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Background and Objective: The classification of bone marrow (BM) cells by light microscopy is an important 
cornerstone of hematological diagnosis, performed thousands of times a day by highly trained specialists in 
laboratories worldwide. As the manual evaluation of blood or BM smears is very time-consuming and prone to 
inter-observer variation, new reliable automated systems are needed.
Methods: We aim to improve the automatic classification performance of hematological cell types. Therefore, 
we evaluate four state-of-the-art Convolutional Neural Network (CNN) architectures on a dataset of 171, 374
microscopic cytological single-cell images obtained from BM smears from 945 patients diagnosed with a variety 
of hematological diseases. We further evaluate the effect of an in-domain vs. out-of-domain pre-training, and 
assess whether class activation maps provide human-interpretable explanations for the models’ predictions.
Results: The best performing pre-trained model (Regnet_y_32gf) yields a mean precision, recall, and F1 scores 
of 0.787 ± 0.060, 0.755 ± 0.061, and 0.762 ± 0.050, respectively. This is a 53.5% improvement in precision and 
7.3% improvement in recall over previous results with CNNs (ResNeXt-50) that were trained from scratch. The 
out-of-domain pre-training apparently yields general feature extractors/filters that apply very well to the BM 
cell classification use case. The class activation maps on cell types with characteristic morphological features 
were found to be consistent with the explanations of a human domain expert. For example, the Auer rods in the 
cytoplasm were the predictive cellular feature for correctly classified images of faggot cells.
Conclusions: Our study provides data that can help hematology laboratories to choose the optimal training 
strategy for blood cell classification deep learning models to improve computer-assisted blood and bone marrow 
cell identification. It also highlights the need for more specific training data, i.e. images of difficult-to-classify 
classes, including cells labeled with disease information.
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The examination of cell morphology in BM and peripheral blood
B) is the basis for the diagnosis of malignant and non-malignant 
matologic diseases [30,25]. Due to its technical feasibility and es-
blished clinical value for disease classification, BM and PB cytology is 
 essential part of the diagnosis of hematological diseases [46]. Tra-
tionally, classification of cell morphology is performed manually by 
man experts using light microscopy. In addition to being tedious and 
e-consuming, manual inspection and classification of cells suffers 

om subjectivity and low sensitivity [13].

Corresponding author.

The use of digital microscopy and machine learning to classify cells 
in PB and BM has great potential to achieve more accurate and stable re-
sults, while minimizing the need for human intervention (time savings) 
and has great potential to reduce classification errors by providing an 
unbiased second opinion.

A large dataset with ground truth labels is the fundamental require-
ment for a successful application of deep and complex CNN architec-
tures. Therefore, machine learning is usually applied in domains where 
such data are available, such as magnetic resonance imaging [29]. One 
way to use these models in domains with limited amounts of data is 
transfer learning [45,42], which has also been successfully applied to 
related tasks, such as digital holography [11,6].
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While the fields of histopathology and cytopathology are related, the 
ngle-cell nature of BM datasets introduces a relevant domain shift that 
es not allow for easy methodological transfer.
The main contributions of the current manuscript are as follows:

• The evaluation of four common CNN architectures on the BM cell 
classification problem, which achieved the best top 1/top 5 accu-
racy on ImageNet [40].

• Establish a benchmark for the BM cell classification problem, since 
both the models and the data [31] are openly available.

• Investigate the effect of different pre-training strategies, i.e., in-
domain vs. out-of-domain, providing a systematic approach to 
achieve state-of-the-art performance across a wide range of cell 
types.

• Evaluate whether class activation maps of model predictions pro-
vide interpretable explanations to domain experts.

1. Related work

The first attempts to classify BM cells were based on the extraction 
 handcrafted single-cell features and the application of standard clas-
fiers, such as support vector machines, random forests [22], and hi-
archical decision trees [23]. Later, deep learning approaches, namely 
ep CNNs, were investigated, but only on small sample sizes or disease 
asses [1,3].
Matek et al. [32] presented two CNN-based classifiers for single-
ll images of BM leukocytes. The best results were obtained with 
ResNeXt-50 model [51] trained from scratch. Along with their ap-
oach, and perhaps more importantly, they published a large dataset 
 expert-annotated single-cell images [31] (cf. Sec. 2.1.1). This great 
source can now be used by the community to advance the field.
Mori et al. [33] introduced the use of a pre-trained ResNet-152 in the 

assification of bone marrow dysplasia. Their system was evaluated on 
rather small dataset (1, 797 images labeled by 4 degrees of dysplasia). 
e reported sensitivity, specificity, and accuracy were 85.2%, 98.9%, 
d 98.2%, respectively.
Dehaene et al. [10] showed the positive effect of an in-domain 
e-training in the weakly supervised learning scenario of WSIs classifi-
tion in histopathology: An in-domain feature extractor pre-trained on 
stology images outperformed a frozen feature extractor pre-trained on 
ageNet [40]. Furthermore, the learned embedding space was shown 
 exhibit biologically meaningful separation of tissue structures.
Boldú et al. [7] created a dataset from blood smears contain-
g 16, 450 single-cell images from 100 healthy patients, 191 patients 
ith viral infections, and 148 patients with acute leukemia. VGG16, 
sNet101, DenseNet121 and SENet154 were evaluated on the problem 
 acute leukemia classification. All CNNs were pre-trained on ImageNet 
d fine-tuned to cell images. They report an accuracy of 86.9% ± 0.68
r VGG16 on the 6-class cell classification task.
Some research has specifically addressed the problem of large class 
balance in cell datasets. Guo et al. [17] present a class balance clas-
fication method for classifying 15 types of BM cells on a dataset of 
84 images with an imbalance ratio of 31 ∶ 1 (3097 lymphocytes, 98
atelets). They achieved precision, sensitivity, and specificity values of 
.53%, 84.44% and 99.29%, respectively. Hazra et al. [18] addressed the 
oblem of underrepresented classes by using a Generative Adversarial 
etwork (GAN) to generate synthetic data and balance their dataset. Af-
r this data augmentation, their classification CNN achieved accuracy, 
ecificity, and sensitivity greater than 95%.
Recently, Wang et al. [49] constructed a remarkable large dataset 

 131, 300 expert-annotated single cell images. They report an overall 
curacy on the cell classification task of 89.53%. Furthermore, they ap-
ied their Multi-Level Feature Learning Network (MLFL-Net) model to 
e prediction of leukemia types of hematological diseases. It produced 
e same diagnostic prediction as the experts for 74 out of the cohort of 
2

patients (92.5%). ht
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ble 1

erview of the dataset used in our study. Given that the BM cell images are 
e target domain, a pre-training on cervical cells or WSI patches is considered 
 be in-domain, whereas a pre-training on ImageNet is considered to be out-of-
main.

Dataset #Images #Classes Resolution Domain

Bone marrow cells [32] 171,374 21 250 × 250 single cell
Comparison Detector [28] 48,587 11 variable single cell
PatchCamelyon [47] 262,144 2 96 × 96 WSI patch
ImageNet [40] 1,281,167 1,000 variable natural 

scene/object

Table 2

Color channel: Mean and standard deviation for each dataset.
Dataset Red Green Blue

Bone marrow cells 0.5630 ± 0.2421 0.4959 ± 0.2835 0.7353 ± 0.1767
Comparison Detector 0.7255 ± 0.2705 0.7826 ± 0.2380 0.8270 ± 0.1834
PatchCamelyon 0.7008 ± 0.2350 0.5384 ± 0.2774 0.6916 ± 0.2129
ImageNet 0.485 ± 0.229 0.456 ± 0.224 0.406 ± 0.225

 Methods

1. Datasets

In this section, we present the datasets used in our study. The BM 
ll dataset is our target domain, while different datasets were used to 
itialize the models. Table 1 gives an overview of the number of images 
d classes for each dataset. We also show the original image resolution 
d domain of the images. All datasets provide the images in standard 
B format.
Additionally, we show the mean and standard deviation of the color 
annels for each dataset in Table 2. These values were used to normal-
e the images during model training (cf. Sec. 2.3).

1.1. Bone marrow cell dataset
Matek et al. [32] published a dataset of 171, 374 expert-annotated 

ngle BM cell images from 945 patients diagnosed with a variety of 
matologic diseases [31].
Diagnostically relevant cell images (250 × 250-pixel) were annotated 
to 21 classes. Fig. 1 shows four randomly selected samples from the 
taset. The number of images per class varies widely from 8 up to 
30, 000 and is listed in Table 5, column #Images.

1.2. Comparison detector (CD) dataset
Liang et al. [28] established a dataset consisting of 7, 410 cervical 
icroscopical images cropped from WSIs.1 A total of 48, 587 object in-
ance bounding boxes were labeled by experienced pathologists. Each 
stance belongs to one of 11 categories. As for the BM cell dataset, the 
mber of images per class varies widely between 123 up to ≈ 26, 000. 
g. 2 shows four randomly selected samples from the dataset.

1.3. PatchCamelyon (PCam) dataset
Veeling et al. [47] presented the PatchCamelyon dataset. It consists 

 327, 680 color images (96 ×96 pixels) extracted from histopathological 
ans of lymph node sections. Each image is annotated with a binary 
bel indicating the presence or absence of metastatic carcinoma. In 
tal, the dataset consists of 262, 144 images for training, and 32.768 for 
lidation and testing. Fig. 32 shows some randomly selected examples 
om the dataset.

The dataset is available at https://github .com /kuku -sichuan /
mparisonDetector.

Bas Veeling, example images from PCam, MIT License, available from 

tps://github .com /basveeling /pcam (accessed August 31, 2022).

https://github.com/kuku-sichuan/ComparisonDetector
https://github.com/kuku-sichuan/ComparisonDetector
https://github.com/basveeling/pcam
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g. 1. Example of four images from the bone marrow cell dataset with their 
rresponding class label.

g. 2. Example of four images of cervical cells from the comparison detector 
taset with their corresponding class label.

1.4. ImageNet
Since 2010, the ImageNet dataset has been used in the ImageNet 
rge Scale Visual Recognition Challenge (ILSVRC) [40]. The classi-
ation part of the dataset contains 1, 000 categories of 1.2 million 
3

ages (aka. ImageNet-1K). For image classification, ImageNet has pro- 5
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Table 3

CNN models used in our study. We show the top 1 and 
top 5 accuracy on ImageNet (Acc@1/Acc@5) and the 
number of trainable parameters (#Params).
Model Acc@1 Acc@5 #Params

VGG-19 BN [43] 74.218 91.842 143,678,248
ResNet-152 [19] 82.284 96.002 60,192,808
Regnet_y_32gf [36] 83.368 96.498 145,046,770
ViT_l_32 [12] 76.972 93.07 306,535,400

ded a solid foundation for benchmarking advances in computer vision 
search. It serves as the primary dataset for pre-training for computer-
sion transfer learning models. In addition, improving performance on 
ageNet is often considered as a litmus test for general applicability to 
wnstream tasks [38].

2. Models and model training

We tested the following model architectures for image classifica-
n: VGG [43] with batch normalization (BN), ResNet [19], RegNet 
6] and VisionTransformer (ViT) [12]. The models are provided in Py-
rch [34].3 We chose the model configurations that gave the best top 
top 5 accuracy on ImageNet [40]. Table 3 provides an overview of the 
odel configurations used in our study. A more detailed introduction 
 the different architectures is further provided in the Supplementary 
aterial, Sec. 1.2 Model architectures.
To adapt the models for the BM cell classification task, we removed 
e last fully connected layer and used 21 linear units. Model training 
as performed for 75 epochs with a batch size of 32. PyTorch’s im-
ementation of stochastic gradient descent optimization [8] was used 
ith a fixed momentum of 0.9. We also applied a learning rate decay 
 a factor of 0.1 if the validation loss did not improve within the last 
epochs of training. The models were evaluated on the validation set 
ter each epoch, and the models with the highest validation accuracy 
ere evaluated on the held-out test data.
To find the most promising initial learning rate for each model, we 
ed the PyTorch implementation of the learning rate range test4 de-
iled in [44]. We did not optimize other hyperparameters, such as 
tch size and optimizer, because we are mainly interested in compar-
g model architectures and different pre-training strategies.

3. Data preparation and augmentation

For the network training, we used a stratified 5-fold train-validation-
st split. In each split, we trained a network using 80% and 20% of the 
ailable images for each class for training and testing, respectively. 
peating the stratified split five times ensures that each image was in 
e test set once in each experiment. Within the training set, 20% of the 
mples were used as a validation set during training.
The images were resized to 224 ×224 pixels and normalized to mean 
standard deviation of the channels of the full dataset (cf. Table 2). 
 addition, the following augmentation functions were used during 
e-tuning on the BM cell classification task and during in-domain pre-
aining:

• Random cropping of the image with a random size between 0.08
and 1 of the original image size, and a random aspect ratio of the 
crop between 0.75 and 1.33.5

• Random rotation of the image between 0◦ and 180◦.
• Random horizontal flipping of the image with probability 0.5
• Random vertical flipping of the image with probability 0.5

https://pytorch .org /vision /stable /models .html version: 0.13.
https://pypi .org /project /torch -lr -finder/.

not used during in-domain pre-training cf. Sec. 2.4.2.

https://pytorch.org/vision/stable/models.html
https://pypi.org/project/torch-lr-finder/
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Fig. 3. Example images from PCam. Green boxes indicate tumor tissue in the center region, corresponding to a positive label.
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To compensate for the strong class imbalance, we used a weighted 
ndom sampler during training, which ensures that the network sees 
e same number of (augmented) samples for all classes.
For the out-of-domain pre-training, we used pre-trained models 
ailable in the torchvision library. Additional steps for data prepara-
n and augmentation were not performed (cf. Sec. 2.4.1).

4. Pre-training

Pre-training has long been used to improve performance in visual 
sks [16]. The features learned by a CNN trained on a large dataset 
ch as ImageNet tend to transfer well to other domains.
We hypothesize that a domain-specific pre-training might help in 
e development of features that facilitate separability between cell 
asses, rather than using out-of-domain examples such as provided by 
ageNet. Therefore, we set up several experiments with different pre-
aining strategies, namely

. no pre-training / random initialization,

. out-of-domain pre-training,

. in-domain pre-training,

. out-of-domain + in-domain pre-training.

4.1. Out-of-domain pre-training
Pre-training on ImageNet is considered out-of-domain for the BM 
ll classification task. Ridnik et al. [38] Therefore, we used the pre-
ained models that are available through torchvision. We refer to 
e torchvision page https://pytorch .org /vision /0 .12 /models .html for 
ore details.

4.2. In-domain pre-training
We consider the CD (cf. Sec. 2.1.2) and PCam (cf. Sec. 2.1.3) datasets 

 be in the same domain as the BM cell images. The pre-training was 
rformed on the randomly initialized models with the same training 
rameters as the later fine-tuning (cf. Sec. 2.2). Data preparation was 
rformed as in the fine-tuning phase (cf. Sec. 2.3) with the following 
justments: normalization to the dataset-specific color channel values 
f. Table 2) and without random image cropping.

4.3. Out-of-domain + in-domain pre-training
In this scenario, we combined out-of-domain pre-training on Ima-
Net followed by an in-domain pre-training on CD and PCam, respec-
ely.

5. Gradient-weighted class activation mapping

To build confidence in the classification results of deep CNNs, it 
 essential to provide some human interpretable explanations for the 
odels’ predictions.
We used the PyTorch implementation [15] of Gradient-weighted 
4

ass Activation Mapping (Grad-CAM) [41] to address this problem. ag
is technique uses the gradients of any target concept, such as ‘faggot 
ll’, that flow into the final convolutional layer to produce a coarse lo-
lization map (heatmap) that highlights the important regions in the 
age for predicting the concept. For a more detailed explanation see 
c. 1.5 Gradient-weighted Class Activation Mapping in the Supplemen-
ry Material.
While these visualizations are often referred to as ‘visual expla-
tion’, expert interpretation remains critical to actually explain the 
cision, or at least to judge whether the decision is reasonable. This 

 what makes post hoc explanations problematic, as argued, for exam-
e by Rudin [39].

 Results

Table 4 shows the mean precision, recall and F1 scores that were 
tained in the 5-fold cross-validation of the different models under dif-
rent pre-training conditions. We chose these specific scores to ensure 
e comparability of our results with the numbers reported in Matek 
al. [32]. A more detailed definition of the scores and the individual 
eps on how we computed the numbers in Table 4 are given in the 
pplementary Material Sec. 1.1 Evaluation metrics.
Table 5 shows the class-wise scores for the Regnet_y_32gf pre-trained 

 ImageNet + CD side by side with the scores reported in Matek 
al. [32]. Note that we calculated the F1 score for the ResNeXt-50
om the published precision and recall means without the correspond-
g standard deviations.
To provide some insight into which cell types are more difficult to 
fferentiate by the trained models, we show the confusion matrix of the 
gnet_y_32gf pre-trained on ImageNet + CD on the test data (mean of 
fold cross-validation) in Fig. 4. The lowest class-wise accuracy (0.3
0.6) is observed for Abnormal Eosinophils (ABE, 8 samples), Imma-
re Lymphocytes (LYI, 65 samples), Faggot Cells (FGC, 47 samples), 
sophils (BAS, 441) and Metamyelocytes (MMZ, 3, 055 samples).
To understand the network decision-making process for cell classi-
ation, we performed a Grad-CAM analysis. Examples of correct and 
correct classifications and the corresponding heatmaps of selected cell 
asses are shown in Fig. 5 a-h and Fig. 6 a-l. We chose to use im-
es from of cell types with characteristic morphological features. FGCs 
ith multiple bundles of Auer rods in the cytoplasm are a characteristic 
ample for correct classification (e.g., Fig. 5a). According to the activa-
n maps, these Auer rods were the most predictive cellular feature in 
rrectly classified images for this particular cell type (Fig. 5a-d). This 
as particularly true, when the cells had a wide and bright cytoplasm, 
lowing for clear recognition of the Auer rods (Fig. 5a-c). In misclas-
fied images, the activation maps highlighted areas in the cytoplasm 
ig. 5e-f) or in the nucleus (Fig. 5g-h), which showed the artifactual 
rmation of rod-like textures.
The most prominent morphologic feature of BAS is the purple gran-
es in the cytoplasm (e.g., Fig. 6a-d), which allows differentiation from 
her granulocyte populations. For the BAS test set (𝑛 = 88), 48 im-
es were classified correctly and 40 images were misclassified by the 

https://pytorch.org/vision/0.12/models.html
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Table 4

Mean ± standard deviation of Precision/Recall/F1 scores obtained in 
the 5-fold cross-validation of the different models on the BM classi-
fication task for different pre-training strategies. The best scores are 
highlighted. For comparison, we also show the results published in 
[32]. The pre-training strategies are denoted as follows: random – no 
pre-training, the models are initialized with random weights, Ima-
geNet – out-of-domain pre-training, the models are initialized with a 
pre-training on ImageNet, PCam / CD – in-domain pre-training, the 
models are initialized with a pre-training on PCam/CD dataset, Im-
ageNet + PCam/CD – out-of-domain + in-domain pre-training, the 
models are initialized with a pre-training on ImageNet followed by a 
pre-training on PCam/CD dataset.
Model & pre-training Precision Recall F1 Score

VGG-19 BN

Random 0.667 ± 0.039 0.744 ± 0.058 0.695 ± 0.038
ImageNet 0.705 ± 0.037 0.748 ± 0.038 0.720 ± 0.028
PCam 0.682 ± 0.052 0.763 ± 0.056 0.712 ± 0.047
CD 0.648 ± 0.045 0.782 ± 0.065 0.691 ± 0.045
ImageNet+ PCam 0.722 ± 0.057 0.772 ± 0.054 0.742 ± 0.049
ImageNet+ CD 0.701 ± 0.062 0.751 ± 0.061 0.720 ± 0.054

ResNet-152

Random 0.670 ± 0.050 0.731 ± 0.060 0.689 ± 0.044
ImageNet 0.732 ± 0.039 0.745 ± 0.049 0.733 ± 0.034
PCam 0.656 ± 0.069 0.738 ± 0.075 0.683 ± 0.065
CD 0.672 ± 0.048 0.735 ± 0.062 0.695 ± 0.046
ImageNet+ PCam 0.739 ± 0.061 0.757 ± 0.046 0.744 ± 0.044
ImageNet+ CD 0.734 ± 0.036 0.740 ± 0.023 0.730 ± 0.022

Regnet_y_32gf

Random 0.709 ± 0.040 0.698 ± 0.038 0.695 ± 0.025
ImageNet 0.770 ± 0.030 0.731 ± 0.040 0.740 ± 0.030
PCam 0.712 ± 0.053 0.709 ± 0.058 0.705 ± 0.049
CD 0.707 ± 0.038 0.698 ± 0.032 0.697 ± 0.028
ImageNet+ PCam 0.784 ± 0.063 0.735 ± 0.062 0.748 ± 0.053
ImageNet+ CD 0.787 ± 0.060 0.755 ± 0.061 0.762 ± 0.050

ViT_l_32

Random 0.538 ± 0.028 0.576 ± 0.037 0.547 ± 0.024
ImageNet 0.769 ± 0.056 0.687 ± 0.058 0.712 ± 0.049
PCam 0.539 ± 0.039 0.584 ± 0.055 0.550 ± 0.038
CD 0.552 ± 0.049 0.588 ± 0.059 0.561 ± 0.045
ImageNet+ PCam 0.743 ± 0.069 0.734 ± 0.058 0.732 ± 0.050
ImageNet+ CD 0.762 ± 0.061 0.701 ± 0.053 0.722 ± 0.048

ResNeXt-50 [32]

Random 0.510 ± 0.048 0.689 ± 0.087 0.545
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gnet_y_32gf pre-trained on ImageNet + CD. In the case of correct clas-
fication, manual evaluation of the Grad-CAM action maps showed that 
e model indeed focused on the characteristic cytoplasmic granules of 
S (Fig. 6a-d). The model misclassified images when the focus was 
 the nucleus or when the granules were less prominent, as shown in 
g. 6e-h. This suggests that the granular chromatin structures may have 
en mistaken for cellular granules. Furthermore, manual inspection of 
e misclassified BAS images revealed an incorrect ground truth as the 
ason for misclassification in some cases (Fig. 6i-l). Interestingly, our 
odel classified the images shown in Fig. 6i-l to the correct cell type, 
mpensating for this error in the ground truth of the dataset.

 Discussion

In this study, we evaluated different deep learning training strategies 
r the classification of BM cell images. First, we compared different 
odel architectures that achieve state-of-the-art performance on Ima-
Net. Overall, depending on the evaluation score, different models can 
 considered as the best performs.
Without any pre-training, the VGG-19 BN, ResNet-152 and Reg-
t_y_32gf outperform the previously published results of the Res-
eXt-50, while the ViT_l_32 architecture does not (cf. Table 4 rows 
andom”). ViT structurally lacks locality inductive bias and requires 
5

large amount of training data to obtain an acceptable visual represen- de
tion. Therefore, learning on a small dataset requires pre-training on a 
rge dataset, which may limit its applicability to our current use case 
6]. However, larger models in particular could benefit from an out-
-domain pre-training on the larger ImageNet-21K dataset, as shown 
 [38].
For precision, a good measure when the cost of false positives is 
gh, the Regnet_y_32gf pre-trained on ImageNet + CD performed best. 
 terms of recall, typically used when the cost of false negatives is 
gh, the VGG-19 BN pre-trained on CD performed best. All pre-trained 
odels tested outperformed their randomly initialized counterparts.
In general, we observed an advantage for out-of-domain pre-

aining, i.e., ImageNet vs. PCam and CD, respectively. These results 
ggest that pre-training on a large out-of-domain dataset yields bet-
r features to separate BM cell images compared to pre-training on a 
aller, but domain-specific, dataset (cf. Table 4). This could be due 

 the specific properties of the ImageNet training examples, includ-
g many center-clipped objects, which show some similarity to the 
sk of classifying single cells, rather than patch-based histopathology 
main-specific features, which represent a more limited representation 
 textures. Notably, the combination of ImageNet + CD/PCam tended 
 yield a slight improvement over ImageNet pre-training alone. How-
er, the performance differences are within the range of the standard 

viation of the 5-fold cross-validation. This suggests that the features 



Computer Methods and Programs in Biomedicine 243 (2024) 107924S. Glüge, S. Balabanov, V.H. Koelzer et al.

Table 5

Classwise precision, recall and F1 score obtained in the 5-fold cross-validation for the Regnet_y_32gf pretrained on ImageNet + CD 
compared to the published results of a ResNeXt-50 architecture [32]. Additionally, we show the number of samples (#Images) for 
each class in the data set.

ResNeXt50 random [32] Regnet_y_32gf ImageNet+ CD

Class Precision Recall F1 Score Precision Recall F1 Score #Images

Band neutrophils (NGB) 0.540 ± 0.030 0.650 ± 0.040 0.590 0.717 ± 0.012 0.790 ± 0.008 0.752 ± 0.008 9,968
Segmented neutrophils (NGS) 0.920 ± 0.020 0.710 ± 0.050 0.801 0.938 ± 0.003 0.897 ± 0.010 0.917 ± 0.004 29,424
Lymphocytes (LYT) 0.900 ± 0.030 0.700 ± 0.030 0.788 0.922 ± 0.004 0.909 ± 0.008 0.915 ± 0.005 26,242
Monocytes (MON) 0.570 ± 0.050 0.700 ± 0.030 0.628 0.731 ± 0.015 0.790 ± 0.024 0.759 ± 0.013
Eosinophils (EOS) 0.850 ± 0.050 0.910 ± 0.030 0.879 0.958 ± 0.007 0.974 ± 0.007 0.966 ± 0.006 5,883
Basophils (BAS) 0.140 ± 0.050 0.640 ± 0.070 0.230 0.763 ± 0.067 0.618 ± 0.041 0.682 ± 0.044 441
Metamyelocytes (MMZ) 0.300 ± 0.050 0.640 ± 0.080 0.409 0.551 ± 0.013 0.579 ± 0.036 0.564 ± 0.015 3,055
Myelocytes (MYB) 0.520 ± 0.050 0.590 ± 0.060 0.553 0.703 ± 0.013 0.757 ± 0.012 0.729 ± 0.008 6557
Promyelocytes (PMO) 0.760 ± 0.050 0.720 ± 0.080 0.739 0.873 ± 0.012 0.814 ± 0.010 0.842 ± 0.009 11,994
Blasts (BLA) 0.750 ± 0.030 0.650 ± 0.030 0.696 0.843 ± 0.010 0.872 ± 0.008 0.857 ± 0.008 11,973
Plasma cells (PLM) 0.810 ± 0.060 0.840 ± 0.040 0.825 0.918 ± 0.015 0.936 ± 0.008 0.927 ± 0.006 7,629
Smudge cells (KSC) 0.280 ± 0.090 0.900 ± 0.100 0.427 0.893 ± 0.106 0.875 ± 0.125 0.874 ± 0.044 42
Other cells (OTH) 0.220 ± 0.060 0.840 ± 0.060 0.349 0.946 ± 0.017 0.827 ± 0.030 0.882 ± 0.023 294
Artefacts (ART) 0.820 ± 0.050 0.740 ± 0.060 0.778 0.902 ± 0.006 0.897 ± 0.007 0.900 ± 0.003 19,630
Not identifiable (NIF) 0.270 ± 0.040 0.630 ± 0.040 0.378 0.628 ± 0.019 0.662 ± 0.019 0.644 ± 0.014 3,538
Proerythroblasts (PEB) 0.570 ± 0.090 0.630 ± 0.130 0.599 0.707 ± 0.025 0.825 ± 0.040 0.761 ± 0.010 2,740
Erythroblasts (EBO) 0.880 ± 0.010 0.820 ± 0.010 0.849 0.957 ± 0.004 0.936 ± 0.004 0.946 ± 0.001 27,395
Hairy cells (HAC) 0.350 ± 0.080 0.800 ± 0.060 0.487 0.804 ± 0.034 0.783 ± 0.081 0.790 ± 0.033 409
Abnormal eosinophils (ABE) 0.020 ± 0.030 0.200 ± 0.400 0.036 0.400 ± 0.548 0.400 ± 0.548 0.400 ± 0.548 8
Immature lymphocytes (LYI) 0.080 ± 0.030 0.530 ± 0.150 0.139 0.710 ± 0.228 0.292 ± 0.167 0.383 ± 0.185 65
Faggot cells (FGC) 0.170 ± 0.050 0.630 ± 0.270 0.268 0.655 ± 0.112 0.422 ± 0.093 0.503 ± 0.061 47

mean 0.510 ± 0.048 0.689 ± 0.087 0.545 0.787 ± 0.060 0.755 ± 0.061 0.762 ± 0.050

Fig. 4. Confusion matrix on the test set of the Regnet_y_32gf pre-trained on ImageNet + CD. Shown are classwise accuracies as the mean of the 5-fold cross-validation 
normalized by row to account for class imbalance. The number of single-cell images included in each category is indicated in the logarithmic plot on the right.
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arned from ImageNet are sufficiently general for the BM cell classi-
ation task. Further fine-tuning on more, domain-specific microscopy 
ages did not lead to better features for the final task.
Compared to the ResNeXt-50 trained from scratch, we obtained a 
6

.3% improvement in precision (Regnet_y_32gf (ImageNet + CD): 0.787 ca
. ResNeXt-50: 0.51) and 9.6% improvement in recall (Regnet_y_32gf 
mageNet + CD): 0.755 vs. ResNeXt-50: 0.689).
Domain expert interpretation provides an explanation for these find-
gs, as these cell types share relevant morphological similarities that 

n be difficult for human experts to resolve. In the future, cross-
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Fig. 5. Grad-CAM activation maps generated from the Faggot cells using the Regnet_y_32gf pre-trained on ImageNet + CD. Example images with corresponding 
activation maps for correct classified images (a-d) and misclassified images (e-h). Regions showing high activation (in red) provide a strong contribution to the 
classification result.
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odality explanation maps may help to generate even better explana-
ns that are potentially more understandable to human experts [5].
More expert-annotated training data is needed to improve this 
allenging classification task. Since different cell types are char-
terized by specific cytoplasmic or nuclear features, feature pres-
ection by cell segmentation in the cytoplasm and nucleus could 
 another suitable approach to increase correct cell classification 
,35]. In particular, this could be an approach for the correct de-
ction of FGCs, which are characterized by cytoplasmic Auer rods. 
rrect classification of FGCs is of clinical importance and misclas-
fication, especially false negative classification, has direct negative 
inical consequences. FGCs are a morphological hallmark of a very 
re subtype of acute leukemia (acute promyelocytic leukemia (APL)), 
hich can be cured in most patients after correct diagnosis [9]. 
owever, APL is associated with severe bleeding complications and 
rly death due to bleeding events if diagnosis and treatment are 
7

layed [37]. In this context, a combination of digital microscopy im
d automated blood cell detection could lead to earlier diagno-
s of APL patients and a reduction in early mortality in these pa-
nts.

Current commercially available systems for digital microscopy and 
mputer-assisted cell detection can already provide sufficient accu-
cy for some blood cell types (e.g., segmented neutrophils, mono-
tes), especially in healthy individuals [21,24]. However, for other 
ood cells (e.g., lymphocyte subtypes), the correct detection rate is 
ther low, and data for disease classification with sufficient accu-
cy based on blood smear evaluation with these systems are lack-
g.

In this context, our study indicates the need for more training data, 
pecially samples for difficult-to-classify classes, including cells labeled 
ith disease information. Since collecting images of blood cells labeled 
 experts is time-consuming, especially for rare cell types data aug-
entation using generative models has the potential to provide more 

ages for model training [4,18]. In addition, removal of experimen-
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Fig. 6. Grad-CAM activation maps generated from the Basophils using the Regnet_y_32gf pre-trained on ImageNet + CD. Example images with corresponding 
activation maps for correct classified images (a-d), misclassified images with correct ground truth (e-h) and images not classified as Basophils due to incorrect 
ground truth (i-l). Regions showing high activation (in red) provide a strong contribution to the classification result.
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l noise in microscopy is often essential, especially for accurate cell 
assification, as highlighted for example in [14].
We see many promising and exciting results in the field of the au-
mated evaluation of BM cell morphology that have the potential to 
prove patient outcomes. Besides the work of [32], the work of Wang 
al. [49] is probably most comparable to our work, as they used a 
rge dataset of 131, 300 expert-annotated cell images.
However, most of the work in this area has been done on datasets 

ith small sample sizes or datasets that are not publicly available (cf. 
c. 1.1). Like Wagner et al. [48], we argue for the need for open 
tasets to enable reproducibility and reusability. Establishing bench-
arks for model development will rapidly and sustainably advance 
mputational pathology.
Last but not least, we emphasize the importance of AI-assisted de-

sion tools adhering to the recommendations of professional societies 
d bodies [20,50,27].
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