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Welcome to IWDSP 2023

Dear participant,

on behalf of the Program and Local Committees, we are pleased to wel-
come you to IWDSP 2023, the Fourth International Workshop on Dynamic
Scheduling Problems, and to the ZHAW Institute of Data Analysis and Pro-
cess Design, Zurich University of Applied Sciences, Winterthur, Switzerland,
and the Faculty of Mathematics and Computer Science, Adam Mickiewicz
University, Poznań, Poland, which are the hosts of this event.

The IWDSP 2023 workshop is the fourth event in the series started
in 2016 with IWDSP 2016 and continued in 2018 with IWDSP 2018 and
in 2021 with IWDSP 2021. These three workshops attracted the authors
from Australia, Belarus, Belgium, Canada, Egypt, France, Germany, India,
Israel, Italy, the Netherlands, Poland, P. R. China, Russian Federation,
Taiwan, the United Kingdom and the United States.

Books of extended abstracts of the papers presented by the authors
on the IWDSP 2016, IWDSP 2018 and IWDSP 2021 workshops are avail-
able at the Web sites https://iwdsp2016.wmi.amu.edu.pl, https://

iwdsp2018.wmi.amu.edu.pl and https://iwdsp2021.wmi.amu.edu.pl,
respectively. Selected revised papers presented at the IWDSP 2018 work-
shop have also been published in a special issue (see issue no. 6 of volume
23 of the Journal of Scheduling, available at https://link.springer.

com/journal/10951/volumes-and-issues/23-6). A similar issue of the
journal devoted to the IWDSP 2021 workshop will be published soon.

IWDSP 2023, similarly as the previous three workshops in the series,
focuses on dynamic scheduling problems defined by parameters whose values
are varying in time and which often appear in applications. Therefore,
main topics related to the workshop scope include

� scheduling with variable job processing , e.g. controllable job processing
times, time-dependent job processing times, position-dependent job
processing times, resource-dependent job processing times, discrete-
continuous scheduling;

� scheduling with various factors affecting job execution , e.g. aging,
alteration, deterioration, learning, shortening;

� scheduling on variable speed machines , e.g. energy-efficient scheduling,
scheduling under time-of-use electricity tariffs, scheduling with rate-
modifying activities;
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� scheduling problems with constraints on machine availability , e.g.
scheduling with maintenance activities, scheduling on machines with
non-availability periods;

� scheduling under uncertainty , e.g. robust scheduling, stochastic
scheduling, scheduling over scenarios, scheduling with explorable
uncertainty;

� scheduling with a partial, changing in time, data on jobs or machines ,
e.g. online scheduling, semi-online scheduling;

� scheduling in non-classic models of job preemption , e.g. malleable
task scheduling, scheduling pliable jobs, scheduling splittable jobs;

� other scheduling problems with job or machine parameters changing
in time, e.g. scheduling in data gathering networks, scheduling in
health care systems, etc.

The aim of the IWDSP 2023 workshop is to present the recent research in
these important domains of scheduling theory.

The Program Committee, supported by the members of the Advisory
Committee and external reviewers, selected for presentation at the IWDSP
2023 workshop papers submitted by the authors from Australia, Brazil,
Colombia, France, Germany, Israel, Italy, Poland, P.R. China, Switzerland
and the United States. These papers, together with a plenary lecture on
scheduling over scenarios, allowed the committee to prepare an attractive
program of the event.

We wish you a fruitful workshop, expressing the hope that you will find
IWDSP 2023 stimulating for your further research.

Stanis law Gawiejnowicz
The Chair of the Program Committee
The Co-chair of the Local Committee

Helmut A. Sedding
The Co-chair of the Local Committee
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Venue

IWDSP 2023 takes place in ZHAW’s TP building on the upper floor in
room TP404. This building is in the west of the ZHAW campus in Tech-
nikumstrasse 9, 8400 Winterthur, Switzerland.

The historical physics building (TP) was finished in 1960 as part of the
Technikum Winterthur, which was funded in 1874. It was the first of its
kind in Switzerland and served as a role model for educating machine and
electrical technicians. It extended its scope to chemists, precision engineers
and railway administrators. In 1901, Albert Einstein teaches in Winterthur
for two months on a temporary contract, teaching mathematics and de-
scriptive geometry. In 1998, the school was joined with other institutions as
a university of applied sciences. Since 2007 it is named Zürcher Hochschule
für Angewandte Wissenschaften (ZHAW), enrolling over 14 000 students
and 3 500 full time employees.

The oldest institute of the university, founded 22 years ago on May 7,
2001, is the Institute of Data Analysis and Process Design. Its research
focus lies in machine learning and statistics, finance, transport, aviation,
and production operations research. It is now proud to host the workshop,
organized together with the Adam Mickiewicz University, Poznań, Poland.

An old school pitched floor lecture hall houses the talks. During
the breaks in the upper floor hall we enjoy a wonderful view on the old
Technikum building of 1879.

Lunch

Lunch is served in the dining hall Mensa Eulachpassage on the third floor
of the newly erected TN building located at Technikumstrasse 71.

Dinner

Monday’s dinner is located at Restaurant Goldenberg in a former mansion
in late neoclassical architecture built in 1928/29 and renovated in 2010.
The terrace provides a magnificent view on Winterthur’s old town in the
south east and the Alpine mountains in the south west. We meet in the
rear area for an Apéro, unless the weather lets us retreat inside. Traditional
Swiss dinner is served in a panoramic chamber.
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The restaurant is reached from the venue by a walk of two kilometers
length and fifty meters height difference. A shortcut is offered by bus
line number 10 to Oberwinterthur from station Schmidgasse to bus stop
Kantonsschule.

The city of Winterthur
Map image source and copyright: OpenStreetMap contributors
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Monday, June 5th, 2023

08:00 – 08:30 Registration
08:30 – 09:00 Opening
09:00 – 10:20 Session no. 1

Speakers: Dvir Shabtay (online), Johnson Phosavanh
Chair: Stanis law Gawiejnowicz

10:20 – 10:40 Coffee break
10:40 – 12:00 Session no. 2

Speakers: Arthur Kramer, Nir Halman
Chair: Gur Mosheiov

12:00 – 14:00 Lunch break
14:00 – 15:20 Plenary lecture

Speaker: Leen Stougie
Chair: Helmut A. Sedding

15:20 – 15:40 Coffee break
15:40 – 17:00 Session no. 3

Speakers: Stanis law Gawiejnowicz,
Christoph Damerius (cancelled)

Chair: Leen Stougie
19:00 – 21:30 Conference dinner

Tuesday, June 6th, 2023

08:30 – 9:00 Registration
09:00 – 10:20 Session no. 4

Speakers: Joanna Berlińska, Baruch Mor
Chair: Gur Mosheiov

10:20 – 10:40 Coffee break
10:40 – 12:00 Session no. 5

Speakers: Yenny A. Paredes-Astudillo, Gur Mosheiov
Chair: Stanis law Gawiejnowicz

12:00 – 14:00 Lunch break
14:00 – 15:20 Session no. 6

Speakers: Stanis law Gawiejnowicz, Helmut A. Sedding
Chair: Nir Halman

15:20 – 15:40 Coffee break
15:40 – 16:00 Closing
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The Fourth International Workshop on Dynamic Scheduling Problems
ZHAW School of Engineering, Winterthur, Switzerland, June 5th – 6th, 2023

Scheduling over scenarios

Leen Stougie∗

CWI and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Keywords: scheduling over scenarios, robust scheduling, stochastic
scheduling

Apart from some exceptions, modeling uncertainty makes problems
harder. Scenarios are basic ingredients of optimization problems under
uncertainty. Often they are specified only implicitly, e.g. as ranges over
parameter values leading to robust optimization. Scenarios also appear
as mass points of discrete probability distributions, or as samples for
approximating continuous distributions (see Kleywegt et al. [4]). Using
machine learning scenarios that occur more or less frequently can be
predicted. Anyway, if in all these varieties scenarios are specified completely
and individually, then the input size increases significantly, and therefore
the computational complexity of the problems may not increase, like is the
case with stochastic linear optimization (see Dyer and Stougie [2]).

In this lecture we explore how introduction of fully specified scenarios
may alter the complexity of problems. We do so at the hand of studying
basic scheduling problems. For a very recent survey on scheduling under
scenarios, we refer to Shabtay and Gilenson [5]. We study a natural version
that received relatively little attention so far (see [5]). We are given a set
J of jobs, each with its processing time, a set of parallel identical machines
and a set of K scenarios, where each scenario is specified as a subset of
jobs in J that must be executed if that scenario occurs. The goal is to find
an assignment of jobs to the machines that is the same for all scenarios,
i.e., if a job does not occur in a scenario it is simply skipped. We consider
the classical problems of minimizing the makespan in Feuerstein et al. [3]
and minimizing the sum of the jobs’ completion times in Bosman et al. [1].
For each we consider the objectives of minimizing the maximum over all
scenarios (robust version) and minimizing the average of makespans of all
scenarios (stochastic version).

We show that the presence of scenarios may increase the complexity of
the problems significantly. As a dramatic example, I mention the ordinary,

∗Speaker, e-mail: Leen.Stougie@cwi.nl

DOI: 10.14708/isbn.978-83-962157-1-0p21-22
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single scenario, version of the makespan problem with all processing times
equal to 1, which is a trivial problem. With scenarios the robust version
of the problem with only two machines becomes inapproximable in poly-
nomial time within ratio 2 unless P = NP. This is even more surprising
once one realizes that putting all jobs on one machine already yields a
2-approximation.

Similar results hold for the sum of completion times problem. As for
the makespan problem, the leap in complexity requires that the number
of scenarios is part of the input. However, I will give an example of a
scheduling problem minimizing total completion time that is in P in its
ordinary version and becomes NP-hard already for 3 scenarios. These
results mostly show the mysterious role that scenarios play in the complexity
of combinatorial optimization problems.

This lecture is based on work in collaboration with Thomas Bosman,
Martijn van Ee (Marine Academy), Esteban Feuerstein (UBuenos Aires),
Csanad Imreh, Alberto Marchetti-Spaccamela (La Sapienza Rome), Frans
Schalekamp (Cornell), Rene Sitters (VU/CWI), Martin Skutella (TU
Berlin), Suzanne van der Ster (Ahold) and Anke van Zuylen (Cornell).
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Scheduling data gathering with variable
communication speed and startup times

Joanna Berlińska∗

Adam Mickiewicz University, Poznań, Poland

Keywords: scheduling, data gathering networks, variable communication
speed, startup times

1 Introduction

A data gathering network is a computer system comprising a set of worker
nodes and a base station. The workers obtain some datasets and pass them
to the base station for analysis, merging and storing. An example data
gathering network is a distributed computer system, where the results of
computations obtained on different machines have to be gathered on a
single server. Data gathering wireless sensor networks find a wide range of
applications in military systems, environment monitoring and healthcare.

Early works on scheduling in data gathering networks (Choi and Rober-
tazzi [7], Moges and Robertazzi [12]) considered problems where only the
total size of data that should be gathered was given. The goal was to
compute the amounts of data that individual worker nodes should collect,
and to organize the communication in the network, so as to minimize the
time of data gathering. Later research concentrated on the case where
the amounts of data collected by the worker nodes were fixed. Scheduling
algorithms were proposed for various types of data gathering networks,
including systems with limited base station memory (Berlińska [2]), dataset
due dates (Berlińska [4]), local computations (Berlińska and Przybylski [6])
and data compression (Berlińska [1], Li and Luo [9], Luo et al. [11, 10]).

All the aforementioned articles share the assumption that the parame-
ters of a network are constant. However, in real networks, the communica-
tion rate may change with time, due to maintenance activities or sharing
the links with other users and applications. Data gathering networks with
such a variable communication speed were studied by Berlińska [3] and
Berlińska and Mor [5]. In [3], the analyzed problem was to transfer the
data from the workers to the base station in the shortest possible time.

∗Speaker, e-mail: Joanna.Berlinska@amu.edu.pl

DOI: 10.14708/isbn.978-83-962157-1-0p25-30
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It was shown that if communication preemptions are allowed, the problem
can be solved in polynomial time, but in the non-preemptive scenario, it
becomes strongly NP-hard. In [5], preemptive scheduling was studied, but
the time required by the base station to process the obtained data was
taken into account in addition to the communication time. This resulted,
again, in a strongly NP-hard problem.

In this work, we go back to analyzing networks where the data processing
time is negligible. However, we use a more realistic communication model,
where preemptions are possible, but sending a message from a given worker
to the base station requires a constant startup time. Thus, each preemption
incurs an additional time cost.

2 Problem formulation

The analyzed data gathering network consists of m worker nodes P1, . . . , Pm

and a base station P0. Each worker Pi holds dataset Di of size αi, which
has to be sent to the base station. At most one node can communicate with
the base station at a time. The communication speed of node Pi changes
depending on the corresponding link being used by other applications. A
link will be called loaded if it is used by background communications at
a given time, and free in the opposite case. When the link between Pi

and P0 is free, its speed is equal to 1
ci

, for i = 1, . . . ,m. A loaded link
becomes δ times slower, for some fixed rational δ > 1. Moreover, starting
a communication between Pi and P0 requires a constant startup time s.
Thus, sending one message containing data of size α (where 0 < α ≤ αi)
between Pi and P0 takes time s+ ciα when the corresponding link is free,
and s+ δciα when it is loaded.

The communication speed changes of the link between Pi and P0 are
described by a set of ni disjoint time intervals [t′i,j , t

′′
i,j) (where j = 1, . . . , ni,

t′′i,j < t′i,j+1 for j < ni) in which the link is loaded. The total number of
loaded intervals in the whole network is n1 + · · ·+ nm = n.

Our goal is to minimize the total time T needed to pass all the data to
the base station, also called the makespan.

3 Results

The following result is obtained by a pseudopolynomial reduction from the
strongly NP-complete 3-PARTITION problem (Garey and Johnson [8]).
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Proposition 1. The problem of makespan minimization in data gathering
networks with variable communication speed and non-zero startup times is
strongly NP-hard.

The first step towards constructing algorithms for solving our problem
could be identifying the potential preemption points. Natural candidates
are the moments when the communication speed of some link changes or
when a link speed change is expected after s units of time. However, the
following proposition shows that investigating such moments only is not
sufficient.

Proposition 2. Constructing an optimum schedule for the analyzed prob-
lem may require preempting a dataset transfer at a time t such that t 6= τ−ks
for any integer k and any τ which is a moment when some link speed
changes.

Sketch of proof. Let m = 3, s = 2, δ = 4, c1 = c2 = c3 = 1, α1 = α2 = 3,
α3 = 2. Suppose the first link is never loaded, the second link is loaded in
the intervals [0, 3) and [9,∞), and the third link is loaded in the intervals
[0, 11) and [13,∞). A schedule of length 16 can be built by sending dataset
D1 in the intervals [0, 4) and [13, 16), dataset D2 in the interval [4, 9), and
dataset D3 in the interval [9, 13). In this schedule, a preemption is made
at time 4, while all numbers of the form τ − ks are odd integers. We prove
that no schedule of length not exceeding 16 can be built if there is no
preemption at time 4.

The above result shows that constructing an exact algorithm for our
problem is a challenge. Moreover, communication speed changes are often
unpredictable in practice. Therefore, we propose the following heuristic
scheduling rules that can be used as online algorithms.

� OnRate – a preemption is made if a loaded link is currently used,
and another link that is available (i.e., such that the corresponding
dataset is not yet fully transferred) becomes free. If there are several
free links available, the dataset with the smallest size remaining to
be sent and a free link is chosen for transfer. Similarly, if only loaded
links can be used, the dataset with the smallest remaining size is
selected.

� OnRateB – this algorithm works like OnRate, with the exception
that if several free links or only loaded links are available, the dataset
with the largest remaining size is chosen.
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� OnRateS – this algorithm works similarly to OnRate, but a pre-
emption is only made if a loaded link is currently used, another
link becomes free, and the time remaining to transfer the current
dataset over the loaded link is larger than s. This behavior is meant
to avoid introducing preemptions (and in consequence, additional
startup times) when only a short time is required to finish the current
communication.

� OnRateBS – this algorithm works like OnRateS, with the exception
that if several free links or only loaded links are available, the dataset
with the largest remaining size is chosen.

� OnRateN – no preemptions are made. When a communication
finishes and some free links are available, the dataset with the smallest
remaining size and a free link is selected. If only loaded links can be
used, the dataset with the smallest remaining size is chosen.

� OnRateBN – this algorithm works like OnRateN, with the exception
that if several free links or only loaded links are available, the dataset
with the largest remaining size is selected.

We tested our algorithms on instances with δ = 2, s ∈ [0, 2], ci = 1,
m ∈ [10, 50], and dataset sizes chosen randomly from the interval [1, 20].
Communication speed changes were generated as in [3, 5]. Namely, we
used parameters F,L ∈ {1, 5} to control the lengths of the free and loaded
intervals of all links. The length of the first free interval of link i was
selected randomly from the range [0, Fm

∑m
i=1 ciαi]. Then, the length of the

first loaded interval was chosen randomly from the range [0, L
m

∑m
i=1 ciαi].

The lengths of further free and loaded intervals were similarly selected until
reaching a certain time horizon.

We compared the makespans obtained by our algorithms with the
lower bound LB defined as follows. First, we computed the minimum
time LB1 required for sending all datasets in the case when s = 0, using
the algorithm proposed in [3]. Then, we set LB2 = maxm

i=1{T (i)}, where
T (i) is the time needed to transfer dataset Di in one message, starting at
time 0. Furthemore, we computed LB3 = mS +

∑m
i=1 ciαi, which is the

time required to send all datasets under the assumption that all the links
are always free. Finally, we set LB = max{LB1, LB2, LB3}.

The results of our computational experiments lead us to the following
conclusions.

� All the algorithms obtain better results for large values of m than
for the small ones.
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� When s is small or when F = L = 5 (which means that the com-
munication speeds change rarely), the best results are obtained by
OnRateB and OnRateBS. Thus, sending larger datasets first seems
to be beneficial in these cases.

� When s is large and F = 1, L = 5 or F = 5, L = 1, the best results
are obtained by algorithms OnRateS and OnRateBS, which deliver
similar results. Hence, avoiding too many startup times is in this
case more important than prioritizing large or small datasets.

� The non-preemptive algorithms strongly outperform the preemptive
ones when s is very large and F = L = 1, which means that the
communication speeds change very often. Algorithm OnRateBN is
usually a little better than OnRateN.

4 Future research

Among the proposed algorithms, OnRateS and OnRateBS aim at balanc-
ing the profits gained by preempting communications using loaded links
and the costs of additional startup times. However, these two heuristics
perform much more similar to OnRate and OnRateB than to OnRateN
and OnRateBN, even when s is large. Therefore, in the future, we want to
construct new algorithms that will handle large startup times better than
OnRateS and OnRateBS, and deliver high quality schedules for a wide
range of s values.

References
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1 Introduction

With increased interest in applying scheduling algorithms to solve real-life
problems, many models and methods have been addressing the uncertainty
in the scheduling community. Several elegant models that capture un-
certainty have been studied in the past two decades, most of which fall
under the umbrella of the research on robust optimization or stochastic
optimization. In those settings, the uncertainty is usually described by the
input. In robust optimization, the input consists of several scenarios, while
the input is sampled from a known distribution in stochastic optimization.
In some practical cases, we can gain additional information about the input
by paying extra costs, e.g., money, time, energy, or memory. This model is
also known as explorable uncertainty, which aims to study the trade-offs
between the exploration cost and the quality of a solution.

An intriguing scheduling model for explorable uncertainty was proposed
by Dürr et al. [5] under the name of scheduling with testing. In their model,
each job has an upper limit on its processing time that can be decreased
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to a (possibly unknown) lower limit by some preliminary action (testing).
In their case, a testing operation requires one unit of time. They investigate
non-preemptive single-machine schedules to minimize the total completion
time or makespan. Dufossé et al. [4] considered a variation, where jobs have
processing times p or p+ x for a fixed p and x, but are initially hidden. By
testing jobs, their actual processing time can be revealed. They developed
algorithms for the adaptive and non-adaptive versions of the problem. In
the adaptive version, a the algorithm may see the processing time of the
jobs tested before, in order to adapt its testing behavior. Later, Albers
and Eckl [2, 3] extended Dürr’s model to non-uniform testing times under
preemptive and non-preemptive versions for multiple machines.

In this paper, we extend their problem to the budget setting where,
instead of one unit of time, each test consumes a job-specific testing cost
and one requires that the total testing cost cannot exceed a given budget.
We consider the offline variant, when the lower processing time is known,
and the oblivious variant, when the lower processing time is unknown. The
objective is to minimize the total completion time or makespan on a single
machine. Further, we differentiate between the uniform and non-uniform
(job-specific) testing costs.

2 Problem formulation

An instance to Scheduling with a Limited Testing Budget (SLTB) is a
5-tuple I = (J, (p∧j )j∈J , (p∨j )j∈J , (cj)j∈J , B). J = [n] denotes a set of n
jobs. We denote by p∨j ≥ 0 the lower processing time, by p∧j ≥ p∨j the
upper limit on the processing time and cj ≥ 0 the testing cost of job j,
respectively. Additionally, a total amount of budget B ≥ 0 is given.

In the offline versions of the problem, I is completely known beforehand.
In the oblivious version, the lower processing times are only revealed once we
have decided which jobs to test, while the remaining information is known
a priori. Further, we only consider non-preemptive and, w.l.o.g., busy
schedules on a single machine. Let Cj be the completion time for job j ∈ J
for such a schedule. We want to minimize the makespan maxj∈J{Cj} or
total completion time

∑
j∈J Cj . The problems are referred to as SLTBTC

and SLTBM , respectively.

Each job can be either tested or untested, and use p∨j or p∧j processing
time, respectively. Testing a job will consume cj units of the budget. Once
the set of tested jobs is known, it is trivial to construct an optimal schedule
that minimizes one of the above objectives. For makespan minimization, we
schedule the jobs in any order. For total completion time minimization, we
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use the SPT (shortest processing time first) rule. Hence we can express a
feasible schedule as a subset J∨ ⊆ J of jobs to test, such that

∑
j∈J∨ cj ≤ B.

3 Our results

We study the offline and oblivious variants of SLTBTC and SLTBM.

For SLTBTC we show that the problem is NP-hard, even when all the
lower processing times are 0, by a reduction from the PARTITION problem.
Furthermore, we design a PTAS for the general case and an FPTAS for the
case of uniform lower processing times. For the oblivious setting, we give a
(4 + ε)-competitive deterministic algorithm. This is almost tight, since we
show that no deterministic algorithm is better than 4-competitive.

For SLTBM, we derive our results from a connection between our
problem and the 0-1 KNAPSACK problem. We prove that the offline
setting is NP-hard and admits an FPTAS. For the oblivious setting, a
competitive ratio of 2 + ε is obtained. We complement this by a lower
bound of 2.

3.1 NP-hardness

We apply a reduction from the PARTITION problem. Let U = {u1, . . . , un}
be a PARTITION instance and Uhalf := 1

2

∑n
j=1 uj . We construct a

SLTBTC instance by creating a job pair j1, j2 for each uj ∈ U . We
then set the job parameters such that cj1 − cj2 = uj and p∧j1 − p∧j2 =

uj

j for
each j ∈ [n].

To control how these jobs are scheduled, we make sure that, when we
take jobs from two different pairs (j1, j2), (j′1, j

′
2) with j < j′, the difference

between the processing times of ji and j′i′ (i, i′ ∈ {1, 2}) is large compared
to the uj . Hence, whenever exactly one job from each pair is tested, the
other job will be scheduled in the j’th position in the schedule. (We can
ignore the tested jobs since they have zero processing time.) It can be
easily shown that the contribution of a job j to the total completion time
of a schedule is i · pj , if j is scheduled as the ith-last job in the schedule.

Assume that we test exactly one job from each pair of jobs (j1, j2),
j ∈ [n]. Then we have two options. By testing a job j1, we schedule job j2
into position j in the schedule. We pay an additional cost of uj , but the
contribution to the total completion time is reduced by (p∧j1 − p∧j2) · j =

(
uj

j ) · j = uj . This means that the total completion time is minimized
if the budget used for testing is maximized. If we test all cheap jobs
(j2)j∈[n], the total testing cost is

∑n
j=1 cj2 . If we pick all expensive jobs
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(j1)j∈[n], we require a budget of
∑n

j=1 cj2 + 2Uhalf . By setting the budget
to B =

∑n
j=1 cj2 +Uhalf , we force an optimal solution for SLTBTC to select

jobs with total testing cost of exactly B and thus indirectly find a partition.

Lastly, we show that schedules that do not test exactly one job from
each pair either violate the budget constraint or their objective value is
larger than the objective value of the schedule corresponding to a partition.

3.2 PTAS for offline version

Our results are based on an integer linear programming (ILP) formulation
for offline SLTBTC. Essentially, our ILP contains variables xj,i,t that
dictate whether job j ∈ J should be scheduled in position i ∈ I, where t
controls whether the job is scheduled as tested or untested job. The ILP is
conceptually similar to the classical matching ILP on bipartite graphs (see,
e.g., Ahuja et al. [1]), with jobs and positions representing the two disjoint
independent sets of the bipartition. A matching would then describe an
assignment of jobs to positions. However, there are two main differences.
First, we have two variables per pair of job and position (distinguished
by t). This translates to each job-position pair having two edges that
connect them in the (multi-)graph. Second, the total cost of tested jobs is
restricted by the budget B, introducing dependencies when selecting edges.

Our approach combines a rounding scheme of the ILP with an exploita-
tion of the cost structure of the problem. We relax the ILP to an LP by
allowing the variables xj,i,t to take on fractional values between 0 and 1.
We start with an optimal LP solution and then continue with our rounding
scheme, which consists of two phases. In the first phase, we round the
solution such that all fractional variables correspond to the edges of a single
cycle in the graph. These variables are hard to round directly without
overusing the budget. Here we start the second rounding phase. We relax
some of the constraints in the LP to be able to continue the rounding
process. Specifically, we allow certain positions to schedule two jobs (we
call these positions crowded). We repeatedly cut up the cycle (that becomes
a path after one cut) at carefully chosen positions. After each cut, we can
continue the rounding process. This is repeated until we end up with an
integral (but infeasible) solution that has some crowded positions. The cut
position selection in this rounding phase is specifically tailored to control
where crowded positions can appear in the integral solution.

This allows us to bound the increase in the objective in the last step:
Here, we move some jobs from crowded positions to different positions
to make this solution feasible. To do this, we exploit the cost structure
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of SLTBTC. Essentially, when we move jobs to different positions, we
guarantee that no job is moved too far from its current position. This way,
its contribution to the objective will not increase too much.

3.3 Oblivious SLTBTC

We start by considering the uniform case (all jobs have the same testing
cost) to build some intuition. The problem is then equivalent to minimize
total completion times by testing at most some k jobs. For the worst-case
analysis, we can then assume that each job j tested by our algorithm has
p∨j = p∧j . In contrast, we get that p∨j = 0 for all all jobs tested by an
optimal solution. Thus, from this perspective, regardless of which jobs
we test, our total completion time remains unchanged, but the optimum
depends on our tested jobs because the adversary can only let the job j
that is not tested by our algorithm have p∨j = 0.

The problem is then essentially equivalent to the following optimization
problem: Given a set of jobs J with all lower processing times being 0, the
goal is to test k jobs such that the total completion time of all remaining
jobs is minimized. For this much easier problem, it is easy to see that the
best strategy is selecting the k jobs with the largest upper processing time.

Our algorithm for the non-uniform case builds upon this understanding
of worst-case instances. For a given instance I, it constructs an auxiliary
instance Ĩ where all lower processing times are zero. It then solves this
instance optimally or approximately, and returns the resulting solution. We
then show that ALG(I) ≤ 2ALG(Ĩ) + 2OPT (I). Because we can use the
PTAS from the offline model for Ĩ, this then implies a (4 + 2ε)-competitive
algorithm (if all jobs have the same testing cost, then Ĩ can be solved
optimally, and we get a 4-competitive algorithm instead).

The lower bound is shown by a hard instance I = (J,1, (p∨j )j∈J ,1, n2 ),
where the adversary always lets our tested jobs have lower processing time
1 and the processing time of any other job be 0. Then, any deterministic
algorithm has objective value n(n+1)

2 , while an optimal solution can achieve

a total completion time of n(n+2)
8 , implying our lower bound 4.

3.4 Offline and oblivious SLTBM

The offline SLTB problem under makespan minimization is closely related
to the classical 0-1 KNAPSACK problem. This problem aims to select a
subset of items such that (i) the total weight of the selected items does
not exceed a given capacity; (ii) the total value of the selected items is
maximized. To see the connection, consider the testing cost of each job
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as the weight of each item and the profit of testing a job (p∧j − p∨j ) as the
value of an item. Then we build on the algorithmic idea of the knapsack
dynamic programming and design an FPTAS for the offline setting.

We use the same framework as the total completion time minimization
model for the oblivious setting and obtain a (2 + ε)-competitive algorithm.
The ratio becomes better here since, for the makespan objective, we have
ALG(I) ≤ ALG(Ĩ) + OPT (I), saving a factor of 2. The lower bound
proof is also based on the same hard instance I = (J,1, (pj)j∈J ,1, n2 ). Any
deterministic algorithm’s makespan is n, while the optimum is n

2 , giving a
lower bound of 2.

4 Future research

Our results open promising avenues for future research. For the setting
where we minimize the total completion time, it remains open whether
NP-hardness holds for uniform testing cost. Also, while our LP-rounding-
based PTAS achieves the best possible approximation, it remains open
whether there is a faster, combinatorial algorithm. It would also be natural
to consider the multiple machines case.

Another exciting direction of future research is the following bipartite
matching with testing problem that generalizes our problem, arising from
the graph-theoretic perspective: Consider a bipartite graph G := (L∪R,E)
in which each edge e ∈ E has a cost ce that can be reduced to če via a
testing operation. Given the possibility to test edges before adding them
to the matching, we seek a min-cost perfect matching that respects a given
testing budget.
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Keywords: scheduling, single machine, deteriorating jobs, shortening
jobs, precedence constraints, algorithms, time complexity

1 Introduction

Scheduling problems with variable job processing times constitute an
important part of scheduling theory. In the most popular model of variable
processing times, called time-dependent scheduling, one assumes that the
processing time of each job is described by a function of the starting time
of the job. If the function is non-decreasing (non-increasing), we deal with
deteriorating jobs (shortening jobs). Though the first papers on the subject
were published about 45 years ago, time-dependent scheduling problems
still are studied due to many important applications. We refer the reader
to review by Gawiejnowicz [8] for introductory review of this domain, and
to monographs by Strusevich and Rustogi [14] and Gawiejnowicz [9] for
more detailed discussion of the subject.

Among various groups of time-dependent scheduling problems, those
with non-empty precedence constraints seem to be relatively unexplored.
In this talk, we summarize the present state of the art in that domain, and
discuss some conjectures related to single machine scheduling problems with
time-dependent job processing times and arbitrary precedence constraints.

2 Problem formulation

We consider the following general time-dependent scheduling problem. We
are given a set of n jobs with variable, time-dependent processing times.
The processing time of job Jj is in the form of pj = fj(t), where t ≥ 0
denotes the starting time of Jj , 1 ≤ j ≤ n. There are defined precedence
constraints on the jobs, described by a directed, acyclic graph G(V,A),
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where V = {1, 2, . . . , n} and A ⊆ V × V . The aim is to find a schedule
which is feasible with respect to the precedence constraints and minimizes a
criterion function F . In the three-field notation, the problem can be denoted
as 1|pj = fj(t), prec|F . If functions fj are proportional, proportionally-
linear or linear functions of t, we write that job Jj is a proportional,
a linearly-proportional or a linear job, respectively.

3 Related research

A few groups of results on scheduling time-dependent jobs under precedence
constraints are known. Below we review only the most important cases,
for a detailed discussion on time-dependent scheduling under precedence
constraints, we refer the reader to [9, Chap. 18].

We begin with results concerning proportional jobs, when fj(t) = bjt
for 1 ≤ j ≤ n, and special forms of precedence constraints such as the weak
and strong chains, introduced by Dror et al [5]. Let us recall that a chain
of jobs is called a strong (a weak) chain, if between jobs of the chain no
job (any number of jobs) from another chain can be inserted.

Wang et al [18] proved that single machine scheduling problem with
strong chains, 1|pj = bjt, s-chains|

∑
wjC

2
j , can be solved in O(n log n)

time by scheduling jobs in non-decreasing order of some ratios. The same
authors claimed that the single machine scheduling problem with weak
chains, 1|pj = bjt, w-chains|∑wjC

2
j , can be solved in O(n2) time.

Applying the same approach, Duan et al [6] obtained similar results for
problem 1|pj = bjt, w-chains|∑wjC

k
j , where k ∈ Z+. Their results were

generalized by Wang et al [17] for problems 1|pj = bjt, w-chains|∑wjW
k
j

and 1|pj = bjt, s-chains|∑wjW
k
j , where Wj := Cj−pj denotes the waiting

time of the jth job and k ∈ Z+.

When job precedence constraints are in the form of a series-parallel
graph (Valdes et al [15]), Wang et al [16] and Wang et al [17] claimed that
problems 1|pj = bjt, ser-par|∑wjCj and 1|pj = bjt, ser-par|∑wjW

k
j ,

respectively, can both be solved in O(n log n) time.

A separate group of results is related to arbitrary precedence constraints.
The most general problem with the precedence constraints is problem
1|pj = bjt, prec|fmax, where one assumes that for job Jj there is defined
a non-decreasing cost function fj that specifies a cost fj(Cj) that can
be computed in a constant time and has to be paid at the completion
time of the job, 1 ≤ j ≤ n. The problem can be solved by appropriate
modification of Lawler’s algorithm for problem 1||fmax (Lawler [13]): as
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far as there are jobs to be scheduled, from jobs without successors we
choose the job that will cause the smallest cost in the given position and we
schedule it as the last one. Gawiejnowicz [9, Chap. 18] showed how to solve
problem 1|pj = bjt, prec|fmax in O(n2) time using appropriately modified
Lawler’s algorithm. Dȩbczyński and Gawiejnowicz [4, Sect. 3] showed
that a single machine scheduling problem with variable job processing
times can be solved in polynomial time by Lawler’s algorithm, if for the
problem two properties hold: schedule non-idleness, saying that any feasible
schedule does not include idle-times, and the maximum completion time
invariantness, stating the completion time of the last scheduled job is the
same for all feasible schedules. The importance of the two properties was
later confirmed by Arigliano et al [1], and Chen and Yuan [2].

The next group of results concerns linear jobs, i.e. when fj(t) = aj +bjt
or fj(t) = aj − bjt for 1 ≤ j ≤ n. Gawiejnowicz [9, Chap. 18] presented
optimal algorithms for linear jobs, F = Cmax and precedence constraints in
the form of a set of chains, a tree, a forest or a series-parallel graph. The
first three cases can be solved in O(n log n) time, while the latter one can
be solved either in O(n log n) time if decomposition tree of the precedence
graph is known, or in O(n2) time otherwise.

The case of F =
∑

Cj is more difficult than the case of F = Cmax,
since time complexity of problem 1|pj = aj + bjt|

∑
Cj is still unknown

(Gawiejnowicz [8, Sect. 7.1]). Nevertheless, some special cases are known.
Strusevich and Rustogi [14, Chap. 8] proved that problem 1|pj = aj+bt, ser-
par|∑Cj is solvable in O(n log n) time.

Relatively few results are known for shortening jobs. Gao et al [7]
applied the approach used for solving problems with linear jobs and F =
Cmax criterion to problem 1|pj = bj(1− bt), chains|∑wjCj and claimed
that the latter problem can be solved in O(n log n) time. Gawiejnowicz
et al [12] proved that the case of linearly shortening jobs, F = Cmax and
precedence constraints in the form of a set of chains or a tree can be solved
in O(n log n) time, while the case of a series-parallel directed acyclic graph
can be solved either in O(n log n) time if decomposition tree of the graph
is known, or in O(n2) time otherwise.

Some authors considered scheduling problems with other forms of vari-
able processing times and non-empty precedence constraints. For example,
Dȩbczyński [3] proved that a few single machine scheduling problems with
k-partite precedence constraints and mixed variable processing times can
be solved in O(n2) time.
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4 Our results

Our contribution is three-fold. First, we show that some of results discussed
in Sect. 3 can be obtained in a simpler way. Next, we show that for each
feasible schedule for problem 1|pj = aj + bjt|Cmax there exists a feasible
schedule for a single machine scheduling problem with fixed job processing
times and another criterion and vice versa. We also show that the values
of optimality criteria for these two problems are related. Finally, based on
the equivalence and applying some ideas introduced by Gawiejnowicz et
al [10, 11], we formulate a conjecture on the time complexity of problem
1|pj = aj + bjt, prec|Cmax and some other conjectures concerning time
complexity of a few other time-dependent scheduling problems.

5 Future research

In future research, it would be interesting to consider special cases of the
problem mentioned earlier, e.g. when some jobs have the same processing
times or when some additional conditions hold, e.g. job processing time
and job weight are agreeable. Another possibility is to consider selected
parallel- or dedicated-machine counterparts of single-machine problems
with precedence constraints.
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1 Introduction

We consider the following scheduling problem. A set J of n jobs has to be
processed on m machines of a proportionate flow shop system. All jobs
are available at time 0 and job preemption is not allowed. Job processing
times are machine-independent, i.e. irrespectively on which machine job
Jj ∈ J is processed, it is defined by a processing time pj , a due date dj
and a reward wj , where 1 ≤ j ≤ n. We assume that all these parameters
are given positive integers.

For a given schedule, the completion time of job Jj on machine i and
its completion time on the last machine are denoted as Cij and Cj = Cmj ,
respectively, where 1 ≤ j ≤ n and 1 ≤ i ≤ m. If job Jj is completed exactly
at its due date, i.e., Cj = dj , then a reward wj is collected and job Jj is
called a just-in-time (JIT) job.

Let E ∪ T = J , E ∩ T = ∅, be a partition of the jobs into the set E of
jobs completed just in time and the set T of jobs completed before or after
their deadlines in a given schedule. The goal is to find a schedule with a
maximal weighted number of jobs in the set E, i.e.,

max
∑

Jj∈E
wj .
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This problem, in the three-field notation denoted as PFm||∑wj , is
a generalization of the single machine scheduling problem 1||∑wj , con-
sidered for the first time by Lann and Mosheiov [8], who proved that the
single machine problem can be solved in O(n2) time. For the generalized
problem, PFm||∑wj , we present a fully polynomial-time approximation
scheme (an FPTAS) and a strongly-polynomial FPTAS (an SFPTAS) for
maximizing the weighted number of just-in-time jobs, faster by a factor of
n, compared to the state-of-the-art FPTAS known in the literature.

2 Related research

Choi and Yoon [3], applying a reduction from the PARTITION problem,
proved that two-machine flow shop problem F2||∑wj is weakly NP-
hard. For this problem, Shabtay and Bensoussan [11] introduced a pseudo-
polynomial time algorithm, running in O(n2

∑n
j=1 pj) time. The same

authors, based on their pseudo-polynomial time algorithm, proposed for
problem PF2||∑wj an FPTAS running in O(n

4

ε log(nε )) time.

Shabtay [10, Thm. 2], applying a reduction from the PARTITION prob-
lem, showed that proportionate flow shop problem PFm||∑wj isNP-hard
already for m = 2 machines, gave an O(n3

∑n
j=1 pj) pseudo-polynomial

time algorithm [10, Thm. 3] and designed a tailor-made strongly-polynomial

FPTAS for problem PF2||∑wj with running time of O(n
4

ε ) [10, Thm. 4].
Elalouf et al [4] proposed a faster FPTAS for problem PF2||∑wj running

in O(n
3

ε ) time. A bicriterion variant of problem PF2||∑wj was considered
by Shabtay et al [12], while a distributive version of problem PFm||∑wj

was addressed by Shabtay [9]. Gerstl et al [6] gave an alternate DP formula-
tion for problem PF2||∑wj that runs faster than the one of Shabtay [11]
by a factor of n. However, the authors left open the natural question of
whether this improved DP formulation can lead to an improved FPTAS
for this problem or not. We answer this question in the affirmative.

3 Our results

We formulate problem PFm||∑wj as a monotone dynamic program (DP)
that falls into the FPTAS frameworks of Alon and Halman [1, 2]. This
gives rise to two different approximation schemes for problem PFm||∑wj ,
an FPTAS and an SFPTAS, that run in time cubic on n and linear in
1
ε , up to log terms, i.e., faster by a factor of n, up to log terms, than
the tailor-made FPTAS of Shabtay [10]. Moreover, applying the above
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frameworks makes superflous the statement of the algorithm, as well as its
running time and approximation error analyses.

3.1 Structural properties

Gerstl et al [6] proved the following three properties of problem PFm||∑wj .

Property 1. There exists an optimal permutation schedule for problem
PFm||∑wj.

Property 2. There exists an optimal schedule for problem PFm||∑wj

such that the JIT jobs are scheduled according to an EDD (Earliest Due-
Date) order.

Property 3. There exists an optimal schedule for problem PFm||∑wj

such that the jobs are scheduled on the first machine with no idle time
between consecutive jobs.

Now, we overview the improved algorithm by Gerstl et al [6]. Based
on Property 2, they first assumed that the jobs are sorted according to
the EDD order. Next, they designed a DP algorithm with a 3-dimensional
state variable as follows.

Let f(j, k, C1k) be the maximum weighted number of JIT jobs that can
be obtained by assigning the remaining n− j jobs Jj+1, . . . , Jn, given that
the last JIT job is Jk, k ≤ j, and that its completion time on machine 1
is C1k. Then, since Jk is a JIT job, Ck = dk. The decision made for each
state variable is whether to schedule the next job, Jj+1, as a JIT job if it
is possible, or to make it a tardy job. The DP recursion reads as follows:

f(j, k, C1k) =

{
f(j + 1, k, C1k), ifmax{dk + pj+1, C1k +mpj+1} > dj+1,
max{f(j + 1, k, C1k), f(j + 1, j + 1, C1k + pj+1) + wj+1}, otherwise.

(1)

Note that the term max{dk + pj+1, C1k +mpj+1} is the earliest date
job Jj+1 can complete on the last machine: dk + pj+1 is the sum of the
processing time of job Jj+1 and the completion time of the last JIT job
on the last machine, while C1k + mpj+1 is the time it takes to complete
processing job Jj+1 assuming (i) it starts to be processed on the first
machine at time C1k and (ii) all remaining machines are available.

The boundary conditions (when all n jobs are already scheduled) are:

f(n, k, C1k) = 0, C1k = 1, . . . ,

n∑

j=1

pj , k = 1, . . . , n. (2)
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The optimal solution is given by f(0, 0, 0). Using Property 3, an upper
bound on C1k is

∑n
j=1 pj . This implies that the number of states, and

therefore – the running time of DP (1)-(2), is O(n2
∑n

j=1 pj).

3.2 An FPTAS and an SFPTAS

In this section, we apply the frameworks of Alon and Halman [1, 2] to
derive two FPTASes for the problem under consideration. For the ease of
presentation, we cite from the concise summary of these papers as given in
Apps. A-B in Gawiejnowicz et al [5].

First, applying the framework of Alon and Halman [1] for monotone
DPs, we give our FPTAS. To do so, we reformulate the problem based on
the DP recurrence (1)-(2), in which we switch from the f(j, k, C1k) notation
to the one of one-dimensional functions zj,k(C1k) ≡ f(n− j, k, C1k), and
from backward DP recursion to a forward one. We denote by zj,k(C1k) the
maximum weighted number of JIT jobs that can be obtained by assigning
the remaining j jobs Jn−j+1, . . . , Jn, given that the last JIT job is Jk,
k ≤ n− j, and that its completion time on machine 1 is C1k. (Since Jk is a
JIT job, Ck = dk.) The decision made for each state variable is whether to
schedule the next job, Jn−j+1, as a JIT job, if possible, or make it a tardy
job. The recurrence is:

zj,k(C1k) =

{
zj−1,k(C1k), if max{dk + pn−j+1, C1k +mpn−j+1} > dn−j+1,
max{zj−1,k(C1k), zj−1,n−j+1(C1k + pn−j+1) + wn−j+1}, otherwise.

(3)

The boundary conditions are:

z0,k(·) ≡ 0, k = 1, . . . , n. (4)

The optimal solution is given by zn,0(0). We note that the functions zj,k(·)
are monotone non-increasing, since the later a JIT job Jk completes its
processing on the first machine, the less reward we may collect from the
remaining jobs Jn−j+1, . . . , Jn. (A formal proof can be obtained via a
simple induction on the recurrence (3)-(4)). The DP formulation (3)-(4) is
therefore a monotone DP, admitting FPTASes, whenever the DP satisfies
some additional technical conditions (see, e.g., Halman et al [7], Alon
and Halman [1, 2]). The reason for which we switch from the f(j, k, C1k)
notation used in DP formulation (1)-(2) to the one of zj,k(C1k) of DP
recurrence (3)-(4) and to forward DP recursions is that we want to have a
clear correspondence to the notation used by Alon and Halman [1, 2].

48 The Fourth International Workshop on Dynamic Scheduling Problems



In order to show that DP formulation (3)-(4) fits into the framework,
first we show that it can be seen as a special case of DP formulation (12)
given in Gawiejnowicz et al [5].

Next, we set a bound Uz on the ratio between the maximal value of
function zj,k(·) and its minimal non-zero value,

Uz ≤
∑n

j=1wj

minj=1,...,n{wj}
≤

n∑

j=1

wj ,

and a bound US on the cardinality of the state space,

US =
n∑

j=1

pj .

Finally, in the full paper we show that DP formulation (3)-(4) satisfies
Conditions A.1-A.4 in Gawiejnowicz et al [5, App. A].

Hence, applying Theorem A.1 in Gawiejnowicz et al [5, App. A] with
parameter value set to τf = O(n2), we get the following result.

Theorem 1. There exists an FPTAS for maximizing the weighted number
of just-in-time jobs on proportionate flow shop problem PFm||∑wj that
runs in time

O


n

3

ε
log

n log
∑n

j=1wj

ε
log

n∑

j=1

wj log
n∑

j=1

pj


 .

Note that unlike the approximation scheme designed in Shabtay [10],
whose running time depends solely on n and 1

ε , and that is therefore
an SFPTAS, the running time of the approximation scheme stated in
Theorem 1 depends polynomially on the binary encoding of the numbers
in the problem instance and thus it is not an SFPTAS.

Now, using the very recent framework of Alon and Halman [2] for
the design of SFPTASes for monotone DPs, and using the same DP
recurrence (3)-(4), we give an SFPTAS for the considered problem. This
SFPTAS framework requires that a monotone DP can be cast as (12)
in Gawiejnowcz et al [5] and satisfies Conditions B.1-B.6 as stated by
[5, App. B].

Recall from the discussion above that DP formulation (3)-(4) is a
special case of DP formulation (12) in Gawiejnowicz et al [5]. We note that
Condition B.2 is not satisfied by DP formulation (3)-(4): an upper bound
on the value that zj,k can achieve is

UB = nwmax,
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where wmax = maxj=1,...,n{wj}, and a lower bound on every non-zero
feasible solution is wmin = minj=1,...,n{wj}. However, the ratio

nwmax

wmin

is not guaranteed to be strongly-polynomially bounded. Therefore, we
will apply the SFPTAS framework on a relaxed problem. In the relaxed
problem, we drop every job Jj with wj ≤ ε

2nwmax. Since

LB = wmax

is a lower bound on the optimal solution, and we give up on a total profit
of no more than ε

2LB (as there are at most n jobs), the optimal solution
of the relaxed problem serves as a ε

2 -approximation of the original one.
Therefore, an SFPTAS that ε

3 -approximates the relaxed problem will serve
as an SFPTAS for the original problem.

In the full paper we show that DP (3)-(4) for the relaxed problem
satisfies the aforementioned six conditions B.1-B.6. Therefore, apply-
ing Theorem B.1 in Gawiejnowicz et al [5], we obtain the following result.

Theorem 2. There exists an SFPTAS for maximizing the weighted number
of just-in-time jobs on proportionate flow shop problem PFm||∑wj that
runs in time

O

(
n3

ε
log2

n log n
ε

ε
log

n

ε

)
.

4 Future research

Future research may concern the existence of an SFPTAS with quadratic
running time dependency on n and linear on 1

ε , up to log terms. Another
interesting topic is to give other example problems for which faster pseudo-
polynomial time algorithms give rise to faster FPTASes.
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1 Introduction

We consider proportionate flow shop scheduling problems with step-deterio-
rating processing times that are studied by Shabtay and Mor [6]. There
are n independent non-preemptive jobs that are available at time zero to
be processed on a set of m machines in a flow shop scheduling system. In
such a system, each job in the shop must follow the same route through
the machines in increasing order of their indices.

While job processing times are machine independent (and as such the
problem is a proportionate flow shop problem), they depend on their start
time (Gawiejnowicz [3]). Each job Jj , j = 1, . . . , n has

(i) normal processing time aj ,

(ii) deterioration penalty bj , and

(iii) deterioration date δj , such that if the job starts to be processed on
the first machine on time t > δj , then its (time-dependent) actual
processing time, denoted by pj(t), is increased by the deterioration
penalty to the late processing time lj := aj + bj .

It is known that there exists an optimal permutation schedule σ =
(σ(1), . . . , σ(n)) such that all jobs are processed in the same sequence on
each one of the machines. Therefore, the starting time of job Jj on the

first machine is Sσ(j) =
∑j−1

i=1 pσ(i)(Sσ(i)). We assume that the actual
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processing time of job Jσ(j) on any one of the m machines is the following
step function:

pσ(j) =

{
aσ(j), if Sσ(j) ≤ δσ(j),

lσ(j), otherwise.
(1)

Whenever the actual processing time of a job j is equal to aj , the job is
called early and whenever it is equal to lσ(j) it is called tardy. Shabtay
and Mor [6] study two criterion functions (i) the completion time of the
entire schedule, denoted by Cmax(σ), and (ii) the total machine completion
time (a.k.a. the total load), denoted by TL(σ). The goal is to determine
the schedules σC and σTL that minimize the makespan and total load,
respectively, i.e.,

σC = arg min
σ
{Cmax(σ)} , σTL = arg min

σ
{TL(σ)} .

Shabtay and Mor [6, Thm. 3] unify the two criterion functions and
design for the unified problem a tailor-made strongly-polynomial FPTAS
with running time of O(n

4

ε ). In this paper we reformulate the unified
problem as a certain monotone dynamic program (DP) that falls into the
FPTAS frameworks of Alon and Halman [1, 2], thus giving for it two
different FPTASes.

While we use general frameworks, our fastest FPTAS runs in time cubic
on n and linear in 1

ε , up to log terms, i.e., faster by a factor of n, up to log
terms, than tailor-made FPTAS of [6]. Moreover, applying existing FPTAS
frameworks (as opposed to designing tailor-made FPTASes) makes the
statement of the algorithm, as well as its running time and approximation
error analyses – all superfluous.

2 Structural properties of optimal schedule

Let

Z(σ) := α max
j∈{1,...,n}

{pσ(j)}+
n∑
j=1

pσ(j) =

αmax

{
max

Jj∈E(σ)
{aj}, max

Jj∈T (σ)
{aj + bj}

}
+

∑
Jj∈T (σ)

bj +AΣ,
(2)

where E(σ) is the set of early jobs in σ, T (σ) is the set of its tardy jobs,
AΣ =

∑n
j=1 aj and α ∈ R+ is a parameter.

Shabtay and Mor [6, Eqs. (10)-(13)] show that both the makespan and
total load problems can be expressed as the unified problem with criterion
Z(σ) defined by Eq. (2) in the following way: when α = m − 1, then
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problem with this criterion is equivalent to the makespan problem, and it
is equivalent to the total load problem, whenever α = m(m−1)

2 .
Shabtay and Mor [6, Lem. 3-4] further show that there exists an optimal

permutation schedule σ for minimizing the criterion defined by Eq. (2)
where no tardy job precedes an early job and the early jobs are scheduled
in non-decreasing order of aj + δj , i.e., according to the Extended Earliest
Deteriorating Date (EEDD) rule. They denote by τ = (E , T ) a partition of
the sets of jobs to early and tardy jobs, and by στ a schedule corresponding
to partition τ that satisfies the properties above, i.e., in στ the jobs in E
are scheduled first and according to the EEDD rule and then the jobs in T
in an arbitrary order.

In the rest of this section we assume without loss of generality that the
entire set of jobs is numbered according to the EEDD rule. It is easy to
check whether τ = (E = {J1, . . . , Jn}, T = ∅) is a feasible (and therefore
also optimal) solution: all we need to do is to verify that the following n
inequalities

j−1∑

i=1

ai ≤ δj , j = 1, . . . n

hold. If this is indeed the case, then the optimal schedule is to process the
jobs in increasing order of their indices to get the minimal value of

Z(στ ) = αamax +AΣ,

where amax = maxj=1,...,n{aj}. Therefore, hereafter we assume that in any
feasible solution T 6= ∅.

Shabtay and Mor [6] next decompose the solution space of the problem
into n+ 1 auxiliary subproblems, each of which corresponding to a different
value of

pmax(στ ) := max

{
max
Jj∈E(σ)

{aj}, max
Jj∈T (σ)

{aj + bj}
}

in Eq. (2). Note that pmax(στ ) ∈ {l0, l1, . . . , ln}, where l0 := amax. Follow-
ing this decomposition, in the h-auxiliary problem, h = 1, . . . , n, the goal
is to find a job partition which minimizes the criterion in Eq. (2) subject
to the condition that job Jh is both tardy and has the maximal processing
time among all jobs, making Jh ∈ T and pmax(στ ) = lh.

In the 0-auxiliary problem, there is at least one tardy job, but pmax(στ ) =
l0. Denote by Zh(σ) the value of an h-auxiliary problem over schedule σ.
Note that by Eq. (2) we get that

Zh(σ) := αlh +
∑

Jj∈T (σ)

bj +AΣ ≤ (α+ n)lh. (3)
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Denote by Z?h the optimal solution value of the h-auxiliary problem
(setting Z?h :=∞ if there is no feasible solution) and by Z? the optimal so-
lution value of the problem, we get that Z? = minh=0,1,...,n{Z?h}. Therefore,
having FPTASes to each one of the auxiliary problems yields an FPTAS to
our original problem. By designing O(n

3

ε ) time FPTASes for the auxiliary

problems, Shabtay and Mor [6, Thm. 3] get an O(n
4

ε ) time FPTAS for the
original problem.

3 Two FPTASes as monotone dynamic programs

In this section, we formulate the h-auxiliary problem as a certain monotone
DP with a forward Bellman recursion. For this to work out, we first
renumber the entire set of jobs according to the reversed EEDD rule, i.e.,
in non-increasing order of aj + δj . Monotone DPs are known to admit
FPTASes, whenever they satisfy some additional technical conditions (see,
e.g., Halman et al. [5], Alon and Halman [1, 2]).

Assume first that h ≥ 1, i.e., job h has to be scheduled as a tardy
job and its actual processing time is maximal among the ones of all jobs.
Let zj(s) be the value of criterion Z(σ) in Eq. (2), considering only jobs
1, . . . , j and starting at time s. The goal is to calculate zn(0). We set the
boundary condition to be

z0(s) = αlh +AΣ, s ≥ 0. (4)

The Bellman recursion reads

zj(s) =





zj−1(s) + bj , j = h,
zj−1(s) + bj , s > δj and lj ≤ lh,
∞, s > δj and lj > lh,
zj−1(s+ aj), s ≤ δj and lj > lh,
min{zj−1(s) + bj , zj−1(s+ aj)}, s ≤ δj and lj ≤ lh.

(5)

We next explain the Bellman recursion. Recall that in the h-auxiliary
problem (with h ≥ 1) job h has to be scheduled as a tardy job and its
actual processing time is maximal among the ones of all jobs. The first line
ensures that the actual processing time of job h is indeed lh. The second
and third lines deal with the case of job j 6= h whose deterioration date has
already passed. If its late processing time is not greater than the one of job
h, then in the third line we will schedule it as a tardy job. Otherwise, it is
not possible to schedule it as either an early or tardy job, so in the fourth
line we return the value of ∞ as the value of an infeasible solution. The
last two lines deal with the case of a job j 6= h, whose deterioration date
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has not been reached yet. If its late processing time is greater than the one
of job h, then in the fifth line we will schedule it an early job. Otherwise,
it is possible to schedule it as either an early or tardy job.

We next assume that h = 0, i.e., pmax(στ ) = l0 is realized by an early
job. Let j? be the index of that job. We define the boundary condition
z0(·) as above, and let the Bellman recursion to be as in Eq. (5) with its
first line in the form of

zj−1(s) + bj , j = h,

being replaced by the following two lines:

zj−1(s+ aj), j = j? and s ≤ δj? ,
∞, j = j? and s > δj? .

In the remaining of this section, we will apply the framework of Alon
and Halman [1] to derive an FPTAS for DP (4)-(5). For the ease of
presentation, instead of citing directly from papers by Alon and Halman
[1, 2], we will cite from the concise summary of these papers as given
in Gawiejnowicz et al. [4, Apps. A-B].

In order to show that DP formulation (4)-(5) fits into the framework,
first we shall show that DP formulation (4)-(5) can be seen as a special
case of DP formulation [4, Eq. (12)] in the following sense:

(i) we set the level index t to be the index j and therefore the number
of levels is T = n, i.e., the number of jobs to schedule;

(ii) we set the other index i to be fixed to 1, therefore, we get that m = 1
and for the ease of notation we will drop in the sequel the second
index from the zt,i notation in [4, Eq. (12)];

(iii) we set the state variable It,i to be s, i.e., the current starting time
of the schedule;

(iv) for every level t, we set the additional information At,1(s) to be the
conditions stated in (5), which determine the values of ft,i in each
case;

(v) when considering level t in [4, Eq. (12)], instead of using all
previously-calculated {zr}r<t, we use only zt−1;

(vi) we set the boundary functions to be f0,1 ≡ αlh +AΣ.
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Thus, by (i)-(vi), we conclude that DP formulation (4)-(5) is indeed a
special case of DP formulation [4, Eq. (12)].

Next, we shall set a bound Uz on the ratio between the maximal value
of function zj(·) and its minimal non-zero value:

Uz ≤
(α+ n)lh
αlh +AΣ

≤ n

α
≤ n, (6)

see (3)-(4), and a bound US on the cardinality of the state space:

US = nlh.

In the full paper, we show that DP formulation (4)-(5) satisfies Con-
ditions A.1-A.4 as stated in [4, App. A]. Hence, applying [4, Thm. A.1]
with parameter value set to τf = O(n), to each one of the n+ 1 auxiliary
problems, we get the following result.

Theorem 1. There exists an FPTAS for proportionate flow shop scheduling
with step-deteriorating processing times in the form of Eq. (1) that runs in
time

O

(
n3

ε
log

n log n

ε
log n log

(
n max
h=0,...,n

{lh}
))

.

Note that unlike the FPTAS designed in [6], whose running time depends
solely on n and 1

ε , and that is therefore strongly polynomial in the instance
size (SFPTAS), the running time stated in Theorem 1 depends polynomially
on the binary encoding of the numbers in the problem instance and is thus
non-strongly polynomial.

Now, we describe an SFPTAS using the very recent framework of Alon
and Halman [2] for the design of SFPTASes for monotone DPs, and using
the same DP recurrence (4)-(5). This SFPTAS framework requires that a
monotone DP can be cast as [4, Eq. (12)] and satisfies Conditions B.1-B.6
as stated in [4, App. B].

Recall from the previous discussion that DP formulation (4)-(5) is a
special case of DP formulation [4, Eq. (12)]. In the full paper, we show
that DP (4)-(5) satisfies the six Conditions B.1-B.6.

By the calculus of sets of change points (Gawiejnowicz et al. [4,
Prp.B.1(1, 4, 5)]), the set of change points Cz̄j (see [4, Def. B.1]) can be

calculated in τCj = O(|Cz̃j |) time, |Cz̄j | = O(|Cz̃j |) = O(n logUz

ε ) = O(n logn
ε )

for 1 ≤ j ≤ n (see Alon and Halman [2, Prop. 3.7] with parameter K as set

in [2, Alg. 4] to n+1
√

1 + ε), and |Cz̄0 | = O(1), so τC = O(n
2 logn
ε ). Therefore,

Conditions B.5 and B.6(ii) with the parameter setting a = 2 hold, so UC , as
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defined in [4, App. B] is in O
(
n logn
ε

)
. Therefore, applying [4, Thm. B.1]

to each one of the n+ 1 auxiliary problems, we obtain the following result
closing the paper.

Theorem 2. There exists an FPTAS for proportionate flow shop scheduling
with step-deteriorating processing times in the form of Eq. (1) that runs in
time

O

(
n3

ε
log2 n log n

ε
log n

)
.

4 Further research

We reformulated two proportionate flow shop scheduling problems with
step-deteriorating processing times as a monotone DP that falls into the
recent SFPTAS framework of [2], thus giving for it an SFPTAS with running

time of O
(
n3

ε log2 n logn
ε log n

)
. This gives a speedup of the running time

of the SFPTAS of [6] by a factor of n, up to log terms. Doing so, we
answer in the affirmative an open question raised by Shabtay and Mor [6].
We pose as an open question the existence of an SFPTAS with quadratic
running time dependency on n and linear on 1

ε , up to log terms.
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1 Introduction

Overcrowding is an issue commonly faced by Emergency Departments (ED)
and that has been widely reported in the literature. Increasing the ED
capacity by, for example, hiring additional physicians and nurses, is one
way to tackle the overcrowding problem. However, this type of solution
may not be feasible in practice due to its financial impact. Consequently,
managers are interested in investigating other options to improve patient
flow to reduce overcrowding. One way could be optimizing processes and
properly using the available resources.

A variety of optimization problems is devoted to applications in the
healthcare area, including scheduling problems. In our work, we study
the ED patient scheduling problem. More specifically, we focus on the
weighted tardiness minimization by optimizing the assignment of patients
to doctors over a time horizon. This problem is characterized as dynamic,
because no information about the patients (e.g., arrival times, service
times, and urgency levels) is known before their arrival in the ED, and

∗Speaker, e-mail: arthur.kramer@emse.fr

DOI: 10.14708/isbn.978-83-962157-1-0p61-67

61



stochastic, because some information is uncertain (e.g., service times).
Thus, the problem we face is an online stochastic optimization problem.
Our objective is to propose an algorithm that could help managers to
decide which patient to serve each time a doctor is idle. Because many EDs
adopt a common practice of prioritizing patients according to their urgency
level, the proposed algorithm would be an alternative to this practice.

We present a Scenario-Based Planning Approach (SBPA) to solve the
problem of dynamically scheduling patients to doctors under uncertainties
in the context of EDs. For a complete and detailed view of our propositions,
we address the reader to our recent paper (Quieroz et al. [6]).

2 Related research

In Di Somma et al. [1], the authors provide a discussion about the over-
crowding problem that is commonly faced by EDs worldwide. A compre-
hensive review of the contributions of operations research to EDs patient
flow optimization can be found in the paper by Saghafian et al. [7].

For what concerns dynamic scheduling in EDs, despite its relevance,
the number of studies addressing patient scheduling is relatively limited.
A general overview of the dynamic scheduling problem is provided by Ouel-
hadj and Petrovic [5]. The authors emphasized that dynamic scheduling
approaches can be classified as

(i) reactive,

(ii) predictive-reactive, and

(iii) robust proactive.

They highlighted predictive-reactive as the most common category in
the literature. According to this approach, an initial schedule is built
and then adjusted (reoptimized) once new information is available. The
main drawback of this strategy is that uncertainties are not considered
during the decision process. In turn, online anticipatory algorithms (also
known as lookahead algorithms) consider sample scenarios of possible future
realizations in order to minimize the effect of uncertainties.

Many examples of the successful application of scenario-based algo-
rithms to solve optimization problems can be found in the literature for,
e.g., the vehicle routing problem (Hvattum et al. [3]), the ship routing
and scheduling problems (Tirado et al. [9]), the dynamic dial-a-ride prob-
lem (Schilde et al. [8]) and the resource allocation problem (Duma and
Aringhieri [2]).
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3 Problem formulation

We consider the scheduling problem of assigning patients to doctors in the
ED context. In this problem, we are given a set J = {1, . . . , n} of patients
to be served by a set M = {1, . . . ,m} of doctors within the given time
horizon which starts at time zero and ends at time T . We assume that
doctors work in parallel and have the same efficiency. Each doctor can
visit at most one patient at a time. Each patient j ∈ J has an arrival time
(release date) rj , an expected service time paj , a priority weight (urgency
level) wj , and a target due time dj for the beginning of the visit.

When the visit begins after the target due time, then a tardiness
Tj = max{0; sj − dj}, where sj is the starting time of the visit of patient j,
is considered. The expected service time of a patient is estimated upon the
patient arrival at the ED and is based on her/his urgency level. However,
the realized service time, denoted as pej , is known only after the service is
finished and may be different from the expected service time paj .

Under the notation, the Dynamic Scheduling of Patients with identical
parallel Doctors, release dates, and non-deterministic service times problem
(DSPD) looks for a schedule of all patients that minimizes the total
weighted tardiness (

∑
j∈J wjTj).

In the DSPD problem, the status of the system is impacted by two
types of dynamic events that may occur. The first event regards the arrival
of patients when there is a doctor that is idle. The second event occurs
when a doctor finishes visiting a patient and there is at least one other
patient on the waiting list. Thus, each time any of these events occur a
decision should be taken.

4 Our results

We propose a Scenario-Based Planning Approach (SBPA) to solve the
DSPD. Differently from reoptimization heuristics, the SBPA considers
sample scenarios of the future to make decisions each time a new event
occurs. These scenarios consider fictive patients that may arrive in the ED.
We recall that in the DSPD two types of events may occur:

(i) a patient arrives at the ED and there is at least one doctor available;

(ii) a doctor finishes visiting a patient and there is at least one patient
in the waiting list, i.e., a doctor can start a new visit.

In the SBPA, which can be classified as an event-driven algorithm, when
a new event occurs all information about the current state of the system
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(current schedule, patients waiting and being visited, doctors available, etc.)
is collected. Then, past and in-progress decisions are fixed and decisions
about the future are taken/updated. In order to take new decisions, we
optimize each scenario and evaluate the solutions from each scenario. So,
we decide, with a consensus function, which decisions to take.

In the SBPA, each time an event occurs, a smaller deterministic schedul-
ing problem is solved for each scenario considered. In order to solve these
deterministic problems, we use a Variable Neighborhood Search (V NS).
We address the reader to the work by Lan et al. [4] for a recent survey on
the application of VNS to healthcare-related problems.

Another important component of the SBPA is the consensus function
that is used to calculate the score of the obtained solutions and to identify
the most common decisions. Our consensus function calculates, for each
solution/scenario, the number of times the pair (j, o) appears in all other
solutions/scenarios. The pair (j, o) represents the assignment of a real
patient j to a doctor o. Thus, the decisions associated with the solution
with the highest score are adopted.

Our proposed SBPA is shown in Algorithm 1. The current schedule x
of patients contains the fixed past and in-progress decisions and the new
patients that are ready with regard to the current time t. That is, x takes
into account the real patients. Then, a set Ω of scenarios is considered,
where each scenario xω ∈ Ω contains the real patients in x plus additional
fictive patients that may arrive in the ED in the next tSH time instants.
Each scenario is then solved with the VNS. The score of each solution is
calculated by the consensus function and the current solution x is updated
with the decisions obtained from the solution xω having the highest score.

Algorithm 1 SBPA

1: Input: Set Ω of scenarios with fictive patients; tSH ; twait; x← ∅
2: Output: Schedule x with taken decisions
3: while there is an event do
4: t← time at which the event happens
5: x← add the newly revealed patients
6: for all scenario ω ∈ Ω do
7: xω ← x∪{ fictive patients j of scenario ω with rj ∈ [t, t+ tSH ]}
8: Optimize xω with the VNS
9: Update xω by replacing each fictive patient by an idle time twait

10: xbest(ω) ← solution xω with the highest consensus function score
11: Update x with the decisions in xbest(ω)
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The proposed methods have been coded in the C++. The numeri-
cal experiments were carried on a computer with Intel Xeon E3-1245v5
3.50 GHz, with 32 GB of RAM, running under Linux Ubuntu 16.04.7 LTS.
The SBPA was tested on a set of 186 realistic instances (see [6] for details),
derived from a dataset from an emergency department located in Italy.

We performed several experiments to evaluate the proposed SBPA, to
assess the impact of the number of doctors and of the presence of early
information (EI) in the solution quality.

In the first experiment, we varied the number of available doctors in
the set 2, 3, 4, 5, 6 and we compared the performance of SBPA with a re-
optimization method, named REO-VNS, that do not consider uncertainties
during the decision process. In Table 1, we present the obtained results in
terms of running time (trun) and weighted tardiness (wT ) for each number
of doctors considered. The first two lines represent the aggregated results
for all 186 instances; the third compares the wT obtained by REO-VNS
and SBPA; the remaining lines show the percentage reduction in terms of
time and wT , when the number of doctors varies for the SBPA.

Table 1. Evaluating the number of doctors: SBPA vs. REO-VNS

Method 2 doctors 3 doctors 4 doctors 5 doctors 6 doctors
trun wT trun wT trun wT trun wT trun wT

REO-VNS 2.33 1191.42 0.76 87.84 0.10 3.17 0.07 1.31 0.07 0.56
SBPA 592.12 1175.55 478.11 81.19 238.41 3.17 235.32 1.23 231.36 0.56
Red. SBPA/REO-VNS – 1.33 – 7.57 – 0.00 – 6.11 – 0.00
Red. SBPA 2 doctors (%) – – 19.25 93.09 59.74 99.73 60.26 99.90 60.93 99.95
Red. SBPA 3 doctors (%) – – – – 50.13 96.10 50.78 98.49 51.61 99.31
Red. SBPA 4 doctors (%) – – – – – – 1.30 61.20 2.96 82.33
Red. SBPA 5 doctors (%) – – – – – – – – 1.68 54.47

From Table 1, we can observe REO-VNS performs much better than
SBPA in terms of execution time. This behavior is expected once the
SBPA solves one problem for each scenario each time a new event occurs.
However, in terms of solution quality, it can be noticed that on average
the solutions obtained with SBPA are up to 7.57% better than the ones
obtained with REO-VNS. This result is due the fact that SBPA takes
advantage of the scenarios to make decisions. It can also be observed that
considering three doctors instead of only two would allow reducing the wT
from 1175.55 to 81.19.

We also performed some experiments considering that some data is
obtained in advance, i.e., the arrival of some patients is known some minutes
in advance due to, e.g., a phone call during the ambulance transportation.
In our experiments, we consider that 10%, 15%, 20%, or 30% of the patients
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of each group to have information revealed tcall minutes in advance (see [6]
for details). Thus, in Table 2 we report the results obtained with SBPA in
the presence of EI.

Table 2. Evaluating the presence of early information

Method no EI 10% of EI 15% of EI 20% of EI 30% of EI
trun wT trun wT trun wT trun wT trun wT

SBPA 478.11 81.19 468.73 81.19 464.63 79.50 461.18 79.50 454.39 77.88
Red. SBPA no EI (%) – – 1.96 0.00 2.82 2.08 3.54 2.08 4.96 4.08
Red. SBPA 10% (%) – – – – 0.87 2.08 1.61 2.08 3.06 4.08
Red. SBPA 15% (%) – – – – – – 0.74 0.00 2.20 2.04
Red. SBPA 20% (%) – – – – – – – – 1.47 2.04

We notice that, overall, having EI helps EDs in reducing the total
weighted tardiness. The reduction in terms of wT is at most 4.08% when
comparing the cases without early information with the case of knowing
30% of the arrivals in advance. The more the percentage of patients
having EI, the higher the reduction is. Thus, the possibility of having early
information is beneficial to the ED as it allows a reduction in the wT .

5 Future research

As future research directions, we identify the proposal of other solution
strategies that better exploit the information from the scenarios, e.g.,
branch-and-regret heuristics. Another recommendation is to improve the
VNS by proposing and testing new neighborhood structures. Concerning
the problem itself, the consideration of additional characteristics is worth
investigating, e.g., preemption.
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1 Introduction

We study a single machine lot scheduling problem. In this setting, the
producer receives orders of different sizes, which are processed in lots. The
total size of the orders assigned to a specific lot cannot exceed its capacity.
Order splitting is permitted. The processing times of the lots are identical.
Moreover, we assume that a fixed maintenance activity is performed, and
during the maintenance time, no production is feasible. The objective
function is minimum total weighted completion times of the orders.

We also study an extension allowing order rejection. Thus, the scheduler
has the option to process only a subset of the orders. The other orders are
rejected, and the scheduler is penalized accordingly. The objective function
remains total weighted completion time, subject to an upper bound on the
total permitted rejection cost.

For the above NP-hard problems, we introduce pseudo-polynomial
dynamic programming solution algorithms. Large-size instances are shown
to be solved efficiently.

2 Related research

In recent years, the topic of lot scheduling has become popular among
scheduling researchers. In this class of problems, the producer receives
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orders of different sizes processed in lots. The total size of the orders
assigned to a specific lot cannot exceed its capacity, and a single order
must be processed in at most two consecutive lots. Also, the processing
time of the orders assigned to a given lot is clearly that of the lot. There
are numerous real-life applications for this setting, and a typical one is a
setting in which a number of products need to go through a heating process
in a burn-in industrial oven of a given size.

Many classical combinations of scheduling measures and machine set-
tings have been considered in the recently published papers dealing with lot
scheduling. The first relevant paper on the setting of lot scheduling studied
here is that of Hou et al. [3]. They studied the problem of minimizing
total completion time on a single machine, given

(i) identical lots (both in terms of size and processing time) and

(ii) allowing splitting, i.e., a setting in which an order can be split between
consecutive lots.

They introduced a polynomial time solution for this case.
Yang et al. [19] focused on the same setting, assuming that splitting

is not allowed. They proved that this problem is NP-hard in the strong
sense and introduced and tested a binary integer programming model and
four heuristics. The heuristic based on the binary integer program with
a (reasonable) bound on the running time was proved to provide the best
results. Zhang et al. [20] extended the problem to that of minimizing the
total weighted completion time and total weighted discounted completion
time. Given that order splitting is allowed, they proved that the policy of
weighted shortest processing time first (WSPT) is optimal for both cases.

Mor et al. [10] considered the measure of a minimum number of tardy
orders (with order splitting), a minimum weighted number of tardy orders
(with order splitting), and a minimum number of tardy orders (assuming
no splitting). The first problem was shown to be polynomially solvable,
the second was proved to be NP-hard, a pseudo-polynomial algorithm was
introduced and tested, and the third was proved to be strongly NP-hard,
and a heuristic was proposed and tested.

Mor et al. [11] investigated lot scheduling problems with the option
of order rejection, assuming an upper bound on the maximal permitted
rejection cost. Pseudo-polynomial dynamic programming algorithms were
introduced for three NP-hard problems: minimum makespan, minimum
total completion time, and minimum total weighted completion time.

Mor [5] studied lot scheduling with position-dependent lot processing
times. The scheduling measure was minimum total weighted completion
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time and three special cases: minimum makespan, minimum total comple-
tion time, and a minimum linear combination of both. All problems were
shown to have polynomial time solutions.

Mor and Mosheiov [8] studied lot scheduling with Just-In-Time objec-
tives, assuming a common due date and a common due window, which are
decision variables. Polynomial-time dynamic programming algorithms were
introduced when the scheduling measures consist of order earliness and
tardiness and the due-date (-window) cost, and order-splitting is allowed.

Nurit et al. [16] studied lot scheduling on identical parallel machines
and provided exact and heuristic algorithms.

In this paper, we return to the problem of minimizing the total weighted
completion time. As in most of the above-mentioned models, we assume
lots have identical sizes and processing times. Order-splitting is permitted.
We extend the setting in two directions. First, we assume that a fixed
maintenance activity must be performed. During the maintenance time, no
production is feasible. Also, no splitting over the maintenance is allowed,
i.e., an order cannot start before the maintenance and be completed after it.

Scheduling a maintenance activity has numerous applications, and
many models have been published (assuming different machine settings,
scheduling measures, and assuming different assumptions on the timing
and the impact of the maintenance); for details, we refer the reader to the
comprehensive survey in the book of Strusevich and Rustogi [18].

The second extension refers to the option of order rejection. In this
setting, the scheduler can process only a subset of the orders. The other
orders are outsourced (or even totally rejected), and the scheduler is
penalized accordingly. The objective function remains the total weighted
completion time, subject to the very natural assumption of an upper
bound on the total permitted rejection cost. We refer the reader to the
survey paper of Shabtay et al. [17] for an extensive review of scheduling
with job/order rejection. The popularity of this topic among scheduling
researchers is reflected in the following list of papers published in the last
two years: Mosheiov et al. [15], Mor et al. [9], Mor and Mosheiov [7],
Atsmony and Mosheiov [1], Hermelin et al. ([2], Mor and Shabtay [12],
Mor and Shapira [13, 14], Koulamas and Kyparisis [4] and Mor [6].

We note that all input data, i.e., the sizes and processing times of the
lots, the size of the orders, the order-dependent rejection costs, and the
upper bound on the total permitted rejection cost, belong to the set of
positive integers.
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3 Our results

For both studied problems, based on the fact that even the special case
assuming lots of unit size 1 and identical unit weights is NP-hard, we prove
that they are NP-hard, introduce for them pseudo-polynomial dynamic
programming algorithms, and consequently establish that they are NP-
hard in the ordinary sense. We also report results of an extensive numerical
study that supports our claim that the suggested DP algorithms are capable
of solving large-size instances efficiently.

4 Future research

Modifying the current setting to the case of a flexible maintenance activity
(which must be completed before a given upper bound) or to more general
machine settings (parallel machines or shops) are challenging topics for
future research.
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1 Introduction

The scheduling problem we study consists of the following features:

(i) The machine setting: parallel unrelated machines.

(ii) The job processing times are position-dependent in the most general
way (no monotonicity or any specific function are assumed).

(iii) An optional rate-modifying (maintenance) activity, which is machine-
dependent, may be performed by the scheduler on each machine.

(iv) The objective function is minimum total load (i.e. the sum of the
completion times of the last processed jobs on all machines).

This setting combines two popular topics in scheduling research in recent
years. First, the assumption of variable processing times (and in particular
of position-dependent processing times) was shown to be valid in many
real-life applications. We refer the reader to the book of Gawiejnowicz [2]
for an extensive survey on this topic. A second, very practical topic, is that
of scheduling a rate-modifying activity. This topic, which has been studied
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by numerous researchers as well, focuses on the option of scheduling a
maintenance activity, that improves the performance of the processor and,
consequently, the processing times of the following jobs are reduced. An
extensive survey of this topic can be found in the book of Strusevich and
Rustogi [15].

2 Related research

The objective function we consider, minimum total load, has been rarely
studied. This measure, which is equivalent to the sum of the total pro-
cessing times on all the machines, becomes relevant when the cost of the
system is a function of the busy-time of the machines. Some of the ref-
erences dealing with scheduling problems with total load minimization
are: Mosheiov [10] who studied the problem of minimizing total load on
parallel identical machines with time-dependent processing times (linear
deterioration), Mosheiov [11] who focused the case of position-based de-
terioration, Yu et al. [16] who solved a more general case in which the
job processing times are both position- and machine-dependent, Fiszman
and Mosheiov [1] who focused on minimum total load on a proportionate
flowshop with position-dependent processing time and job-rejection, Mor et
al. [8] who studied the problem on a proportionate flowshop with bounded
job rejection, Mor and Mosheiov [7] who studied the problem on parallel
identical machines with linear deterioration, and Mor and Mosheiov [9]
who solved the problem of minimizing total load on a flowshop with linear
deterioration and job rejection.

3 Our results

In the classical setting of parallel identical machines, total load is clearly
independent of both the allocation of jobs to the machines and the job-
sequences on the machines. The problem becomes harder when the machine
setting is that of parallel unrelated. We further extend the setting to that of
general position-dependent processing times, and furthermore, we consider
the option of performing a rate-modifying maintenance activity on each
machine. For a given number of machines, this general setting is shown to
be solved in polynomial time in the number of jobs.

We then study a number of related problems. First, we focus on the
special case of job-deterioration. The assumption in this case is that the job
processing times increase (in the most general way) as a function of the job-
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position. Thus, there are no specific functions that reflect the deterioration
type. For the numerous models and applications of scheduling with job-
deterioration, we refer the reader again to the book of Gawiejnowicz [2].
A much more efficient solution algorithm is introduced in this paper for
the setting of general job-deterioration.

An extension of the basic setting studied here (unrelated machines,
position-dependent job processing times, optional rate-modifying activity
on each machine, minimizing total load) to the case in which optional
job-rejection is considered, is studied next. In this setting, the scheduler
may process only a subset of the jobs, and the remaining jobs are rejected
(e.g., outsourced or totally rejected). The topic of scheduling with job-
rejection becomes popular among researchers in recent years, mainly due
to its practicality: in many real-life situations the schedule either cannot
or does not want to process all the jobs and reject some of them. For a
survey on scheduling with job-rejection, we refer the reader to the survey
paper of Shabtay et al. [13].

Another extension of the basic setting we study, is the setting where
the job processing times are controllable through an allocation of a limited
resource; see the survey paper of Shabtay and Steiner [14]. The actual
processing time of a job is a function of both the basic workload and the
amount of the allocated resource. The most popular model of scheduling
with controllable processing times is that of convex resource consumption
function, see Monma et al. [4]. We extend the model studied here (un-
related machines, a rate modifying activity and an objective function of
minimum total load) to the setting of controllable processing times with
position-dependent workloads. Oron [12] studied a similar setting (with no
maintenance activities), where the machine setting is parallel identical and
the objective function is minimum total completion. Other recent studies
focusing on position-dependent workloads are Lu and Liu [3] and Mor [5, 6].
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1 Introduction

Scheduling problems have gained attention since the 1950s. The classi-
cal theory has worked on the basic hypothesis that job processing time
are constant, or that uncertainty can be dealt using stochastic or fuzzy
approaches. These approaches are far from reality, especially when the
resources are humans. Therefore, in recent years, the consideration of
humans as a flexible and complex resource has gained importance. It
is true that production systems have been transformed with the arrival
of technology, but humans continue to be the most common resource in
several areas because of their cognitive and physical skills that machines
cannot yet emulate economically (Sgarbossa et al. [8]).

In the case of manual operations, job processing times may change
because of the learning or deterioration effects (Gawiejnowicz [3]). Re-
cently, scheduling problems with learning effect have attracted attention,
in particular the study of the single machine system (Paredes-Astudillo et
al. [7]). However, the flow shop scheduling problem (FSSP) is attractive in
industrial contexts, as it is a common configuration in real manufacturing
systems such as textile, footwear, automotive, picking process, or luxury
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industries, etc., where the worker’s performance has a direct effect on
productivity levels. In this type of scenario, it is evident that the way jobs
are sequenced can directly reinforce or weaken the learning or deteriorat-
ing process (for example, fatigue in humans). Consequently, obtaining a
suitable job scheduling becomes relevant.

The FSSP with learning and deterioration effects belongs to the family
of scheduling problems with time-changing effects, for which the search
for a solution requires a significant computational effort (Agnetis et al. [1],
Mosheiov [5]). The problem is known to be NP-hard (Wang and Xia [10]).
This has motivated studies focusing mainly on the analysis of the problem
complexity and the design of algorithms to resolve it, rather than the
integration of human characteristics into the problem. The latter requires
interdisciplinary work to develop accurate modelling of human factors, al-
lowing the operational research community to integrate human phenomena
into production systems (Calzavara et al. [2], Sgarbossa et al. [8]).

The objective of this work is twofold. On the one hand, we first describe
a real problem and how approaching it as a dynamic scheduling problem
helps us understand and find ways to solve it. On the other hand, once
we identify theoretical approaches for modeling the effect of learning and
fatigue, we try to find the right model for the case study and use the human
factors tools to derive the parameters. The case study is based on a picking
line, where each picking zone represents a workstation, such as in the flow
shop configuration (details are given in Sect. 2.1).

2 Methodology

This section presents each phase of the proposed methodology to integrate
the learning and fatigue effects into the FSSP.

2.1 Case study

The problem takes place in a picking line of a Colombian dry food company.
This line has 14 picking zones linked by a conveyor. All orders have the
same routing. This type of picking system involves two main elements:
the first is the worker who is in each picking zone, while the second is a
container that follows the routing, visiting all picking zones and filling all
the SKUs (Stock Keeping Units) that belong to its order. The company
has more than 1000 SKUs, and the processing time for each container in
each picking zone varies depending on the SKUs needed in the order. For
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the purposes of this study, orders shall be referred to as jobs. The company
aims to obtain the sequencing of jobs and the breaks regime, balancing
economic objectives (i.e., makespan) and social objectives (i.e., maximal
difference of accumulated fatigue level among operators).

2.2 FSSP

Formally speaking, the process under study can be modelled as a FSSP
where a set of n independent jobs must be processed by a set of m resources
(workers), in order to minimize the makespan. Each worker can process
one job at a given time, all resources process jobs in the same sequence
and preemption of a job is not allowed. Let pij be the normal (baseline)
processing time of job j by the ith resource. All workers are available in
their workstation at the beginning and have a 100% productivity rate. The
scheduling is performed through the jobs permutation sequence.

2.3 Learning model

A total of 12 workers signed an informed consent and participated in this
phase (4 women and 8 men). Half of them have internal working experience
of less than 6 months, while the others have an experience of more than
6 months. To check if the picking worker is impacted by a learning effect
(mainly related to the SKUs position), an experimental test was designed.
It was conducted in the training laboratory for the picking operations of
the company under study (which has similar characteristics to the real
operation). The test consists in processing a typical order (with 21 SKUs),
repeating this operation 6 times per worker.

To calculate the learning rate of each worker, the two intervals method
was used (Tilindis and Kleiza [9]). In the framework of scheduling prob-
lem, the autonomous learning or learning-by-doing is defined for several
models. In this study, the most accepted and commonly used models, from
those referenced by Paredes-Astudillo et al. [7], were selected to fit the
experimental data.

2.4 Fatigue model

A total of 14 picking workers (one per each picking zone) participated in
this phase. The subjects (7 women and 7 men) were between 18 and 34
years old (26.21y.o.± 5.23). Participants agreed to take part in the study
by signing an informed consent.

June 5th–6th, 2023, Winterthur, Switzerland 83



Muscular activity was registered with eight (8) Surface Electromyogra-
phy Sensors (SX230, BioMetrics Ltd., Uk). Sensors were placed in 8 muscles
involved in the picking operation for 40 minutes of real work. We adapted
from Glock et al. [4] the fatigue-recovery model to define the accumulated
fatigue level per worker. Similarly, a Rest Allowance (RA) model is adopted
for determining the location and length of breaks.

2.5 FSSP with learning effects

In this phase of the study, fatigue and learning should be incorporated
simultaneously, as phenomena that affect the job processing time. The first
conceptual models dealing with FSSP with a learning effect for minimization
of makespan are proposed. We intend to propose a bi-criteria model,
including makespan minimization (economic objective) and minimization
of the maximum difference of accumulated fatigue level among workers
(social objective). Since the FSSP problem belongs to the class of NP-hard
problems, we solve it by implementing a constructive heuristic method such
as the Nawaz-Enscore-Ham algorithm (NEH), improved by a Simulated
Annealing algorithm (SA) and connected with a simulation technique.

3 Our results

In this section, we present the results obtained up to now in our study.

3.1 FSSP results

In Paredes-Astudillo et al. [6] we present the mathematical model, using
Mixed-Integer Linear Programming (MILP) of a typical flow shop schedul-
ing problem with makespan minimization. For small problem instances,
the Glpk solver allows us to find the optimal solution. This model is the
basis for the subsequent incorporation of the effects of learning and fatigue.

3.2 Learning model results

Using the two intervals method (Glock et al. [4]), it was possible to
calculate the Learning Rate (LR) from the experimental data. Our results
are similar to the LR reported in the literature, which indicates that for
manual labor, the rate is nearly 80%. The experimental data were fitted
to nine learning equations collected by Paredes-Astudillo et al. [7].

The performance comparison with the MAPE, showed that in 92% of
cases, three models (Eqs. (1),(2), and (3)) showed a superior fit. They are:
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� Position-Based Learning Effect Model (P-LE )

pijr = p̄ijr
α, (1)

� Sum-of-Processing-Time-Based Learning Effect Model (ST-LE )

pijr =

(
1 + θ

r−1∑

k=1

pijk

)α
p̄ij (2)

and

� DeJong’s Learning Effect Model (DJ-LE )

pijr = (M + (1−M)rα) p̄ij , (3)

where α is the learning index (α < 0), θ is a conversion factor (e.g., 1
60 to

convert hours to minutes) and M represents the factor of incompressibility
(M = 0.5 in our case). These findings indicate that the learning effect of
workers is not represented by a single model; on the contrary, different
models of learning effect may coexist.

3.3 Fatigue model results

During the experimental sessions, we measured muscular activity of 8
muscles during the execution of picking operations. The signals were
processed and normalized.

We managed to achieve an indicator of fatigue of 26.80% of the total
of the 1082 SKUs registered in the warehouse. Due to the SKU rotation
and based on the Pareto principle (80/20 rule), it is possible to speak of a
representation closer to 80% of the total of picking operation.

3.4 FSSP with learning and fatigue effect results

During the initial phase, the problem was approached conceptually. In
Paredes-Astudillo et al. [6] mathematical models of FSSP with learning
effect and minimizing the makespan were stated.

Four models for calculating the learning effect mentioned in the lit-
erature were considered (Eqs. (1),(2),(4), and (5)). For small problem
instances, Glpk and Bonmin solvers were used to solve linear (with Eqs.
(1) and (4)) and non-linear models (with Eqs. (2) and (5)), respectively,
where
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� Truncated Position-Based Learning Effect (TP-LE )

pijr = p̄ij max {rα, β} , (4)

� Truncated Sum-of-Processing-Time-Based Learning Effect (TST-LE )

pijr = p̄ij max

{(
(1 + θ

r−1∑

k=1

pijk

)α
, β

}
(5)

and β is a control parameter with 0 < β < 1.

The results and the literature support the claim that this problem, in
the case of three or more production resources with makespan minimization,
belongs to the class of NP-hard problems.

Considering large problem instances, we applied the Johnson’s Rule
(JS) for the problem with 2-resources and the NEH algorithm. We also
developed a SA algorithm, where the initial solution is obtained using
the NEH and the Adjacent Pairwise Interchange (API) and Non-Adjacent
Pairwise Interchange (NAPI) local search operators were compared.

Computational experiments were performed using benchmark datasets
for job processing times, α and β. With a total of 155.520 executions, we
concluded that the NEH algorithm achieves outstanding results and that
the SA works better for models with faster learning rate. In general terms,
the SA + API shows improved performance compared to SA + NAPI.

4 Future research

The presented ongoing research includes the mathematical model of the
FSSP with fatigue and a description of an algorithm for solving benchmark
and case study instances. Thereafter, we addressed the FSSP with learning
and fatigue effects, considering the minimization of the makespan and the
maximum difference of accumulated fatigue level among workers.

In future research, the SA algorithm will be used, and a simulation
technique to identify a good solution for both objectives. For the case
study, the plan is to provide a breaks pattern for the workers which will
enable them to recover physically.

With our work, we combine human factor modeling and operational
research in a real-world scenario, enabling the company to maintain pro-
ductivity standards and improve the well-being of workers.
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1 Introduction

In this study, we first consider solving the problem of minimizing the total
weighted late work for a single agent with a rate-modifying activity, then
we extend the results to the two-agent case. Additionally, we consider the
two-agent problem involving the weighted number of tardy jobs, and finally,
we consider the asymmetric problem of minimizing the total weighted late
work with a bound on the weighted number of late jobs. All four problems
considered in this study are binary NP-hard, and we provide efficient
pseudopolynomial-time dynamic programs to solve them. In addition to
this, we conduct a comprehensive numerical analysis of the algorithms and
provide numerical examples to demonstrate the complexity of the problem.

2 Related research

Two-agent scheduling problems in the form where one agent has an objective
function, and the other has a constraint with an upper bound were first
studied by Agnetis et al. [2]. The objective and constraint functions
considered in this study were the maximum of regular functions, total
completion time, the weighted completion time, and the number of tardy
jobs. In this pioneering study, the authors provided polynomial-time
algorithms that are used to obtain optimal schedules for all problems
except for problems involving the total completion time and weighted
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completion time, which were shown to be binary NP-hard. More generally,
multiagent scheduling problems on a single machine have been studied
extensively, culminating in the book by Agnetis et al. [1] and the survey
paper by Gonzalez and Framinan [9]. More recent work on two-agent
scheduling has focused on solving problems with specific job characteristics
or more complex job configurations. For example, two-agent single-machine
scheduling problems have been studied under the assumption of equal job
processing times by Oron et al. [8], and even with the added complexity of
job rejection when minimizing the total late work, a problem which was
established to be binary NP-hard by Freud and Mosheiov [3].

The concept of rate-modifying activities (RMAs) was first proposed by
Lee and Leon in a study on single-agent, single-machine scheduling problems
(Lee and Leon [5]). The authors assumed that the rate-modifying activity
was an optional task that, when completed, decreases the processing time
of all subsequently scheduled jobs. More recently, a book on time-varying
processing times was published with a significant portion dedicated to
problems involving rate-modifying activities (Strusevich and Rustogi [11]).
Similar to two-agent single-machine problems, total late work has only
recently been studied with a rate-modifying activity where it is established
that the problem is binary NP-hard (Mosheiov and Oron [7]).

To tie these two concepts together, we will consider two scheduling
criteria: the weighted number of tardy jobs and the total weighted late work.
Both single-agent problems involving these functions have been shown to
be binary NP-hard (Potts and Van Wassenhove [10], Hariri et al. [4]).
Recently, these functions have also been studied in the multiagent setting.
For instance, the two-agent problem of minimizing the total weighted
late work with a bound on the total completion time and the multiagent
problem of finding Pareto optimal schedules for m agents were also binary
NP-hard (Zhang [12], Li and Yuan [6]).

3 Problem formulation

We consider the case where two agents, A and B, each have a set of
jobs, denoted J A = {JA

1 , . . . , JA
nA
} and J B = {JB

1 , . . . , JB
nB
}, respectively.

Without loss of generality, assume that the objective is associated with
agent A and the constraint is applied to agent B. Each job Jk

j has a regular

processing time denoted pkj , a reduced processing time denoted qkj , only

realized after the RMA has been completed, a due date denoted dkj and a

positive weight wk
j . The optional RMA takes T units of time to complete.
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For a given schedule, we denote Ck
j to be the completion time of job Jk

j .

We will employ the same notation established by Agnetis et al. [2] to
characterize competing two-agent problems, 1 | RMA | fA : fB ≤ Q, where
fA is the functional objective applied to agent A, and fB is the scheduling
criterion applied to agent B, which has an upper bound of Q (Agnetis et
al. [2]). In this study, we will consider two different scheduling criteria:
the weighted number of tardy jobs

∑nk
j=1w

k
jU

k
j , where Uk

j = 1{Ck
j >dkj } is

an indicator if job Jk
j is completed late, and the total weighted late work

Y k
w :=

∑nk
j=1w

k
j min{max{Ck

j −dkj , 0}, qkj }, where we have qkj instead of the

traditional pkj as it can be shown that any job that cannot be started by
its due date will be completed with the effect of the RMA. It is important
to note that each of these functions are calculated with values specific to
agent k only, k ∈ {A,B}, however, they are influenced by the presence of
the other agent’s jobs.

Furthermore, to simplify the notation, we also define n := nA + nB to
be the total number of jobs in the problem and P :=

∑
k∈{A,B}

∑nk
j=1 p

k
j to

be the sum of the regular processing times of all the jobs in the problem.

4 Our results

We first study the single-agent problem with RMA on minimizing the
total weighted late work. Clearly, this problem is binary NP-hard as the
non-RMA version is already binary NP-hard. Using the properties of
an optimal job schedule derived using switching arguments, we propose a
pseudo-polynomial dynamic programming algorithm to solve the problem.
Following this, we generalize our result to the two-agent problem, and to
complement this, we also consider the weighted number of late jobs as an
additional scheduling criterion. Here, we study three additional problems,
two where the objective and constraint functions are the same, and the
third where we minimize the total weighted late work with a bound on the
weighted number of late jobs. Table 1 summarizes the results of the four
problems considered in our study.

To conclude our study, we conduct an extensive numerical analysis of
the algorithms under a wide parameter setting. We also provide numerical
examples for 1 | RMA |Y A

w : Y B
w ≤ Q. Fig. 1 displays optimal job schedules

for 1 | RMA |Y A
w : Y B

w ≤ Q as the bound on the constraint Q is varied
for the data in Table 2 and setting T = 10. Note that the data is sorted
in EDD order for each agent. The lines on the graph show the realized
total weighted late work for each agent and correspond to the left y-axis,
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Table 1. Summary of running times for problems studied

Problem Running time

1 | RMA |Yw O(n3P )
1 | RMA | ∑wA

j U
A
j :

∑
wB
j U

B
j ≤ Q O(nPQ)

1 | RMA |Y A
w :

∑
wB
j U

B
j ≤ Q O(nn2

APQ)

1 | RMA |Y A
w : Y B

w ≤ Q O(n3PQ)

whereas the shaded rectangular boxes indicate the order in which jobs are
completed in the optimal job schedule, with the job position given on the
right y-axis. Also, note that jobs that are skipped in the job schedule have
been omitted from the figure.

Table 2. Jobs dataset

1 2 3 4 5

pAj 4 5 4 10 20

qAj 2 4 3 7 8

wA
j 2 7 6 3 9

dAj 12 15 20 37 40

pBj 5 5 5 20 15

qBj 4 4 5 3 8

wB
j 2 7 9 2 10

dBj 8 9 16 29 51

Fig. 1 displays some interesting properties of optimal job schedules for
1 | RMA |Y A

w : Y B
w ≤ Q. Firstly, as expected, as Q is increased and the

bound on the constraint is loosened, more agent B jobs are delayed and
skipped, and more agent A jobs are allowed to be completed earlier in the
job schedule. Additionally, we see that there exist optimal job schedules
where jobs are not completed in EDD order. For example, when Q = 5,
job JB

2 is completed before JB
1 , and job JA

5 is also completed before JA
4 .

Finally, we observe that the position of the RMA is not fixed and is hard
to predict. For example, at around Q = 80, the RMA switches from the
fourth task completed to the first task completed, then back to the fourth
task completed.
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Figure 1. Solving 1 | RMA |Y A
w : Y B

w ≤ Q for different values of Q with
T = 10 and data from Table 2

5 Future research

In the future, this problem may be studied with additional assumptions
and different machine specifications, such as equal job processing times or
job rejection.
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1 Introduction

Lot sizing and scheduling determines production quantities and their allo-
cation on available resources to meet demands over time, represented by
time periods T . In this paper, we introduce a model suited for production
planning of an injection molding factory of plastic parts.

In the factory, several injection molding machines are available. A
machine needs a product-specific tool to produce plastic parts. The tool de-
termines the number of produced parts per time unit, which is independent
of the machine. During production, a machine mostly runs unsupervised.
During setup, the machine cannot produce. Setup of a different tool re-
quires manual labor. The number of setup workers is limited. Hence
a production plan needs to respect this capacity. Every product has a
recurring but variable demand. Moreover, the demand is uncertain and
the actual demand is known only shortly before dispatching the produce.
The production plan should satisfy the demands and anticipate demand
changes while respecting all production constraints.

The problem setting studied seems not to be covered in the literature.
We are only aware of work that partially covers our practical problem
setting, but not its entirety. In essence, the studied problem is related to
other lot sizing and scheduling problems. For recent literature reviews, we
refer the reader to Copil et al. [12] and Wörbelauer et al. [25].
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In this work, we introduce a mathematical model for lot sizing and
scheduling on identical machines while respecting setup times that are
product-dependent and sequence-independent with a limited number of
setup resources. By applying a rolling horizon planning procedure, the
plan can adapt to changing parameters. Demand changes are anticipated
by robust planning.

2 Related research

Our model is close to Discrete Lot Sizing and Scheduling (DLS), described
in Fleischmann [15] and first considered in Lasdon and Terjung [20]. DLS’s
main feature is that a time period is used to produce exactly one type
of product or none, the assumption of “all-or-nothing” by Schrage [23].
Relevant to our model is the DLS model in Campbell [9] with multiple
machines, introducing setup time as a fraction of a period. This model can
also limit the number of a product’s parallel executions.

We consider product-dependent and sequence-independent setup times.
For a single resource, this is studied in Cattrysse et al. [10]. In the
application area of injection molding, such setup times are described in
Ibarra-Rojas et al. [18], Ŕıos-Soĺıs et al. [22], and Servantes-Sanmiguel et al.
[11]. Other available references on injection molding planning consider the
more complex case of sequence-dependent setup times, e.g. Lin et al. [21],
and Ghosh and Nagi [17].

Considering a limited number of workers available to set up the ma-
chines is barely covered in [25], even in scheduling without lot-sizing. In
the literature reviews in Allahverdi et al. [4], Allahverdi [2], there is no re-
search found about sequence-independent parallel machine scheduling; this
literature gap is also underlined in Allahverdi et al. [3]. Only recently there
appear references on limited setup resources (see, e.g., Fanjul-Peyro [14],
Yepes-Borrero et al. [27, 26]).

Robust optimization models are increasingly used in the last years (see,
e.g., Bertsimas et al. [5], Gabrel et al. [16], Sözüer and Thiele [24]), also in
lot-sizing and scheduling. For example, Alem et al. [1] and Curcio et al. [13]
use a robust optimization model to respond to uncertain demands in a
General Lot-sizing and Scheduling (GLS) problem. Without the scheduling
aspect, robust lot-sizing is discussed by Bertsimas and Thiele [8] and
Klabjan et al. [19].
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3 Our results

We give a mathematical programming formulation of our model, describe
a rolling horizon planning procedure to dynamically react on changing
settings, and, since demands can be uncertain in our case, we introduce
a robust model with a budgeted uncertainty, building upon results in
Bertsimas and Sim [6, 7], and Bertsimas and Thiele [8]. Numerical tests
evaluate the usability of our model. Let us briefly describe our model and
approach to handle demand uncertainty.

Given is a set of time periods T , a subset of dispatch times H ⊆ T ,
and a number of identical machines on which a set of products J can
be produced. A positive demand value dj,h states how many items of a
product j ∈ J need to be completed until dispatch time h ∈ H. The
objective is to minimize the total deficit penalty, which involves, for each
dispatch time, the difference between cumulative demand and cumulative
produce. We need to decide which products are produced on the available
machines in each time period t ∈ T . This requires setting up a product-
specific tool, which takes sj time periods and requires a setup worker. For
this, only a limited number w of setup workers is available.

To incorporate demand uncertainty, let d̂j,h ≥ 0 denote the maxi-
mum deviation of the (mean) demand dj,h of product j ∈ J at dispatch

time h ∈ H. Then, the uncertain demand lies in dj,h± d̂j,h ξj,h with random
variable ξj,h ∈ [−1, 1]. For each product j ∈ J , the production planner may
choose a budget of uncertainty Γj ≥ 0, which imposes

∑
h∈H |ξj,h| ≤ Γj .

Hence, it specifies how many dispatches can be fulfilled safely in the worst
case. It is then possible to introduce a robust counterpart of the model by
applying the method described in Bertsimas and Sim [6].
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1 Introduction

One of the assumptions in classical flow shop scheduling problems is that
all operations have to be processed in the shop. However, in heavily loaded
flow shop systems, accepting all operations in the shop may lead to high job
completion times, and thus to a poor quality of service (QoS ) and future
abandonment of customers. One of the most common ways of dealing with
such a problem is to reject a subset of the operations. This, on the one
hand, has the advantage of lowering the load on the production system.
On the other hand, rejecting an operation has its own costs. In this paper,
we focus on such a two-machine flow shop scheduling problem, where the
scheduler can reject a subset of the operations at a certain cost.

2 Problem formulation

Our problem can be formulated as follows. A set of n jobs, J = {J1, . . . , Jn},
is available to be processed at time 0 on two machines in a flow shop schedul-
ing system. Let Oij be the operation in which job Jj is to be processed on
machine Mi, where i = 1, 2 and j = 1, . . . , n, and let O = {Oij |i = 1, 2 and
j = 1, . . . , n} be the set of all operations. The processing time of operation
Oij is pij , and the scheduler can decide whether to process this operation
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∗Speaker, e-mail: dvirs@bgu.ac.il

DOI: 10.14708/isbn.978-83-962157-1-0p101-108

101



in the shop or to reject it at a cost of eij . If operation O1j is rejected,
it is executed by the subcontractor prior to time 0, and therefore O2j is
available at time zero to be processed on M2.

A solution S for our scheduling problem with rejection consists of two
sets of decisions: Partitioning and Scheduling. The first requires a decision
to be made on the partitioning of set O into two subsets: OA and OR,
corresponding to the set of accepted and the set of rejected operations,
respectively. The second set of decisions pertains to the scheduling of the
jobs in OA on the machines.

Given such a schedule, let Cij be the completion time of operation
Oij , and let Cmax(OA) = maxOij∈OA

{Cij} be the makespan value. Our
objective is to find a solution S minimizing the sum of the makespan and
the total rejection cost.

Following the three-field notation for scheduling problems, we refer to
the problem as F2 |rej(Oij)|Cmax(OA) +

∑
Oij∈OR

eij .

3 Related research

Lee and Choi [4] were the first to study the F2 |rej(Oij)|Cmax(OA) +∑
Oij∈OR

eij problem, focusing on the special case where eij = αipij for
i = 1, 2 and j = 1, . . . , n. They proved that the corresponding problem is
NP-hard when either

(i) α1 < 1 and α2 ≥ 1 or

(ii) α1 < 1, α2 < 1 and α1 + α2 ≥ 1.

However, they showed that when either

(iii) α1 + α2 ≤ 1 or

(iv) α1 ≥ 1 and α2 ≥ 1

the problem can be solved in polynomial time.
Lee and Choi [4] also constructed a greedy algorithm that has a

(5−
√

5)/2 approximation ratio when (i) holds, and a (1 +
√

5)/2 ap-
proximation ratio when (ii) holds.

Jiang et al. [2] provided a tighter analysis of Lee and Choi’s greedy
algorithm, showing that it actually yields a 5

4 approximation ratio if (i) hold,
and 4

3 approximation ratio if (ii) holds. They also modified the algorithm
to one that provides a 5

4 approximation ratio if (ii) holds. Gau and
Lu [1] showed that the F2 |rej(Oij)|Cmax(OA) +

∑
Oij∈OR

αipij problem

102 The Fourth International Workshop on Dynamic Scheduling Problems



is solvable in pseudo-polynomial time, and convert it to a fully polynomial-
time approximation scheme (FPTAS ).

As the literature is restricted to the special case where eij = αipij for
i = 1, 2 and j = 1, . . . , n, our main aim in this paper is to analyze the
general case where the rejection costs are arbitrary.

4 Our results

When eij → ∞ for any Oij ∈ O, our problem reduces to the classical
F2 ||Cmax problem that can be solved in O(n log n) time by applying
Johnson’s algorithm, [3].

Algorithm 1. Johnson’s algorithm for solving the F2 ||Cmax problem.

Step 1 [Partitioning]: Partition J as follows: J1 = {Jj |p1j ≤ p2j} and
J2 = {Jj |p1j > p2j}.

Step 2 [Sequencing]: Construct an optimal permutation schedule, σ∗J , as
follows: Schedule first the jobs in J1 in a non-decreasing order of p1j.
Then schedule the jobs of in J2 in a non-increasing order of p2j.

Step 3 [Scheduling]: For j = 1, . . . , n, compute Ci,σ∗J (j) by C1,σ∗J (j)
=

∑j
l=1 p1,σ∗J (l) and C2,σ∗J (j)

= max{C2,σ∗J (j−1), C1,σ∗J (j)
} + p2,σ∗J (j),

where Ci,σ∗J (0) = 0, by definition, for i = 1, 2. Schedule Jσ∗J (j) on Mi

(i = 1, 2) during time interval (Ci,σ∗J (j) − pi,σ∗J (j), Ci,σ∗J (j)].

We call any schedule that is constructed using Algorithm 1 a Johnson
schedule, and the corresponding job permutation, σ∗J , a Johnson permuta-
tion. Consider now an alternative optimal schedule (which we call modified
Johnson schedule), which takes the Johnson schedule as an input, and
modifies it by shifting the operations on M2 to the right as much as possible
without changing the makespan value.

We next show that if the partitioning of set O into OA and OR is
given, then we can easily obtain the optimal scheduling decision of set
OA on the two machines by using Johnson’s algorithm. To do so, given
the partition of set O into OA and OR, we further partition set J into
the following four subsets: J (1) = {Jj ∈ J | O1j ∈ OR and O2j ∈ OA};
J (2) = {Jj ∈ J | O1j ∈ OA and O2j ∈ OA}; J (3) = {Jj ∈ J | O1j ∈ OA
and O2j ∈ OR}; and J (4) = {Jj ∈ J | O1j ∈ OR and O2j ∈ OR}. Note
that we can view any Oij ∈ OR as an operation that is scheduled in the
shop, but requires zero processing time. Therefore, based on Johnson’s
algorithm, the following corollary holds:
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Corollary 1. Given a partition of set O into OA and OR, the optimal
schedule, σ∗OA

, can be computed in O(n log n) time by: scheduling first

the jobs in J (1) in an arbitrary order; scheduling next the jobs in J (2)

which are ordered according to Johnson’s rule with respect to the original
processing times (p1j and p2j); and lastly scheduling the jobs in J (3) in an
arbitrary order.

Given a partition of set O into OA and OR, we next present a method
to easily compute the minimal makespan value for such a partition, given
the minimal makespan value that corresponds to a partial modified Johnson
schedule where only the jobs in J (2) are scheduled. The method is based
on ideas that were already presented in Gau and Lu [1].

Consider a partial modified Johnson schedule that includes only the
jobs in J (2), and let si and ci be the start and completion times of this
schedule on machine Mi, where i = 1, 2. Note that c2 ≥ c1 in such a
partial modified Johnson schedule, i.e., the makespan value is equal to the
completion time on M2. Moreover, let x = c1 − s2 and r = c2 − c1. Based
on Corollary 1, to compute the makespan value of a complete modified
Johnson schedule, we need to include the jobs in J (1) at the beginning
of the schedule and the jobs in J (3) at the end of the schedule. Now, let
a =

∑
Jj∈J (3) p1j and b =

∑
Jj∈J (1) p2j .

Lemma 1. The makespan value of a complete modified Johnson schedule
can be computed by Cmax = c2 + max{0, a− r, b− s2}.

The following theorem is included without a proof.

Theorem 2. The F2 |rej(Oij)|Cmax(OA) +
∑

O1j∈OR
e1j problem is NP-

hard even when either (i) p2j = p and e2j → ∞ for j = 1, . . . , n; or
(ii) p1j = p and e1j →∞ for j = 1, . . . , n.

4.1 Linear programming formulation

Hereafter, we assume (without loss of generality) that the jobs are renum-
bered according to Johnson permutation, σ∗J = (1, . . . , n). We next
present an Integer Linear Programming (ILP) formulation for problem
F2 |rej(Oij)|Cmax(OA) +

∑
Oij∈OR

eij . To do so, let xij be a binary de-

cision variable that equals 1 if we assign job Jj to set J (i) and equals 0
otherwise (i = 1, . . . , 4 and j = 1, . . . , n). Obviously, we can assign job
Jj to only one of the sets, and therefore we include the following set of
constraints: ∑4

i=1 xij = 1 for j = 1, . . . , n. (1)
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For i = 1, 2, let ci, and ti be continuous decision variables representing
the start and completion time of a partial modified Johnson schedule that
includes only the jobs in J (2) on machine Mi (i = 1, 2). Moreover, let
x = c1 − s2 and r = c2 − t1. We have that

c1 =
∑n

j=1 p1jx2j , (2)

and that

c2 ≥
∑k

j=1 p1jx2j +
∑n

j=k p2jx2j for k = 1, . . . , n. (3)

The set of constraints in (3) is based on computing the value of the longest
path in a graph consist of n paths, where each path in the graph provides
a lower bound on the makespan value of the jobs in J (2). To compute c′i,
which is the completion time of the entire modified Johnson schedule on
machine Mi, where i = 1, 2, we need to include the jobs in J (1) at the
beginning of the schedule, and the jobs in J (3) at the end of the schedule.
To do so, we include the constraints that

a =
∑n

j=1 p1jx3j ; b =
∑n

j=1 p2jx1j ; r = c2 − c1; (4)

and in a modified Johnson schedule, the constraint that

s2 = c2 −
∑n

j=1 p2jx2j . (5)

Since Cmax = max{c′1, c′2} = c2 + max{0, a − r, b − s2}, we include the
constraints that

Cmax ≥ c2 + a− r; Cmax ≥ c2 + b− s2; and that Cmax ≥ c2. (6)

The objective is to minimize

Cmax +
∑n

j=1 e1j(x1j + x4j) +
∑n

j=1 e2j(x3j + x4j). (7)

Concluding, the ILP formulation for problem F2 |rej(Oij)|Cmax(OA) +∑
O1j∈OR

e1j consists of minimizing the cost function in (7) subject to the

conditions in (1)-(6).

4.2 Approximation algorithms

It is easy to see that if pij ≤ eij then there exists an optimal schedule in
which Oij ∈ OA. Based on this observation, we suggest a naive O(n log n)
time heuristic algorithm, H1, that starts by setting OA = {Oij ∈ O |
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pij ≤ eij}, and OR = O \ OA. We then define J (1) = {Jj ∈ J | O1j ∈ OR
and O2j ∈ OA}; J (2) = {Jj ∈ J | O1j ∈ OA and O2j ∈ OA}; J (3) =
{Jj ∈ J | O1j ∈ OA and O2j ∈ OR} and J (4) = {Jj ∈ J | O1j ∈ OR and
O2j ∈ OR}. Finally, apply Corollary 1 to schedule the operations.

Algorithm H1 was based on the observation that if pij ≤ eij , there
exists an optimal schedule in which Oij ∈ OA. However, this does not
necessarily imply that an operation Oij that satisfies pij > eij should be
included in set OR, as suggested by H1. Therefore, we suggest using an
alternative heuristic algorithm, H2, that is based on a greedy approach.
Algorithm H2 starts by applying Algorithm 1 with OA = O to obtain
σ∗J . We then renumber the jobs according to σ∗J , and process to apply an
iterative greedy algorithm. In iteration j (j ∈ {1, . . . , n}) of the algorithm,
we make a greedy decision regarding which set (J (i) for i = 1, 2, 3, 4) to
assign job Jj .

Theorem 3. Algorithms H1 and H2 are 2-approximation algorithms for
the F2 |rej(Oij)|Cmax(OA) +

∑
Oij∈OR

eij problem, and the approximation
ratio is tight.

4.3 Pseudo-polynomial-time algorithm

We next show that the same ideas used by Gau and Lu [1] to solve the
F2 |rej(Oij)|Cmax(OA)+

∑
Oij∈OR

αipij problem can also lead to a pseudo-

polynomial time algorithm for the more general F2 |rej(Oij)|Cmax(OA) +∑
Oij∈OR

eij problem. To do so, consider a partial partition of job set Jj =

{J1, . . . , Jj} into the four possible sets of jobs, J (1)
j ,J (2)

j ,J (3)
j and J (4)

j .

We represent such a feasible partition by the state [E, l, x, r, a, b, {J (i)
j |i =

1, 2, 3, 4}], where a =
∑

Jj∈J (3)
j

p1j , b =
∑

Jj∈J (1)
j

p2j and E =
∑

Jj∈J (1)
j

e1j+∑
Jj∈J (3)

j

e2j +
∑

Jj∈J (4)
j

(e1j + e2j). In this partition, the partial modified

Johnson schedule, which includes only the jobs in J (2)
j , has (i) a start time

of l on M2; (ii) a gap of x between the finish time on M1 and the start
time on M2; and (iii) a gap of r between the finish times on M2 and M1.

Lemma 4. Let [E, l, x, r, a, b,J j ] and [E′, l, x, r, a, b,J ′j ] be two feasible
states representing feasible partial partitions of job set Jj . If E ≤ E′ then

the partial partition represented by [E′, l, x, r, a, b,J ′j ] is dominated by the

partial partition represented by [E, l, x, r, a, b,J j ].

The implication of Lemma 4 is that any state that is dominated by
another state can be eliminated from a state construction procedure that
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extends feasible partial solutions to complete ones. Let set Lj include all
possible non-dominated feasible states for the problem on job set Jj , where
j = 1, . . . , n, and let Pi =

∑n
j=1 pij for i = 1, 2. The following theorem

plays an important rule in our algorithm:

Theorem 5. Given Lj, one can compute Lj−1 in O((P1)2(P2)2 min{P1, P2})
time.

We solve the F2 |rej(Oij)|Cmax(OA) +
∑

Oij∈OR
eij problem by using

the result in Theorem 5, to compute Lj for j = 1, . . . , n starting from
L0 = {[E, l, x, r, a, b,J j ] = [0, 0, 0, 0, 0, 0, {∅, ∅, ∅, ∅}]}. Using this method,
we were able to solve the problem in O(n(P1)

2(P2)
2 min{P1, P2}) time.

Gau and Lu [1] converted their pseudo-polynomial time algorithm for
the F2 |rej(Oij)|Cmax(OA)+

∑
Oij∈OR

αipij problem into an FPTAS using

the scaling and rounding technique, [5]. To implement this method, one
needs to derive a lower bound, LB, on the objective value that satisfies the
condition that the ratio between the running time of the pseudo-polynomial
time algorithm and LB is a polynomial function of n. Unfortunately, such a
lower bound is not available for the F2 |rej(Oij)|Cmax(OA) +

∑
Oij∈OR

eij
problem. We overcome the above difficulty by dividing the solution space
into O(n) subproblems. For each subproblem, we provided a lower bound
on the solution value that satisfies the condition that the ratio between
the running time of the pseudo-polynomial time algorithm that solves
the subproblem and the lower bound value is a polynomial function of n.
This enable us to construct an FPTAS for each of the subproblems, sep-
arately. Then, we showed that picking the best solution out of the O(n)
approximate solutions for the subproblems yields an FPTAS for the general
F2 |rej(Oij)|Cmax(OA) +

∑
Oij∈OR

eij problem.

5 Future research

The following research questions are still open regarding the problem we
study and can be considered in future research:

(i) Can we provide approximation algorithms running in polynomial
time and having an approximation ratio which is smaller than 2?

(ii) Can we improve the time complexity required by the pseudo-polynomial
time algorithm or the FPTAS?

(iii) Can we provide an efficient algorithm (e.g., an FPT algorithm) to
solve the case of bounded number of different processing times on
both machines?
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