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Abstract—Real Time Ethernet protocols are currently 
undergoing specification updates to account for security 
features. These features generally taking the form of a public 
key infrastructure and associated network node and message 
authentication and, occasionally, message encryption. The 
computational expense of authentication and encryption in hard 
real-time applications adds substantial expense in both initial 
implementation and post-commissioning maintenance. In this 
body of work, we seek to manage this cost and complexity by the 
use of high-level synthesis to generate field programmable gate 
array IP from an open-source security stack. We detail the 
motivation, first steps in the establishment of a process and first 
results.  

Keywords—Real Time Ethernet, Network Security, High Level 
Synthesis, FPGA, HW-offloading  

I. INTRODUCTION

The application domain of embedded distributed control 
includes strategic infrastructure such as water purification, 
fuel refining, energy generation and conversion and factory 
automation. These application domains are increasingly 
subjected to malicious network attacks ([1], [2].) The Stuxnet 
experience ([3], [4]) – has left industry in little doubt that a 
distributed network is just as vulnerable as the individual 
nodes attached to it. The result is that real-time Ethernet (RTE) 
protocol promoters have finalised or are finalising appropriate 
specifications for securing distributed embedded network 
traffic. We situate our work in the context of an FPGA-based 
RTE communication controller [5]. 

The addition of security represents a substantial 
additional computational expense, especially for hard real 
time protocols. An expense, anecdotal industry experience 
suggests, end-users are not especially keen on underwriting. 
The device manufacturer must bear the burden of what is a 
two-pronged cost-structure, the (specific) application, that is 
the hard- and firmware of the device and secondly, the 
(partially generic) implementation and maintenance of a 
network security sub-system. Both expense and 
implementation time-frames can be considerable. Whilst the 
defect rate of an application can be expected to converge to 
zero after a number of maintenance iterations, that of a 
security system cannot, resulting in long-term maintenance 
effort - the primary motivation for this body of work.  

To approach this issue we derive HW off-loadable 
cryptographic code from an established codebase such as 
Mbed TLS [6]. We synthesize the code into HW using high 
level synthesis (HLS) tools but develop a ruleset for iterative 
optimisation. Our conclusion is that a library of cryptographic 
functions derived from this codebase would be of substantial 
service to industry. Our novelty is the establishment of a 
ruleset and the use of an established baseline of code. 

 We explain the motivation and aims for the deployment 
of a hardware software co-design process in the following 
subsections. In Section II we outline work and results to date 
and in Section III we discuss the results and future work. 

A. State-of-the-Art

There are numerous technologies available for offloading
the computational expense of cryptographic algorithms for 
embedded systems. These include secure elements [7], priced 
on a per-piece basis and currently recognised as unsuitable 
for reaching hard real time deadlines [8]; processing elements 
tightly coupled with the instruction set architecture of a 
general purpose CPU [9] and intellectual property (IP) whose 
target is either application-specific integrated circuits or field 
programmable gate-arrays (FPGAs) [10], [11]. The final 
category are hand-coded implementations or ASIC designs, 
research articulations of which can be found in publications 
such as [12]. A particular disadvantage of commercial IP is 
the additional cost. IP is typically licensed per device family 
or FPGA-type and a company with multiple products sold in 
small numbers, as is typical in factory automation, will find 
this kind of cryptographic solution expensive. Hand-coding a 
solution represents a development risk. A simple, yet 
impractical, solution is to synthesise the entire TLS stack into 
HW. Salient parts of the stack, including cryptographic 
algorithms can however be offloaded via high level synthesis 
tools. There has been substantial activity in this area, [13] 
provides a useful overview. The corner points show some 
merely establish the general feasibility [14] others [13], [15] 
simply experiment with self-derived baseline code 
implementations. [16] come closest to tracing optimisation 
iterations like we do but no publications take higher level 
considerations like code complexity into account.  

The challenge of cryptographic computational expense 
can clearly be addressed [17]. The challenge in implementing 
secured communications is clearly not in the domain of 
cryptography but in integrating that cryptography into an 
implementation of high integrity and maintaining it over an 
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expected lifespan of 20 years or more. This issue motivates 
the consideration of a co-design process to implement 
security in an embedded networked device. Our novelty is to 
propose a process using a well-known source code as a 
baseline.    

II. CO-DESIGN 

A. Implementation Architecture 

Obfuscation is not conducive to security. The “many-
eyes” principle facilitates rigorous inspection; the discovery 
of vulnerabilities introduced by implementation; assuming 
regular maintenance updates and fixes the longevity of the 
implementation. It follows that a well-regarded open-source 
implementation of a security protocol offers these benefits. 

1)  Motivation for HW-SW Co-Design 
A number of offloading options have been looked at in a 

previous subsection, they share the common denominator 
that they are disembodied from the control-flow of the 
security stack. This disembodiment may introduce additional 
vulnerabilities. For instance, in a secure elements design, the 
communication to the secure element must be secured and the 
base security-stack modified. Over multiple maintenance 
cycles the potential for implementation-specific 
vulnerabilities is introduced as the implementation code 
departs from the open-source codebase. This in turn may 
introduce anomalies into the validation process across a 
product range. These considerations warrant an attempt to 
apply a more linear approach which we find in the application 
of specification driven HW-SW co-design.    

2) Interpretation of HW-SW Co-Design 
HW-SW co-design was once taken to mean that HW and 

SW engineers were co-located in offices and the project 
would benefit from continuous cross-disciplinary contact 
[18]. The meaning of the concept has mutated in different 
directions including specification-driven HW-SW co-design 
which is taken to mean synthesis of a solution from one 
specification [18]. Despite many alternatives, there is no 
established representation for this specification so it is 
legitimate to begin with a specification expressed in C-code 
and synthesise HW and SW from this specification [19]. We 
propose using the Mbed TLS stack as such a specification. 
The attractiveness is that one starts from a code-base that 
exhibits a history of being well-maintained and is opensource 
albeit, due to its history, the code is optimised for general 
purpose processors.   

B. HW-SW Co-Design Context Implementation Process 

1) Architecture Constraints 
Synthesising code from a single specification written in 

C-code in the context of involves allocating components, 
binding functions to these components, performing the 
synthesis and then measuring performance [20]. The target 
hardware is an Intel FPGA board (5CEFA4U19A7 [21]) 
fitted with an embedded NIOS processor, operating eCOS 
and running a PROFINET stack. The HW synthesis tool is 
chosen as the HLS tool from Intel, the SW synthesis tool is 
the GNU compiler in an Intel/NIOS II version [22].  

2) HW-SW Co-Design Optimisation Parameters 
Typical HW-SW co-design optimisation parameters are 

(monetary) cost, latency and power. The architecture 
constraints determine the monetary cost. The target latency 
can be derived from the operating parameters of the example 

RTE protocol, PROFINET. Standard PROFINET IRT 
upholds cycle times down to 250 μs supporting one 
asynchronous and one IRT frame. It follows that 
authentication must be completed within 125 μs. In an FPGA 
the power consumption is largely determined by the circuitry 
within the FPGA and the monetary cost of the FPGA is 
commensurate with the number of logic elements (LEs) 
within the FPGA. The currently used FPGA features 47k LEs 
and an occupancy of 30%. Whilst a commercial footprint-
optimised cryptographic functional unit such as one from 
Xiphera [11] will fit comfortably, so will a substantially 
larger IP. In terms of optimisation target, the HLS generated 
authentication functions may occupy up to 32k LEs.  

3) Allocation and Binding 
The allocation (hardware component FPGA) has been 

pre-determined by the necessity of meeting hard real-time 
deadlines.  

We must determine which functions are to be bound to 
the FPGA. In order to bind functions to FPGA we need to 
partition the C-code which acts as specification. It follows 
that the partition points must be determined and to proceed in 
a structured fashion, key performance indicators should be 
determined. Examining McCabe’s measure of complexity is 
instructive [23]. McCabe reduces a function to a control flow 
graph which is used to determine the number of unit tests, and 
in a second reduction step, the interface tests a function 
requires. We use the measure of complexity to decide 
whether a function should be implemented in HW or SW. In 
the Mbed TLS stack the computationally expensive code, that 
is the cryptographic code, is packed in one or two functions 
called by a wrapper function. This wrapper function is called 
in three (control) paths of the Mbed TLS stack. The block of 
code of these paths features a McCabe complexity of >500, 5 
is commonly considered human inspectable code. It is clearly 
impractical to attempt to synthesise this entire block. We 
therefore focus first on the on the feasibility of synthesis of 
the cryptographic functions and note that this wrapper 
function has a defined interface with a small number of input 
parameters. We then begin synthesising the SHA256 
cryptographic code from the TLS stack, applying refactoring 
in each iteration. We also track the process. The results are 
shown in Figure 1 which illustrates the progression of the 
initial HLS conversion (bottom left) through successive code 
re-factorings to the final version (top right.) This graph 
represents something of a random-walk through various code 
refactorings to determine a ruleset providing cost-efficient 
and deterministic iterations. Having established, and 
documented, lessons learned, we apply these to a number of 
other algorithms, refining the ruleset as we go along. In some 
cases, we can reduce the number of iterations to four (Figure 
2). Two points require further examination - the first concerns 
the optimisation parameters. The second concerning the 
ground truth of the baseline code. Both are performance 
related.  

C. Performance Characterisation 

1) Ground Truth 
The Mbed TLS cryptographic code, is optimised for x86 

architectures. The execution efficiency of this code on a HW 
platform is not clear. 



 

Figure 1: Latency vs. footprint for an HLS version of Mbed TLS 
SHA256 code for a number of refactoring iterations. 

     
Figure 2: Latency vs. footprint for HLS versions of Mbed TLS 
cryptographic code for a number of refactoring iterations as 

percentages of the original synthesis. 

To gain a better understanding we implement a naïve 
version of our target cryptographic algorithm, AES in 
discrete functions. We build a C-Unit test-set for regression-
test purposes. Having verified that the software executes 
correctly we synthesise it as-is into HW using the HLS tool. 
The initial footprint was determined at ~100’000 logic 
elements, substantially worse than achieved by [14] for a non-
optimised naïve interpretation of AES-GCM and [15] who 
progress through the optimisation of a naïve version of AES. 
The substantial number of LEs are largely attributable to the 
interface between individual AES functions being handled 
over registers. Progressing through optimisations of naïve 
code is already state-of-the-art and no new insights were 
anticipated, so we cease this line of investigation. What is 
clear is that this inter-function interface is not accounted for 
by McCabe’s complexity measure. Clearly additional 
complexity performance indicators are called for. We 
tabularise the results of our Mbed TLS AES-encryption 
synthesis against a commercial version and [15] in Table 1 
below. We provide two measures, one with the calculation of 
the expanded key (AES Full-IP) and one without (AES 
Function.)  

2) Real-World Optimisation Parameters 
The setting or determination of optimisation parameters is 

by the nature of this context, empirical. Many companies 
manufacturing embedded devices are faced with variant 
management, that is they develop, manufacture and sell 

variants of a product at low to medium volumes rather than a 
single product at high volumes. Integrating security features 
on a bespoke level across a number of variants of a single 
product line can become an expensive undertaking especially 
if the binding of the security function is different for each 
product variant. In low-medium product manufacturing there 
is a limited business case for extreme component-cost 
optimisation. The extra cost of a larger component purchased 
at low volumes measured weighted against the portability of 
a license-free security solution across the product-line, or 
indeed multiple product-lines, is generally low.  

 

Design Size (ALM/LUT) Latency  Size % Latency % 
Xiphera 

(XIP1101B ) 
 1629 / 1615  100 ns 100 % 100 % 

[15] / 2634 4.54 µs 163 % 4540 % 
AES – Full IP 5478 /  5.36 µs 360 % 5360 % 

AES-
Function 

3573.2 / 1.09 µs   

Table 1: Comparison of Commercial and HLS Variants of the 
Mbed TLS AES Algorithm Implementation 

Set against these concerns, the predictability of 
synthesised results is clearly a concern. For instance, both the 
footprint and the latencies of the synthesised solution are 
larger than the commercial reference implementation [11]. 
Post-hoc discussions with the industrial partner determined 
that these are acceptable in the context of the immediate 
practical application. This may not be the case for other 
applications. More specifically, there is yet no catalogue of 
synthesised code that would allow the embedded-device 
manufacturer to estimate the footprint and achievable 
latencies. With such an ecosystem, the implementation risk 
for the device manufacturer, whether HW-SW Co-design is 
used or not, can be substantially reduced.   

3) Validation 
Security validation of a system is problematic. Absolute 

statements on security are by its nature, difficult to evidence. 
The depth of security has clearly been defined in the Real 
Time Ethernet industry. The chain from vendor electronic 
datasheet file down to the RT traffic is geared towards 
integrity of a RTE installation by securing the integrity of 
individual nodes.   

We believe that by co-synthesising code from a well-
recognised source like Mbed TLS, facilitates establishing the 
SW equivalency of the final solution. Selected C-functions 
are synthesised, the rest are compiled for execution on an 
attached CPU. The interfaces are replicated one-to-one on a 
HW layer. The resulting HW-SW implementation should be 
functionally identical and hopefully more performant than a 
pure SW implementation on a comparable CPU. We expect 
differential testing to show this to be the case [24]. 

III. DISCUSSION 

A. Results 

We have presented an industrially viable HW-SW co-
design process for secure communications implementation. 
We believed to have achieved reasonable results, when 
viewed in absolute terms and highly cost-efficient results for 
implementers in the low-mid volume manufacturing range. 
From a technical-tactical point of view this can support the 
manufacturer/implementer in providing a clear path from 



recognised and well understood software solutions to 
strongly related and offloaded hard-real time solutions. This 
path ends at the security validation which we support using a 
differential test framework.  

Whether the reported performance characteristics are 
useful for other implementers is a matter for those 
implementers. This body of work is also in an early stage and 
there are several future-work items that require further 
consideration. 

B. Future Work 

An original intention was that larger blocks of code would 
be HW synthesised and – should there be updates over time 
– these updates could be relatively simply re-synthesised. As 
evidenced by the number of LEs required to implement a 
seemingly trivial concatenation of 5 AES functions, this 
would appear to be impractical. Further work is required here, 
beginning with the determination of an HLS-relevant key 
performance parameter to augment McCabe’s complexity 
measure.     

We have shown that we can achieve a usefully optimized 
solution for a simple, yet commonplace, cryptographic 
algorithm in a small number of iterations. It would be of 
substantial help to industrial implementers to reference a 
catalogue of synthesized code to better assess the risk and 
investment costs in implementing an FPGA-bound 
cryptographic function.   

We have focused on speeding-up the establishment of a 
secure connection between controller and device using TLS. 
In the operational lifetime it is expected that far more time is 
spent maintaining authenticated traffic. An implementation 
process where synthesized algorithms are inserted into a 
frame/data stream to speed up this task should be examined.  

A common problem with early implementations of secure 
elements was that the communication between processor and 
secure element was in-itself not secure. This exposure of 
interfaces is present in FPGAs attached to external processors 
and requires detailed consideration. 
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