is selected to mirror the param-
eters of the given algorithm), and group the values in agreement. Then,
we select as output value the average (or its closest real value) of the
largest group (if we are using the mean nearest-neighbour approach to
output selection). Algorithm 1 formalizes this approach. This grouping
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1A

2 "algorithm_name": "Avoc",
3 "quorum": "UNTIL",

4 "quorum_percentage": 100,
5 "exclusion": "NONE",

6 "exclusion_threshold": 0,
7 "history": "HYBRID",

8 "params":{

9 "error": 0.05,

10 "soft_threshold": 2
11 },

12 "collation": "MEAN NEAREST NEIGHBOR",
13 "bootstrapping": true,
14 }

Listing 1: Vote definition sample in VDX JSON format.

logic is similar to DBSCAN [15]; AVOC opts for self-calibration, rather
than requiring costly parameters tuning. This is achieved through a ma-
jority vote with a soft-dynamic error margin (as the margin depends on
a reference value). The clustering step is used for bootstrapping a new
set of modules, or as a fallback in cases of issues. To reach this goal,
we use the historical record value for each module, and declare that the
clustering approach should be used when all records are 1 (indicating
a new set) or O (indicating a failure of the system or an extreme data
spike). Fig. 2 depicts this logic.

Generalisation. Generalising this approach for multi-dimensional
data, an unsupervised clustering algorithm can be used such as Mean-
shift [13] or X-Means [32]. The logic of choosing an output value would
be similar. However, in such scenarios, choosing a single output vector
for multiple dimensions is non-trivial as the complexity of data and
correlation of errors considerably increases. To mitigate, the voting ap-
proach can be applied for each dimension separately, leaving other data
fusion techniques to process the multi-dimensional results. In AVOC, we
follow the approach of voting on each dimension separately, without in-
corporating the clustering itself.

5. VDX: voting definition specification

To enable reliable implementations and improve the usability of
software voters, we contribute a new voting specification scheme and
parsing logic. The scheme can define any of the algorithms described
above, as well as simpler ones without history.

Software-defined voting schemes exist, e.g. Voting Definition Lan-
guage (VDL) [6]. Those predate more complex history-based voting
approaches, and extending VDL for finer-grain algorithmic definitions
is challenging. However, our specification VDX supports the relevant
parameters of VDL, enabling our definition to describe a superset of
VDL-scoped algorithms. The full schema, as well as a sample implemen-
tation and usage examples can be found at: https://doi.org/10.5281/
zenodo.8069916. The repository also includes an interactive applica-
tion that allows users to compare the algorithms presented with the
state of the art (Fig. 4) as well as experimental extensions still under
development (e.g. for handling multi-dimensional data as mentioned in
§4).

Capabilities. Listing 1 shows our AVOC algorithm using this scheme
as example. VDX allows the specification of several parameters, includ-
ing quorum (i.e., how many candidates need to submit values for a
vote to be triggered), exclusions (to automatically prune outliers) col-
lation techniques similar to VDL, e.g. “mean nearest neighbour” (List-
ing 1, line 12). It extends VDL by allowing the selection of a history
algorithm (Listing 1, line 7), additional parameters (Listing 1, lines
8-11), and whether to enable clustering algorithm as a bootstrap/-
fallback mechanism (Listing 1, line 13). Another extension VDX adds
over VDL is the ability to vote on categorical i.e. non-numeric values,
such as character strings and JSON blobs. In such cases however, sev-
eral features are disabled. Value-based exclusion cannot be applied, as
there can be no mean or standard deviation calculation. The “standard”
and “module-elimination” algorithms for deriving module history are
available, however the “hybrid” algorithm is not, as the fine-grained
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Fig. 2. Flowchart of our extension to the state of the art voting algorithm, resulting in AVOC. The clustering version of the vote is triggered when weights are all 1
or 0, indicating a freshly initialized system or a large amount of flaws that made the weights unusable. After the clustering vote concludes the weights are calculated
as in the unmodified algorithm, but using the output of our custom vote, therefore reducing the transient errors.

Sensor Sensor Sensor

—

Fusion device

Voting + . Tttt !
sensor
specification

1
Fusion service >,

Fig. 3. Overview of the voting specification usage. The same fusion service can
be applied to a variety of setups (e.g edge/fog nodes, robots, IoT devices etc.)
and a custom definition can be supplied during setup to select the appropriate
behaviour.

agreement definition cannot be applied to non-numeric values. Finally,
clustering-based bootstrapping cannot be applied to categorical values
and the only collation method is the weighted majority vote. Software
voting implementers may re-introduce some of these features by sup-
plying a custom distance metric for categorical values.

Fig. 3 depicts the proposed workflow leveraging the voting specifi-
cation. The voting format description is submitted to the voting system
by the user to initialize the system. Sensor reading can then be submit-
ted to the same system, directly to the exposed sensor reading fusion
service. These will trigger voting rounds. The system needs to maintain
a record of the success rate of each sensor (defined as P; in Section 3)
and the parameters each voter group uses. In principle, it is not required
to retain the sensor readings from previous submission rounds (though
some algorithms require it to retain the last output value to be used in
the next round).

Limitations and assumptions. VDX currently cannot define algo-
rithms that use parameters for the candidate values, e.g MLV [26], or
genetic voting algorithms [35], but assists already by introducing vot-
ing into further IoT software for reliable input data and analytics. It
should also be noted that VDX itself has no security features that pro-
tect against malicious actors, so this is left up to the client code to
implement as needed.

6. Multi-sensor application scenarios

We devise three use-case scenarios to validate our approach.
The scenarios represent sensor-reliant deployments where redundancy
proves valuable. Specifically, we draw on the smart building and self-
driving vehicle domains, both showcasing cyber-physical systems rely-
ing on sensor measurements to control other critical systems.

Fig. 5 depicts our first use-case, a sunlight detection system in a
hypothetical smart building. Such a setup could be used to control
automated window blinds, for example. This example was selected to
showcase a scenario with redundant sensors that are expected to pro-
duce identical results. The hub is connected to a sink node to record
10’000 rounds of concurrent measurements from 5 sensors, polling at

8 samples/s, to create a reference dataset representing 1250 seconds
of data collection. Each round produces 5 float values per sensor. The
reference dataset consists of the raw readings from all sensors and is
used to compare all voting algorithms on the same set of values. We
built a portable demonstrator that executes them and our proposed vot-
ing algorithm, AVOC (detailed in §4), leveraging a Raspberry Pi 4B unit
(see Fig. 6). It uses a Phidget Wifi hub [40] (VINT) connected to a set
of 5 LUX1000 Light Phidget sensors [1]. Input, weights and results are
shown on an LCD screen [19] connected to the hub. The portable ver-
sion let us confirm the feasibility to execute on constrained hardware,
combining both redundant measurements and voting.

In the second use-case, we mimic a typical smart-city/self-driving
vehicle application that relies on indoor-positioning to track the posi-
tion of a moving unit (e.g., a robot). We simulate the operations to track
a cargo vehicle traversing a tunnel, as shown in Fig. 7. Such vehicles use
Bluetooth (BLE [2]) beacons as milestones to locate the position of the
truck, as done in emerging country-wide systems (i.e. CST — Cargo Sous
Terrain [28,11]). We deploy two stacks of nine redundant beacons and
a cargo vehicle using a Lego Mindstorms EV3 [29] robot. As the Blue-
tooth receiver on the robot was incompatible with the beacons due to
lack of BLE support, we installed a laptop on top of it acting as prag-
matic substitute receiver with edge processing capabilities, and without
affecting the generality of the findings other than affecting the speed of
the robot (which has no effect on what we are measuring). Fig. 8 shows
the prototype.

The robot drives slowly in a straight line with no line-of-sight obsta-
cles from one beacon stack to the other, across a distance of 15 meters.
The speed of the robot was set to 7% of its specified top speed (0.09
m/s). We collected as many data points as possible along the route,
resulting in 297 measurements per beacon, noting that autonomous
cargo systems like CST proceed at around 8.3 m/s, thus having 99%
less measurement samples available for voting. We elected not to apply
filtering and to vote on the raw values in this experiment, to evalu-
ate the performance of our voting system in the presence of the typical
unpredictability of BLE singal strength measurements.

The third use-case is a positioning experiment in a real-world en-
vironment, as shown in Fig. 9. The experiment context is meant to
emulate a smart shopping scenario, recreated in our office building.
Here, we have placed 4 stacks of 5 beacons in a room of dimensions
7.18 m x 1.98 m. Each stack represents a store shelf in a hypothetical
store. A user with a bluetooth-enabled device walks around the room to
collect measurements. This scenario allows us to compare our approach
to other sensor fusion methods for indoor localisation, namely Kalman
filtering.

7. Evaluation

This section presents the experimental evaluation of AVOC and the
VDX system in general. With VDX, we fully implemented the three use-
case scenarios from §6, and compare the error-correction performance
of the various voting schemes. More concretely, we use our light sensor



P. Gkikopoulos, P. Kropf, V. Schiavoni et al.

Voting Algorothm Demonstration
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Voting Result

This is a demonstrator application built to document the reproducibility of

our work and allow testing our voting approach with arbitrary data files.

Instructions:

Algorithm selected: AVOC

Execution time: 304 ms

Load a csv file to use one of the available voting algorithms to merge the

columns. Each column needs to correspond to one of N redundant

Download

measurements. Therefore each row will be merged into one output

value. For a value to be valid it needs to be able to be cast to FLOAT.

Files are treated as if they have no heading row.

Available Algorithms:

Simple Average

Module Elimination Weighted Average (ME) [1]

.
o History Based Weighted Average (Standard) [1]
o Soft-Dynamic Threshold History Based Weighted Average (SDT)

(21

o Hybrid History Based Weighted Average (Hybrid) [3]

o Cluster Majority Mean (CMM)
« Hybrid + CMM (AVOC)

Algorithm and file selection:

Simple Average v Choose File No file chosen

File Preview

0
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151
18.3151

Fig. 4. Algorithm comparison application.

-eeth- ‘@
- leth - (ight senson)
N Tk
- -eth - (Tghtsenson)
--- - leth - (ightsenson) &

wifi §

Fig. 5. Light sensor use-case: the sensors are wired via ethernet to a hub, stream-
ing data via WiFi to the voting sink-node.
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Fig. 6. Portable ‘shoe-box’ testbed for our light sensor setup (Fig. 5). A Rasp-
berry Pi 4 runs the fusion script. An LCD display shows the voting results and
weight values.

Fig. 7. BLE beacon use-case. 2 stacks of beacons 15 meters apart with a robot
driving between them, taking signal strength measurements along the way.

Table 2
Notation used in our evaluation.
Symbol Description
E1-E5 Light sensor labels
Lumen (Im)  Unit of measurement of light quantity
avg Distance-weighted mean
strd Standard History-based weighted average
ME Module elimination history-based weighted average
Hybrid Hybrid history-based weighted average
Clustering Clustering-only voting
AVOC Accurate Voting with Clustering (our method)
RSSI Received Signal Strength Indicator
LSML Least Squares Multilateration

experiment as a model for sensor-based time-series data, which can be
voted upon using history-based algorithms. We use the BLE beacon ex-
periment to test various algorithms on their ability to function on low
quality data. Finally, we use the localisation experiment to compare
our voting approach to Kalman filtering, a state-of-the-art approach
for sensor fusion, as well as test how we can effectively combine the
two approaches to improve accuracy and performance. Our evaluation
answers the following questions: (Q1) Can AVOC improve the output
quality of our use-case scenarios? (Q2) Can it mitigate injected errors
and reach the same output? (Q3) Which algorithm fits which scenario
better, and (Q4) How can we leverage VDX to customise the voting
behaviour for each scenario?

Due to the variety of experiments, we provide Table 2, to ease un-
derstanding of our notation in this section.

Implementation details. We implemented AVOC and the ap-
proaches from §3 in Python 3.9, for a total of 490 LOC. We note
that though the evaluation was done with pre-recorded data for re-
producibility purposes, the system can execute a history-aware voting
round in 1 millisecond and a stateless vote in 50 microseconds (data-
store reads and writes being the bottleneck). Thus, the system can
operate under soft real-time constraints, as in the case of our “shoe-
box” demonstrator in Fig. 6 as well as many critical cyber-physical
applications in practice.

UC-1: Light sensors. We used the 10’000 value dataset recorded
using our light sensor setup (§86) to gather the raw data and reference
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Fig. 8. Robot driving to the circled beacon stack destination. The laptop acts as bluetooth receiver and edge voter.
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Fig. 9. Indoor positioning experiment setup. 4 stacks of beacons are deployed
in the 4 “store shelfs”. The user device is placed in the middle of the room and
the user walks around the room to collect measurements.

values for the baseline algorithms (Fig. 10-a). The dataset contains light
quantity in Lumen, measured by our 5 light sensors, labelled E1 to E5.?
Then, we injected an artificial outlier sensor, by adding +6’000 lumen
to sensor E4 and repeated the voting experiment. We compare the per-
formance of the different algorithms according to the following metrics:
(a) voting rounds required to converge back to the baseline, and by ex-
tension how quickly outliers are eliminated; and (b) how far the new
stable value is from the original.

We make a first comparison using the raw reference data. In this
scenario (Fig. 10-b), all 6 variants performed equally well, with out-
puts matching almost completely. We present the 6 different horizontal
plots, with the light quantity in Lumen on the Y axis, separately, as
they would overlap if plotted together. The error injection case (shown
in Fig. 10-c) exhibits some interesting facts. First, the Standard algo-
rithm exhibits high initial skew, as can be seen on the left side of
Fig. 10-e, which is then slowly mitigated as the faulty sensor (E4) is de-
emphasised in the later part of the experiment, as shown on the right
side of Fig. 10-e. However, even after 10’000 voting rounds of voting
(e.g, 20 minutes in our experiments), the skew is not eliminated com-
pletely, as can be seen at the end of Fig. 10-e. This is where the module
elimination feature of ME is beneficial, as the faulty sensor is quickly
eliminated in round 2, as performing below average compared to the
rest. However, as seen in Fig. 10-c, the gap created by skewing E4 in-
dicates how E3 is also now tagged as outlier, and its result is skewed
upwards by 200 Im.

The HYBRID algorithm also uses a granular definition of agreement
score, but combines it with the aggressive elimination of modules from
ME. For our experiment, this is the best of both worlds result (also shown
by the differentials in Fig. 10-e) where, minus few spikes, the value is
identical to the pre-error output.

For completeness, we show clustering-based voting on its own with-
out combining it with HYBRID (which remains ideal for this scenario).
This can be seen in Fig. 10-e. We observe similar behaviour to ME, with
E4 being excluded from the output immediately. Differently from ME,

2 The lumen (symbol: Im) is the unit of luminous flux, a measure of the total
quantity of visible light emitted by a source per unit of time, in the International
System of Units (SI). [7].

E4 was also excluded from the first round. In contrast, E3 was not al-
ways excluded, due to the lack of history-based elimination, indicating
higher variations in the output. Regarding clustering-only voting (COV),
it significantly outperforms other stateless approach, i.e. weighted av-
erage without history. This result indicates that the COV approach fits
well scenarios where maintaining historical result records is impracti-
cal: short-lived sensor measurements, one-time comparisons of datasets,
etc.

One consistent observation in the error injection experiment is that
history-based algorithms experience a spike on startup, as the artifi-
cially modified value is skewing the output but is not yet mitigated by
the history. This is the phase where in principle the clustering step de-
tailed above has higher chances to affect the results. Indeed, although
the clustering algorithm alone is not as accurate as ME or HYBRID, it
overcomes the initial data spikes. Thus, a system capable of fallback
to it when history is not available or suspected unreliable, can benefit
from its inclusion.

Next, we run AVOC, which concretely combines the clustering step
with HYBRID. We observe how the initial spike is quickly pruned
(Fig. 10-f) within the initial rounds. The bootstrap boost can also be
noticed: due to the better history adjustment in round 1, the voter
already learns to exclude E3 from round 2, returning to its pre-error
output almost instantly, despite the clustering is only used once. As
AVOC converges within 200 ms, the experiment confirms its utility for
fast accurate voting and provides a positive response to our questions
(Q1) and (Q2), as we improve the reliability of the output even in the
presence of the injected errors.

UC-2: BLE beacons. We leverage this second use-case with BLE bea-
cons and a Lego Mindstorms EV3 robot to study a scenario with more
anomalies and faults. We set up two stacks of 9 beacons each 15 meters
apart in an indoor corridor with no obstacles. The robot drives at 7% of
its full speed in a straight line, from one stack to the other. The robot
takes continuous RSSI (Received Signal Strength Indicator) measure-
ments for each beacon along the way. This experiment examines if the
high redundancy and voting actually are beneficial. The scenario simu-
lates the operations to locate a vehicle traversing a tunnel using beacon
stacks as milestones along the way, determining the closest stack to the
vehicle. The state of the art in leveraging RSSI for positioning relies on
filtering [42] or collaborative positioning [41] to improve stability and
output quality. However, since the scope of our experiment is to evalu-
ate the effects of voting on sensor measurements, we kept the raw RSSI
values from the sensors, to keep the values as close to the original mea-
surement as possible for the voting, before applying other techniques to
improve positioning performance. The resulting data, which we plan to
publicly release, lacks several values as well as mismatched readings in
each stack, providing a more challenging fusion scenario. Such missing
values allowed us to identify several fault scenarios, which we describe
next.

Fault scenario: missing values. Due to some beacons not being reach-
able from the BLE receiver (i.e., the laptop in our experiment). Missing
values can reduce the reliability of the output measurement, since fewer
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Fig. 10. Comparison between our voting approach AVOC and the state-of-the-art approaches. Our 5 sensors, labelled E1 to E5, measure light quantity in Lumen. (a)
Reference data, captured by our light sensor setup for 20 min. (b) voting output using AVOC on the reference data. (c) Reference data with injected errors (1 faulty
sensor). (d) Output of HyBRID, Clustering and AVOC under these errors. (e) Output difference between voting on the raw values and voting on the error-injected

values. (f) Zoom on the first 10 rounds. All Y-axis units are in 1000 s of Lumen.
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Fig. 11. Results of the BLE beacon experiment. We measure the signal strength from each of 2 stacks of BLE beacons as the robot moves from Stack A to Stack B.
(a) shows the RSSI output when only one beacon from each stack is used. (b) shows the average RSSI value of all 9 beacons in the stack for each round. (c) shows
the AVOC voting output for all 9 beacons in the stack. Averaging provides visibly less ambiguity in determining which stack is closest to the robot, when compared

with the mean nearest neighbour selection used for HYBRID.

candidate values are being considered, and potentially prevent from
reaching a consensus value if most or all values are missing. A small
amount of missing values, i.e. less than the majority, does not prevent
the system from converging to a common result, though it reduces the
redundancy as well as the number of candidates considered, and as
consequence the trustworthiness of the outcome. If the majority or all
values are missing, the result would no longer be trustworthy, and the
system should either revert to the last accepted result, or raise an er-
ror. Obviously, these failure scenarios should be accounted for when
the voting behaviour is defined. Due to the complexity possible and
the variability by scenario, these behaviours are currently not modelled
by VDX itself, and are instead left up to the client code to define. In
our test-bed implementation, the error handling procedure was pro-
grammed into the implementation of each algorithm. It is possible to
make this behaviour customisable, including the custom error-handling
in the voting parameters of the schema definition.

Fault scenario: conflicting results. In case of conflicts, a majority agree-
ment on outputs using automated voting is less likely to be reached.
It is possible that a relative majority agrees on an output, but they
are an overall minority, and no absolute majority exists. Especially in
systems with small number of votes, ties might occur more easily and
tie-breaking mechanisms kick in, such as proximity to the previous out-
put. These fault scenarios clearly show that setting the constraints of a
voting system is non-trivial, and that voting algorithm implemen-
tations in a generic data fusion platform should be parametric. In
addition, there should be a voting specification declared for the target
application, to take the desired error-handling behaviour into account.
Accounting for such fault scenarios allows to implement more robust
versions of the algorithms. It is also possible to extend VDX in a future
revision to support high-level descriptions of the desired fault handling

policy. Examples of such policies include rejecting a round of measure-
ments if there is no majority quorum or majority agreement.

We then tested our voting algorithms on the BLE experiment data.
We used the same recorded values for each algorithm. We run vot-
ing between the 9 sensors of each stack to create 2 output values per
round (i.e. 1 per stack). We observed that the method for computing
the history of each sensor has no effect. The output of all history-
based algorithms overlaps completely. (They are not all plotted due
to space constraints.) This is because the chaotic nature of the mea-
surements meant the history values were all very low, as there were
few agreements between the sensors. We observe however that the
value collation method has impact, e.g., averaging the weighted val-
ues, a mean-nearest-neighbour selection, etc. This created 2 algorithm
groups, those averaging and those choosing the mean-nearest neigh-
bour value, with every algorithm in each group performing identically
to each other. In order to determine the best results, we study the num-
ber of rounds while it is ambiguous which stack of sensors is closest to
the robot at any given time. Fig. 11 presents these results.

Fig. 11-a is the reference: if each stack only had one sensor, it is
not possible to identify the closest stack to the robot for most of the
duration of the experiment. Simply averaging the values of the 9 sen-
sors (Fig. 11-b) produces a less ambiguous result. We present the results
using AVOC in Fig. 11-c. In spite of the method used to create a histor-
ical record for each sensor, what had the most impact on the output
was whether or not the last step was to average the values or to se-
lect a value (with averaging being the better option in our experiment).
In scenarios with high degree of noisy data, such as the BLE one, rely-
ing on historical record has no practical value. This confirms our initial
assumption that there is no optimal voting method for all applica-
tions, despite common elements shared by our scenarios (e.g, having to
reconcile numerical values from a group of sensors). Thus we conclude
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Fig. 12. Overview of the 4 workflows we used for data cleaning. 2 workflows are from the state of the art, and employ different versions of the Kalman filter to
clean the data. The 2 other workflows use voting between the 5 sensors in each stack rather than treat each sensor independently.

that the answer to (Q3) depends of the specifics of the use case, and
that the customisation offered by our specification allows us to address
Q4.

UC-3: Indoor positioning.

Our last experiment utilized the same BLE beacons as the previ-
ous one, but this time in a standard indoor positioning scenario. The
scenario was based on a smart shopping context, in which we placed
4 “store shelves” in the corners of a rectangular area in our lab, and
stacked 5 beacons on each shelf (to simulate the 5 levels of a supermar-
ket shelf). The dimensions of the experiment area are 7.18 m x 1.98 m.

To calculate the position using BLE beacons, we used the following
formula for range estimation, based on the path loss model [33]

rssig=rssi
10xn

d=10 (15)

where rssig is the RSSI value at 1 m, rssi is the RSSI value measured
by the receiver, and n is the path loss exponent. As the beacons used
do not advertise their TX power (a pre-calculated value for the RSSI at
1 m), we needed to measure the RSSI at 1 m for each beacon, as well as
the path loss exponent. To obtain the path loss exponent, we measured
the RSSI at 2 m, and solved for » using Eq. (15).

To calculate the position, we used the ranges obtained from the bea-
cons, and the position of the beacons, to define circles which we used
to solve the multilateraion problem using the least squares method. The
system of circle equations is:

(x—x)+ -y =d? (16)

where x; and y; are the coordinates of the beacon, and d; is the range
to the beacon. The solution to this system of equations is the position of
the user. We used the scipy.optimize.least squares function
in Python to solve the system of equations. This uses the Levenberg-
Marquardt algorithm [30] to solve the non-linear least squares problem.

These two parts of the position estimation remained the same for
all the algorithms we tested. We then recorded RSSI values from the
beacons at different known locations in the experiment area, and used
these values to test the algorithms. As before, we used the pre-recorded
data to ensure all 4 algorithms were tested on the same inputs.

The 4 workflows we used are presented in Fig. 12. All methods used
variations of the Kalman filter [38] for smoothing, according to the state
of the art. First, we used the 1D Kalman filter to clean the data, and then
used the Least Squares Multilateration to derive the output. This means
we applied the filter directly to each individual range estimation, and
then used the filtered values to calculate the position. This method of
data cleaning is similar to the one used in [10].

The second workflow adds a voting step between the filter and the
multilateraion. As with the tunnel experiment, we used a simple aver-
aging voter here, as the data is limited in history and also quite noisy.

The third workflow uses the 2D Kalman filter after the multilatera-
tion. This means we applied the filter to calculated position to smooth
it. This method of data cleaning is similar to the one used in [44].

Finally, the fourth workflow adds a voting step before the multilat-
eration to the third one. The raw range data was voted on, before the
multilateration was calculated.

A visual representation of the two Kalman filter workflows is shown
in Fig. 13a and Fig. 13b. The aggregated results of the 4 workflows
are presented in Table 3. The table presents the results per measured
user location, averaged across all positions used in the experiment. In
each position we took 3 measurements, 5 seconds apart, from each of
the 20 beacons (5 beacons per stack, 4 stacks). Here we can see that
voting improved the result of both methods. Perhaps surprisingly, the
2D Kalman filter did not improve the result, and in fact made it worse.
This can be explained by the fact that the measurements were only
taken from static positions, and not from a moving user. This means
that the 2D Kalman filter was not able to take advantage of the temporal
information and velocity.

The performance results from the same table are also of interest.
We observe that even though the 2D Kalman filter takes more time to
compute, the difference is negligible compared to the total runtime.
Voting reduces the amount of time that the Least Squares method takes
to compute, which is always the most time-consuming step.

To further test the effect of voting on performance, we artificially
increased the number of beacon groups by duplicating the real mea-
surements. As expected the filtering time for the Kalman 1D filter scaled
linearly, as the number of measurements in each filtering step remained
the same, and only the number of steps scaled with the number of bea-
cons. Each filtering step takes approximately 1.33 us (assuming again 3
measurements per beacon).

Similar behaviour was observed for the voting with each voting
round between 5 values taking approximately 1.5 ps. It should be noted
here that enabling the history aware features of VDX would increase the
time of a voting round depending on the implemented storage method
for the history. In that case, reading and writing the histories into a
backend component would take the majority of the voting time, de-
pending on the efficiency of the implementation.

Increasing the number of sensors does not increase the time the 2D
Kalman filter takes to compute, as it is applied to the final positioning
result, so only 2D coordinates are applied as a measurement. Therefore
only the amount of measurements per sensor increasing would affect it,
but that would require a prolonged measurement period, which would
not fit the indoor navigation scenario.

The Least Squares Multilateration seemingly scales differently in the
real experiments, though when inflating the number of sensors we ob-
served that for very high sensor counts (we tested between 100 and
20000 circles) the time is quite consistently linear. The average time di-
vided by the number of circles was 400 ps per circle, above 5000 circles,
as below that the overhead still makes the duration less predictable. It
is consistently the most time consuming part of the workflow, so vot-
ing, which reduces the amount of circles it needs to solve, is a good way
to improve performance (provided the scenario allows the sensors to be
grouped).
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Fig. 13. Sample visual output of the localisation program using the 2 different Kalman filters. (a) 1D Kalman filter. Here the filter is applied to each range
measurement individually and multilateration is performed at the end. The 4 blue circles represent the raw range measurements. The red circle represents the
filtered position estimate. The green dot represents the true position of the user. (b) 2D Kalman filter. Here the filter is applied to the position estimate after
multilateration. The 3 red circles represent the raw position estimates. The blue line represents the filtered position estimate.

Table 3
Execution breakdown of the 4 data cleaning methodologies in the indoor positioning experiment.
Method Filter Filter LSML LSML Voting Voting Mean Time
calcula- time calcula- time rounds time Posi-
tions tions tioning
Error
Kalman 1D 20x3 80 pus 1x20 20 ms - - 156.75 502 ms
mea- circles cm
sure-
ments
Kalman 1x3 236 ps 3x20 44 ms - - 208.25 567 ms
mea circles cm
sure-
ments
Kalman 1D 20x3 80 us 1x4 12 ms 4x5 6 us 145.75 496 ms
+ Voting mea circles values cm
sure-
ments
Kalman + 1x3 319 ps 3x4 31 ms 12x5 18 ps 159.25 557 ms
Voting mea circles values cm
sure-
ments
250 = e i cluster i Standrd i " = e ™ ‘AVOC Weighted Average, Srtd and ME, perform similarly, as expected. Hybrid
_ and AVOC also perform similarly, as they use the same history deriva-
£200 tion method. However, it can be seen that AVOC is consistently slightly
2 150 faster than Hybrid, due to using the clustering step and skipping the
g 100 history-based calculation when the weights are equal.
° It is notable that up to 300 sensors, which we believe to be a high
£ 50 f number of redundant sensors for any sensor fusion setup, AVOC is faster
0 than the 100 ms refresh time of our sensors, indicating that it can be
100 200 300 400 500 600 used in real time.

Total number of sensors

Fig. 14. Scaling experiment with 100-600 simulated light sensors. We compare
the 6 algorithms from our light sensor experiment on the time taken to complete
each voting round.

Scalability evaluation.

We conducted a scaling experiment by creating simulated sensors.
Each simulated sensor in the dataset uses a randomly selected duplicate
of the data of one of our light sensors from the first experiment. We
varied the number of simulated sensors between 100 and 600 and com-
pared the time per voting round of the six algorithms compared in the
first experiment. As before, all algorithms were implemented using our
VDX system. (See Fig. 14.)

We observe that the 2 non-history algorithms exhibit similar per-
formance, further strengthening the Clustering algorithm in scenarios
without history, as it does not degrade performance and, as shown be-
fore, significantly increases accuracy. The two versions of History-Based

10

8. Findings and discussion

Evaluating AVOC and VDX yielded some interesting results. First,
the light sensor experiment to evaluate the time-series performance of
history-based voting. We observe that both the clustering component of
AVOC and the history component from the HYBRID algorithm (that is
part of AVOC) is important is removing faulty modules and improving
the accuracy of results. It is also an important finding that clustering
alone is a better voter than distance-based weighted averaging, the typ-
ical method for reconciling numeric data which was used as one of the
points of comparison in the experiment. This is because clustering is
able to remove faulty modules, while distance-based weighted averag-
ing is not. This is useful in scenarios where history is not utilized, due
to the system being short-lived or memory constraints. The extra com-
putation in any case is not significant, as shown above, due to the small
amount of data involved in each round of voting, even for a large num-
ber of modules.
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The first BLE experiment showed that noisy and unstable data is un-
suitable for clustering-based methods or history-based methods. In such
examples averaging works best, though as we examined in the third ex-
periment, the correct approach would be to filter the data or use other
smoothing algorithms first. Our latest positioning experiment presents
both a comparison against the state of the art, as well as an approach
for combining our methods with the state of the art in data fusion. We
observe that our approach can speed up the more inefficient part of the
process, which is optimising the multilateration, as well as slightly im-
proving the accuracy of the results. We argue that with enough ease of
deployment, this method can be applied in real world scenarios with-
out much effort, and can be used to improve the accuracy of existing
systems, with only software changes. This ease of deployment is exactly
why we developed VDX, which was used in all our experiments to im-
plement the different voting methods used.

With our simulated scaling experiment we also showed that our
AVOC algorithm is usable in real-time systems, even when hundreds
of sensors need to be voted on.

9. Conclusion and future work

We have conducted an experimental study of history-aware voting
in IoT and smart city/smart building applications. We demonstrated
the performance of different algorithms on three different scenarios
with different needs in terms of sensor fusion and presented out find-
ings in terms of selecting an optimal algorithm for each scenario. Our
findings show that inherently reliable systems can benefit more from
history-aware voting as it can more easily root out more nuanced qual-
ity issues. On the other end of the spectrum, inherently unstable setups
benefit more from smoothing and averaging techniques due to the
unpredictability of the values rendering historical records ineffective.
We also presented AVOC, our clustering-based voting approach, and
demonstrated its effectiveness in bootstrapping a new group of sensors
in a voting system. We showed how it can improve the accuracy of the
voting result in the early rounds by eliminating outliers in-place, rather
than discovering them based on past performance. We then proposed
voting definition format VDX that can be used to describe a voting
procedure to a compatible voter service running on an edge node.
We further consolidated our work by conducting an indoor position-
ing experiment and both comparing our voting-based solution with the
state-of-the-art approach as well as combining both approaches to find
an optimal solution. We discuss the benefits of the combined approach
for maintaining performance when increasing the number of sensors.
We plan to explore deeper and more realistic scenarios and the appli-
cability of our voting methodology to providing improved data quality,
as well as further develop the voting specification in order to field test
a voter service prototype with a variety of compute-power-restricted
setups.
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