
© The author(s) 2021. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The
definitive version was published in UCC’21 Companion, https://doi.org/10.1145/3492323.3495589.

Self-balancing Architectures based on Liquid Functions across
Computing Continuums

Josef Spillner
josef.spillner@zhaw.ch

Zurich University of Applied Sciences

Winterthur, Switzerland

ABSTRACT

Scalable application development is highly in�uenced by two major

trends – serverless computing and continuum computing. These

trends have had little intersection, as most application architectures,

even when following a microservices or function-based approach,

are built around rather monolithic Function-as-a-Service engines

that do not span continuums. Functions are thus separated code-

wise but not infrastructure-wise, as they continue to run on the

same single platform they have been deployed to. Moreover, devel-

oping and deploying distributed applications remains non-trivial

and is a hurdle for enhancing the capabilities of mobile and sensing

domains. To overcome this limitation, the concept of self-balancing

architectures is introduced in which liquid functions traverse cloud

and edge/fog platforms in a continuum as needed, represented by

the abstract notion of pressure relief valves based on resource ca-

pacities, function execution durations and optimisation preferences.

With CoRFu, a reference implementation of a continuum-wide dis-

tributed Function-as-a-Service engine is introduced and combined

with a dynamic function o�oading framework. The implementation

is validated with a sensor data inference and regression application.

CCS CONCEPTS

•Networks→Network experimentation; •Computingmethod-

ologies→ Distributed computing methodologies; • Software and

its engineering → Software performance.

KEYWORDS

serverless computing, continuum computing, liquid software

ACM Reference Format:

Josef Spillner. 2021. Self-balancing Architectures based on Liquid Func-

tions across Computing Continuums. In 2021 IEEE/ACM 14th International

Conference on Utility and Cloud Computing (UCC ’21) Companion (UCC ’21

Companion), December 6–9, 2021, Leicester, United Kingdom.ACM, New York,

NY, USA, 6 pages. https://doi.org/10.1145/3492323.3495589

1 INTRODUCTION

Computing across several devices is challenging and requires appro-

priate abstractions from software and data engineering to running

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9163-4/21/12. . . $15.00
https://doi.org/10.1145/3492323.3495589

code in order to fully exploit the available resources. In human-

computing interaction, liquid software is an existing concept [6]

to let humans move application interfaces between devices. In dis-

tributed systems, agents are a related concept given the ability to let

application logic migrate between nodes. Agents are supposed to

be smart [7] and therefore can decide by themselves when to run at

which node, often assisted by appropriate platform support in terms

of control loops, awareness and placement mechanisms. In software

engineering, architectural principles for autonomous microservices

[12] have been de�ned and similarly aim at better meeting the

challenges of distributed systems. Such concepts gain relevance

due to the emergence of computing continuums [1], combining

several edge and fog devices, including mobile devices and sensors,

with multi-cloud infrastructure and platform services. Complex

application logic such as distributed or federated machine learning

and data analytics is particularly on the rise across devices and

are well understood concerning their communication properties

[4]. Yet machine learning applications are hard to implement and

deploy as per-device patchwork and can supposedly bene�t from

assuming a working continuum as fundamental higher-level ab-

straction, resembling an operating systemmanaging heterogeneous

distributed resources on behalf of applications.

Software engineers targeting such continuums could build mono-

lithic agents or autonomous microservices compositions but require

more appropriate design and engineering abstractions with little de-

viation from existing development practices. In recent years, cloud

functions have gained popularity with software engineers to encap-

sulate application parts or to provide glue functionality in complex

and scalable applications [5]. They convey a notion of serverless

computing, hiding much of the runtime and isolation con�gura-

tion. From the angle of agent technologies, functions are however

rather in�exible agents that remain at the nodes they have been

deployed to. Similarly, functions can be considered microservices

that are instantiated on demand. Only few approaches for function

execution in continuums have been proposed before, for instance

with Delta, an intelligent function scheduler based on predictors

and the funcX platform that can lead to 50%–80% execution time

reduction [8]. Similar approaches are Pilot-Edge, characterised by

support for heterogeneous workloads and decoupled resource man-

agement [10], and Colony, supporting three edge-cloud computing

scenarios for work�ows based on FaaS agents [9]. Osmotic com-

puting has also been proposed to connect edges with data centres

seamlessly [13]. Despite these advances, when infrastructure shifts

from single clouds to more spread-out continuum topologies with

access restrictions, the application engineer is still faced with the

tasks of packaging, placing and invoking functions on these nodes,

https://doi.org/10.1145/3492323.3495589
https://doi.org/10.1145/3492323.3495589

tedious e�orts not completely automated by services and abstrac-

tions such as Delta or Pilot-Edge. Moreover, Delta’s implementation

requires expertise and e�ort to operate along funcX and Globus,

and Pilot-Edge is still in early stages as research proposal.

From the engineer’s perspective, the main requirement to be ful-

�lled is therefore that these tasks become e�ortless and automated,

including the declarative and conditional o�oading and placement

of functions to a single node or all nodes but also the migration and

priorisation depending on load metrics, data a�nity and expected

capacities. This paper therefore marries the concepts of serverless

computing, continuum computing and FaaSi�cation by introducing

the concept of light-weight liquid functions in the sense of agent

code that will execute at the right nodes, requiring intermediate

services only on unmanaged nodes, and requiring no explicit pack-

aging and deployment. Section §2 introduces the concept including

the liquid functions model and resource management concerns as

well as an appropriate system architecture. Section §3 presents a

reference implementation, including limitations thereof. Section

§4 then validates the concept and the implementation by running

representative functions over multiple continuum con�gurations.

2 CONCEPT

2.1 Application and System Model

The liquid functions concept assumes that the goal is to engineer

scalable applications that span multiple nodes in a continuum. The

shape of the continuum is often dependent on the application do-

main. Such applications are common on mobile devices (device–

cloud or device–edge datacentre–cloud continuum) and in environ-

mental sensing (sensor node–fog–cloud or sensor node–multicloud

continuum). To facilitate liquid functions, the system model there-

fore assumes a continuum with at least partial visibility of the

nodes according to a graph model, often reduced to trees or even

sequences but potentially forming fully connected graphs. A node

that is visible to another is meant to be eligible as target for requests,

leading to the formation over overlay call graphs. Nodes can be

managed or unmanaged concerning function execution. Fully man-

aged nodes, such as commercial FaaS platforms, can be integrated as

leaf nodes. Moreover, nodes can be access-protected, requiring cre-

dentials at the node previously appearing in the call graph. Finally,

one node is the home node that serves as application entrypoint.

A typical graph for a continuum is shown in Fig. 1 along with a

potential overlay call graph. It represents a sensing edge home node

that is in the �eld and thus not physically protected, but able to

communicate with an intermediary node for submitting results but

also for o�oading computation. Due to higher protection levels, the

intermediary can host the credentials to cloud platforms and can

further o�oad computation to them. Leaf nodes without the ability

to forward requests receive requests. This refers in particular to

cloud platforms on which massive cloud-native elasticity is desired.

2.2 Function Model

Serverless computing providers have introduced a sophisticated

functions model to accomodate for application needs. Functions

can be deployed as code (FaaS) or as containers (CaaS), invoked syn-

chronously or asynchronously, instantiated ad-hoc or from a pro-

visioned concurrency pool, and con�gured according to expected

Figure 1: Exemplary graph of nodes in a continuum

memory consumption and isolation level. In the existing FaaS and

CaaS models, functions are always invoked where they have been

previously deployed. Their scalability is generally limited to the

upper limit de�ned in a cloud region, and multiple regions need

to be combined to reach beyond. Moreover, speci�c edge comput-

ing variations of FaaS such as Cloud�are Workers, Lambda@Edge

and Greengrass exist but are likewise constraining functions to

execute at static locations. Instead, the proposed function model in-

troduces the concept of liquid functions that traverse a continuum

as needed. It allows for further di�erentiation into three groups of

liquid functions that are controlled by policy markers:

(1) Mobile functions. These are functions with relative porta-

bility, e.g. packaged as multi-architecture container images

or portable code, that can be freely migrated between nodes

or deployed to multiple nodes in parallel with subsequent

selection at invocation time. The only restriction for mobility

comes from the node topology, as some nodes may not be

globally accessible but only through gateways.

(2) Pinned functions. Functions that are marked to remain stati-

cally bound to a node for technical or operational reasons.

Among them are monitoring functions that need to operate

once per node.

(3) Embedded functions. Functions that are not split o� from

application code but rather execute in-process, with mecha-

nisms in place for o�oading as pinned or mobile function.

As serverless application engineering is meant to reduce com-

plexity, two request-driven invocation and execution modes are

provided:

(1) Local execution. A function is executed at the node that

receives the request. Mobile and pinned functions always

execute locally.

(2) Forwarded execution. Based on contextual information such

as the node capacities and system load, requests may be

forwarded to other nodes according to de�ned topologies.

For instance, an edge node may hand o� requests to a cloud

platform. The hypothesis is that the forwarding leads to

load balancing across nodes and, from a system topology

perspective, to self-balancing over time.

Depending on the algorithmic complexity and the desired iso-

lation level, engineering and operating complexity can be fur-

ther reduced by relying on function annotations in code. As op-

posed to previously proposed annotations in the literature, such as

@CloudFunction [3], the concept of liquid functions permits a late

decision on where functions shall be placed and executed. Hence,

an annotation of the type @LiquidFunction will take the load sit-

uation and topology constraints in the continuum into account.

In summary, liquid functions are characterised by their ability

to be either embedded, pinned or mobile, by executing based on

direct or forwarded requests, and if the programming language

and complexity level permits, by o�oading dynamically based on

annotations.

2.3 Resource Management

The dynamic placement of functions on nodes participating in the

continuum requires up-to-date knowledge about the available re-

sources and the application needs. Three resource factors per node

are of primary interest: CPU performance ÿČ , CPU utilisation ÿđ

and memory utilisation ĉđ . Among the factors per application,

response time or makespan as well as concurrently serveable re-

quests, limited by main memory and other spatial resources, are

in the focus. More complex models exist to take further resources

such as disks and network links as well as isolation overheads

into account, e.g. Delta’s and Pilot-Edge’s models or the proposed

Ephemeral Continuum based on context-aware resource federation

[2], The liquid functions approach is meant to be able to use dif-

ferent resource management models whenever appropriate. Due

to the novelty of these models, two rather simple bootstrapping

models are introduced speci�cally to realise and investigate liquid

functions in closer detail. These two low-complexity resource man-

agement models ĈĂĎĉ0 and ĈĂĎĉ1 shall be su�cient for reaping

the bene�ts of liquid stateless compute-centric functions while al-

lowing to be complemented with more complex models as the need

arises.

In the �rst simple resource management model ĈĂĎĉ0, a bench-

mark function is executed upon initialisation of each node to de-

termine ÿČ . Subsequently, the inverse utilisation of all CPUs and

the main memory is continuously determined in % and MB, re-

spectively, and a logarithmic score ď is determined as ĩ = ÿČ ×

Ģĥĝ100 (ÿČ ∗ ÿđ) + Ģĥĝ1024 (ÿĉ). The higher the score, the more

attractive a node is for placing and invoking functions. Function

characteristics are not considered.

A second simple resource management model ĈĂĎĉ1 takes the

opposite approach of being resource-agnostic while applying ma-

chine learning to the correlation of function distribution to execu-

tion correctness and performance. However, it requires a history of

executions to lower the score of a node whenever faults or slowness

occurs on it upon handling function execution requests. This model

has two sub-models: one for the initial invocation of functions

(ĈĂĎĉ1 − ąĤğĪğėĢ), and one more aligned with practical needs to

identify on which node to invoke the next function instance given

a previous placement (ĈĂĎĉ1 − ĊěĮĪĎĥīĪğĤĝ). For instance, the

historic information may inform that nodeý is the most suitable for

one request and þ for two requests. Once a �rst request is assigned

to ý and a second one arrives, routing it to ý as well may be the

next suitable option.

2.4 System Architecture

With the aim to achieve a self-balancing system for future con-

tinuum applications, the system architecture needs to implement

the application, function and system models as well as appropriate

resource management mechanisms, initially based on ĈĂĎĉ0 and

ĈĂĎĉ1. To maintain modularity, parts of the system should be

implemented as functions themselves, pinned to all unmanaged

nodes, including the home node. This leads to an abstract system

architecture that connects the function-based software application

with nodes in the continuum topology. It assumes a number of

pinned functions per node that gather statistics and facilitate the

o�oading mechanisms. Fig. 2 summarises the abstract system ar-

chitecture, using an exemplary function X running either within

the application (on an unspeci�ed home node) or on one of the two

nodes in the continuum, LF1 or LF2. In case the function runs on

LF2, it can be proxy-invoked via LF1 or invoked directly from the

caller that is assumed to be either collocated with the remaining

application code or residing outside the network as function client.

Figure 2: System architecture for continuum functions

2.5 Application Engineering Processes

Software applications are built either with an explicit distributed

liquid function orientation or implicitly by marking functions on

the code level with the mentioned @LiquidFunction annotation.

Depending on the chosen engineering process, the system architec-

ture is extended with libraries to handle o�oading into the balanced

runtime system and into leaf nodes. Depending on the resource

management model, the load balancing and therefore the achieve-

ment of correctness and performance of the function execution

may not take e�ect immediately. Hence, a typical engineering pro-

cess is as follows: An application is implemented in code. Relevant

code parts are annotated to execute as liquid functions. An initial

placement and routing of invocations is conducted. Some function

invocations may fail or become slower than others. The routing is

adjusted until 100% correctness along with a peak performance are

reached as irrevocable optimisation goals.

3 IMPLEMENTATION

3.1 Runtime Overview

CoRFu – Continuum-Ready Functions – is an open source reference

implementation of the proposed system architecture for distributed

FaaS1. It is a Python service that provides to clients a generic

HTTP endpoint accepting requests of the form /module/function

[/parameters]. Moreover, it listens on a message bus on which

asynchronous or forwarded function invocations can communicate

their results, in addition to cascading replies back to the caller in

the case of forwarding.

1CoRFu implementation: https://doi.org/10.5281/zenodo.5650815

https://doi.org/10.5281/zenodo.5650815

Topology �les of the pattern *.topology describe the nodes

participating in a continuum. CoRFu loads one of these �les on

startup and then proceeds to send API requests for setting up the

interconnects between instances, achieving fully software-de�ned

connectivity. Functions are loaded dynamically from Python mod-

ule �les that are placed in CoRFu’s module folder. Deployment is

outside the scope of CoRFu, although the implementation comes

with a separate deployment client that uses SSH-based automation

to run CoRFu instances according to the topology and deploy appli-

cation functions accordingly. Moreover, a library (described below)

can be used to o�oad functions dynamically. Multi-threading is

used on several occasions. First, to handle incoming HTTP requests.

Second, to run background activities such as resource monitoring

that is entirely based on pinned liquid functions. Third, to invoke

asynchronous application functions.

3.2 Library Overview

Through a custom CoRFu-related Python library, dynamic o�oad-

ing of liquid functions into the continuum can be achieved based

on the @LiquidFunction annotation on the code level, conveying

the approach closer to software engineers. The functions are either

written in Python directly, with or without in-code dependencies,

or are encapsulated in Docker container images wrapped by Python

executors. Any Python code that is o�oaded is pickled through the

Dill library [11], an extension to Python’s own pickling framework

known from the Pathos parallel graph framework for heteroge-

neous computing that brings the ability to pickle entire functions

as �rst-class citizens. Pickling result in binary code �les (*.code)

that are loaded, again through Dill, as functions by CoRFu in addi-

tion to human-readable Python �les (*.py). Function dependencies

are handled as follows:

(1) In-code dependencies: By analysing the abstract syntax tree

(AST) of a function, dependencies on other functions or

modules are captured.

(2) Out-of-code �le dependencies: Data �les or external exe-

cutables are currently not captured. However, extending the

implementation to trace �le open calls would be possible.

(3) Container image dependencies: By running docker pull,

container images are transparently deployed on any node

in the correct architecture, assuming multi-arch availability.

The downside of this approach is an initial coldstart e�ect.

3.3 Limitations

CoRFu implements the minimum subset of a distributed FaaS sys-

tem architecture that is necessary to validate its bene�ts in contin-

uum topologies. It does not implement di�erential isolation (e.g.

process execution, Docker containers or V8 isolates) or secure func-

tion execution (e.g. through enclaves) that would be necessary for

production deployment, although it pragmatically does support

Python-wrapped processes and containers. On the upside, this is

bene�cial for portability across CPU architectures. Due to its proof-

of-concept nature, security is not in the focus at all and all functions

execute in process without further isolation or authentication. Like-

wise, CoRFu does not implement function management interfaces

that can be compared to the control planes of commercial FaaS. For

the deployment and inter-instance connectivity, security measures

such as certi�cates and credentials are also not implemented in

the prototype. All of the missing functionality is present in other

implementations and is therefore considered possible to add with

modest engineering e�ort.

4 VALIDATION

4.1 Resources and Functions

Two short-running stateless functions for sensed image inference

(tuning) and linear regression, both part of an application for sensor

data processing, are evaluated. The linear regression is performed

across two million trained records through Scikit-Learn, executing

fully isolated and parallelisable through a Docker container. The

image tuning, on the other hand, is a pure Python implementation

using SciPy, executing in-process and only pseudo-parallelisable

due to the global interpreter lock of the Python interpreter. Both

functions are highly compute- and memory-intensive while having

modest I/O requirements apart from small �le loading.

First, the baseline is determined across four resources: An edge

node (ěĚĝě: Raspberry Pi 4x ARM CPU 1.5 GHz, 4 GB RAM), an

intermediary fog node (Ĝ ĥĝ: 4x x86_64 CPU 2.6 GHz, 16 GB RAM)

a cloud node (ęĢĥīĚ1: 8x x86_64 vCPU 2.5 GHz, 16 GB RAM) and a

second cloud node (ęĢĥīĚ2: like ęĢĥīĚ1 but with 3.0 GHz vCPUs).

The edge node is the home node according to the liquid functions

model and has direct access to the fog and cloud nodes, but also indi-

rect access to the cloud nodes through forwarding by the fog node.

The baseline determination provides the outer hull for all resource

management activities primarily with regard to the correctness of

being able to execute a certain number of instances per function,

and secondarily with regard to the performance. All experiments

are repeated four times to yield meaningful average values. Subse-

quently, the bene�ts of liquid function distribution is assessed by

awaiting a balanced distribution of function requests, through the

algorithms ĈĂĎĉ0, ĈĂĎĉ1 − ąĤğĪğėĢ and ĈĂĎĉ1 − ĊěĮĪĎĥīĪğĤĝ.

While ĈĂĎĉ0 is an online algorithm requiring no training, ĈĂĎĉ1

is trained with the results from the baselines to predict optimal

invocation routing.

With this setup, the end-to-end application engineering process

including annotation-triggered deployment of functions into the

continuum and achieving a load-balanced execution is performed

to validate the liquid functions approach holistically.

4.2 Baseline Results

The baseline consists of combinations of even instance counts

from 2 to 20 per node. Fig. 3(a) shows that the edge is resource-

constrained and unable to serve more than eight concurrent lin-

ear regression function requests. As can be seen in Fig. 3(b), the

edge does bene�t from multiple cores, but with only four cores the

speed-up is minimal, reverted beyond four concurrent requests, and

unreliable (and hence unusable for prediction) beyond eight concur-

rent requests. Whenever the load is too high, it may even become

unstable, its CPU frequency-capped and throttled, and �nally it

may even perform sudden reboots. Hence, an arti�cial cold start sit-

uation is also shown in the �gure with slightly better performance

values, but is unlikely to occur in long-running operation in prac-

tice. On the other hand, the clouds execute successfully even for 20

concurrent requests, and also bene�t signi�cantly from multi-core

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of parallel invocations

0

20

40

60

80

100

pe
r-j

ob
 su

cc
es

s r
at

e
(%

)

cloud1-linreg
cloud2-linreg
fog-linreg
edge-linreg
edgecold-linreg

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of parallel invocations

0

10

20

30

40

pe
r-j

ob
 p

ro
ce

ss
in

g
tim

e
(s

)

cloud1-linreg
cloud2-linreg
fog-linreg
edge-linreg
edgecold-linreg

Figure 3: Correctness (a) and performance (b) of linear re-

gression function – baseline per node

execution, achieving almost monotonic albeit small speedups with

increasing invocation concurrency.

For comparison, Fig. 4(a,b) shows the correctness and perfor-

mance of the image tuning function. Again and to a larger degree,

the memory limitation of the edge node becomes apparent and

motivates a coordinated and immediate o�oading due to the edge

con�guration being completely unusable for prediction.

4.3 Metrics Inference

The baseline experiments with up to 20 function instances for each

of the four nodes open up a con�guration space with a theoretic

maximum of 160,000 placement combinations. The baseline experi-

ments cover 9,000 of them, or approximately 6%. For each of the up

to 80 concurrent function placements, the best combination is de-

termined as the minimum across all maximum durations per node,

and recorded as inference knowledge base for ĈĂĎĉ1− ąĤğĪğėĢ , rep-

resented as 325 lines of JSON. Moreover, the baseline delivers 17994

best next routing decisions in the range of 1–4 incoming requests.

These are also recorded for ĈĂĎĉ1 − ĊěĮĪĎĥīĪğĤĝ, represented as

approximately 180,000 lines of JSON. Interpolation is used to look

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of parallel invocations

0

20

40

60

80

100

pe
r-j

ob
 su

cc
es

s r
at

e
(%

)

cloud1-imgtune
cloud2-imgtune
fog-imgtune
edge-imgtune
edgecold-imgtune

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of parallel invocations

0

5

10

15

20

25

30

35

40

pe
r-j

ob
 p

ro
ce

ss
in

g
tim

e
(s

)

cloud1-imgtune
cloud2-imgtune
fog-imgtune
edge-imgtune
edgecold-imgtune

Figure 4: Correctness (a) and performance (b) of image tuning

function – baseline per node

up desired combinations not covered by the baseline, for instance,

any odd number of function instances per node.

Figs. 5 and 6 overlays the baseline results from Fig. 3(b) and Fig.

4(b) with the expected optimal performance results from the knowl-

edge base available to the ĈĂĎĉ1− ąĤğĪğėĢ model (dashed grey line)

Moreover, they show the actual results (coloured lines) with both

the dynamic ĈĂĎĉ0 model that has no expectation equivalent and

the ĈĂĎĉ1 − ąĤğĪğėĢ model that are occasionally even better than

expected, but in general match the expectations. For both functions,

due to the fast execution on ęĢĥīĚ2, most of the invocations are

scheduled there except for the case of two concurrent requests,

which due to network overhead are faster when running on the

locally connected Ĝ ĥĝ node (linear regression) or ęĢĥīĚ1 (image

tuning), and for the case of 20 concurrent requests, which due to

emerging overload of ęĢĥīĚ2 leads to o�oading 14 (linear regres-

sion) or 10 (image tuning) of the requests to ęĢĥīĚ1. The edge node

is never an option for either function.

Although ĈĂĎĉ0 beats ĈĂĎĉ1 − ąĤğĪğėĢ performance-wise for

most concurrency con�gurations, it is less predictable and subject to

the frequency and precision of determining the resource utilisation.

Overall, the liquid functions approach is proven to work and deliver

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of parallel invocations

0

5

10

15

20

25

30

pe
r-j

ob
 p

ro
ce

ss
in

g
tim

e
(s

)

LFRM0
LFRM1-Initial

Figure 5: Performance of linear regression function when

applying the ĈĂĎĉ0 and ĈĂĎĉ1 − ąĤğĪğėĢ models

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of parallel invocations

0

5

10

15

20

25

30

35

40

pe
r-j

ob
 p

ro
ce

ss
in

g
tim

e
(s

)

LFRM0
LFRM1-Initial

Figure 6: Performance of image tuning function when apply-

ing the ĈĂĎĉ0 and ĈĂĎĉ1 − ąĤğĪğėĢ models

minimised response times across devices. Future research e�orts

can be directed on optimising the resource management models

within the existing framework.

5 CONCLUSIONS

This paper has introduced the concept of liquid functions in con-

tinuums, technically backed up with two simple resource manage-

mentmodelsĈĂĎĉ0 andĈĂĎĉ1, a runtime system implementation

CoRFu, and a library for engineers of function-based applications

targeting both pure Python-based and Docker-encapsulated func-

tions. The implementation has been shown to be usable in practice

and e�ective when comparing execution correctness and perfor-

mance against the baseline resources.

Due to the massive uptake of mobile devices, sensing in IoT

and industrial equipment, and other edge and fog resources, the

question about how to address the emerging continuums remains

relevant. This question concerns in particular the development

and deployment processes of software running in these contin-

uums. With liquid functions, serverless computing concepts are

re-interpreted for continuums, and are abstracted to become useful

for applications highly distributed across a topology of nodes that

do not necessarily have full mutual visibility, suggesting usefulness

for online machine learning algorithms in IoT among other use

cases.

Future work remains to be conducted in workload characteri-

sation and prediction as well as standardisation in function and

resource behaviour descriptions. Moreover, due to the proliferation

of continuums, distributed (including balanced, federated and de-

centralised) function execution will require further investigation

and applied domain-speci�c experiments.

REFERENCES
[1] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Zamani, Anthony

Simonet, and Manish Parashar. 2019. Towards a computing continuum: Enabling
edge-to-cloud integration for data-driven work�ows. Int. J. High Perform. Comput.
Appl. 33, 6 (2019). https://doi.org/10.1177/1094342019877383

[2] Emanuele Carlini, Patrizio Dazzi, Luca Ferrucci, and Matteo Mordacchini. 2021.
E�cient Resources Distribution for an Ephemeral Cloud/Edge continuum. CoRR
abs/2107.07195 (2021). arXiv:2107.07195 https://arxiv.org/abs/2107.07195

[3] Serhii Dorodko and Josef Spillner. 2018. Selective Java code transformation into
AWS Lambda functions. In Proceedings of the European Symposium on Serverless
Computing and Applications, ESSCA@UCC 2018, Zurich, Switzerland, December 21,
2018 (CEUR Workshop Proceedings, Vol. 2330), Josef Spillner (Ed.). CEUR-WS.org,
9–17. http://ceur-ws.org/Vol-2330/paper2.pdf

[4] Yubin Duan, Ning Wang, and Jie Wu. 2021. Minimizing Training Time of Dis-
tributed Machine Learning by Reducing Data Communication. IEEE Trans. Netw.
Sci. Eng. 8, 2 (2021), 1802–1814. https://doi.org/10.1109/TNSE.2021.3073897

[5] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Alex Ozdemir, Shuvo Chat-
terjee, Matei Zaharia, Christos Kozyrakis, and Keith Winstein. 2019. Outsourcing
Everyday Jobs to Thousands of Cloud Functions with gg. login Usenix Mag. 44, 3
(2019). https://www.usenix.org/publications/login/fall2019/fouladi

[6] Andrea Gallidabino, Cesare Pautasso, Tommi Mikkonen, Kari Systä, Jari-Pekka
Voutilainen, and Antero Taivalsaari. 2017. Architecting Liquid Software. J.
Web Eng. 16, 5&6 (2017), 433–470. http://www.rintonpress.com/xjwe16/jwe-16-
56/433-470.pdf

[7] Andrea Giordano, Giandomenico Spezzano, andAndrea Vinci. 2016. Smart Agents
and Fog Computing for Smart City Applications. In Smart Cities - First Interna-
tional Conference, Smart-CT 2016, Málaga, Spain, June 15-17, 2016, Proceedings
(Lecture Notes in Computer Science, Vol. 9704), Enrique Alba, Francisco Chicano,
and Gabriel Luque (Eds.). Springer, 137–146. https://doi.org/10.1007/978-3-319-
39595-1_14

[8] Rohan Kumar, Matt Baughman, Ryan Chard, Zhuozhao Li, Yadu N. Babuji,
Ian T. Foster, and Kyle Chard. 2021. Coding the Computing Continuum: Fluid
Function Execution in Heterogeneous Computing Environments. In IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops, IPDPS
Workshops 2021, Portland, OR, USA, June 17-21, 2021. IEEE, 66–75. https:
//doi.org/10.1109/IPDPSW52791.2021.00018

[9] Francesc Lordan, Daniele Lezzi, and Rosa M. Badia. 2021. Colony: Parallel Func-
tions as a Service on the Cloud-Edge Continuum. In Euro-Par 2021: Parallel
Processing - 27th International Conference on Parallel and Distributed Computing,
Lisbon, Portugal, September 1-3, 2021, Proceedings (Lecture Notes in Computer
Science, Vol. 12820), Leonel Sousa, Nuno Roma, and Pedro Tomás (Eds.). Springer,
269–284. https://doi.org/10.1007/978-3-030-85665-6_17

[10] Andre Luckow, Kartik Rattan, and Shantenu Jha. 2021. Pilot-Edge: Distributed
Resource Management Along the Edge-to-Cloud Continuum. In 2021 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW).
874–878. https://doi.org/10.1109/IPDPSW52791.2021.00130

[11] Michael M. McKerns, Leif Strand, Tim Sullivan, Alta Fang, and Michael A. G.
Aivazis. 2012. Building a Framework for Predictive Science. CoRR abs/1202.1056
(2012). arXiv:1202.1056 http://arxiv.org/abs/1202.1056

[12] Anders Mikkelsen, Tor-Morten Grønli, Damian A. Tamburri, and Rick Kazman.
2020. Architectural Principles for Autonomous Microservices. In 53rd Hawaii
International Conference on System Sciences, HICSS 2020, Maui, Hawaii, USA,
January 7-10, 2020. ScholarSpace, 1–10. http://hdl.handle.net/10125/64546

[13] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer F. Rana, and Rajiv Ranjan.
2016. Osmotic Computing: A New Paradigm for Edge/Cloud Integration. IEEE
Cloud Comput. 3, 6 (2016), 76–83. https://doi.org/10.1109/MCC.2016.124

https://doi.org/10.1177/1094342019877383
https://arxiv.org/abs/2107.07195
http://ceur-ws.org/Vol-2330/paper2.pdf
https://doi.org/10.1109/TNSE.2021.3073897
https://www.usenix.org/publications/login/fall2019/fouladi
http://www.rintonpress.com/xjwe16/jwe-16-56/433-470.pdf
http://www.rintonpress.com/xjwe16/jwe-16-56/433-470.pdf
https://doi.org/10.1007/978-3-319-39595-1_14
https://doi.org/10.1007/978-3-319-39595-1_14
https://doi.org/10.1109/IPDPSW52791.2021.00018
https://doi.org/10.1109/IPDPSW52791.2021.00018
https://doi.org/10.1007/978-3-030-85665-6_17
https://doi.org/10.1109/IPDPSW52791.2021.00130
http://arxiv.org/abs/1202.1056
http://hdl.handle.net/10125/64546
https://doi.org/10.1109/MCC.2016.124

