
Computer Methods and Programs in Biomedicine (2023)

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/media

Evaluation of deep learning training strategies for the classification of bone marrow cell
images

Stefan Glügea,∗, Stefan Balabanovb, Viktor Hendrik Koelzerc, Thomas Otta

aInstitute of Computational Life Sciences, Zurich University of Applied Sciences, Schloss 1, 8820 Wädenswil, Switzerland
bDepartment of Medical Oncology and Haematology, University Hospital Zurich and University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
cDepartment of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland

A R T I C L E I N F O

Article history:

A B S T R A C T

1. Supplementary Material

This supplemental material file provides additional informa-
tion about the study, including details on the evaluation met-
rics, model architectures, random initialization methods, learn-
ing rate decay strategies, and the Grad-CAM technique.

1.1. Evaluation metrics

For quantitative evaluation, we use the measures of precision,
recall and F1 score. Their definition is based on the number of
images classified true positive/negative (TP/TN) and false pos-
itive/negative (FP/FN), respectively. True positive/negative are
the number of images classified or not classified, respectively,
into a given class in agreement with the ground truth. Similarly,
false positive/negative signify the number of images classified
or not classified, respectively, into a given class in disagreement
with the ground truth.

Precision computes as

Precision =
TP

TP + FP
(1)

and recall

Recall =
TP

TP + FN
. (2)

Hence, precision reports what proportion of positive identi-
fications by the model are actually correct, and recall reports
what proportion of actual positives are identified correctly by
the model.

∗Corresponding author: stefan.gluege@zhaw.ch

Precision and recall have a trade-off and cannot both be in-
creased at the same time. Depending on the problem at hand,
one has to decide to focus on reducing false positives (increase
precision) or reduce the false negatives (increase recall).

The F1 score is basically the harmonic mean of precision and
recall

F1 score =
2 · Precision · Recall
Precision + Recall

, (3)

and thus, reports a score that balances precision vs. recall.
Table 4 shows the mean precision, recall and F1 scores that

were obtained in the 5-fold cross-validation of the different
models under different pre-training conditions. These scores
were calculated as follows: (i) compute the class-wise score for
each of the 21 classes for each of the five folds; (ii) compute the
mean ± standard deviation of these class-wise scores over the
five folds; (iii) compute the mean over all classes, resulting in a
single score for each cross-validation experiment. Note that all
classes are weighted equally, regardless of how many samples
they contain.

The F1 score is a good metric to use when the cost of FP and
FN are equal. However, when the cost of FP or FN is different,
then the Matthews correlation coefficient (MCC) introduced by
Matthews (1975) is a better metric to use (Boughorbel et al.,
2017). In our case, we don’t know the cost of a mispredicted
cell image, so we chose to use the F1 score, implicitly assuming
that the costs for FP and FN are equal.

When calculating the F1 score for each class, it is important
to note that the majority class was labeled as negative. This
is due to the convention that rarer or more ‘interesting’ samples
are usually labeled as positive. For these problems, the F1 score
serves its purpose as a good metric by giving more weight to the
positive class.



2 Stefan Glüge et al. /Computer Methods and Programs in Biomedicine (2023)

To access the difference between MCC and F1 score, we
computed them for all four models for the pre-training scenario
ImageNet + CD, which yielded the best models. The differ-
ences between the MCC and F1 scores are negligible. Thus, the
F1 score, in this case, combines precision and recall in a more
interpretable way than MCC does.

1.2. Model architectures
In this section, we introduce the general model architectures

used in our study, starting with the general concept of Convolu-
tional Neural Networks (CNNs) in the image classification task.
From there, we describe the models in more detail in the order
of their publication.

A classical CNN architecture for image classification con-
sists of a stack of convolutional layers followed by pooling lay-
ers and fully connected layers. The convolutional layers ex-
tract features from the input image, while the pooling layers
reduce the spatial dimensions of the feature maps. The fully
connected layers learn to classify the extracted features into dif-
ferent classes (LeCun, 2012).

VGG, proposed by Simonyan and Zisserman (2015), is a
classic CNN architecture that uses a stack of small convolu-
tional filters. VGG-19 consists of 19 layers, including 16 con-
volutional layers and 3 fully connected layers. It is one of the
deepest CNN architectures proposed at that time.

ResNet (He et al., 2016) is a CNN architecture that uses resid-
ual connections. In a classical CNN, each layer learns to extract
features from the output of the previous layer. As the network
gets deeper, it becomes more difficult to learn these features be-
cause the gradients of the loss function can become very small
as they propagate through the network. Residual networks solve
this problem by using a skip connection between every two lay-
ers, along with the direct connections between all layers. A
block of such a connection is called a ‘residual block’, and these
are stacked on top of each other in a ResNet to maintain effi-
cient learning of parameters from the identity function, even in
deeper layers. ResNet-152 has 152 layers, including 150 con-
volutional layers and 2 fully connected layers.

RegNet was proposed by Radosavovic et al. (2020) with the
goal of designing a flexible network architecture. It should be
efficient to run on mobile devices, but also be accurate when
adapted for the best classification performance. This adapta-
tion is controlled by setting the parameters in a quantized linear
function to determine the width and depth of the network. Ul-
timately, RegNet is not an architecture, but a network design
space.

A network design space is a set of different parameters that
define a space of possible model architectures. Such parameters
can be the width, depth, groups, etc. of the network. First, the
authors define a space of all possible models which they call
AnyNet (all kinds of models from all kinds of combinations of
the different parameters). All possible models are trained and
evaluated on the ImageNet dataset. From this AnyNet space,
they created simplified versions of the AnyNet design space by
analyzing which parameters are responsible for the good perfor-
mance of the best models. Improvements from a general design
space to a narrower design space include setting a shared bot-
tleneck ratio and a shared group width, and parameterizing the

width and depth to increase with later stages. Finally, the opti-
mized RegNet design space contains only good models and also
the quantize linear function necessary to define the models.

In the end, the RegNet design space is composed of multiple
stages consisting of multiple blocks that form a stem, body and
head. Multiple stages form the body. Each stage is composed
of multiple standard residual bottleneck blocks with group con-
volution (Sick, 2021). The RegNet y 32gf network used in our
comparative study is optimized for classification accuracy (top
models from the RegNetY design space) within the 32 billion
floating point operation (FLOP) regime (Radosavovic et al.,
2020).

ViTs (Dosovitskiy et al., 2021) are based on the transformer
architecture, which was originally developed for natural lan-
guage processing tasks (Vaswani et al., 2017). Unlike classical
CNN architectures, ViTs divide the input image into patches
and then use a transformer encoder to extract features from the
patches. The transformer encoder is a self-attention mechanism
that allows the network to explicitly learn long-range depen-
dencies in the image. This is the main difference to CNNs,
which learn long-range dependencies implicitly, i.e. they learn
to detect long-range dependencies in the image by stacking con-
volutional layers together. However, this mechanism makes
ViTs more computationally expensive to train and deploy. The
ViT l 32 model is based on the ‘large’ configuration used for
BERT (Devlin et al., 2019) with an input patch size of 32 × 32
pixels.

Table 1 summarizes the main concepts of the four architec-
tures side by side.

1.3. Random Initialization

In this scenario, the weights of the models were randomly
initialized. This is specific to each architecture and is defined
in the corresponding constructor functions of the torchvision
package. Thus, the way each model was initialized can be found
in the code of its implementation at https://github.com/
pytorch/vision/tree/main/torchvision/models.

1.4. Learning rate

The starting learning rate for each model/training combina-
tion was determined using the learning rate range test Smith
(2017). Before the actual model training, tests are performed,
where the learning rate is increased linearly between two
boundaries. Figure 1 shows the loss curve for the VGG-19 BN
network with the learning rate in the range of [0.001 − 0.015].
Starting with a low initial learning rate, the network starts to
converge. As the learning rate is increased, it will get too large
leading to the learning of a suboptimal set of weights, and the
network diverges. Typically, a good static learning rate can be
found half-way on the descending loss curve or at the point with
the steepest gradient (minimal gradient) which can serve as a
first indicator (cf. dot in Fig. 1).

Table 2 gives an overview of which specific learning rates
were used for the different scenarios.



Stefan Glüge et al. /Computer Methods and Programs in Biomedicine (2023) 3

Table 1: Main concepts of the four model architectures used in our study.

VGG ResNet RegNet ViT
Network architecture Stack of convolutional

layers, pooling layers,
and fully connected

layers

Stack of convolutional
layers followed by

residual blocks,
pooling layers, and

fully connected layers

Series of stages, each
of which contains a

set of identical
bottlenecks, pooling

layers, and fully
connected layers

Transformer encoder
and fully connected

layer

Feature extraction Convolutional layers Residual blocks Bottlenecks Transformer encoder
Long-range dependencies Learned implicitly Learned implicitly Learned implicitly Learned explicitly

Table 2: Start learning rates used for pre-training and fine-tuning of the models, that yield the results reported in Tab. 4.

Training scenario VGG-19 BN ResNet-152 Regnet y 32gf ViT l 32
pre-training
PCam 0.0034 0.0075 0.0040 0.0100
CD 0.0150 0.0300 0.0142 0.0110
ImageNet + PCam 0.0034 0.0025 0.0029 0.0010
ImageNet + CD 0.0013 0.0012 0.0035 0.0010
fine-tuning
Random 0.0043 0.0130 0.0040 0.0140
ImageNet 0.0040 0.0041 0.0066 0.0075
PCam 0.0043 0.0043 0.0200 0.0120
CD 0.0090 0.0100 0.0075 0.0075
ImageNet + PCam 0.0019 0.0010 0.0035 0.0010
ImageNet + CD 0.0020 0.0020 0.0020 0.0020

Fig. 1: Validation loss for the VGG-19 BN network for different learning rates.
A reasonable learning rate for the model lies half-way on the descending loss
curve, or the point with the steepest gradient.

1.5. Gradient-weighted Class Activation Mapping

For the problem at hand, we decided to use an attribution
method that is often used in computer vision. The basic idea
is to visualize the relevant regions in the input given a models’
output. Attribution techniques can be divided into three classes,
gradient-based, structure-based, and surrogate and sampling-
based (Schlegel and Keim, 2021).

Gradient-based methods provide explanations by performing
a single forward and backward pass in the network to compute
class activation maps (CAMs). These CAMs provide expla-
nations that highlight the regions in the input data that have the
most influence on a model’s output. Thus, a CAM can highlight
regions in the input image that are maximally representative of
its class.

Gradient-weighted Class Activation Mapping (Grad-CAM)
(Selvaraju et al., 2017) uses the gradients of any target class
flowing into the final convolutional layer of a CNN to produce
a coarse localization map that highlights the important regions
in the input for class prediction. Unlike previous approaches,
Grad-CAM is applicable to a wide variety of CNN model fami-
lies without architectural changes or re-training. The reason for
using the last convolution layer is that it is expected to provide
the best compromise between high-level semantics and detailed
spatial information. The neurons in this layer look for semantic,
class-specific information in the input, while the spatial infor-
mation is lost later in the fully connected classification layer(s).

The algorithm works like this: Given an input signal and a
class of interest, we forward propagate the signal through the
CNN part of the model and then, through task-specific com-



4 Stefan Glüge et al. /Computer Methods and Programs in Biomedicine (2023)

putations, obtain a raw score for the category. The gradients
are set to zero for all classes except the desired class, which
is set to 1. This signal is then backpropagated to the rectified
convolutional feature maps of interest, which we combine to
compute the coarse Grad-CAM localization, which represents
where the model must look to make the particular decision.
Finally, we pointwise multiply the heatmap with guided back-
propagation to obtain guided Grad-CAM visualizations that are
high-resolution and concept-specific (Selvaraju et al., 2020).

Chattopadhay et al. (2018) proposed Grad-CAM++ to pro-
vide better visual explanations (when compared to Grad-CAM),
both in terms of better object localization and explaining occur-
rence of multiple objects of a class in a single image. Grad-
CAM++ uses a weighted combination of the positive partial
derivatives of the last convolutional layer feature maps with re-
spect to a specific class score as weights to generate a visual
explanation for the class label under consideration.

We looked at the heatmaps generated by Grad-CAM and
Grad-CAM++ for the BAS and FGC classes, which are dis-
cussed further in the Results section. In our case, the heatmaps
of both algorithms are very close to each other. Furthermore,
the Grad-CAM++ heatmaps did not provide more meaningful
heatmaps. Therefore, we chose the simpler and faster Grad-
CAM algorithm. Figures 2 and 3 show some examples side by
side.

One reason that Grad-CAM works well may be the fact, that
there is usually only a single object/cell in the images. Also,
Grad-CAM can sometimes be more informative if one is inter-
ested in identifying the most important features for a particular
prediction, since it does not weight the gradients based on their
proximity to the center of the object.

References

Boughorbel, S., Jarray, F., El-Anbari, M., 2017. Optimal classifier for imbal-
anced data using matthews correlation coefficient metric. PLOS ONE 12,
1–17. doi:10.1371/journal.pone.0177678.

Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N., 2018.
Grad-cam++: Generalized gradient-based visual explanations for deep con-
volutional networks, in: 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 839–847. doi:10.1109/WACV.2018.
00097.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of
deep bidirectional transformers for languageunderstanding, in: Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), Association for Computational Linguistics, Min-
neapolis, Minnesota. pp. 4171–4186. doi:10.18653/v1/N19-1423.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,
J., Houlsby, N., 2021. An image is worth 16x16 words: Transformers for
image recognition at scale, in: International Conference on Learning Repre-
sentations.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778.

LeCun, Y., 2012. Learning invariant feature hierarchies, in: Fusiello, A.,
Murino, V., Cucchiara, R. (Eds.), Computer Vision – ECCV 2012. Work-
shops and Demonstrations, Springer Berlin Heidelberg, Berlin, Heidelberg.
pp. 496–505.

Matthews, B., 1975. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)
- Protein Structure 405, 442–451. doi:https://doi.org/10.1016/
0005-2795(75)90109-9.

Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P., 2020. Design-
ing network design spaces, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10425–10433.

Schlegel, U., Keim, D.A., 2021. Time series model attribution visualizations
as explanations, in: 2021 IEEE Workshop on TRust and EXpertise in Visual
Analytics (TREX), pp. 27–31. doi:10.1109/TREX53765.2021.00010.

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.,
2017. Grad-cam: Visual explanations from deep networks via gradient-
based localization, in: 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 618–626.

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.,
2020. Grad-cam: Visual explanations from deep networks via gradient-
based localization. International Journal of Computer Vision 128, 336–359.
doi:10.1007/s11263-019-01228-7.

Sick, L., 2021. Regnet: The most flexible network architecture
for computer vision. URL: https://towardsdatascience.

com/regnet-the-most-flexible-network-architecture-\

-for-computer-vision-2fd757f9c5cd.
Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for

large-scale image recognition, in: International Conference on Learning
Representations.

Smith, L.N., 2017. Cyclical learning rates for training neural networks, in: 2017
IEEE Winter Conference on Applications of Computer Vision (WACV), pp.
464–472.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I., 2017. Attention is all you need, in: Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Gar-
nett, R. (Eds.), Advances in Neural Information Processing Systems, Curran
Associates, Inc.



Stefan Glüge et al. /Computer Methods and Programs in Biomedicine (2023) 5

Fig. 2: Samples of Grad-CAM (left) and Grad-CAM++ (right) activation maps generated from the Basophils using the Regnet y 32gf pre-trained on ImageNet +
CD. Regions showing high activation (in red) provide a strong contribution to the classification result.




