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Societies and legislations are moving towards automated decision-making based on measured data in safety-
critical environments. Over the next years, density and frequency of measurements will increase to generate 
more insights and get a more solid basis for decisions, including through redundant low-cost sensor deployments. 
The resulting data characteristics lead to large-scale system design in which small input data errors may lead to 
severe cascading problems including ultimately wrong decisions. To ensure internal data consistency to mitigate 
this risk in such IoT environments, fast-paced data fusion and consensus among redundant measurements need 
to be achieved. In this context, we introduce history-aware sensor fusion powered by accurate voting with clustering
as a promising approach to achieve fast and informed consensus, which can converge to the output up to 4X 
faster than the state of the art history-based voting. Leveraging three case studies, we investigate different voting 
schemes and show how this approach can improve data accuracy by up to 30% and performance by up to 
12% compared to state-of-the-art sensor fusion approaches. We furthermore contribute a specification format for 
easily deploying our methods in practice and use it to develop a pilot implementation.
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 Introduction

Automated decision-making based on interpretations of data from 
e real world [9,12] is a growing trend across societies, especially 
 digitally transformed economies and legislations. This trend entails 
number of ethical concerns around mispredictions and wrong deci-
ons, economic trade-offs related to investment into data acquisition 
uipment and maintenance, as well as technical challenges associ-
ed to ensuring proper quality of the acquired data. Data cleaning 
d cleansing techniques [37] are commonly used on a single mea-
rement source, on a single time series to mitigate device downtimes 
d transmission errors, as well as and to eliminate unsuitable data 
cords, effectively increasing the data quality. These ex post cleans-
g techniques can however not prevent wrong observations that result 
om combining multiple sources with potentially diverging or conflict-
g views. In addition to the above techniques that are applied to each 
dividual data stream, we need to perform multi-view data fusion [43]
 arrive at a common ground truth across multiple data sources be-
rehand, especially in the case of redundant sensors. In this context, 
e employ voting-based data fusion to merge observations from multi-
e sensors that, in ideal conditions, would produce identical outputs. In 
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cases where independent ground truth measurements are not available 
or affordable, we dynamically assign the role of ground truth to the lat-
est agreement among candidate the values. These additional steps are 
shown in Fig. 1, which shows where our methodology fits in a system 
that uses IoT devices to obtain observations.

The necessity for higher-quality sensor data applies especially to 
emerging digitalised systems, such as smart cities, industrial produc-
tion and other cyber-physical domains. They involve large amounts of 
continuous data streams aggregated from a multitude of sensors, used 
as data sources. Sensor-based measurements are common especially in 
the Internet of Things (IoT) for triggering data-driven decisions. Qual-
ity issues in such distributed measurements [45] have profound adverse 
effects on systems leverage, and by extension, on humans and society, 
as shown in irresponsible AI community discussions [27]. Consequently, 
steps to improve input data quality within the data pre-processing step 
and in conjunction with data fusion are necessary to achieve better 
decisions and overall more reliable applications. Data fusion in gen-
eral is a technique of merging different inputs [31] in an application-
independent middleware to obtain a holistic view of physical objects. 
Data sources used as inputs to a data fusion system can have partial 
information that becomes meaningful once combined, or the complete 
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g. 1. Positioning of data fusion, voting and deriving the ground truth in a 
pical IoT data pipeline.

formation but with potential conflicts between sources. Different tech-
ques can be applied to each of these cases. Voting is an approach 
 fuse sensor data for the purposes of reliability and error mitiga-
n [24,21] in safety-critical environments. For instance, in avionics, 
ree redundant physical sensors are mandated for each logical sen-
r [21], and vehicles with autopilot abilities have configurations such 
 eight cameras (including three forward ones) to achieve redundancy 
 the critical data acquisition path. Thus, in the absence of external 
ound truth (i.e. a fully trusted and accurate data source, often too 
pensive in practice), voting is a pragmatic substitute as it leads to in-
rnal ground truth upon which critical decision-making can be based.
In this work, we study and observe state-of-the-art voting ap-
oaches for sensor data fusion, applying them to three IoT data cap-
ring scenarios relying on redundant sensor measurements: (i) light 
nsors in a smart building setting, (ii) Bluetooth Low Energy (BLE) 
acons to track vehicle position in a (simulated) tunnel and (iii) an 
door positioning experiment, also using BLE beacons, emulating a 
art shopping scenario. We focus on voting algorithms used to reach 
ta-centric consensus[18] on numerical values, as these are relevant 
hen merging sensor readings and leverage historical records to factor 
 the reliability of individual sensors. In §7 we conduct three exper-
ents on such IoT setups for real-time validation and pre-recorded 
ta for the purpose of reproducibility. We exploit our findings to con-
ibute a generic specification format that can be used to define voting 
hemes for several applications, particularly optimized for IoT and 
ber-physical applications. We argue that such a format aids the de-
lopment of distributed analytics applications by making them more 
eds-focused and reliable, while shielding software engineers from the 
ting implementation. Moreover, the increased robustness of the data, 
duced by multi-view data fusion implemented through the use of 
ting, facilitates the input data quality in data-centric artificial intel-
ence, a recent research direction aimed at overcoming misprediction
e to lack of input data assurance [39]. We replicate and evaluate the 
ate-of-the-art history-based voting algorithms, i.e. voting algorithms 
 which the weight of votes is determined by past performance of the 
ndidate in terms of agreement with the consensus. We observe the 
ed for a method to bootstrap the algorithms to be more accurate be-
re the history has been established, which would also improve the 
mber of voting rounds it would take for the weights to converge to 
able values representative of the reliability of the sensors.
Our contributions are twofold: (1) AVOC (Accurate Voting with 
ustering), a novel bootstrapping method for initializing history-based 
ting systems, which we fully implement and evaluate with three prac-
al IoT scenarios; (2) VDX, a new voting definition specification that 
ecisely defines application requirements and allows users to select ap-
opriate parameters for software voters.
The article extends and refines our previous work on AVOC [17]

 multiple ways. First, it adds a dimension of performance and scal-
ility, as discussed in 7 and 8. We evaluated the performance of the 
ting compared to state-of-the-art data fusion approaches and exam-
ed how it affects the scalability of the sensor fusion setup in terms 
 increased numbers of modules. Second, it details the third scenario 
 reliable indoor positioning, as detailed in §6. This scenario allows 
2

 to compare with Kalman Filtering, a state-of-the-art approach for ity
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ultilateration-based postitioning, in terms of performance and accu-
cy. Based on this experiment, we also discuss the implications on 
rformance of scaling our system versus scaling the existing solutions. 
ird, it presents additional details about our effort to replicate history-
are voting algorithms and implement them within our VDX software, 
ior to modifying them with AVOC.
The rest of the article is structured as follows. §2 surveys state-of-
e-art voting algorithms, data fusion and data quality issues relevant 
 IoT. §3 investigates voting algorithms used to reconcile redundant 
ta values. §4 presents AVOC, our approach. We describe the pro-
sed format VDX for defining the voting process in §5. In §6 we detail 
r use-case scenarios and how we built our hardware prototypes. §7
esents our experimental evaluation using both a reference scenario 
taset and our experimental setup. Our findings are discussed in §8. 
e conclude in §9 by discussing our findings and prospect future re-
arch directions in redundancy-based data quality in IoT.

 Related work

Data-driven decisions [16] are key elements of cyber-physical sys-
ms and digitalised applications of all scales and domains (e.g., smart 
ties, mobility, industrial production, home automation, etc.). In many 
ch systems, incoming data are subject to real-time analysis and sub-
quent decision-making. However, while systems research has allowed 
aling with the volume, velocity and variety of multi-source data in-
lved in the processing chain [36], issues still emerge regarding data 
ality, value and veracity. In this work, we focus on the accuracy (i.e., 
ality) for sensor measurements [34]. Data fusion across multiple ho-
ogeneous or heterogeneous sensors has been utilised to tackle the 
allenges induced by problematic data, improving analytics reliability 
rough a variety of techniques (e.g., data association, state estimation, 
cision fusion, classification, prediction, machine learning and analyt-
s [25]). Initial efforts exist to create standards and frameworks for 
ta management and interoperability, for instance in the smart city 
ace [20,22]. However, they currently lack a common framework and 
andardized format. Our work proposes a new interoperable format to 
fine voting-related data fusion.
Voting algorithms increase the reliability of measurements [24] in 
fety-critical domains, e.g. aviation [21] or self-driving cars [8]. We 
cus on reconciling numeric data using software voters, with either 
sult selection or amalgamation techniques [24]. Specifically, we con-
der history-based voting algorithms [23] that weigh values based on 
e historical performance record of the candidate sensor. History-Based 
eighted Average [23] weights the historical data to compute an out-
t value. To improve the granularity of historical records, [14] uses 
soft dynamic threshold. In [5], authors apply a hybrid approach us-
g module elimination and dynamic threshold. We further detail these 
proaches in §3. Our approach, AVOC, extends the hybrid algorithm 
om [5] with a clustering component to improve performance before 
ere is a long enough historical record, as well as to speed up conver-
nce of the weights to stable values.
Some voting-based data fusion frameworks rely on specific de-
ription languages to define algorithmic details [6]. However, these 
proaches ignore history-based measurements. We also observe that 
odern voting algorithms are too complex to be represented in such 
rms. Where [6] defines voting as three-step process (reaching quorum, 
cluding outliers and calculating results), modern algorithms often in-
ude further steps like weighing and updating historical records, or 
timising reliability metrics [26]. We argue that a customisable vot-
g framework serves as encapsulation for sensor-fusion applications if 
ilt atop state-of-the-art approaches, as shown next, when we present 
r proposal for a generic definition specification for voting algorithms, 
X. A further benefit of our approach is that it can then be integrated 
to data-centric tooling, such as ETL (Extract-Transform-Load) tools. 
ch tools, e.g. Singer.io [3] and Node-RED [4] are gaining popular-

, but still have no support for voting-related data cleansing methods, 



Journal of Parallel and Distributed Computing 187 (2024) 104840P. Gkikopoulos, P. Kropf, V. Schiavoni et al.

Table 1

Comparison of state-of-the-art voting schemes. MNN: Mean Nearest Neighbour.
Module Dynamic Output

Algorithm Elimination Threshold Selection

History-Based Weighted Average (STANDARD - §3.1) ✗ ✗ Mean

Module Elimination Weighted Average (ME- §3.2) ✓ ✗ Mean

Soft-Dynamic Threshold Weighted Average (SDT- §3.3) ✗ ✓ Mean

Hybrid History-Based Weighted Average (HYBRID- §3.4) ✓ ✓ MNM
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hich we argue would be beneficial for IoT data integration with con-
rrent streams from redundant sensors.

 History-aware voting algorithms

To combine values from uncalibrated redundant sensors, the history-
sed averaging algorithm (i.e., the STANDARD algorithm [23]) either 
ooses a sensor output value or creates an amalgamation of these 
lues. This approach can be optimized by temporarily ignoring val-
s produced by modules with below average historical records. This 
riant, i.e. Module Elimination Weighted Average (ME), assigns zero-
eights to the discarded values in the voting until their historical 
cords improve by submitting better values, even if discarded in the 
ting itself.
The Soft Dynamic Threshold History-Based Weighted Average (SDT) 
troduces a finer grain definition of agreement, beyond the binary-
ly definition [14]. Values between 1 and 0 can be assigned if values 
e not in agreement based on the accepted error threshold, but are in 
reement based on a multiple of it. The magnitude of the multiple is 
fined by a parameter of the algorithm that can be tuned according to 
e needs of the specific use case.
We further consider Hybrid History-Based Weighted Average (hence-
rth HYBRID [5]). It combines ME and SDT, while utilising agreement-
sed and not history-based weights. The HYBRID algorithm allows to 
oose a winning value rather than assigning the resulting average, 
ing the mean nearest neighbour approach. Table 1 recaps these alter-
tives and their supported optimizations, which we describe in further 
tails in the reminder of this section. We discuss our findings on the 
tput quality of all algorithms in §7.

1. History-based weighted average - STANDARD

In the STANDARD variant [23], agreement of two values 𝑥𝑖, 𝑥𝑗 of a 
t of 𝑁 values is defined when they satisfy the inequality:

𝑗 = |𝑥𝑖 − 𝑥𝑗 | < 𝛼 (1)

here 𝛼 is a pre-selected margin.
When a value 𝑥𝑖 is in agreement with at least (𝑁−1)∕2 other values, 
en we set 𝑆𝑖 = 1 otherwise 𝑆𝑖 = 0. Hence, 𝑆𝑖 = 1 represents an input in 
reement with the majority. When 𝑛 runs are completed, the historical 
cord of a module is defined as:

𝑖(𝑛) =
𝑛∑

𝑙=1
𝑆𝑖(𝑙) (2)

This value is then normalised by 𝑛 to obtain the state indicator 𝑃 :

(𝑛) =
𝐻𝑖(𝑛)
𝑛

(3)

During a voting round, each module’ weight is based on its state 
dicator:

𝑖 = 𝑃 2
𝑖

(4)

Finally, the weighted average is calculated as:

=
∑𝑁

𝑖=1𝑤𝑖𝑥𝑖
(5)
3

∑𝑁

𝑖=1𝑤𝑖
th
2. Module elimination weighted average - ME

This optimization, described further in [23], eliminates modules (i.e.
nsors in our case) that perform below the average from the vote, as-
gning each of them a weight of zero. Specifically, a 𝑃𝑎𝑣𝑔 is calculated 
 follows:

𝑣𝑔 =
∑𝑁

𝑖=1 𝑃𝑖

𝑁
(6)

The weight calculation is modified by setting the weight 𝑤𝑖 of a 
odule to zero when it performs below average, i.e. its 𝑃𝑖 is below 𝑃𝑎𝑣𝑔

 follows:

𝑖 =

{
0 if 𝑃𝑖 < 𝑃𝑎𝑣𝑔

𝑃 2
𝑖

otherwise
(7)

Finally, the average calculation relies on Equation (5).

3. Soft dynamic threshold weighted average - SDT

The Soft Dynamic Threshold algorithm [14] replaces the margin 𝛼
ith a dynamic variant 𝑣𝑡 based on the input 𝑥, computed as:

= 𝑝𝑥 (8)

Where 𝑝 is a proportional constant, i.e. the error margin is a pro-
rtion of the input value and not an absolute value for all inputs. The 
gorithm then replaces the Boolean definition of 𝑆𝑖 defined above. 
ther than two modules 𝑖, 𝑗 with a distance of 𝑑𝑖𝑗 , the parameter 𝑆𝑖𝑗

comes:

𝑖𝑗 =
⎧⎪⎨⎪⎩
1 if 𝑑𝑖𝑗 ≤ 𝑣𝑡

( 𝑘

𝑘−1 )(1 −
𝑑𝑖𝑗

𝑘∗𝑣𝑡
) if 𝑣𝑡 < 𝑑𝑖𝑗 < 𝑘 ∗ 𝑣𝑡

0 if 𝑑𝑖𝑗 ≥ 𝑘 ∗ 𝑣𝑡

(9)

The parameter 𝑘 is tunable, and chosen on a use-case basis to de-
rmine how permissive the algorithm is to considering values to be in 
rtial agreement.1
Then 𝑆𝑖 is calculated by normalising:

𝑖 =
∑𝑁

𝑗=1,𝑗≠𝑖 𝑆𝑖𝑗

𝑁 − 1
(10)

𝐻𝑖(𝑛) and 𝑃𝑖(𝑛) are calculated as before in Equation (2) and Equa-
n (3).
Hence, SDT computes the weights, where 𝑤𝑖 is obtained as:

𝑖 =
⎧⎪⎨⎪⎩
2𝑃𝑖(𝑛) if 0.5 ≤ 𝑆𝑖 ≤ 1
𝑃 2
𝑖
(𝑛) if 0 < 𝑆𝑖 < 0.5

0 if 𝑆𝑖 = 0
(11)

Finally, the output is calculated with Equation (5).

In this context, we refer to partial agreement when the value is outside of 

e agreement threshold 𝑣𝑡 but within the tunable and more tolerant 𝑘 ∗ 𝑣𝑡.
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Algorithm 1: Soft-Threshold 1-D Clustering.
Input : Values: V, threshold-factor: f
Output : Clusters: C
Create-cluster(𝐶, [])
for value in V do

for Cluster in C do
if (1 − 𝑓 ) × 𝑎𝑣𝑔(𝐶𝑙𝑢𝑠𝑡𝑒𝑟) ≤ 𝑣𝑎𝑙𝑢𝑒 ≤ (1 + 𝑓 ) × 𝑎𝑣𝑔(𝐶𝑙𝑢𝑠𝑡𝑒𝑟) then

5 cluster.add(value)

end

end

else

Create-cluster(𝐶, [𝑣𝑎𝑙𝑢𝑒])
end

end

4. Hybrid history-based weighted average - HYBRID

The HYBRID variant combines the Module Elimination algorithm and 
e Soft Dynamic Threshold algorithm. 𝑆𝑖𝑗 and 𝑆𝑖 are computed by 
uation (9) and Equation (10) with the change that 𝑣𝑡 is once again 
placed with 𝛼 as in the standard algorithm.
Weights are calculated similarly to the Module Elimination algo-

thm:

𝑖 =

{
0 if 𝑆𝑖 = 0 or 𝑃𝑖(𝑛) < 𝑃𝑎𝑣𝑔(𝑛)∑𝑁

𝑖=1 𝑆𝑖

𝑁−1 otherwise
(12)

However, the final output 𝑦 of the vote is not the average 𝑦 but 
ther the input 𝑥𝑖 closest to it.
The final difference is the calculation of the history, based on the 
al output 𝑦 and computed in a similar manner to 𝑆𝑖𝑗 :

(𝑛) =
⎧⎪⎨⎪⎩
1 if 𝑑𝑖𝑦 ≤ 𝛼

( 𝑘

𝑘−1 )(1 −
𝑑𝑖𝑦

𝑘∗𝛼 ) if 𝛼 < 𝑑𝑖𝑦 < 𝑘 ∗ 𝛼
0 if 𝑑𝑖𝑦 ≥ 𝑘 ∗ 𝛼

(13)

The history of the module for 𝑛 rounds is:

𝑖(𝑛) =
𝑁∑
𝑖=1

ℎ1(𝑛) (14)

Finally 𝑃𝑖(𝑛) is calculated as in Equation (3).

 AVOC: accurate voting with clustering

History-based algorithms typically fall back to standard average (or 
similar unweighted approach) on the first round until a historical 
cord is established or when the weights become 0 due to severe issues 
ith the data. Weights can drop to 0 after a series of disagreements, 
hich results in notorious disagreers being rated as untrustworthy by 
e system applying the algorithm. To counteract these issues, we intro-
ced AVOC [17], which we aim to investigate and evaluate in greater 
pth in this work. AVOC builds atop the HYBRID algorithm by apply-
g a simplified clustering algorithm during the first round when the 
eights are all 0. The clustering step eliminates obvious outliers, im-
oving the accuracy of that round compared to mean average, with 
tle performance overhead and faster convergence speed. In this work, 
e further evaluate how AVOC performs in comparison to the state-of-
e-art voting algorithm, and how it can be combined with it to achieve 
timal performance in an indoor positioning scenario.
Algorithmic approach.
For the clustering step, we leverage a similar logic to the agreement 
lculation in voting algorithms: we check for values within a given 
aling threshold of each other (which is selected to mirror the param-
ers of the given algorithm), and group the values in agreement. Then, 
e select as output value the average (or its closest real value) of the 
rgest group (if we are using the mean nearest-neighbour approach to 
4

tput selection). Algorithm 1 formalizes this approach. This grouping av
Journal of Parallel and Distributed Computing 187 (2024) 104840

{

" algorithm_name " : "AVOC " ,
" quorum " : "UNTIL " ,
" quorum_percentage " : 100 ,

" exc lus ion " : "NONE " ,
" e xc lu s i on _ th re sho ld " : 0 ,

" h i s t o ry " : "HYBRID " ,
" params " : {

"error " : 0.05 ,

"soft_threshold " : 2

} ,

" c o l l a t i o n " : "MEAN_NEAREST_NEIGHBOR " ,
" boots t rapping " : true ,

}

Listing 1: Vote definition sample in VDX JSON format.

gic is similar to DBSCAN [15]; AVOC opts for self-calibration, rather 
an requiring costly parameters tuning. This is achieved through a ma-
rity vote with a soft-dynamic error margin (as the margin depends on 
reference value). The clustering step is used for bootstrapping a new 
t of modules, or as a fallback in cases of issues. To reach this goal, 
e use the historical record value for each module, and declare that the 
ustering approach should be used when all records are 1 (indicating 
new set) or 0 (indicating a failure of the system or an extreme data 
ike). Fig. 2 depicts this logic.
Generalisation. Generalising this approach for multi-dimensional 
ta, an unsupervised clustering algorithm can be used such as Mean-
ift [13] or X-Means [32]. The logic of choosing an output value would 
 similar. However, in such scenarios, choosing a single output vector 
r multiple dimensions is non-trivial as the complexity of data and 
rrelation of errors considerably increases. To mitigate, the voting ap-
oach can be applied for each dimension separately, leaving other data 
sion techniques to process the multi-dimensional results. In AVOC, we 
llow the approach of voting on each dimension separately, without in-
rporating the clustering itself.

 VDX: voting definition specification

To enable reliable implementations and improve the usability of 
ftware voters, we contribute a new voting specification scheme and 
rsing logic. The scheme can define any of the algorithms described 
ove, as well as simpler ones without history.
Software-defined voting schemes exist, e.g. Voting Definition Lan-
age (VDL) [6]. Those predate more complex history-based voting 
proaches, and extending VDL for finer-grain algorithmic definitions 

 challenging. However, our specification VDX supports the relevant 
rameters of VDL, enabling our definition to describe a superset of 
L-scoped algorithms. The full schema, as well as a sample implemen-
tion and usage examples can be found at: https://doi .org /10 .5281 /
nodo .8069916. The repository also includes an interactive applica-
n that allows users to compare the algorithms presented with the 
ate of the art (Fig. 4) as well as experimental extensions still under 
velopment (e.g. for handling multi-dimensional data as mentioned in 
).

Capabilities. Listing 1 shows our AVOC algorithm using this scheme 
 example. VDX allows the specification of several parameters, includ-
g quorum (i.e., how many candidates need to submit values for a 
te to be triggered), exclusions (to automatically prune outliers) col-
tion techniques similar to VDL, e.g. “mean nearest neighbour” (List-
g 1, line 12). It extends VDL by allowing the selection of a history 
gorithm (Listing 1, line 7), additional parameters (Listing 1, lines 
11), and whether to enable clustering algorithm as a bootstrap/-
llback mechanism (Listing 1, line 13). Another extension VDX adds 
er VDL is the ability to vote on categorical i.e. non-numeric values, 
ch as character strings and JSON blobs. In such cases however, sev-
al features are disabled. Value-based exclusion cannot be applied, as 
ere can be no mean or standard deviation calculation. The “standard” 
d “module-elimination” algorithms for deriving module history are 

ailable, however the “hybrid” algorithm is not, as the fine-grained 

https://doi.org/10.5281/zenodo.8069916
https://doi.org/10.5281/zenodo.8069916
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Fig. 2. Flowchart of our extension to the state of the art voting algorithm, resulting in AVOC. The clustering version of the vote is triggered when weights are all 1 
or 0, indicating a freshly initialized system or a large amount of flaws that made the weights unusable. After the clustering vote concludes the weights are calculated 
as in the unmodified algorithm, but using the output of our custom vote, therefore reducing the transient errors.
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g. 3. Overview of the voting specification usage. The same fusion service can 
 applied to a variety of setups (e.g. edge/fog nodes, robots, IoT devices etc.) 
d a custom definition can be supplied during setup to select the appropriate 
haviour.

reement definition cannot be applied to non-numeric values. Finally, 
ustering-based bootstrapping cannot be applied to categorical values 
d the only collation method is the weighted majority vote. Software 
ting implementers may re-introduce some of these features by sup-
ying a custom distance metric for categorical values.
Fig. 3 depicts the proposed workflow leveraging the voting specifi-
tion. The voting format description is submitted to the voting system 
 the user to initialize the system. Sensor reading can then be submit-
d to the same system, directly to the exposed sensor reading fusion 
rvice. These will trigger voting rounds. The system needs to maintain 
record of the success rate of each sensor (defined as 𝑃𝑖 in Section 3) 
d the parameters each voter group uses. In principle, it is not required 
 retain the sensor readings from previous submission rounds (though 
me algorithms require it to retain the last output value to be used in 
e next round).
Limitations and assumptions. VDX currently cannot define algo-

thms that use parameters for the candidate values, e.g. MLV [26], or 
netic voting algorithms [35], but assists already by introducing vot-
g into further IoT software for reliable input data and analytics. It 
ould also be noted that VDX itself has no security features that pro-
ct against malicious actors, so this is left up to the client code to 
plement as needed.

 Multi-sensor application scenarios

We devise three use-case scenarios to validate our approach. 
e scenarios represent sensor-reliant deployments where redundancy 
oves valuable. Specifically, we draw on the smart building and self-
iving vehicle domains, both showcasing cyber-physical systems rely-
g on sensor measurements to control other critical systems.
Fig. 5 depicts our first use-case, a sunlight detection system in a 
pothetical smart building. Such a setup could be used to control 
tomated window blinds, for example. This example was selected to 
owcase a scenario with redundant sensors that are expected to pro-
ce identical results. The hub is connected to a sink node to record 
5

’000 rounds of concurrent measurements from 5 sensors, polling at of
samples/s, to create a reference dataset representing 1250 seconds 
 data collection. Each round produces 5 float values per sensor. The 
ference dataset consists of the raw readings from all sensors and is 
ed to compare all voting algorithms on the same set of values. We 
ilt a portable demonstrator that executes them and our proposed vot-
g algorithm, AVOC (detailed in §4), leveraging a Raspberry Pi 4B unit 
ee Fig. 6). It uses a Phidget Wifi hub [40] (VINT) connected to a set 
 5 LUX1000 Light Phidget sensors [1]. Input, weights and results are 
own on an LCD screen [19] connected to the hub. The portable ver-
on let us confirm the feasibility to execute on constrained hardware, 
mbining both redundant measurements and voting.
In the second use-case, we mimic a typical smart-city/self-driving 
hicle application that relies on indoor-positioning to track the posi-
n of a moving unit (e.g., a robot). We simulate the operations to track 
cargo vehicle traversing a tunnel, as shown in Fig. 7. Such vehicles use 
uetooth (BLE [2]) beacons as milestones to locate the position of the 
uck, as done in emerging country-wide systems (i.e. CST – Cargo Sous 
rrain [28,11]). We deploy two stacks of nine redundant beacons and 
cargo vehicle using a Lego Mindstorms EV3 [29] robot. As the Blue-
oth receiver on the robot was incompatible with the beacons due to 
ck of BLE support, we installed a laptop on top of it acting as prag-
atic substitute receiver with edge processing capabilities, and without 
ecting the generality of the findings other than affecting the speed of 
e robot (which has no effect on what we are measuring). Fig. 8 shows 
e prototype.
The robot drives slowly in a straight line with no line-of-sight obsta-

es from one beacon stack to the other, across a distance of 15 meters. 
e speed of the robot was set to 7% of its specified top speed (0.09 
/s). We collected as many data points as possible along the route, 
sulting in 297 measurements per beacon, noting that autonomous 
rgo systems like CST proceed at around 8.3 m/s, thus having 99% 
ss measurement samples available for voting. We elected not to apply 
tering and to vote on the raw values in this experiment, to evalu-
e the performance of our voting system in the presence of the typical 
predictability of BLE singal strength measurements.
The third use-case is a positioning experiment in a real-world en-
ronment, as shown in Fig. 9. The experiment context is meant to 
ulate a smart shopping scenario, recreated in our office building. 
ere, we have placed 4 stacks of 5 beacons in a room of dimensions 
18 m x 1.98 m. Each stack represents a store shelf in a hypothetical 
ore. A user with a bluetooth-enabled device walks around the room to 
llect measurements. This scenario allows us to compare our approach 
 other sensor fusion methods for indoor localisation, namely Kalman 
tering.

 Evaluation

This section presents the experimental evaluation of AVOC and the 
X system in general. With VDX, we fully implemented the three use-
se scenarios from §6, and compare the error-correction performance 

 the various voting schemes. More concretely, we use our light sensor 



Journal of Parallel and Distributed Computing 187 (2024) 104840P. Gkikopoulos, P. Kropf, V. Schiavoni et al.

Fi

in

Fi

be

w

Fi

dr
Fig. 4. Algorithm comparison application.

g. 5. Light sensor use-case: the sensors are wired via ethernet to a hub, stream-
g data via WiFi to the voting sink-node.

g. 6. Portable ‘shoe-box’ testbed for our light sensor setup (Fig. 5). A Rasp-
rry Pi 4 runs the fusion script. An LCD display shows the voting results and 
eight values.

g. 7. BLE beacon use-case. 2 stacks of beacons 15 meters apart with a robot 

Table 2

Notation used in our evaluation.
Symbol Description

E1-E5 Light sensor labels

Lumen (lm) Unit of measurement of light quantity

avg Distance-weighted mean

strd Standard History-based weighted average

ME Module elimination history-based weighted average

Hybrid Hybrid history-based weighted average

Clustering Clustering-only voting

AVOC Accurate Voting with Clustering (our method)

RSSI Received Signal Strength Indicator

LSML Least Squares Multilateration

experiment as a model for sensor-based time-series data, which can be 
voted upon using history-based algorithms. We use the BLE beacon ex-
periment to test various algorithms on their ability to function on low 
quality data. Finally, we use the localisation experiment to compare 
our voting approach to Kalman filtering, a state-of-the-art approach 
for sensor fusion, as well as test how we can effectively combine the 
two approaches to improve accuracy and performance. Our evaluation 
answers the following questions: (Q1) Can AVOC improve the output 
quality of our use-case scenarios? (Q2) Can it mitigate injected errors 
and reach the same output? (Q3) Which algorithm fits which scenario 
better, and (Q4) How can we leverage VDX to customise the voting 
behaviour for each scenario?

Due to the variety of experiments, we provide Table 2, to ease un-
derstanding of our notation in this section.

Implementation details. We implemented AVOC and the ap-
proaches from §3 in Python 3.9, for a total of 490 LOC. We note 
that though the evaluation was done with pre-recorded data for re-
producibility purposes, the system can execute a history-aware voting 
round in 1 millisecond and a stateless vote in 50 microseconds (data-
store reads and writes being the bottleneck). Thus, the system can 
operate under soft real-time constraints, as in the case of our “shoe-
box” demonstrator in Fig. 6 as well as many critical cyber-physical 
applications in practice.

UC-1: Light sensors. We used the 10’000 value dataset recorded 
6

iving between them, taking signal strength measurements along the way. us
ing our light sensor setup (§6) to gather the raw data and reference 
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Fig. 8. Robot driving to the circled beacon stack destination. The laptop acts as bluetooth receiver and edge voter.
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g. 9. Indoor positioning experiment setup. 4 stacks of beacons are deployed 
 the 4 “store shelfs”. The user device is placed in the middle of the room and 
e user walks around the room to collect measurements.

lues for the baseline algorithms (Fig. 10-a). The dataset contains light 
antity in Lumen, measured by our 5 light sensors, labelled E1 to E5.2
en, we injected an artificial outlier sensor, by adding +6’000 lumen 
 sensor E4 and repeated the voting experiment. We compare the per-
rmance of the different algorithms according to the following metrics: 
) voting rounds required to converge back to the baseline, and by ex-
nsion how quickly outliers are eliminated; and (b) how far the new 
able value is from the original.
We make a first comparison using the raw reference data. In this 
enario (Fig. 10-b), all 6 variants performed equally well, with out-
ts matching almost completely. We present the 6 different horizontal 
ots, with the light quantity in Lumen on the Y axis, separately, as 
ey would overlap if plotted together. The error injection case (shown 
 Fig. 10-c) exhibits some interesting facts. First, the Standard algo-
thm exhibits high initial skew, as can be seen on the left side of 
g. 10-e, which is then slowly mitigated as the faulty sensor (E4) is de-
phasised in the later part of the experiment, as shown on the right 
de of Fig. 10-e. However, even after 10’000 voting rounds of voting 
.g., 20 minutes in our experiments), the skew is not eliminated com-
etely, as can be seen at the end of Fig. 10-e. This is where the module 
imination feature of ME is beneficial, as the faulty sensor is quickly 
iminated in round 2, as performing below average compared to the 
st. However, as seen in Fig. 10-c, the gap created by skewing E4 in-
cates how E3 is also now tagged as outlier, and its result is skewed 
wards by 200 lm.
The HYBRID algorithm also uses a granular definition of agreement 
ore, but combines it with the aggressive elimination of modules from
E. For our experiment, this is the best of both worlds result (also shown 
 the differentials in Fig. 10-e) where, minus few spikes, the value is 
entical to the pre-error output.
For completeness, we show clustering-based voting on its own with-
t combining it with HYBRID (which remains ideal for this scenario). 
is can be seen in Fig. 10-e. We observe similar behaviour to ME, with 
 being excluded from the output immediately. Differently from ME, 

The lumen (symbol: lm) is the unit of luminous flux, a measure of the total 
antity of visible light emitted by a source per unit of time, in the International 
7

stem of Units (SI). [7]. va
 was also excluded from the first round. In contrast, E3 was not al-
ays excluded, due to the lack of history-based elimination, indicating 
gher variations in the output. Regarding clustering-only voting (COV), 
significantly outperforms other stateless approach, i.e. weighted av-
age without history. This result indicates that the COV approach fits 
ell scenarios where maintaining historical result records is impracti-
l: short-lived sensor measurements, one-time comparisons of datasets, 
c.

One consistent observation in the error injection experiment is that 
story-based algorithms experience a spike on startup, as the artifi-
ally modified value is skewing the output but is not yet mitigated by 
e history. This is the phase where in principle the clustering step de-
iled above has higher chances to affect the results. Indeed, although 
e clustering algorithm alone is not as accurate as ME or HYBRID, it 
ercomes the initial data spikes. Thus, a system capable of fallback 
 it when history is not available or suspected unreliable, can benefit 
om its inclusion.
Next, we run AVOC, which concretely combines the clustering step 

ith HYBRID. We observe how the initial spike is quickly pruned 
ig. 10-f) within the initial rounds. The bootstrap boost can also be 
ticed: due to the better history adjustment in round 1, the voter 
ready learns to exclude E3 from round 2, returning to its pre-error 
tput almost instantly, despite the clustering is only used once. As 
OC converges within 200 ms, the experiment confirms its utility for 
st accurate voting and provides a positive response to our questions 
1) and (Q2), as we improve the reliability of the output even in the 
esence of the injected errors.
UC-2: BLE beacons.We leverage this second use-case with BLE bea-
ns and a Lego Mindstorms EV3 robot to study a scenario with more 
omalies and faults. We set up two stacks of 9 beacons each 15 meters 
art in an indoor corridor with no obstacles. The robot drives at 7% of 
 full speed in a straight line, from one stack to the other. The robot 
kes continuous RSSI (Received Signal Strength Indicator) measure-
ents for each beacon along the way. This experiment examines if the 
gh redundancy and voting actually are beneficial. The scenario simu-
tes the operations to locate a vehicle traversing a tunnel using beacon 
acks as milestones along the way, determining the closest stack to the 
hicle. The state of the art in leveraging RSSI for positioning relies on 
tering [42] or collaborative positioning [41] to improve stability and 
tput quality. However, since the scope of our experiment is to evalu-
e the effects of voting on sensor measurements, we kept the raw RSSI 
lues from the sensors, to keep the values as close to the original mea-
rement as possible for the voting, before applying other techniques to 
prove positioning performance. The resulting data, which we plan to 
blicly release, lacks several values as well as mismatched readings in 
ch stack, providing a more challenging fusion scenario. Such missing 
lues allowed us to identify several fault scenarios, which we describe 
xt.

Fault scenario: missing values. Due to some beacons not being reach-
le from the BLE receiver (i.e., the laptop in our experiment). Missing 

lues can reduce the reliability of the output measurement, since fewer 
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Fig. 10. Comparison between our voting approach AVOC and the state-of-the-art approaches. Our 5 sensors, labelled E1 to E5, measure light quantity in Lumen. (a) 
Reference data, captured by our light sensor setup for 20 min. (b) voting output using AVOC on the reference data. (c) Reference data with injected errors (1 faulty 
sensor). (d) Output of HYBRID, Clustering and AVOC under these errors. (e) Output difference between voting on the raw values and voting on the error-injected 
values. (f) Zoom on the first 10 rounds. All Y-axis units are in 1000 s of Lumen.

Fig. 11. Results of the BLE beacon experiment. We measure the signal strength from each of 2 stacks of BLE beacons as the robot moves from Stack A to Stack B. 
(a) shows the RSSI output when only one beacon from each stack is used. (b) shows the average RSSI value of all 9 beacons in the stack for each round. (c) shows 
the AVOC voting output for all 9 beacons in the stack. Averaging provides visibly less ambiguity in determining which stack is closest to the robot, when compared 
with the mean nearest neighbour selection used for HYBRID.
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ndidate values are being considered, and potentially prevent from 
aching a consensus value if most or all values are missing. A small 
ount of missing values, i.e. less than the majority, does not prevent 
e system from converging to a common result, though it reduces the 
dundancy as well as the number of candidates considered, and as 
nsequence the trustworthiness of the outcome. If the majority or all 
lues are missing, the result would no longer be trustworthy, and the 
stem should either revert to the last accepted result, or raise an er-
r. Obviously, these failure scenarios should be accounted for when 
e voting behaviour is defined. Due to the complexity possible and 
e variability by scenario, these behaviours are currently not modelled 
 VDX itself, and are instead left up to the client code to define. In 
r test-bed implementation, the error handling procedure was pro-
ammed into the implementation of each algorithm. It is possible to 
ake this behaviour customisable, including the custom error-handling 
 the voting parameters of the schema definition.
Fault scenario: conflicting results. In case of conflicts, a majority agree-
ent on outputs using automated voting is less likely to be reached. 
is possible that a relative majority agrees on an output, but they 
e an overall minority, and no absolute majority exists. Especially in 
stems with small number of votes, ties might occur more easily and 
-breaking mechanisms kick in, such as proximity to the previous out-
t. These fault scenarios clearly show that setting the constraints of a 
ting system is non-trivial, and that voting algorithm implemen-
tions in a generic data fusion platform should be parametric. In 
dition, there should be a voting specification declared for the target 
plication, to take the desired error-handling behaviour into account. 
ccounting for such fault scenarios allows to implement more robust 
rsions of the algorithms. It is also possible to extend VDX in a future 
8

vision to support high-level descriptions of the desired fault handling re
licy. Examples of such policies include rejecting a round of measure-
ents if there is no majority quorum or majority agreement.
We then tested our voting algorithms on the BLE experiment data. 
e used the same recorded values for each algorithm. We run vot-
g between the 9 sensors of each stack to create 2 output values per 
und (i.e. 1 per stack). We observed that the method for computing 
e history of each sensor has no effect. The output of all history-
sed algorithms overlaps completely. (They are not all plotted due 
 space constraints.) This is because the chaotic nature of the mea-
rements meant the history values were all very low, as there were 
w agreements between the sensors. We observe however that the 
lue collation method has impact, e.g., averaging the weighted val-
s, a mean-nearest-neighbour selection, etc. This created 2 algorithm 
oups, those averaging and those choosing the mean-nearest neigh-
ur value, with every algorithm in each group performing identically 
 each other. In order to determine the best results, we study the num-
r of rounds while it is ambiguous which stack of sensors is closest to 
e robot at any given time. Fig. 11 presents these results.
Fig. 11-a is the reference: if each stack only had one sensor, it is 
t possible to identify the closest stack to the robot for most of the 
ration of the experiment. Simply averaging the values of the 9 sen-
rs (Fig. 11-b) produces a less ambiguous result. We present the results 
ing AVOC in Fig. 11-c. In spite of the method used to create a histor-
al record for each sensor, what had the most impact on the output 
as whether or not the last step was to average the values or to se-
ct a value (with averaging being the better option in our experiment). 
 scenarios with high degree of noisy data, such as the BLE one, rely-
g on historical record has no practical value. This confirms our initial 
sumption that there is no optimal voting method for all applica-
ons, despite common elements shared by our scenarios (e.g., having to 

concile numerical values from a group of sensors). Thus we conclude 
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Fig. 12. Overview of the 4 workflows we used for data cleaning. 2 workflows are from the state of the art, and employ different versions of the Kalman filter to 
clean the data. The 2 other workflows use voting between the 5 sensors in each stack rather than treat each sensor independently.
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at the answer to (Q3) depends of the specifics of the use case, and 
at the customisation offered by our specification allows us to address 
4).

UC-3: Indoor positioning.
Our last experiment utilized the same BLE beacons as the previ-
s one, but this time in a standard indoor positioning scenario. The 
enario was based on a smart shopping context, in which we placed 
“store shelves” in the corners of a rectangular area in our lab, and 
acked 5 beacons on each shelf (to simulate the 5 levels of a supermar-
t shelf). The dimensions of the experiment area are 7.18 m x 1.98 m.
To calculate the position using BLE beacons, we used the following 
rmula for range estimation, based on the path loss model [33]

= 10
𝑟𝑠𝑠𝑖0−𝑟𝑠𝑠𝑖

10×𝑛 (15)

here 𝑟𝑠𝑠𝑖0 is the RSSI value at 1 m, 𝑟𝑠𝑠𝑖 is the RSSI value measured 
 the receiver, and 𝑛 is the path loss exponent. As the beacons used 
 not advertise their TX power (a pre-calculated value for the RSSI at 
m), we needed to measure the RSSI at 1 m for each beacon, as well as 
e path loss exponent. To obtain the path loss exponent, we measured 
e RSSI at 2 m, and solved for 𝑛 using Eq. (15).
To calculate the position, we used the ranges obtained from the bea-
ns, and the position of the beacons, to define circles which we used 
 solve the multilateraion problem using the least squares method. The 
stem of circle equations is:

− 𝑥𝑖)2 + (𝑦− 𝑦𝑖)2 = 𝑑2
𝑖

(16)

here 𝑥𝑖 and 𝑦𝑖 are the coordinates of the beacon, and 𝑑𝑖 is the range 
 the beacon. The solution to this system of equations is the position of 
e user. We used the scipy.optimize.least_squares function 
 Python to solve the system of equations. This uses the Levenberg-
arquardt algorithm [30] to solve the non-linear least squares problem.
These two parts of the position estimation remained the same for 

l the algorithms we tested. We then recorded RSSI values from the 
acons at different known locations in the experiment area, and used 
ese values to test the algorithms. As before, we used the pre-recorded 
ta to ensure all 4 algorithms were tested on the same inputs.
The 4 workflows we used are presented in Fig. 12. All methods used 
riations of the Kalman filter [38] for smoothing, according to the state 
 the art. First, we used the 1D Kalman filter to clean the data, and then 
ed the Least Squares Multilateration to derive the output. This means 
e applied the filter directly to each individual range estimation, and 
en used the filtered values to calculate the position. This method of 
ta cleaning is similar to the one used in [10].
The second workflow adds a voting step between the filter and the 
ultilateraion. As with the tunnel experiment, we used a simple aver-
ing voter here, as the data is limited in history and also quite noisy.
The third workflow uses the 2D Kalman filter after the multilatera-
n. This means we applied the filter to calculated position to smooth 
9

 This method of data cleaning is similar to the one used in [44]. gr
Finally, the fourth workflow adds a voting step before the multilat-
ation to the third one. The raw range data was voted on, before the 
ultilateration was calculated.
A visual representation of the two Kalman filter workflows is shown 

 Fig. 13a and Fig. 13b. The aggregated results of the 4 workflows 
e presented in Table 3. The table presents the results per measured 
er location, averaged across all positions used in the experiment. In 
ch position we took 3 measurements, 5 seconds apart, from each of 
e 20 beacons (5 beacons per stack, 4 stacks). Here we can see that 
ting improved the result of both methods. Perhaps surprisingly, the 
 Kalman filter did not improve the result, and in fact made it worse. 
is can be explained by the fact that the measurements were only 
ken from static positions, and not from a moving user. This means 
at the 2D Kalman filter was not able to take advantage of the temporal 
formation and velocity.
The performance results from the same table are also of interest. 
e observe that even though the 2D Kalman filter takes more time to 
mpute, the difference is negligible compared to the total runtime. 
ting reduces the amount of time that the Least Squares method takes 
 compute, which is always the most time-consuming step.
To further test the effect of voting on performance, we artificially 
creased the number of beacon groups by duplicating the real mea-
rements. As expected the filtering time for the Kalman 1D filter scaled 
early, as the number of measurements in each filtering step remained 
e same, and only the number of steps scaled with the number of bea-
ns. Each filtering step takes approximately 1.33 μs (assuming again 3 
easurements per beacon).
Similar behaviour was observed for the voting with each voting 
und between 5 values taking approximately 1.5 μs. It should be noted 
re that enabling the history aware features of VDX would increase the 
e of a voting round depending on the implemented storage method 
r the history. In that case, reading and writing the histories into a 
ckend component would take the majority of the voting time, de-
nding on the efficiency of the implementation.
Increasing the number of sensors does not increase the time the 2D 
lman filter takes to compute, as it is applied to the final positioning 
sult, so only 2D coordinates are applied as a measurement. Therefore 
ly the amount of measurements per sensor increasing would affect it, 
t that would require a prolonged measurement period, which would 
t fit the indoor navigation scenario.
The Least Squares Multilateration seemingly scales differently in the 
al experiments, though when inflating the number of sensors we ob-
rved that for very high sensor counts (we tested between 100 and 
000 circles) the time is quite consistently linear. The average time di-
ded by the number of circles was 400 μs per circle, above 5000 circles, 
 below that the overhead still makes the duration less predictable. It 
 consistently the most time consuming part of the workflow, so vot-
g, which reduces the amount of circles it needs to solve, is a good way 
 improve performance (provided the scenario allows the sensors to be 

ouped).
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Fig. 13. Sample visual output of the localisation program using the 2 different Kalman filters. (a) 1D Kalman filter. Here the filter is applied to each range 
measurement individually and multilateration is performed at the end. The 4 blue circles represent the raw range measurements. The red circle represents the 
filtered position estimate. The green dot represents the true position of the user. (b) 2D Kalman filter. Here the filter is applied to the position estimate after 
multilateration. The 3 red circles represent the raw position estimates. The blue line represents the filtered position estimate.

Table 3

Execution breakdown of the 4 data cleaning methodologies in the indoor positioning experiment.
Method Filter 

calcula-

tions

Filter 
time

LSML 
calcula-

tions

LSML 
time

Voting 
rounds

Voting 
time

Mean 
Posi-

tioning 
Error

Time

Kalman 1D 20 x 3 
mea-

sure-

ments

80 μs 1 x 20 
circles

20 ms - - 156.75 
cm

502 ms

Kalman 1 x 3 
mea-

sure-

ments

236 μs 3 x 20 
circles

44 ms - - 208.25 
cm

567 ms

Kalman 1D 
+ Voting

20 x 3 
mea-

sure-

ments

80 μs 1 x 4 
circles

12 ms 4 x 5 
values

6 μs 145.75 
cm

496 ms

Kalman + 
Voting

1 x 3 
mea-

sure-

ments

319 μs 3 x 4 
circles

31 ms 12 x 5 
values

18 μs 159.25 
cm

557 ms
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g. 14. Scaling experiment with 100-600 simulated light sensors. We compare 
e 6 algorithms from our light sensor experiment on the time taken to complete 
ch voting round.

Scalability evaluation.
We conducted a scaling experiment by creating simulated sensors. 
ch simulated sensor in the dataset uses a randomly selected duplicate 
 the data of one of our light sensors from the first experiment. We 
ried the number of simulated sensors between 100 and 600 and com-
red the time per voting round of the six algorithms compared in the 
st experiment. As before, all algorithms were implemented using our 
X system. (See Fig. 14.)
We observe that the 2 non-history algorithms exhibit similar per-
rmance, further strengthening the Clustering algorithm in scenarios 
ithout history, as it does not degrade performance and, as shown be-
10

re, significantly increases accuracy. The two versions of History-Based be
eighted Average, Srtd and ME, perform similarly, as expected. Hybrid 
d AVOC also perform similarly, as they use the same history deriva-
n method. However, it can be seen that AVOC is consistently slightly 
ster than Hybrid, due to using the clustering step and skipping the 
story-based calculation when the weights are equal.
It is notable that up to 300 sensors, which we believe to be a high 
mber of redundant sensors for any sensor fusion setup, AVOC is faster 
an the 100 ms refresh time of our sensors, indicating that it can be 
ed in real time.

 Findings and discussion

Evaluating AVOC and VDX yielded some interesting results. First, 
e light sensor experiment to evaluate the time-series performance of 
story-based voting. We observe that both the clustering component of 
OC and the history component from the HYBRID algorithm (that is 
rt of AVOC) is important is removing faulty modules and improving 
e accuracy of results. It is also an important finding that clustering 
one is a better voter than distance-based weighted averaging, the typ-
al method for reconciling numeric data which was used as one of the 
ints of comparison in the experiment. This is because clustering is 
le to remove faulty modules, while distance-based weighted averag-
g is not. This is useful in scenarios where history is not utilized, due 
 the system being short-lived or memory constraints. The extra com-
tation in any case is not significant, as shown above, due to the small 
ount of data involved in each round of voting, even for a large num-

r of modules.
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The first BLE experiment showed that noisy and unstable data is un-
itable for clustering-based methods or history-based methods. In such 
amples averaging works best, though as we examined in the third ex-
riment, the correct approach would be to filter the data or use other 
oothing algorithms first. Our latest positioning experiment presents 
th a comparison against the state of the art, as well as an approach 
r combining our methods with the state of the art in data fusion. We 
serve that our approach can speed up the more inefficient part of the 
ocess, which is optimising the multilateration, as well as slightly im-
oving the accuracy of the results. We argue that with enough ease of 
ployment, this method can be applied in real world scenarios with-
t much effort, and can be used to improve the accuracy of existing 
stems, with only software changes. This ease of deployment is exactly 
hy we developed VDX, which was used in all our experiments to im-
ement the different voting methods used.
With our simulated scaling experiment we also showed that our 

VOC algorithm is usable in real-time systems, even when hundreds 
 sensors need to be voted on.

 Conclusion and future work

We have conducted an experimental study of history-aware voting 
 IoT and smart city/smart building applications. We demonstrated 
e performance of different algorithms on three different scenarios 
ith different needs in terms of sensor fusion and presented out find-
gs in terms of selecting an optimal algorithm for each scenario. Our 
dings show that inherently reliable systems can benefit more from 
story-aware voting as it can more easily root out more nuanced qual-
 issues. On the other end of the spectrum, inherently unstable setups 
nefit more from smoothing and averaging techniques due to the 
predictability of the values rendering historical records ineffective. 
e also presented AVOC, our clustering-based voting approach, and 
monstrated its effectiveness in bootstrapping a new group of sensors 
 a voting system. We showed how it can improve the accuracy of the 
ting result in the early rounds by eliminating outliers in-place, rather 
an discovering them based on past performance. We then proposed 
ting definition format VDX that can be used to describe a voting 
ocedure to a compatible voter service running on an edge node. 
e further consolidated our work by conducting an indoor position-
g experiment and both comparing our voting-based solution with the 
ate-of-the-art approach as well as combining both approaches to find 
 optimal solution. We discuss the benefits of the combined approach 
r maintaining performance when increasing the number of sensors. 
e plan to explore deeper and more realistic scenarios and the appli-
bility of our voting methodology to providing improved data quality, 
 well as further develop the voting specification in order to field test 
voter service prototype with a variety of compute-power-restricted 
tups.
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