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ABSTRACT Deep learning based approaches have been used to improve image quality in cone-beam
computed tomography (CBCT), a medical imaging technique often used in applications such as image-
guided radiation therapy, implant dentistry or orthopaedics. In particular, while deep learning methods have
been applied to reduce various types of CBCT image artifacts arising from motion, metal objects, or low-
dose acquisition, a comprehensive review summarizing the successes and shortcomings of these approaches,
with a primary focus on the type of artifacts rather than the architecture of neural networks, is lacking in the
literature. In this review, the data generation and simulation pipelines, and artifact reduction techniques are
specifically investigated for each type of artifact. We provide an overview of deep learning techniques that
have successfully been shown to reduce artifacts in 3D, as well as in time-resolved (4D) CBCT through the
use of projection- and/or volume-domain optimizations, or by introducing neural networks directly within
the CBCT reconstruction algorithms. Research gaps are identified to suggest avenues for future exploration.
One of the key findings of this work is an observed trend towards the use of generative models including
GANs and score-based or diffusion models, accompanied with the need for more diverse and open training
datasets and simulations.

INDEX TERMS Cone-beam Computed Tomography (CBCT), Deep Learning, Artifacts.

I. INTRODUCTION

Cone-beam computed tomography (CBCT) is an imaging
technique to acquire volumetric scans in medical domains
such as implant dentistry, orthopaedics, or image-guided ra-
diation therapy (IGRT). In particular, in the case of IGRT, on-
board imaging mounted directly on radiotherapy machines is
used to assess a patient’s current anatomy before radiation
treatment sessions. Changes in anatomy during the treatment
period and since the acquisition of the planning CT (pCT)
can lead to inefficiencies in the treatment process. Recent
research has demonstrated that utilizing 3D or 4D (volumetric
data with additional time dimension to track motion) CBCT
scans in IGRT [2] improves patient positioning and dose
calculation for radiotherapy sessions.

The quality of CBCT scans suffers from similar types of
artifacts as for spiral/helical CT scans, including those arising
from beam hardening and scatter effects, metal implants, and
patientmotion. In addition, new artifacts arise due to the cone-

beam geometry. Further, minimizing the radiation dose in
radiotherapy is important for the safety of the patients. How-
ever, reducing the imaging dose per scan, acquiring fewer X-
ray projections, or acquiring projection data from a limited
angle can result in streak artifacts.

This paper provides an overview of the current body of
research on artifact reduction in 3D and 4D CBCT with
applications including, but not limited to, IGRT, aiming to
improve scan quality while also minimizing the imaging radi-
ation dose. The significant variation in the methods and tech-
niques used to mitigate different types of artifacts suggests
to organize the literature based on the type of artifact. For
instance, sparse-view artifacts can be addressed in the projec-
tion domain by interpolating new projections, but refining the
original projections is not beneficial; however, motion artifact
mitigation is possible through projection refinement. Further,
the survey aims to present a clear picture of all necessary
steps in the artifact mitigation process for all relevant types
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FIGURE 1: Visual Abstract: An illustration of the CBCT acquisition process in IGRT for lung CBCT and the application
of deep learning for artifact correction. The diagram depicts the acquisition of 2D projections (initial corrections such as
scatter corrections have already been applied), including (optionally) time- and motion-related information (e.g. breathing
amplitude signal), standard CBCT reconstruction (typically 2D→3D), and DL-based components for image enhancement.
Incorporating acquired temporal and motion information provides the opportunity to apply a projection binning which can
be used to reconstruct 4D CBCT images (3D images at various states of motion). During the course of CBCT reconstruction,
several types of artifacts (e.g. arising from cone-beam geometry, low dose, sparse view or limited angle scans, scatter, metal
or beam hardening) can be mitigated through DL-based optimization in the projection and/or volume domain, or by improving
(parts of) the reconstruction algorithm itself using neural networks. The illustration of a commerical radiotherapy system is
adapted from [1].

of artifacts individually.
In particular, we review the current state-of-the-art research

which uses deep learning (DL) [3] to reduce various artifacts
in CBCT scans, and we categorize the research based on the
types of artifacts they address. While Ref. [4] focuses broadly
on the use of DL methods in IGRT, the closest literature
reviews to our work are presented in references [5]–[7]. The
first survey [5] is focused on synthetic CT generation from
various types of input scans, including CBCT, with the aim to
enhance the scan quality. Its content partially overlaps with
what we present in Section III. However, it does not cover all
the other artifacts which can degrade CBCT image quality as
discussed after Section III. Ref. [6] discusses supervised, self-
supervised, and unsupervised techniques for artifact reduc-
tion in CT scans, and it covers unrolling the reconstruction,
as well as optimization methods in both the projection (raw
2D X-ray images) and volume (reconstructed 3D images) do-
mains. However, it is essential to note that Ref. [6] primarily
focuses on CT scans, which differs from the main focus of
this work, namely CBCT scans. The third survey [7] provides
an in-depth literature analysis, considering criteria such as
anatomy, loss functions, model architectures, and training
methods for supervised learning specifically applied to CBCT
scans. In our work, instead of dividing the literature based on
the deep learning methods, we group the research based on
the type of artifacts, discussing results employing projection-
and/or volume-domain optimization, dividing the methods
based on the type of supervision, and also including research
addressing time-resolved 4D CBCT reconstruction.

Artifacts in CBCT images can principally be reduced by

optimizations in the projection, volume, or dual-domain (both
projections and volumes), as well as by DL-enabled recon-
struction. This survey presents an overview of deep learning
techniques able to reduce artifacts in 3D as well as time-
resolved 4DCBCT using optimizations in the above domains,
and through novel CBCT reconstruction methods. Further-
more, it addresses the challenges and limitations associated
with these approaches and provides recommendations for
future research directions.
This survey organizes the literature according to the type

of artifacts which is addressed, and presents and contrasts
the methodologies used within each specific artifact group
(see Figure 2). The remainder of this paper is organized
as follows: Section II briefly summarizes the basic aspects
of CBCT acquisition and the assessment of scan quality.
Thereafter, the literature is discussed based on different types
of artifacts (as outlined in [8], [9]) as follows: Section III
presents methods attempting to improve CBCT image quality
by reducing artifacts generated because of the cone-beam
geometry and by bringing the CBCT quality closer to the
one of CT scans. The subsequent sections focus on various
methods to address artifacts resulting from reduced acquisi-
tion dose. Firstly, Section IV discusses techniques that lower
the dose per X-ray projection to achieve dose reduction. This
is followed by Section V, which explains methods for artifact
reduction when acquiring fewer projections by uniformly
dropping some of them (sparse-view reconstruction). Sec-
tion VI explores artifact reduction methods specifically for
CBCT scans acquired from a limited angular range. The paper
then proceeds to discuss methods targeting scatter and beam
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FIGURE 2: Visualisation of the content of this survey and the
literature covered.

hardening artifacts in Section VII. Section VIII is dedicated
to research on reducing metal artifacts. Section IX focuses
on motion compensation techniques for 3D and 4D CBCT.
Further, the main trends in the recent literature on using deep
learning-based architectures for CBCT artifact mitigation are
presented in Section X, complemented with a discussion
concerning the connections amongst the methods used for
various types of artifacts and recommendations for future
work. Finally, the paper concludes with Section XI.

II. PRELIMINARIES
This section briefly reviews the basics of CBCT reconstruc-
tion and evaluation methods employed in artifact reduction
and scan quality assessment.

A. CONE-BEAM GEOMETRY RECONSTRUCTION AND
DEEP LEARNING
CBCT scans are acquired by means of an imaging system
consisting of an X-ray source and a flat-panel (2D) detec-
tor mounted on a gantry system which rotates around the
body region of interest. Several hundred 2D X-ray images
are acquired at various angles. These projections can be ac-
quired from a limited angular range (so-called short scan)
or a full 360◦ trajectory (full scan). Following the acquisi-
tion, a volumetric 3D image is reconstructed from the 2D
projection images. Several methods exist to solve this ill-
posed inverse problem. The most popular one is based on an
analytic method developed by Feldkamp, Davis, and Kress
(FDK [10]) which provides a fast and reliable approxima-
tion of the inverse Radon transform. Alternatively, iterative
algebraic reconstruction techniques (ART [11]) have become
popular as well. Moreover, by tracking the patients’ motion,
e.g. by capturing an external or internal breathing signal,
and dividing the projections based on the motion state, it
is possible to reconstruct 4D (motion-resolved) volumetric
images. 4D scans include both the 3D volumetric information

as well as their temporal dynamics.
In a nutshell, deep learning based approaches can be de-

ployed at various stages of the CBCT reconstruction process.
Firstly, deep neural networks can be trained to correct the
acquired 2D projections (projection domain correction); sec-
ondly, they can be used to correct the reconstructed CBCT
volumetric images (volume domain correction); and thirdly,
the two approaches can be combined into a dual-domain
correction. Another approach is to augment or replace (parts
of) the 2D-3D CBCT reconstruction itself with deep learning
based components. The components of the FDK algorithm
were mapped into a deep neural network by means of a novel
deep learning enabled cone beam back-projection layer [12],
[13]. The backward pass of the layer is computed as a forward
projection operation. This approach thus permits joint opti-
mization of correction steps in both volume and projection
domain. An open source implementation of differentiable
reconstruction functions is available [14]. The networks are
often trained in a supervised fashion by comparing recon-
structed CBCT images with an artifact-free ground truth. Un-
supervised [15], [16] and self-supervised [17], [18] learning
approaches have been employed as well.
While datasets of 3D or 4D CBCT scans obtained from

phantoms, animals or human subjects are available for train-
ing, they generally lack ground truth information required for
deep learning based artifact mitigation employing supervised
learning. To overcome this, artificial or simulated CBCT data
is often used, obtained e.g. by means of forward projecting
existing CT scans in a CBCT setup and manual incorporation
of artifacts. For example, motion artifacts can be included
by sampling CBCT projections at scan angles and time steps
matching interpolated phases of a given 4D CT scan.
The general acquisition and reconstruction process of

CBCT scans, including deep learning based corrections, is
summarized in the visual abstract in Figure 1.

B. EVALUATION METRICS
Several metrics have been utilized in the literature to evalu-
ate the quality of CBCT scans enhanced by deep learning-
based techniques. The main qualitative evaluation metrics,
computed between a reconstructed volume (with artifacts)
and the ground truth reference, can be divided into two main
groups as follows, according to [7]:

• Image Similarity Metrics: These metrics compute the
similarity between scans and include (mean) absolute
error (ME and MAE), (root) mean squared error (MSE
and RMSE), (peak) signal-to-noise ratio (SNR and
PSNR), structural similarity (SSIM) [19], and Dice co-
efficient [20].

• Dosimetric Similarity Metrics: These metrics measure
the consistency in dosimetry using a pair of scans, such
as dose difference pass rate (DPR); dose–volume his-
togram (DVH), and gamma pass rate (GPR).

In addition to the metrics mentioned above, metal artifact
index (MAI [21]), and streak index (SI [22]) have been used
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in the literature to measure the level of specific artifacts in
CT and CBCT scans. For motion, visual information fidelity
(VIF) [23] or autofocus (sharpness) metrics have been em-
ployed, among others.

C. CLINICAL EVALUATION
The numerical evaluation metrics mentioned above compute
the similarity of the improved CBCT compared with a ref-
erence, or report the level of the presence of artifacts, scan
sharpness, or other quality criteria. Ideally, these metrics
should reflect the scan quality; hence, they should correspond
to the preference of the experts in using the scans in clinical
routine. However, it is essential to note likely inconsistencies
between simulated (where ground truth references exist) and
real-world clinical data, so clinical evaluations are necessary
to ensure the applicability of the presented methods for prac-
tical applications. A clinical evaluation can be conducted by
completing surveys with experts such as medical doctors or
radiation physicists to directly assess the level of artifacts and
the performance of the artifact reduction techniques, and the
applicability of the improved images in various clinical tasks
such as dose calculation, soft-tissue segmentation, and patient
positioning [24].

III. CONE-BEAM IMAGE QUALITY
Cone-beam geometry and the size of the flat-panel detec-
tor result in the coverage of larger body areas but at lower
resolution and degradation in scan quality compared to fan-
beamCT scan acquisition. Consequently, significant attention
and extensive research has been directed at improving the
quality of CBCT scans, often referred to as removing cone-
beam or geometry artifacts in the literature. One of the initial
approaches to enhance CBCT quality involves employing
supervised learning and training a 39-layer deep convolu-
tional neural network (CNN) to map input CBCT scans to
the corresponding planning CT as ground truth (reference)
volumes [25]. This mapping of CBCT images to match cor-
repsonding CT images is often called synthetic CT (sCT)
from CBCT.

Applications based on CNNs
Researchers have explored several CNN-based architectures
with various supervised training objectives to enhance CBCT
quality. For instance, denoising has been targeted through
solving themulti-agent consensus equilibrium (MACE) prob-
lem and multi-slice information fusion techniques [26]. CNN
models have demonstrated the ability to reduce ring artifacts
from flat-panel CBCT scans using pre-corrected and artifact-
free scans as ground truth [27]. Geometric artifacts caused by
misalignment of the CBCT systemwere reduced using amod-
ified fully convolutional neural network (M-FCNN), without
using any pooling layers [28]. A further approach used a 3D
block-based residual encoder-decoder convolutional neural
network (RED-CNN) architecture coupled with a bilateral
3D filter and a 2D-based Landweber iteration to successfully
remove Poisson noise while preserving the image structure

at tissue edges [29]. Training 3D models using a multi-task
learning objective improved the quality of CBCTs by pro-
ducing high-quality synthetic CT (sCT) scans from noisy and
artifact-ridden scans for segmenting organs-at-risk (OARs)
[30]. Lately, using InceptionV3 [31] as a backbone has proven
beneficial in reducing the artifacts observed in CBCT short
scans due to the misalignment of the detection plane around
the z-axis [32].

GANs and conditional GANs

Researchers have used self-supervised and unsupervised
techniques to eliminate the need for paired CBCT and
CT scans in supervised learning and to consider anatom-
ical changes between the acquisition of planning CT
(pCT) and CBCT. These techniques mainly involve training
auto-encoders, (conditional) generative adversarial networks
(GANs [33]), and cycle-consistent generative adversarial net-
works (Cycle-GANs [34]). Combining auto-encoders and
GANs as a complementary approach to reweighting in an-
alytical and iterative reconstruction methods has improved
the quality of CBCT scans [35]. Training conditional GANs
has shown promising results in enhancing the quality of
CBCT through style transfer, effectively removing artifacts
and discrepancies between CBCT and pCT for average tumor
localization [36] and adaptive therapy [37]. Moreover, a more
advanced GAN variant called temporal coherent generative
adversarial network (TecoGAN) also improves the quality of
simulated 4D CBCT scans by considering the time dependen-
cies and motion for quality enhancement [38], [39].

Cycle-GANs

Using Cycle-GANs for unpaired translation from CBCT to
pCT has received significant attention among researchers.
Notably, Cycle-GANs have successfully generated high-
quality synthetic CT scans from CBCT for various organs,
including prostate [40], lung [41], and abdominal scans [42].
A novel architecture inspired by contrastive unpaired transla-
tion (CUT [43]), trained in an unsupervisedmanner, improves
the quality of CBCT scans by addressing fringe artifacts and
noise degradation for dose calculation in adaptive radiother-
apy [15]. The combination of binary cross-entropy, gradient
difference, and identity losses with Cycle-GANs has further
improved the quality of head and neck CBCT scans [44].
Introducing the residual block concept in the implementation
of Res-Cycle-GAN has demonstrated advancements in the
quality of sCT scans [45]. Moreover, researchers have ex-
plored the combination of a Cycle-GAN with classical image
processing techniques [46] and U-Net [47] architectures [16]
in two-step approaches. These approaches aim to initially
reduce artifacts and subsequently generate sCT scans to im-
prove the quality. Ultimately, researchers demonstrated that
trained Cycle-GANs enhance the quality of CBCT scans and
achieve high accuracy in volumetric-modulated arc photon
therapy (VMAT) [48].
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Alternative methods
In addition to adopting mainstream trends and computer vi-
sion architectures for artifact reduction in CBCT scans, re-
searchers have explored creativemethods specifically tailored
to CBCT reconstruction using deep learning and neural net-
works. For instance, U-Nets have been optimized for spectral
blending of independently reconstructed sagittal and coronal
views to enhance the CBCT quality [49]. Neural networks
have also been integrated into the core of the reconstruc-
tion algorithms in the Feldkamp, Davis and Kress (FDK)
technique to introduce the NN-FDK technique for CBCT
quality improvement [50]. Another novel architecture, known
as the iterative reconstruction network (AirNet), incorporates
several variants in selecting projections based on random-
phase (RP), prior-guided (PG), and all-phases (AP) for recon-
struction [51]. Geometry-guided deep learning (GDL [52]),
and its multi-beamlet-based approach (GMDL [53]) are ad-
ditional examples of leveraging deep learning to enhance the
reconstruction geometry effectively. Finally, CNNs have been
employed to predict the quality of the scans and accordingly
dynamically adapt the C-arm source trajectory in the imaging
acquisition process to avoid generating artifacts in the final
scans [54].

IV. LOW DOSE
The reduction of the acquisition dose in CBCT scans, which
leads to the increased presence of artifacts, has been ad-
dressed through various approaches such as adjusting the ra-
diation dose per X-ray projection [55], increasing the acquisi-
tion speed or collecting fewer projections [56]. Early research
focused on low-dose artifact reduction primarily by remov-
ing artifacts in the volume domain using deep CNNs with
U-Net architectures. The studies demonstrated the potential
of decreasing the overall radiation dose through both dose
reduction methods mentioned above [55], [56]. Moreover,
a combination of 2D and 3D concatenating convolutional
encoder-decoder (CCE-3D) with a structural sensitive loss
(SSL) was employed to denoise low-dose CBCT scans and
remove artifacts in both projection and volume domains. This
approach showed promising results in improving the quality
of CBCT scans based on several metrics, such as PSNR and
SSIM, and with greater improvements reported in the projec-
tion domain compared with the volume domain [57]. In ad-
dition, a CNN-based iterative reconstruction framework was
integrated with a plug-and-play proximal gradient descent
framework to leverage DL-based denoising algorithms and
enhance CBCT reconstruction [56]. Training models inspired
by self-supervised learning approaches for inpainting and
denoising Poisson and Gaussian noise have shown promising
results in removing low-dose artifacts [58]. Similarly, models
optimized for removing Gaussian noise and addressing view
aliasing artifacts through 2D iterations with 3D kernels have
been developed [59]. Furthermore, researchers combined a
non-subsampled contourlet transform (NSCT) and a Sobel
filter with U-Net architectures, referred to as NCS-Unet, to
improve the quality of low-dose CBCT scans by enhancing

both low- and high-frequency components [60].

V. SPARSE-VIEW
This section summarizes research aiming at reducing arti-
facts in CBCT reconstruction occurring from using uniformly
downsampled full-scan (360◦) projections, primarily with
the goal of dose reduction. Sparse-view artifact reduction is
closely related to mitigation of artifacts caused by limited
angle acquisition and breathing-phase-correlated 4D recon-
struction, which will be reviewed in the upcoming sections VI
and IX, respectively. While the underlying motivations for
sparse-view (acquisition dose reduction), limited angle (ge-
ometric constraints), and 4D (time resolved imaging) acqui-
sition are different, in all cases artifacts are created due to
the lack of projections from various angles. Decreasing the
number of projections and the resulting data insufficiency for
the reconstruction algorithm results in artifacts appearing in
the shape of symmetric and uniform streaks, as depicted in
Figure 3.

Projection and volume domain optimization
The body of literature on sparse-view artifact reduction us-
ing deep learning has been consistently growing since 2019,
when initial research demonstrated the opportunity to repro-
duce the original image quality with using as few as one-
seventh of the projections with symmetric CNN’s as post-
processing operation in the volume domain [61]. Similarly,
using a multi-scale residual dense network (MS-RDN) suc-
cessfully improved the quality of CBCTs reconstructed from
one-third of the projections [62]. In addition to training in the
volume domain, the intensities of under-sampled projections
can be corrected using deformation vector fields (DVFs) to
match the original data, resulting in negligible streak arti-
facts after reconstruction [63]. Similarly, symmetric residual
CNN’s (SR-CNN) can enhance the sharpness of the edges
in anatomical structures reconstructed from sparse-view pro-
jections with total variation (TV) regularization in half-fan
scans [61]. Furthermore, a counter-based total variational
CBCT reconstruction using aU-Net architecture enhances the
smoothed edges in lung CT reconstructed scans from half-
fan projections [64]. In Ref. [65], a Reconstruction-Friendly
Interpolation Network (RFI-Net) is developed, which uses a
3D-2D attention network to learn inter-projection relations
for synthesizing missing projections, and then introduces a
novel Ramp-Filter loss to constrain a frequency consistency
between the synthesized and real projections. The authors
of [66] developed a dual-domain attention-guided network
framework (Dual-AGNet) whichworks in both projection and
reconstruction domains, featuring spatial attention modules
and a joint loss function.

Dual-domain optimization
Though interpolating missing data in the projections and
removing artifacts in the volume domain are straightforward
approaches to sparse-view artifact reduction, combining both
and backpropagating the error through the reconstruction
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algorithm is not trivial. Despite the complexity involved,
researchers attempted to unroll the proximal gradient descent
algorithm for reconstruction and backpropagate the gradient
through a U-Net architecture to reduce streak artifacts in [67].
Since optimization in the volume domain and projection
interpolation are regression problems with different or the
same data channels as input and output, autoencoder-decoder
architectures have also gained popularity for artifact reduc-
tion [68]. To avoid complications regarding backpropaga-
tion through the reconstruction (back-projection) algorithm,
DEER is introduced as an efficient end-to-end model for
directly reconstructing CBCT scans from few-view projec-
tions [69]. Furthermore, DeepOrganNet could fine-tune the
lung mesh by skipping the reconstruction step and avoiding
sparse-view artifacts appearing on organ mesh [70]. Fur-
thermore, the recent deep intensity field network (DIF-Net)
model uses the latent representation (feature maps) of the 2D
projections coupled with a view-specific query for extracting
information from the projections. This information is then fed
through cross-view fusion and intensity regression models to
reconstruct a volume without artifacts. [71].

Information fusion, prior-based and physical modeling
Recent research trends seek to minimize sparse-view artifacts
by incorporating multi-slice [72] and scale [73] information
fusion techniques, as well as combining information from
different scan views (coronal, axial, and sagittal) [74]. As
the computational resources have become more powerful,
deep learning for sparse-view artifact reduction has extended
from 2D models for single slice processing to 3D models
and processing of 4D CBCT scans [72]. The use of prior
(planing) CT and CBCT volumes to enhance the trained mod-
els, such as regularized iterative optimization reconstruction
(PRIOR-Net [75]) and merge-encoder CNN (MeCNN [73])
have recently become popular for sparse-view artifact reduc-
tion. Researchers have also investigated using perception-
aware [76] and physics-based [75] methods. The learning
paradigm has expanded beyond purely supervised learning
to different tasks, such as denoising (DRUNet [77]), artifact
reduction [78], self-supervised by dropping projections [18]
and unsupervised learning through training conditional and
generative adversarial networks (GANs) [79].

VI. LIMITED ANGLE
Besides lowering the imaging dose through uniformly down-
sampled projections, another approach to reducing the num-
ber of acquired projections and scanning dose is scanning the
body from a limited angle. Such scan settings are especially
common when using a full-fan acquisition technique in a
short-scan, where reconstruction is performed using projec-
tions from an angular range covering less than 360 degrees.
Although Parker weights [80] can be utilized to compensate
for the loss of mass in the resulting CBCT scans, artifacts
still appear due to the smaller number of acquired projections
when scans are acquired from limited angles. One of the ini-
tial attempts used learnable Parker weights in the projection

domain to address the mass loss in the angular range from
180◦ + θ to 360◦ (θ being the fan angle) [12]. A subsequent
study optimized a deep artifact correction model (DAC) us-
ing a 3D-ResUnet architecture to create high-quality scans
and improve artifacts in limited-angle circular tomosynthesis
(cTS), confirming the potential for quality enhancement in
the volume domain [81]. Further research demonstrated that
combining FDK-based reconstruction with a neural network
can achieve outstanding performance in 3D CBCT recon-
struction from projections acquired from only 145◦ [82].
Supervised learning, frequently implemented through

trainingU-Net architectures, for shading corrections in CBCT
volumes with a narrow field of view (FOV) notably improved
the quality of reconstructed CBCT scans, using CT scans
as ground truth [83]. Another approach involves using a
prior based on a fully sampled CT or CBCT and training a
2D3D-RegNet, which demonstrates the effectiveness of using
a patient-specific prior for limited-angle sparseness artifact
reduction [84]. A conventional method for 4D CBCT recon-
struction is dividing the projections based on the breathing
phases and then reconstructing the body volume in those
phases. As a result of using only a subset of the projections
for each motion state, sparseness artifacts are prevalent for
this special case of limited angle acquisition. These artifacts
have been addressed in the projection domain by interpolating
the projections from different breathing phases [85]. In the
volume domain, transfer learning, layer freezing, and fine-
tuning have been employed to adapt the trained DL models
to individual patients and mitigate sparseness artifacts [86].

VII. SCATTER AND BEAM HARDENING
Large cone angles within the CBCT geometry setup have
been observed to contribute to scatter artifacts, which have
been addressed in the projection domain by leveragingMonte
Carlo photon transport simulations to compute ground truth
projections for supervised learning [89]. A CNN-based deep
scatter estimation (DSE [89]) architecture, as well as a
scatter correction network (ScatterNet [87]) are the results
of research endeavors using supervised learning for arti-
fact correction in the projection domain. The DSE model
has demonstrated the potential to accurately emulate scat-
ter artifacts and reduce the computational burden of using
Monte-Carlo simulations while being orders of magnitude
faster [90]. ScatterNet is considerably faster than the classi-
cal methods and might allow for on-the-fly shading correc-
tion [87]. ScatterNet, in combination with shading correction,
also showed satisfactory results for dose calculation using
volumetric modulated arc radiation therapy (VMAT), but
yielded unsatisfactory outcomes for intensity-modulated pro-
ton therapy (IMPT). Despite the abundant research work on
scatter artifact corrections, studies tackling beam hardening
are scarce. One such study involved training a U-Net-based
architecture to predict monoenergetic X-ray projections from
polyenergetic X-ray projections using supervised learning on
Monte Carlo simulation-based ground truth in the projection
domain [91].
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Simulated 4D CBCT scan at three distinct motion phases, without significant motion artifacts

Sparse-view artifacts at various sub-sampling rates (from left to right: 1/6, 1/18 and 1/48)

Limited angle artifacts [12] Scatter artifacts [87] Metal artifacts [88]

Motion artifacts in simulated (left) and real (middle and right) CBCT scans [24]

FIGURE 3: Examples of different kinds of artifacts appearing in CBCT scans. Shown are several artifact-free motion states
obtained with a simulated 4D CBCT scan (1st row), sparse-view artifacts at various sub-sampling rates (2nd row), limited-
angle, scatter and metal artifacts (3rd row), as well as motion artifacts (4th row).

Compared with the classical fast adaptive scatter kernel
superposition (fASKS) scatter reduction technique [92], a U-
Net-based architecture outperformed in scatter artifact reduc-
tion for both full-fan and half-fan scans based on several
metrics [93]. Additionally, a U-Net-based model trained on
simulated CBCT projections has shown comparable perfor-
mance to a validated empirical scatter correction technique
in dose calculation for correcting the scatter artifacts in head
and neck scans, computing the corrected volumes in less than
5 seconds [94]. Besides classical approaches of scatter artifact

reduction, CT scans have been used as ground truth volumes
for training a modified U-Net architecture with a multi-
objective loss function specifically targeting scatter artifact
reduction in esophagus scans [95].

Apart from supervised learning methods, researchers have
also trained Cycle-GAN models to improve the quality of
CBCT scans, remove scatter artifacts, and generate sCT.
In particular, Cycle-GAN has demonstrated superior perfor-
mance compared to similar techniques using deep convolu-
tional generative adversarial networks (DCGAN [96]) and
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progressive growing GANs (PGGAN [97]) [98].

VIII. METAL
Metal objects and implants in the patient’s body result in
scattered radiation reaching the detector, leading to streak
artifacts. In the early research addressing metal artifacts, a
CNN-based regression model has been trained to predict the
detectability rank of metal implants to recommend out-of-
plane angulation for C-arm source trajectories [99]. Further
research in this area has proposed predicting the X-ray spec-
tral shift after the localization of metal objects to define the
optimal C-arm source-detector orbit [100]. The metal artifact
avoidance (MAA) technique uses low-dose scout projections
to roughly localize metal objects for the identification of
a circular or non-circular orbit of C-arm source-detector to
minimize variations in spectral shift and avoid metal arti-
facts [101].

Researchers have also employed supervised learning for
reducing metal artifacts and estimating the deviation of
the voxel values after inserting neuroelectrodes [102]. Self-
supervised learning approaches, focused on training models
for inpainting the regions affected by metal artifacts, have
demonstrated improvements in simultaneously tacklingmetal
artifact reduction while preserving the essential anatomical
structures near the inserted implants [88]. In addition to super-
vised and self-supervised techniques, various types of GANs
have been employed in the literature for unsupervised metal
artifact reduction. Optimized conventional GANs can reduce
metal artifacts in high-resolution and physically realistic CT
scans, with good generalization to clinical CBCT imaging
technologies for inner-ear scans [103]. Conditional GANs, in-
spired by the pix2pix-GAN [104], have successfully reduced
metal artifacts in spine CBCT scans, enabling precise recov-
ery of fiducial markers located outside the C-arm’s field-of-
view (FOV) [105]. A Cycle-GAN has also been employed to
efficiently reduce metal artifacts by generating synthetic CT
(sCT) from Megavolt CBCT (MVCBCT) and improving the
quality of CBCT scans [106].

IX. MOTION
Many of the state-of-the-art volumetric reconstruction tech-
niques for CBCT rely heavily on the initial assumption
that the projections are acquired from a stationary object.
However, this assumption is often violated because of pe-
riodic respiratory and cardiac motions or non-voluntary
and non-periodic movement of air bubbles in the abdom-
inal area. When reconstructing CBCT volumes using pro-
jections acquired from various body states under motion,
motion streak artifacts appear in the reconstructed volume,
as shown in Figure 3. The severity of the resulting arti-
facts is positively correlated with the intensity of motion.
The most common approach to tackle motion artifacts in
CBCT scans is dividing the projections based on the motion
state (motion-resolved [107]–[112]), periodic motion state
(phase-resolved [111], [113], [114]) or acquisition time (time-

resolved [115], [116]), and then reconstruct multiple volumes
based on each batch of projections to generate a 4D CBCT.

Motion-resolved methods

A novel approach using CNNs to predict the missing pro-
jections in motion-resolved 4D-CBCT combined with a bin-
sharing technique to accelerate the acquisition process, sub-
stantially removed streak artifacts compared with standard
conjugate gradient reconstruction [107]. Training a residual
U-Net also reduces the streak artifacts appearing in 4D-
CBCT by addressing the sparseness of the projections ac-
quired in each breathing phase [108]. Residual dense net-
works (RDNs [110]) have successfully improved sparseness
artifacts using an in-house lung and liver dataset, as well as
a public dataset of the SPARE challenge [117], [118]. Simi-
lar research demonstrates that combining the information of
the different breathing phases to train a prior-guided CNN
can effectively reduce artifacts in motion-resolved 4D-CBCT
scans [109]. In addition to training single models, researchers
attempted to optimize a cascade of spatial and temporal CNN
models to combine spatial and temporal information for max-
imum artifact removal and to avoid errors in the tomographic
information [112]. A dual-encoder CNN (DeCNN) architec-
ture simultaneously processes and combines the information
of 4D motion-resolved volumes and the averaged volume,
thereby improving the sharpness of the edges in moving and
fixed tissues in 4D-CBCT [119].

Phase- and time-resolved methods

Phase-resolved CBCT is a specific case of motion-resolved
CBCT, where projections are selected based on the different
phases of body volume under periodic, respiratory, or car-
diac motion. Motion Compensation Learning-induced sparse
tensor constraint reconstruction (MCL-STCR) was shown to
improve 4D-CBCT scans for all motion phases [120]. 3D-
CNNs have shown to effectively mitigate sparse-view arti-
facts in motion-compensated 4D-CBCT scans reconstructed
using FDK, thereby enhancing the overall quality [114]. N-
Net uses the prior volume reconstructed using all projections
to remove streak artifacts. CycN-Net combines the temporal
correlation among the phase-resolved scans to reduce streak
artifacts that are caused by sparse-view sampled motion-
resolved projections [111]. Furthermore, training a patient-
specific GAN-based model on phase-resolved 4D-CBCT to
reproduce CT quality using CBCT scans demonstrates im-
provements when applied to test set projections acquired from
the same patient [113]. In addition to motion- and phase-
resolved methods, training a U-Net can remove sparseness
artifacts from time-resolved 4D-CBCT without requiring any
prior information [115]. GANs have also demonstrated the
capacity of estimating sCT scans from time-resolved 4D-
CBCT and the average 3D-CBCT volume, resulting in a com-
parable improvement in dose calculation using both strate-
gies [116].
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Biomechanical and physical modeling
In addition to phase-, motion-, and time-resolved techniques,
researchers have also explored targeting motion artifacts by
physically modeling the motion using a deformation-vector-
field (DVF) and by optimizing an autofocus metric (i.e.,
maximizing some measure of sharpness). The Simultane-
ous Motion Estimation and Image Reconstruction (SMEIR)
model, as well as its biomechanical modeling-guided version
(SMEIR-Bio), are examples of models developed for motion
effect prediction in lung 4DCBCT scans [121]. These models
have also been enhanced using a U-Net-based DVF optimiza-
tion technique, leveraging a population-based deep learning
scheme to improve the accuracy of intra-lung DVF prediction
(SMEIR-Unet) in the same research work. By incorporat-
ing the reference phase in 4D CBCT as an extra channel
to their model, training a 4D U-Net for motion estimation,
with fine-tuning the estimated DVFs, the performance of
SMEIR models increases for motion artifact reduction [122].
CNN-based architectures have been optimized to estimate
deformable motion and predict the motion intensity on 8× 8
grids covering the axial slice, followed by a preconditioning
technique to favormore likelymotion intensities [123]. CNNs
have also been trained for motion compensation in CBCT
scans to solve the high-dimensional and no-convex problem
of optimizing the autofocus metric [124].

Alternative methods
The autofocusmetric has also been replacedwith the Context-
Aware Deep Learning-based Visual Information Fidelity
(CADL-VIF) image similarity metric to optimize multi-
resolution CNNs [125]. This approach aims to improve mo-
tion degradation and compute sharp scans while preserving
the tissue structures by optimizing visual information fidelity
(VIF) without requiring motion-free ground truth. An alter-
native to the autofocus metric is using contrastive loss to
train GAN architectures to enhance the quality of 4D-CBCT
scans and to reduce streak and motion artifacts [15]. To
address the slow speed of reconstruction and to compensate
for the errors of 4D-CBCT due to the severe intraphase under-
sampling, a feature-compensated deformable convolutional
network (FeaCo-DCN [126]) model has been proposed. It
achieves nearly real-time reconstruction and accurate CBCT,
outperforming the previous method applied to the SPARE
Challenge [117], [118]. Besides the numerous research stud-
ies addressing motion in 4D CBCT, which requires recording
the patient’s breathing curve, researchers have also simulated
motion in CBCT scans based on the estimation of DVFs
according to 4D CT ground truth scans [127]. They subse-
quently trained a dual-domain model to mitigate 3D CBCT
motion artifacts in the projection and volume domains. The
clinical validation on real-world CBCT images yielded posi-
tive feedback from clinical experts, demonstrating the effec-
tiveness of their approach for motion compensation [24]. In
addition to all methods to reduce motion artifacts, researchers
have successfully used an artifact-driven slice sampling tech-
nique to avoid artifacts caused by moving air bubbles in the

segmentation of the female pelvis [128].
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FIGURE 4: A visual summary of the distribution of the
covered research literature in CBCT artifact mitigation using
deep learning, separately for two time periods, (a) based on
three generic deep learning architecture categories given a
broad categorization by artifact type, and (b) based on the
distribution according to the type of artifact.

X. DISCUSSION AND RECOMMENDATIONS
The previous sections have outlined the methodology and the
complete workflow employed for deep learning based miti-
gation of artifacts in CBCT scans, addressing each specific
type of artifact separately. This section presents a summary,
emphasizing the central role of various deep learning ap-
proaches. The objective is to offer a comprehensive review
of the architectures employed for different artifact types,
highlighting both the promising aspects and the limitations
in the current literature.
In general, a trend is observed in shifting from conventional

supervised learning with CNNs and U-Net-type architectures
to exploring more modern learning paradigms such as GANs,
and investigating self-supervised and unsupervised methods,
leveraging e.g. Cycle-GANs, as depicted in Figure 4a. In par-
ticular, Cycle-GAN-based architectures offer the appealing
feature of enabling model training without needing paired
labeled data [131]. However, they come with high data re-
quirements, rising attention toward methods and projects for
data collection, synthetical data generation, dataset merging
from diverse sources, and data homogenization. This trend
suggests the rise of research works attempting at the adap-
tation of generative models including GANs, Cycle-GANs,
as well as scored-based models [132], [133], in upcoming re-
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Artifact type Year Title Anatomic
site

Model Patients GPU
Hardware

Published
code?

image quality 2019 Paired cycle-GAN-based image correction for quantitative
cone-beam computed tomography [45]

brain,
pelvis

cycle
GAN

44 NVIDIA
TITAN XP

-

2019 CBCT correction using a cycle-consistent generative ad-
versarial network and unpaired training to enable photon
and proton dose calculation [48]

pelvis cycle
GAN

33 NVIDIA
Tesla P100

-

low-dose 2019 Computationally efficient deep neural network for com-
puted tomography image reconstruction [67]

abdomen U-Net 10 NVIDIA
GTX 1080 Ti

-

2020 Neural networks-based regularization for large-scale med-
ical image reconstruction [55]

cardiac U-Net 19 - -

sparse-view

2023 Sub-volume-based Denoising Diffusion Probabilistic
Model for Cone-beam CT Reconstruction from
Incomplete Data [129]

breast diffusion
model

- 128x
NVIDIA
Tesla V100

-

2023 Learning Deep Intensity Field for Extremely Sparse-View
CBCT Reconstruction [71]

knee learned
recon-
struction

- NVIDIA RTX
3090

yes

2020 Self-contained deep learning-based boosting of 4D cone-
beam CT reconstruction [110]

liver,
lung

residual
dense
network

20 NVIDIA
GeForce RTX
2080 Ti

yes

2020 Deep Efficient End-to-End Reconstruction (DEER) Net-
work for Few-View Breast CT Image Reconstruction [69]

breast GAN 42 NVIDIA
Titan RTX

yes

limited-angle 2020 C-arm orbits for metal artifact avoidance (MAA) in cone-
beam CT [101]

chest
phantom

U-Net 0 NVIDIA
TITAN X

-

scatter 2019 Real-time scatter estimation for medical CT using the deep
scatter estimation: Method and robustness analysis with
respect to different anatomies, dose levels, tube voltages,
and data truncation [90]

head,
thorax,
pelvis

U-Net 21 NVIDIA
Quadro
P6000

-

metal 2021 Inner-ear augmented metal artifact reduction
with simulation-based 3D generative adversarial
networks [130]

temporal
bone
images

GAN 597 11 GB GPU -

motion 2022 Enhancement of 4-D Cone-Beam Computed Tomography
(4D-CBCT) Using a Dual-Encoder Convolutional Neural
Network (DeCNN) [119]

lung CNNs 26 NVIDIA
Titan RTX

-

2022 Deep learning-based motion compensation for four-
dimensional cone-beam computed tomography (4D-
CBCT) reconstruction [114]

thorax CNNs 18 NVIDIA
Tesla V100S

yes

TABLE 1: Summary of a subset of studies selected guided by recency and number of citations. The table provides details about
artifact category, publication year, study title, anatomic site, model type, number of patients, GPU hardware, and whether the
code was published.

search endeavors. A recent example [129], which employs de-
noising diffusion probabilistic models [134], [135] for sparse-
view CBCT reconstruction, demonstrates a lot of potential
for future research, however at the expense of tremendous
compute resources (up to 128 GPUs, see also Table 1). On
the other hand, less computationally intense, U-Net-based,
architectures have demonstrated their merit in successfully
addressing artifacts across all categories, making them a
highly recommended and robust baseline approach for artifact
mitigation.

In the context of this survey, the primary DL-based archi-
tectures used in the literature can be divided into four key
categories: CNNs, U-Nets, GANs, and cycle-GANs. Here,
we categorize architectures with multi-scale information fu-
sion, i.e. including connections from the network’s input
(encoding) layers to output (decoding) layers (such as [67])
under the category U-Net, while those without such direct
connections (such as autoencoders [136]) are categorized as
CNNs. DL-based models generally require medium to large
datasets for training, validation and testing through clinical
evaluation. While medium-sized datasets, including multiple
patients, can serve as starting points for training CNNs and

U-Nets [83], GANs perform better using datasets containing
at least dozens of patient scans [42]. This trend generalizes
to 3D and 4D reconstruction, where larger input sizes and
a higher number of scans become essential, in particular
for 4D [122]. A review of the studies presented in Table 1
reveals that themajority of researchwas conductedwith fewer
than 50 patients. This relatively small number of patients can
pose challenges for validating the approach across a diverse
population. Consequently, the robustness of these models
warrants further scrutiny to ensure their ability to generalize
well across various human anatomies.

CNN architectures, known for their stable convergence
and versatility, demonstrate a wide range of applications
for artifact reduction through adapting different vision back-
bones [32] and incorporating diverse architectural compo-
nents such as attention blocks [24]. However, in terms of
multi-scale information fusion, they are inferior to U-Nets
and their variants (e.g., U-Net++ [137]), which demonstrate
a fast convergence in supervised learning due to the internal
architectural connections between different layers enhancing
the multi-resolution information fusion [7]. Since CNNs and
U-Nets are predominantly being trained in a supervised man-
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ner, their learning technique necessitates explicitly labeled
data to define the task. On the other hand, generative models
(GANs), incorporating an adversarial loss, also offer poten-
tial applications in generating high-quality synthetic scans
to meet the data needs of the deep learning-based architec-
tures [36]. Moverover, Cycle-GANs compute the inverse path
of artifact reduction automatically, using a cycle-consistent
loss, thus being able to learn artifact reduction without the
need for paired artifact-free ground truth [48].

Only four of the papers presented in Table 1 provide a
public code repository to reproduce their results. This high-
lights a considerable shortage of open science practices, such
as sharing code, to promote transparency and reproducibility
in research. It is strongly recommended for researchers to
share their code publicly to enhance the credibility and re-
producibility of their work and accelerate scientific progress
in this field.

XI. CONCLUSIONS
We presented a survey on the application of deep learning
and convolutional neural networks to reduce various types of
artifacts in CBCT scans.We categorized the existing literature
based on the type of artifacts they address as well as the
methodology employed. Figure 4b illustrates the amount of
the recent research works based on the type of artifacts. It is
observed that there has been considerable growth in artifact
reduction research compared with focusing more generically
on scan quality after 2021. The opportunity of reducing the
imaging dose with the help of compensating for artifacts
when using low-dose scans, sparse-view, and limited-angle
acquisition techniques have gained substantial attention due
to the ease of simulation and computing the ground truth,
especially for sparse-view and limited-angle approaches.

However, metal and scatter artifacts have received less
attention. This may also be due to the challenges involved in
computing the ground truth for metal artifacts, or the high
computational cost of Monte-Carlo simulation for scatter
artifacts. We expect that the research community could profit
from open-source accurate and fast artifact simulations for
training models (as before with XCAT [138]). The devel-
opment of such simulations could also serve as a driving
force for physics-based artifact modeling or training physics-
informed neural networks (PINN) [139] for artifact reduction.
These simulations would benefit from GPU implementations
for data generation to enable on-the-fly integration into the
training pipelines with neural networks. In addition to sim-
ulations, there is a research gap for open-source data aug-
mentation techniques, such as [140], [141], also based on
incorporating simulated artifacts into real datasets.

In addition to simulation and augmentation tools for mod-
elling, the research community would benefit from the avail-
ability of open-source datasets. Researchers are still reporting
results on phantoms and cadavers, indicating a need for more
diverse and realistic publicly available datasets. Neverthe-
less, despite the lack of open-source 4D CBCT datasets with
raw projections and breathing curves, there is an increase

of motion artifact reduction research in recent literature.
The collection and sharing of up-to-date benchmark datasets
on a large scale, similar to the SPARSE [117], [118] and
SynthRAD [142] challenges, would enhance the quality of
many research works and provide the opportunity for fair and
accurate comparison of different approaches. Furthermore,
many studies suffer from a lack of clinical evaluation. The
availability of open-source standard clinical evaluation plat-
forms would be of significant help in addressing this issue.
In terms of methodology, there has been a noticeable

trend of moving beyond supervised learning towards self-
supervised, unsupervised, and domain adaptation methods in
recent years. Researchers have started incorporating more
physically inspired ideas into the neural networks and uti-
lizing prior patient knowledge to personalize the models for
specific anatomies. One of the drawbacks often observed
in the current literature is the absence of ablation studies.
For example, in the case of approaches employing dual-
domain optimization in both projection and volume domains,
the performance gained in each domain should be estimated
separately. Besides artifact reduction after the CBCT acqui-
sition, adapting the acquisition process itself using neural
networks, such as C-arm trajectory adjustments applied to
metal artifact reduction, present a further exciting avenue for
future research.
In summary, substantial progress has been made in recent

years transferring state-of-the-art methods from deep learning
based computer vision to the domain of CBCT imaging and
in particular the amelioration of prevalent imaging artifacts,
with a clear potential to improve diagnosis and treatment in
clinical practice.
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