
Towards HW-SW Co-Design for Secure Industrial
Real-Time Ethernet Applications

Hans Dermot Doran, Sven Schneider, Judith Meisterhans,
Jöel Bronwasser, David Ganz

Institute of Embedded Systems
Zurich University of Applied Sciences

Winterthur, Switzerland
{doran, scdv, mesh, benl, ganz} @zhaw.ch

Stefan Eberli
Duagon AG

Dietikon, Switzerland
stefan.eberli@duagon.com

Abstract—Real Time Ethernet protocols are currently
undergoing specification updates to account for security
features. These features generally taking the form of a public
key infrastructure and associated network node and message
authentication and, occasionally, message encryption. The
computational expense of authentication and encryption in hard
real-time applications adds substantial expense in both initial
implementation and post-commissioning maintenance. In this
body of work, we seek to manage this cost and complexity by the
use of high-level synthesis to generate field programmable gate
array IP from an open-source security stack. We detail the
motivation, first steps in the establishment of a process and first
results.

Keywords—Real Time Ethernet, Network Security, High Level
Synthesis, FPGA, HW-offloading

I. INTRODUCTION

The application domain of embedded distributed control
includes strategic infrastructure such as water purification,
fuel refining, energy generation and conversion and factory
automation. These application domains are increasingly
subjected to malicious network attacks ([1], [2].) The Stuxnet
experience ([3], [4]) – has left industry in little doubt that a
distributed network is just as vulnerable as the individual
nodes attached to it. The result is that real-time Ethernet (RTE)
protocol promoters have finalised or are finalising appropriate
specifications for securing distributed embedded network
traffic. We situate our work in the context of an FPGA-based
RTE communication controller [5].

The addition of security represents a substantial
additional computational expense, especially for hard real
time protocols. An expense, anecdotal industry experience
suggests, end-users are not especially keen on underwriting.
The device manufacturer must bear the burden of what is a
two-pronged cost-structure, the (specific) application, that is
the hard- and firmware of the device and secondly, the
(partially generic) implementation and maintenance of a
network security sub-system. Both expense and
implementation time-frames can be considerable. Whilst the
defect rate of an application can be expected to converge to
zero after a number of maintenance iterations, that of a
security system cannot, resulting in long-term maintenance
effort - the primary motivation for this body of work.

To approach this issue we derive HW off-loadable
cryptographic code from an established codebase such as
Mbed TLS [6]. We synthesize the code into HW using high
level synthesis (HLS) tools but develop a ruleset for iterative
optimisation. Our conclusion is that a library of cryptographic
functions derived from this codebase would be of substantial
service to industry. Our novelty is the establishment of a
ruleset and the use of an established baseline of code.

 We explain the motivation and aims for the deployment
of a hardware software co-design process in the following
subsections. In Section II we outline work and results to date
and in Section III we discuss the results and future work.

A. State-of-the-Art

There are numerous technologies available for offloading
the computational expense of cryptographic algorithms for
embedded systems. These include secure elements [7], priced
on a per-piece basis and currently recognised as unsuitable
for reaching hard real time deadlines [8]; processing elements
tightly coupled with the instruction set architecture of a
general purpose CPU [9] and intellectual property (IP) whose
target is either application-specific integrated circuits or field
programmable gate-arrays (FPGAs) [10], [11]. The final
category are hand-coded implementations or ASIC designs,
research articulations of which can be found in publications
such as [12]. A particular disadvantage of commercial IP is
the additional cost. IP is typically licensed per device family
or FPGA-type and a company with multiple products sold in
small numbers, as is typical in factory automation, will find
this kind of cryptographic solution expensive. Hand-coding a
solution represents a development risk. A simple, yet
impractical, solution is to synthesise the entire TLS stack into
HW. Salient parts of the stack, including cryptographic
algorithms can however be offloaded via high level synthesis
tools. There has been substantial activity in this area, [13]
provides a useful overview. The corner points show some
merely establish the general feasibility [14] others [13], [15]
simply experiment with self-derived baseline code
implementations. [16] come closest to tracing optimisation
iterations like we do but no publications take higher level
considerations like code complexity into account.

The challenge of cryptographic computational expense
can clearly be addressed [17]. The challenge in implementing
secured communications is clearly not in the domain of
cryptography but in integrating that cryptography into an
implementation of high integrity and maintaining it over an

We gratefully acknowledge the financial support of the Swiss
Innovation Agency, Innosuisse, under project grant 42637.1 IP-ENG

© 2023 IEEE
This is the author's accepted manuscript version of a paper published by IEEE. The Version of Record is available at IEEE Xplore: https://doi.org/10.1109/ETFA54631.2023.10275666

https://doi.org/10.1109/ETFA54631.2023.10275666

expected lifespan of 20 years or more. This issue motivates
the consideration of a co-design process to implement
security in an embedded networked device. Our novelty is to
propose a process using a well-known source code as a
baseline.

II. CO-DESIGN

A. Implementation Architecture

Obfuscation is not conducive to security. The “many-
eyes” principle facilitates rigorous inspection; the discovery
of vulnerabilities introduced by implementation; assuming
regular maintenance updates and fixes the longevity of the
implementation. It follows that a well-regarded open-source
implementation of a security protocol offers these benefits.

1) Motivation for HW-SW Co-Design
A number of offloading options have been looked at in a

previous subsection, they share the common denominator
that they are disembodied from the control-flow of the
security stack. This disembodiment may introduce additional
vulnerabilities. For instance, in a secure elements design, the
communication to the secure element must be secured and the
base security-stack modified. Over multiple maintenance
cycles the potential for implementation-specific
vulnerabilities is introduced as the implementation code
departs from the open-source codebase. This in turn may
introduce anomalies into the validation process across a
product range. These considerations warrant an attempt to
apply a more linear approach which we find in the application
of specification driven HW-SW co-design.

2) Interpretation of HW-SW Co-Design
HW-SW co-design was once taken to mean that HW and

SW engineers were co-located in offices and the project
would benefit from continuous cross-disciplinary contact
[18]. The meaning of the concept has mutated in different
directions including specification-driven HW-SW co-design
which is taken to mean synthesis of a solution from one
specification [18]. Despite many alternatives, there is no
established representation for this specification so it is
legitimate to begin with a specification expressed in C-code
and synthesise HW and SW from this specification [19]. We
propose using the Mbed TLS stack as such a specification.
The attractiveness is that one starts from a code-base that
exhibits a history of being well-maintained and is opensource
albeit, due to its history, the code is optimised for general
purpose processors.

B. HW-SW Co-Design Context Implementation Process

1) Architecture Constraints
Synthesising code from a single specification written in

C-code in the context of involves allocating components,
binding functions to these components, performing the
synthesis and then measuring performance [20]. The target
hardware is an Intel FPGA board (5CEFA4U19A7 [21])
fitted with an embedded NIOS processor, operating eCOS
and running a PROFINET stack. The HW synthesis tool is
chosen as the HLS tool from Intel, the SW synthesis tool is
the GNU compiler in an Intel/NIOS II version [22].

2) HW-SW Co-Design Optimisation Parameters
Typical HW-SW co-design optimisation parameters are

(monetary) cost, latency and power. The architecture
constraints determine the monetary cost. The target latency
can be derived from the operating parameters of the example

RTE protocol, PROFINET. Standard PROFINET IRT
upholds cycle times down to 250 μs supporting one
asynchronous and one IRT frame. It follows that
authentication must be completed within 125 μs. In an FPGA
the power consumption is largely determined by the circuitry
within the FPGA and the monetary cost of the FPGA is
commensurate with the number of logic elements (LEs)
within the FPGA. The currently used FPGA features 47k LEs
and an occupancy of 30%. Whilst a commercial footprint-
optimised cryptographic functional unit such as one from
Xiphera [11] will fit comfortably, so will a substantially
larger IP. In terms of optimisation target, the HLS generated
authentication functions may occupy up to 32k LEs.

3) Allocation and Binding
The allocation (hardware component FPGA) has been

pre-determined by the necessity of meeting hard real-time
deadlines.

We must determine which functions are to be bound to
the FPGA. In order to bind functions to FPGA we need to
partition the C-code which acts as specification. It follows
that the partition points must be determined and to proceed in
a structured fashion, key performance indicators should be
determined. Examining McCabe’s measure of complexity is
instructive [23]. McCabe reduces a function to a control flow
graph which is used to determine the number of unit tests, and
in a second reduction step, the interface tests a function
requires. We use the measure of complexity to decide
whether a function should be implemented in HW or SW. In
the Mbed TLS stack the computationally expensive code, that
is the cryptographic code, is packed in one or two functions
called by a wrapper function. This wrapper function is called
in three (control) paths of the Mbed TLS stack. The block of
code of these paths features a McCabe complexity of >500, 5
is commonly considered human inspectable code. It is clearly
impractical to attempt to synthesise this entire block. We
therefore focus first on the on the feasibility of synthesis of
the cryptographic functions and note that this wrapper
function has a defined interface with a small number of input
parameters. We then begin synthesising the SHA256
cryptographic code from the TLS stack, applying refactoring
in each iteration. We also track the process. The results are
shown in Figure 1 which illustrates the progression of the
initial HLS conversion (bottom left) through successive code
re-factorings to the final version (top right.) This graph
represents something of a random-walk through various code
refactorings to determine a ruleset providing cost-efficient
and deterministic iterations. Having established, and
documented, lessons learned, we apply these to a number of
other algorithms, refining the ruleset as we go along. In some
cases, we can reduce the number of iterations to four (Figure
2). Two points require further examination - the first concerns
the optimisation parameters. The second concerning the
ground truth of the baseline code. Both are performance
related.

C. Performance Characterisation

1) Ground Truth
The Mbed TLS cryptographic code, is optimised for x86

architectures. The execution efficiency of this code on a HW
platform is not clear.

Figure 1: Latency vs. footprint for an HLS version of Mbed TLS
SHA256 code for a number of refactoring iterations.

Figure 2: Latency vs. footprint for HLS versions of Mbed TLS
cryptographic code for a number of refactoring iterations as

percentages of the original synthesis.

To gain a better understanding we implement a naïve
version of our target cryptographic algorithm, AES in
discrete functions. We build a C-Unit test-set for regression-
test purposes. Having verified that the software executes
correctly we synthesise it as-is into HW using the HLS tool.
The initial footprint was determined at ~100’000 logic
elements, substantially worse than achieved by [14] for a non-
optimised naïve interpretation of AES-GCM and [15] who
progress through the optimisation of a naïve version of AES.
The substantial number of LEs are largely attributable to the
interface between individual AES functions being handled
over registers. Progressing through optimisations of naïve
code is already state-of-the-art and no new insights were
anticipated, so we cease this line of investigation. What is
clear is that this inter-function interface is not accounted for
by McCabe’s complexity measure. Clearly additional
complexity performance indicators are called for. We
tabularise the results of our Mbed TLS AES-encryption
synthesis against a commercial version and [15] in Table 1
below. We provide two measures, one with the calculation of
the expanded key (AES Full-IP) and one without (AES
Function.)

2) Real-World Optimisation Parameters
The setting or determination of optimisation parameters is

by the nature of this context, empirical. Many companies
manufacturing embedded devices are faced with variant
management, that is they develop, manufacture and sell

variants of a product at low to medium volumes rather than a
single product at high volumes. Integrating security features
on a bespoke level across a number of variants of a single
product line can become an expensive undertaking especially
if the binding of the security function is different for each
product variant. In low-medium product manufacturing there
is a limited business case for extreme component-cost
optimisation. The extra cost of a larger component purchased
at low volumes measured weighted against the portability of
a license-free security solution across the product-line, or
indeed multiple product-lines, is generally low.

Design Size (ALM/LUT) Latency Size % Latency %
Xiphera

(XIP1101B)
 1629 / 1615 100 ns 100 % 100 %

[15] / 2634 4.54 µs 163 % 4540 %
AES – Full IP 5478 / 5.36 µs 360 % 5360 %

AES-
Function

3573.2 / 1.09 µs

Table 1: Comparison of Commercial and HLS Variants of the
Mbed TLS AES Algorithm Implementation

Set against these concerns, the predictability of
synthesised results is clearly a concern. For instance, both the
footprint and the latencies of the synthesised solution are
larger than the commercial reference implementation [11].
Post-hoc discussions with the industrial partner determined
that these are acceptable in the context of the immediate
practical application. This may not be the case for other
applications. More specifically, there is yet no catalogue of
synthesised code that would allow the embedded-device
manufacturer to estimate the footprint and achievable
latencies. With such an ecosystem, the implementation risk
for the device manufacturer, whether HW-SW Co-design is
used or not, can be substantially reduced.

3) Validation
Security validation of a system is problematic. Absolute

statements on security are by its nature, difficult to evidence.
The depth of security has clearly been defined in the Real
Time Ethernet industry. The chain from vendor electronic
datasheet file down to the RT traffic is geared towards
integrity of a RTE installation by securing the integrity of
individual nodes.

We believe that by co-synthesising code from a well-
recognised source like Mbed TLS, facilitates establishing the
SW equivalency of the final solution. Selected C-functions
are synthesised, the rest are compiled for execution on an
attached CPU. The interfaces are replicated one-to-one on a
HW layer. The resulting HW-SW implementation should be
functionally identical and hopefully more performant than a
pure SW implementation on a comparable CPU. We expect
differential testing to show this to be the case [24].

III. DISCUSSION

A. Results

We have presented an industrially viable HW-SW co-
design process for secure communications implementation.
We believed to have achieved reasonable results, when
viewed in absolute terms and highly cost-efficient results for
implementers in the low-mid volume manufacturing range.
From a technical-tactical point of view this can support the
manufacturer/implementer in providing a clear path from

recognised and well understood software solutions to
strongly related and offloaded hard-real time solutions. This
path ends at the security validation which we support using a
differential test framework.

Whether the reported performance characteristics are
useful for other implementers is a matter for those
implementers. This body of work is also in an early stage and
there are several future-work items that require further
consideration.

B. Future Work

An original intention was that larger blocks of code would
be HW synthesised and – should there be updates over time
– these updates could be relatively simply re-synthesised. As
evidenced by the number of LEs required to implement a
seemingly trivial concatenation of 5 AES functions, this
would appear to be impractical. Further work is required here,
beginning with the determination of an HLS-relevant key
performance parameter to augment McCabe’s complexity
measure.

We have shown that we can achieve a usefully optimized
solution for a simple, yet commonplace, cryptographic
algorithm in a small number of iterations. It would be of
substantial help to industrial implementers to reference a
catalogue of synthesized code to better assess the risk and
investment costs in implementing an FPGA-bound
cryptographic function.

We have focused on speeding-up the establishment of a
secure connection between controller and device using TLS.
In the operational lifetime it is expected that far more time is
spent maintaining authenticated traffic. An implementation
process where synthesized algorithms are inserted into a
frame/data stream to speed up this task should be examined.

A common problem with early implementations of secure
elements was that the communication between processor and
secure element was in-itself not secure. This exposure of
interfaces is present in FPGAs attached to external processors
and requires detailed consideration.

REFERENCES
[1] M. Naedele, ‘Addressing IT Security for Critical Control Systems’,

in 2007 40th Annual Hawaii International Conference on System
Sciences (HICSS’07), Jan. 2007, pp. 115–115. doi:
10.1109/HICSS.2007.48.

[2] A. Paul, F. Schuster, and H. König, ‘Towards the Protection of
Industrial Control Systems - Conclusions of a Vulnerability Analysis
of Profinet IO’, in DIMVA, 2013. doi: 10.1007/978-3-642-39235-
1_10.

[3] R. Langner, ‘Stuxnet: Dissecting a Cyberwarfare Weapon’, IEEE
Security & Privacy, vol. 9, no. 3, pp. 49–51, May 2011, doi:
10.1109/MSP.2011.67.

[4] T. M. Chen and S. Abu-Nimeh, ‘Lessons from Stuxnet’, Computer,
vol. 44, no. 4, pp. 91–93, Apr. 2011, doi: 10.1109/MC.2011.115.

[5] D. Gunzinger, C. Kuenzle, A. Schwarz, H. D. Doran, and K. Weber,
‘Optimising PROFINET IRT for fast cycle times: A proof of
concept’, in 2010 IEEE International Workshop on Factory
Communication Systems Proceedings, May 2010, pp. 35–42. doi:
10.1109/WFCS.2010.5548637.

[6] ‘Mbed TLS’, Linaro.
https://www.trustedfirmware.org/projects/mbed-tls/ (accessed Jul.
02, 2022).

[7] T. Schläpfer and A. Rüst, ‘Security on IoT devices with secure
elements’, presented at the Embedded World Conference,
Nuremberg, Germany, 26-28 Februar 2019, WEKA, 2019. doi:
10.21256/zhaw-3350.

[8] M. Noseda, L. Zimmerli, T. Schläpfer, and A. Rüst, ‘Performance
analysis of secure elements for IoT’, IoT, vol. 3, no. 1, pp. 1–28,
2021, doi: 10.3390/iot3010001.

[9] ARM, ‘CPU Architecture Security Features’, Arm | The Architecture
for the Digital World. https://www.arm.com/architecture/security-
features (accessed May 11, 2023).

[10] ‘Network Security’, Xilinx.
https://www.xilinx.com/applications/wired-wireless/network-
security.html (accessed May 11, 2023).

[11] ‘XIP3022B: SHA256 AND SHA224 | Xiphera’.
https://xiphera.com/products/XIP3022B.php (accessed Jul. 02,
2022).

[12] S. Li, J. Torresen, and O. Soraasen, ‘Exploiting reconfigurable
hardware for network security’, in 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 2003. FCCM
2003., Apr. 2003, pp. 292–293. doi: 10.1109/FPGA.2003.1227276.

[13] A. Silitonga, F. Schade, G. Jiang, and J. Becker, ‘HLS-Based
Performance and Resource Optimization of Cryptographic
Modules’, in 2018 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social Computing
& Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), Dec. 2018, pp.
1009–1016. doi: 10.1109/BDCloud.2018.00147.

[14] T. Takaki, Y. Li, K. Sakiyama, S. Nashimoto, D. Suzuki, and T.
Sugawara, ‘An Optimized Implementation of AES-GCM for FPGA
Acceleration Using High-Level Synthesis’, in 2020 IEEE 9th Global
Conference on Consumer Electronics (GCCE), Oct. 2020, pp. 176–
180. doi: 10.1109/GCCE50665.2020.9291973.

[15] R. S. Meurer, T. R. Mück, and A. A. Fröhlich, ‘An Implementation
of the AES Cipher Using HLS’, in 2013 III Brazilian Symposium on
Computing Systems Engineering, Dec. 2013, pp. 113–118. doi:
10.1109/SBESC.2013.36.

[16] E. Ozcan and A. Aysu, ‘High-Level Synthesis of Number-Theoretic
Transform: A Case Study for Future Cryptosystems’, IEEE
Embedded Systems Letters, vol. 12, no. 4, pp. 133–136, Dec. 2020,
doi: 10.1109/LES.2019.2960457.

[17] M. Skuballa, A. Walz, H. Bühler, and A. Sikora, ‘Cryptographic
Protection of Cyclic Real-Time Communication in Ethernet-Based
Fieldbuses: How Much Hardware is Required?’, in 2021 26th IEEE
International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep. 2021, pp. 1–7. doi:
10.1109/ETFA45728.2021.9613244.

[18] R. Ernst, ‘Codesign of Embedded Systems: Status and Trends’, in
Readings in Hardware/Software Co-Design, G. De Micheli, R.
Ernst, and W. Wolf, Eds., in Systems on Silicon. San Francisco:
Morgan Kaufmann, 2002, pp. 45–54. doi: 10.1016/B978-
155860702-6/50006-5.

[19] G. Hu, S. Ren, and X. Wang, ‘A Comparison of C/C++-based
Software/Hardware Co-design Description Languages’, in 2008 The
9th International Conference for Young Computer Scientists, Nov.
2008, pp. 1030–1034. doi: 10.1109/ICYCS.2008.204.

[20] M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieh, A. Sangiovanni-
Vincentelli, and L. Lavagno, ‘Hardware-software codesign of
embedded systems’, IEEE Micro, vol. 14, no. 4, pp. 26–36, Aug.
1994, doi: 10.1109/40.296155.

[21] Intel, ‘Cyclone V Device Overview’.
[22] ‘High-Level Synthesis Compiler - Intel® HLS Compiler’, Intel.

https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html (accessed Jul. 02, 2022).

[23] T. J. McCabe, ‘A Complexity Measure’, IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, Dec. 1976, doi:
10.1109/TSE.1976.233837.

[24] A. Walz and A. Sikora, ‘Exploiting Dissent: Towards Fuzzing-Based
Differential Black-Box Testing of TLS Implementations’, IEEE
Transactions on Dependable and Secure Computing, vol. 17, no. 2,
pp. 278–291, Mar. 2020, doi: 10.1109/TDSC.2017.2763947.

