
© The author(s) 2023. This is the author’s version of the work. The definitive version was published in DEBS’23,
https://doi.org/10.1145/3583678.3603277.

Demo: SLASH: Serverless Apache Spark Hub

Josef Spillner
josef.spillner@zhaw.ch

Zurich University of Applied Sciences

Winterthur, Switzerland

ABSTRACT

Application needs for big data processing are shifting from

planned batch processing to emergent scenarios involving

high elasticity. Consequently, for many organisations man-

aging private or public cloud resources it is no longer wise

to pre-provision big data frameworks over large �xed-size

clusters. Instead, they are looking forward to on-demand

provisioning of those frameworks in the same way that the

underlying compute resources such as virtual machines or

containers can already be instantiated on demand today.

Yet many big data frameworks, including the widely used

Apache Spark, do not sandwich well in between underlying

resource managers and user requests. With SLASH, we intro-

duce a light-weight serverless provisioning model for worker

nodes in standalone Spark clusters that help organisations

slashing operating costs while providing greater �exibility

and comfort to their users and more sustainable operations

based on a unique triple scaling method.

CCS CONCEPTS

• Computing methodologies→ Distributed algorithms; •

Networks → Network services; • Computer systems orga-

nization→Maintainability and maintenance.

KEYWORDS

Autoscaling, big data, provisioning

ACM Reference Format:

Josef Spillner. 2023. Demo: SLASH: Serverless Apache Spark Hub.

In The 17th ACM International Conference on Distributed and Event-

based Systems (DEBS ’23), June 27–30, 2023, Neuchatel, Switzerland.

ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3583678.

3603277

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0122-1/23/06.

https://doi.org/10.1145/3583678.3603277

1 INTRODUCTION

Scalable data pipelines with storage and processing capa-

bilities are an indispensible ingredient for most application

architectures. Ranging from business number crunching and

machine learning to nation-scale handling of people, ser-

vices or things interactions, the variety of data management

approaches has widened considerably in recent years [1].

Apart from conventional database management systems, in-

cluding �avours such as NoSQL, in-memory and key-value

stores, several big data processing frameworks, often with

tangential handling of long-term data storage, have emerged.

Among the most well-known frameworks are Hadoop, Spark,

Flink, Ray and Dask. Most of these frameworks have turned

into industrial de-facto standards, underlined by vendor-

neutral open source communities such as the Apache Foun-

dation.

Key advantage of these open frameworks include their

portability and extensibility. While they often predate mod-

ern resource managers and are thus harder to set up than

recent cloud-native data management and processing o�er-

ings, they provide a predictable interface that remains the

same even when migrating from on-premise deployments

to the cloud or between cloud providers. Individual deploy-

ments can still be customised. These and other advantages

are well understood and covered by the literature [4, 12].

However, in contrast to recent approaches such as fully

serverless data processing approaches like with Lithops, the

hurdle on setting up such pipelines on static clusters remains.

Hence, with SLASH, a path towards better on-demand self-

service, inspired by a serverless mindset, is shaped while at

the same time providing a way for organisations to protect

their investments into existing big data setups. Speci�cally,

SLASH o�ers a way to deploy and invoke Spark workers as

dynamic middleware along with Spark-based applications,

based on triple scaling: �xed schedules, anticipated usage,

and on-demand. In contrast to commercial Spark o�erings

such as Databricks, users no longer need to switch on and

o� clusters.

In the next section, the challenges behind this approach

are presented. In the remaining sections, the SLASH system

architecture is described and the implementation is demon-

strated in production in a research and education cloud in-

frastructure.

https://orcid.org/0000-0002-5312-5996
https://doi.org/10.1145/3583678.3603277
https://doi.org/10.1145/3583678.3603277
https://doi.org/10.1145/3583678.3603277

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Josef Spillner

2 CHALLENGES

Bounded elasticity de�nes the ability of a system to follow

a load curve while adhering to other constraints, such as

maximum availability of resources and minimum idleness.

These sizing constraints may be economically motivated

but also have a profound e�ect on the environmental foot-

print of a system. When a system underscales the load curve,

its users may become dissatis�ed with higher makespans

so that there is a trade-o� between economic/ecologic and

social/psychologic concerns.

On a technical level, bounded load-proportional process-

ing in any big data framework is achieved by horizontal and

vertical scaling. An auxiliary scaling framework takes care of

allocating resources as part of general resource management.

The knowledge for taking proper scaling decisions may come

from di�erent sources: explicit schedules (calendar-based

predictive autoscaling), implicit schedules (forecasting based

on historic behaviour), and on-demand requests (reactive

autoscaling) which are well-supported in modern resource

orchestrators such as Kubernetes. The �rst challenge is com-

bining these sources in real-time and deriving right-sized

application instances from the estimated or calculated overall

resource requirements and constraints through a triple scal-

ing method. Kubernetes in particular is aimed at short-lived

cattle workloads, whereas Spark contexts do not tolerate re-

source variability during execution, and moreover provides

only laggy resource metrics access; hence, even in container-

ised environment a custom autoscaler approach is needed.

The second challenge is conveying this method to the applica-

tion engineer without the need to manage servers, following

the seemingly serverless approach that has become popular

in industry with cloud applications based on FaaS. Recent big

data frameworks such as Lithops [9] already follow such a

serverless design, while this work intends to combine it with

triple scaling and apply it to a legacy static cluster framework

such as Spark.

3 SYSTEM ARCHITECTURE

SLASH is based on a distributed event-based architecture

with a central hub receiving on-demand events from applica-

tions as well as regular events from its own scheduled jobs.

It also queries the underlying resource manager (hypervisor)

and the Spark master to be informed about actual resource

usage, including from non-autoscaled workloads that may

coexist and need to be factored in. The hub can be deployed

on the Spark master node or on a dedicated node with equal

reachability from applications. Due to its ability to collocate

with non-autoscaled workloads, it can also run on the ap-

plication or frontend nodes, such as Jupyter notebooks. A

collocated job server process ensures that regular calendar

events, forecasting events and requests for a guaranteed base

capacity are all forwarded to the hub at the appropriate times,

which then merges these with on-demand requests to de-

cide on scale-up/-down instructions to the resource manager.

Fig. 1 shows how the SLASH components (hub, jobserver,

application proxy class) �t into a typical Spark deployment.

Master VM/Container (permanently running)

Worker VM/Container (launched on demand)

Infrastructure control plane (e.g., OpenStack Nova)

start/stop

Spark master Spark worker

File system access (SSHFS,

S3 client, HDFS-FUSE etc.)

Central or distributed

filesystem (disk, S3, HDFS etc.)

read/write read/write

SLASH deployment & model serving

Frontend VM/Container(s) (user-managed)

e.g. Jupyter server with notebooks

Spark driver with block manager

SLASH SparkContext proxy

(on-demand scaling)

SLASH hub (logging, calendar

scaling, forecast scaling)

SLASH jobserver (calendar events,

model retraining)

 check and scale

 task submission

event emission

 event

 emission

Figure 1: Portable SLASH system architecture

For the big data application engineer, making use of SLASH

is trivial. Listing 3 gives a practical example of how to in-

corporate SLASH on-demand scheduling with a single line

of code into typical Spark applications. The module import

only relies on an environment variable $SLASH pointing to

the hub (<ip>:<port>) that must be pre-set in the environ-

ment (e.g. Jupyter notebook) or programmatically inside the

application code.

import pyspark

...

import slash # auto -upgrade pyspark to SLASH

sc = pyspark.Context (...)

scale up here latest unless pre -scaled already

sc.parallelize ([...])

sc.stop()

scale down here if applicable unless overridden

by calendar/forecasting/basecap

Each application produces a custom events track which

can be analysed for e.g. cleaning up aborted applications not

sending the disconnection events. SLASH consolidates all

received events on all tracks and merges them into an au-

thoritative decision track in order to avoid con�icting upscal-

ing/downscaling decisions. The decision track is the input

to the infrastructure scaling layer. This interaction is imple-

mented for vanilla OpenStack, but could also be extended to

scienti�c compute environments such as Chameleon Cloud1,

and to container orchestrators such as Kubernetes for which

Spark integration is available2. Fig. 2 explains the cumulative

1Chameleon: https://www.chameleoncloud.org/
2see https://spark.apache.org/docs/latest/running-on-kubernetes.html

https://www.chameleoncloud.org/
https://spark.apache.org/docs/latest/running-on-kubernetes.html

Demo: SLASH: Serverless Apache Spark Hub DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

nature of the tracks over a hypothetical timeline. Each track

contains a number of cores at each point in time, adding up

to the overall allocation. The �gure omits the base capacity

track and the number of cores.

t

on-demand

track

forecasting

track

calendar

track

decision

track

Figure 2: Cumulation of scaling event tracks into scal-

ing decisions

Careful downscaling happens either explicitly based on

follow-up events, or implicitly based on a de�ned timeout, e.g.

4 hours for classroom settings. The careful behaviour leaves

still allocated resources untouched. The appropriate way to

de-allocate them would be a timeout or enforced termination

on the application itself, rather than the autoscaler.

4 SYSTEM DEMONSTRATION

Zurich University of Applied Sciences runs a 96 cores Spark

cluster for educational and research/industry innovation pur-

poses, primarily for data science and big data applications

with streaming (ESP/CEP), graph processing, and machine

learning (ML). We have deployed SLASH on this infrastruc-

ture and tested it with 30 concurrent users to demonstrate

its ability to integrate, scale, and cut down resource con-

sumption. The underlying infrastructure is a full deploy-

ment of OpenStack 23.01 (Antelope) with public resource

description3. All Spark-related VMs run Ubuntu 23.04 (Lunar

Lobster) with Python 3.11 and Spark 3.4.0.

The open source SLASH system [10] has been deployed

on one of the shared collaborative Jupyter notebook envi-

ronments attached to the Spark cluster. This environment is

used in production and therefore allows collecting real usage

statistics.

Fig. 3 shows a synthetic session where blue requests for

cores trigger orange allocation of virtual machines with mul-

tiples of 8 as available cores. Downscaling is delayed to avoid

throttle, as can be seen in the second orange section.

Fig. 4 shows a trace of a 90minutes classroom session. First,

autoscaling was deactivated, leading to Spark applications re-

maining in WAITINGmode due to insu�cient resources (blue

line over orange line). Then, it was enabled, and immediately

provisioned the necessary 48 cores. Afterwards, classroom

mode with full provisioning for that day with 64 cores was

activated, which prevented downscaling even in cases of

mass application terminations, as can be seen by the two

3Cloudlab: https://info.cloudlab.zhaw.ch/

0 250 500 750 1000 1250 1500 1750
time (s)

0

5

10

15

20

25

30

#c
or

es

sparkcores
vmcores

Figure 3: Measured autoscaling behaviour over time:

VM cores versus e�ectively used Spark cores

OOM-related Jupyter crashes bringing the resource demand

temporarily down to 0, and thus prevented student anger

over more waiting time after reconnecting their notebooks.

0 1000 2000 3000 4000
time (s)

0

10

20

30

40

50

60

#c
or

es sparkcores
vmcores

Figure 4: Autoscaling behaviour in a classroom setting

SLASH has been used for several dynamic data processing

applications, in various embeddings such as Jupyter note-

books, batch jobs and interactive desktop visualisations. One

of the latter types is a live event stream analysis of delays,

cancellations and other GTFS-RT matters on the Swiss public

transport system, based on Spark Streaming. Fig. 5 conveys

the need to scale when considering an in�ux of events scat-

tered across administrative regions. Due to a weekly backlog

of the data in the original source, this is especially required

after application startup with hundreds of events/s.

https://info.cloudlab.zhaw.ch/

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Josef Spillner

Figure 5: Horizontally scaled stream analysis on

country-wide public transport events

5 RELATEDWORK

Spark has been a popular big data processing and analytics

framework for over a decade [5], based on a master-worker

model and application contexts occupying resources stati-

cally on workers during execution. It is often used as basis

for other systems such as distributed geospatial pub/sub bro-

kers [7] due to its ability to exploit existing resources with

integrated resource management. However, the resources

are treated as static allocations, and scaling decisions are not

propagated downward to the underlying resource manager.

More dynamic resource management for big data frame-

works has therefore become a research direction [6]. Dy-

namic resource provisioning and scaling for Spark in partic-

ular has led to a number of research results over almost a

decade [2, 3]. Among themore recent results is a performance

study of autoscaling Spark atop Kubernetes [11] which con-

�rms dynamic executor allocation on worker nodes (as pods)

but also that the worker nodes themselves remain static

(setting spark.dynamicAllocation.enabled). Another ap-

proach for scaling Spark on top of OpenStack is based on

SLAs with speci�ed deadlines [8]. All of these approaches

are bound to the runtime environment, such as Spark hosted

on IaaS, CaaS or HPC. SLASH is similarly bound, currently

to OpenStack. But what di�erentiates it is its leverage of

the seemingly serverless approach. It therefore makes the

scaling across infrastructure layers controllable by the user.

Moreover, SLASH combines several event sources to accom-

modate all scaling needs, and delivers information usually

not accessible from PySpark, such as the number of e�ec-

tively allocated cores following the requested number.

6 CONCLUSIONS

SLASH makes Spark worker scaling more elastic based on a

triple scaling method. The system has been shown to work

and perform well in a reasonably sized production environ-

ment. From an operations perspective, SLASH helps slashing

resource operation cost, whereas from a user perspective, it

conveys a seemingly serverless interface to launching work-

ers as needed up to the operator-de�ned limits. SLASH is

available as open source implementation [10] and can be

considered for adoption by operators of Spark environments

with di�erent frontends. Future work will focus on support

for other frameworks so that their workers can co-exist on

the same virtual machines, based on the introduction of ad-

ditional event tracks in the hub, as well as on more useful

forecasting based on seasonalities such as course weeks.

REFERENCES
[1] Pouya Ataei and Alan T. Litch�eld. 2022. The State of Big Data Refer-

ence Architectures: A Systematic Literature Review. IEEE Access 10

(2022), 113789–113807. https://doi.org/10.1109/ACCESS.2022.3217557

[2] Nicholas Chaimov, Allen D. Malony, Shane Canon, Costin Iancu,

Khaled Z. Ibrahim, and Jay Srinivasan. 2016. Scaling Spark on HPC

Systems. In Proc. 25th ACM Intl. Symp. High-Performance Parallel and

Distributed Computing, HPDC 2016, Kyoto, Japan, May 31 - June 04,

2016. ACM, 97–110. https://doi.org/10.1145/2907294.2907310

[3] Dazhao Cheng, Yu Wang, and Dong Dai. 2023. Dynamic Resource

Provisioning for Iterative Workloads on Apache Spark. IEEE Trans.

Cloud Comput. 11, 1 (2023), 639–652. https://doi.org/10.1109/TCC.

2021.3108043

[4] Christos Doulkeridis, Akrivi Vlachou, Nikos Pelekis, and Yannis

Theodoridis. 2021. A Survey on Big Data Processing Frameworks

for Mobility Analytics. SIGMOD Rec. 50, 2 (2021), 18–29. https:

//doi.org/10.1145/3484622.3484626

[5] Diego García-Gil, Sergio Ramírez-Gallego, Salvador García, and Fran-

cisco Herrera. 2017. A comparison on scalability for batch big data

processing on Apache Spark and Apache Flink. Big Data Analytics 2,

1 (01 Mar 2017), 1. https://doi.org/10.1186/s41044-016-0020-2

[6] Athanasios Kiourtis, Panagiotis Karamolegkos, Andreas Karabetian,

Konstantinos Voulgaris, Yannis Poulakis, Argyro Mavrogiorgou, and

Dimosthenis Kyriazis. 2022. An Autoscaling Platform Supporting

Graph Data Modelling Big Data Analytics. In ICIMTH 2022, Vol. 295.

IOS Press, 376–379. https://doi.org/10.3233/SHTI220743

[7] Ivan Livaja, Krešimir Pripužić, Siniša Sovilj, and Marin Vuković. 2022.

A distributed geospatial publish/subscribe system on Apache Spark.

Future Generation Computer Systems 132 (2022), 282–298.

[8] Yoori Oh, Jieun Choi, Eunjung Song, Moonji Kim, and Yoonhee Kim.

2016. A SLA-based Spark cluster scaling method in cloud environment.

In 2016 18th Asia-Paci�c Network Operations and Management Sympo-

sium (APNOMS). 1–4. https://doi.org/10.1109/APNOMS.2016.7737242

[9] Josep Sampé, Marc Sánchez Artigas, Gil Vernik, Ido Yehekzel, and

Pedro García López. 2023. Outsourcing Data Processing Jobs With

Lithops. IEEE Trans. Cloud Comput. 11, 1 (2023), 1026–1037. https:

//doi.org/10.1109/TCC.2021.3129000

[10] Josef Spillner. 2023. SLASH - Serverless Apache Spark Hub. https:

//doi.org/10.5281/zenodo.7897070

[11] Vinay Kumar Vennu and Sai Ram Yepuru. 2022. A performance study

for autoscaling big data analytics containerized applications: Scalabil-

ity of Apache Spark on Kubernetes. urn:nbn:se:bth-22685.

[12] Xin Wang, Pei Guo, Xingyan Li, Jianwu Wang, Aryya Gangopad-

hyay, Carl E. Busart, and Jade Freeman. 2021. Reproducible and

Portable Big Data Analytics in the Cloud. CoRR abs/2112.09762 (2021).

arXiv:2112.09762 https://arxiv.org/abs/2112.09762

https://doi.org/10.1109/ACCESS.2022.3217557
https://doi.org/10.1145/2907294.2907310
https://doi.org/10.1109/TCC.2021.3108043
https://doi.org/10.1109/TCC.2021.3108043
https://doi.org/10.1145/3484622.3484626
https://doi.org/10.1145/3484622.3484626
https://doi.org/10.1186/s41044-016-0020-2
https://doi.org/10.3233/SHTI220743
https://doi.org/10.1109/APNOMS.2016.7737242
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.5281/zenodo.7897070
https://doi.org/10.5281/zenodo.7897070
https://arxiv.org/abs/2112.09762
https://arxiv.org/abs/2112.09762

