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Mid-air collision risk estimation is crucial for maintaining aviation safety and improving the efficiency of air 
traffic procedures. This paper introduces a novel, data-driven methodology for estimating the probability of mid-
air collisions between aircraft by combining Monte Carlo simulation and the Peaks Over Threshold approach from 
Extreme Value Theory. This innovative approach has substantial advantages over traditional methods. Firstly, it 
reduces the number of assumptions about the traffic flow compared to traditional analytical methods. In fact, 
data-driven techniques require fewer assumptions, as they inherently capture the structures of the traffic flow 
within the underlying data. Secondly, it converges faster than methods based on crude Monte Carlo simulation. 
Notably, by employing Extreme Value Theory, this approach enables efficient evaluation of low-probabilities, 
which are commonly found in collision risk modelling. The effectiveness of the proposed methodology is 
demonstrated through estimating the probability of a mid-air collision in a real-world practical example. The 
case study investigates the risk of collisions between departures and go-arounds in the terminal airspace at 
Zurich Airport, highlighting the potential for improved safety and efficiency in air traffic management.
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 Introduction

Civil Aviation Authorities (CAA) and Air Navigation Service Pro-
des (ANSP) are responsible to operate the airspace in their charge 
fely and efficiently. This responsibility includes the management of 
sk of Mid-Air-Collisions (MAC), which can be estimated quantitatively. 
e estimated MAC probabilities of a certain operation in an airspace 
n, thus, be compared with an acceptable risk level, called the Tar-
t Level of Safety (TLS). The total risk of a fatal accident of an entire 
ght is approximately 1 × 10−7 [1]. This total risk budget is usually 
bdivided into the different flight phases and causes. For example, in 
-route airspace, the typical TLS for MAC risks is set at around 1 ×10−8

tal accidents per flight hour [2], with one collision accounting for two 
tal accidents. To evaluate the safety of new separation standards in 
-route airspace, the International Civil Aviation Organization (ICAO) 
rther breaks down this risk into separate longitudinal, lateral, and 
rtical risk values, each of which corresponding to a probability of 
× 10−9 [3]. For terminal airspace, which refers to airspace adjacent 
 aerodromes, the TLS for collisions is less well-defined in the liter-
ure. Moreover, the risk is not defined “per flight hour” but rather 
er movement”, i.e., per arrival or departure, depending on the situa-

Corresponding author at: Centre for Aviation, Zurich University of Applied Sciences, Technikumstrasse 71, Winterthur, 8400, Switzerland.

tion. The TLS allocated to MAC in terminal airspace is commonly set at 
1 × 10−8 fatal accidents per movement, which corresponds to a collision 
probability of 5 × 10−9 per aircraft. For a comprehensive overview on 
the TLS applied in aviation, the reader is further referred to the works 
of Lin et al. [4], Eurocontrol [2].

To estimate the risk of a MAC, multiple analytical collision risk mod-
els have been developed and established over the years. Amongst the 
most influential are the analytical models of Reich [5] and of Hsu [6]. 
These models (i) assume traffic distributions along predefined routes 
based on required or observed navigational performance [7]; (ii) con-
sider distributions for normal (core) and abnormal (tail) operations, 
e.g., to define separation standards for parallel tracks, or to model 
speeds and flown headings of aircraft [8]; (iii) take into account op-
erational errors, such as large deviations at given angles [9]; and (iv) 
consider traffic densities in discrete grid cells. Variants of these models 
have historically been applied by the ICAO and by CAAs to define new 
separation standards. Mitici and Blom [10] provides a general overview 
of the different mathematical collision risk models.

These analytical models are effective for en-route operations with 
well-structured traffic flows; however, analytical models are often too 
simplistic to address complex traffic patterns typically found in termi-
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l manoeuvring areas (TMAs) and control zones (CTRs) adjacent to 
rodromes, collectively referred to as terminal airspace (TA). Indeed, 
ese models have not been designed to model flights that are turning, 
imbing, or descending. To circumvent this limitation, Figuet [11] pro-
sed an approach where flight paths are modelled by piecewise linear 
gments.

The availability of large amounts of data, combined with advance-
ents in computational power to process this data, has facilitated the 
velopment of data-driven approaches to mid-air collision risk mod-
ling [12–15]. Such data-driven approaches are capable of better ad-
essing the limitations encountered in analytical methods, as the un-
rlying distributions are inherently present in the data. Unfortunately, 
isting data-driven methods still heavily rely on Monte Carlo simula-
ns, which can be computationally demanding and necessitate a large 
mber of simulations to accurately estimate the low probabilities as-
ciated with collision risks, in some circumstances up to the point of 
coming infeasible.
To address limitations in existing data-driven collision risk models, 

e propose a novel approach that combines Monte Carlo simulations 
ith Extreme Value Theory (EVT) to assess the probability of mid-air 
llision. EVT provides a well-established framework for modelling the 
il of a probability distribution, making it particularly well-suited for 
odelling rare events, such as mid-air collisions. Indeed, EVT has been 
ccessfully employed in other fields, such as finance [16], insurance 
7] and civil engineering, where EVT is used to model rare events 
ch as extreme market fluctuations, or natural events such as extreme 
ave heights [18]. In terms of aviation-related applications, [7] shows 
w EVT can be used to model large aircraft trajectory deviations.
This paper presents a novel data-driven methodology to estimate 
e MAC probabilities by combining Monte Carlo simulation with EVT 
ethodologies. This innovative methodology offers several key advan-
ges over traditional data-driven collision risk modelling methods. 
rstly, it inherently captures assumptions about traffic flows within the 
ta, eliminating the need for introducing additional assumptions about 
affic patterns. Secondly, the incorporation of EVT allows for a more 
cient convergence in estimating low-probability events, making the 
ethodology particularly effective for assessing the probability of rare 
currences such as mid-air collisions. Overall, the proposed approach 
ms to provide a robust and practical solution for mid-air collision 
sk modelling in a wide range of contexts in aviation and other disci-
ines.

The structure of this paper is organized as follows: After this in-
oduction, Section 2 provides background information on EVT. The 
oposed method, which consists of a combination of Monte Carlo sim-
ations and EVT, is presented in Section 3. Additionally, an approach 
 quantify the uncertainty of the method is shown. Subsequently, the 
odel is applied to a real-world example in Section 4. To this end, the 
llision probability between an eastbound take-off (TO) on runway 16 
d a simultaneous go-around (GA) on runway 14 at Zurich Airport in 
itzerland is estimated. Section 5 discusses both the proposed method 

 well as the practical example in terms of their strength, limitations, 
d potential for enhancing aviation safety. Finally, Section 6 concludes 
is paper by summarizing the key findings and identifying both the im-
ications of this work on the field of MAC risk modelling and potential 
r future research.

 Background information

This section provides background information on (i) Extreme Value 
eory and (ii) the concept of Peaks Over Threshold. This information 
ovides the basis for the data-driven collision risk modelling method-
ogy presented in Section 3.

treme value theory Irrespective of the field, risk management is about 
2

derstanding extremes. Although the Central Limit Theorem (CLT) is 𝑒𝑛
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mmonly employed to model averages, it primarily addresses the be-
viour of sums and averages of random variables as their quantity 
creases, ultimately converging to a normal distribution. However, 
hen the interest lies in the tail behaviour of distributions or in the 
udy of extreme events, the CLT may fall short [19].
Extreme Value Theory (EVT) was explicitly developed to model the 
obability of extreme events by finding reliable estimates of their fre-
ency. Thus, EVT is concerned with the distribution of the partial max-
a 𝑀𝑛 = max(𝑋1, … , 𝑋𝑛), where 𝑋1, … , 𝑋𝑛 is a sequence of indepen-
nt and identically distributed (i.i.d.) random variables with common 
mulative Distribution Function (CDF) 𝐹 . In other words, EVT aims to 
scribe a sequence of maxima, or rare events. In this case, the CDF of 
e sample maximum, 𝑀𝑛, is given by P(𝑀𝑛 ≤ 𝑥) = P(𝑋1 ≤ 𝑥, … , 𝑋𝑛 ≤ 𝑥). 
ost of the time, the distribution function 𝐹 is unknown, however, the 
sher-Tippett-Gnedenko theorem [20,21]) provides an asymptotic result: 
ppose there exist two sequences of real numbers 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ
ch that the following limit converges to a non-degenerate distribu-
n function 𝐺:

m
∞
P

(
max{𝑋1,… ,𝑋𝑛} − 𝑏𝑛

𝑎𝑛
≤ 𝑥

)
=𝐺(𝑥), (1)

here the limit distribution 𝐺 belongs to the Generalized Extreme 
lue (GEV) distribution family, more precisely to either the Gumbel, 
e Fréchet, or the Weibull family. In practical terms, if the normal-
ed maxima, i.e., location-scale transformed maxima, of i.i.d. random 
riables converges to a non-degenerate distribution 𝐺, then the lim-
ng distribution must be a location-scale transformed GEV distribu-
n.

aks Over Threshold The Peaks Over Threshold (POT) method is 
ed to statistically describe the samples that exceed a user defined 
reshold 𝑢, i.e., the samples that are above a threshold 𝑢 that is 
en as an extreme value, as illustrated on simulated data in Fig. 1, 
ots a) and b). The Pickands–Balkema–De Haan theorem, see Balkema 
d De Haan [22], Pickands III [23], states that given a sequence of 
.d. random variables (𝑋1, … , 𝑋𝑛), their conditional excess distribution 
(𝑦) = P(𝑋 − 𝑢 ≤ 𝑦 ∣ 𝑋 > 𝑢), is well approximated by the Generalized 
reto Distribution (GPD) 𝐻𝜉,𝛽(𝑢)

𝑋 − 𝑢 ≤ 𝑦 ∣𝑋 > 𝑢) =𝐻𝜉,𝛽(𝑢)(𝑦) =
⎧⎪⎨⎪⎩
1 −

(
1 + 𝜉𝑦

𝛽(𝑢)

)−1∕𝜉
for 𝜉 ≠ 0,

1 − 𝑒−𝑦∕𝛽(𝑢) for 𝜉 = 0,
(2)

ith the scale parameter 𝛽(𝑢) > 0. The support of 𝐻𝜉,𝛽(𝑢) is 𝑦 > 0 if the 
ape parameter 𝜉 is 𝜉 ≥ 0, and [0, 𝛽(𝑢)∕𝜉] otherwise. The fit of such a 
stribution to the exceedances is illustrated in Fig. 1, plot c).
In the context of this paper, which aims to model the minimum dis-
nce between aircraft, the case where 𝜉 < 0 is of particular significance. 
𝜉 < 0, the GPD is bounded, as is the case when modelling the distance 
tween two aircraft (the lower bound is 0, meaning the aircraft are at 
e same position). In this case, the GPD is referred to as a short-tailed 
reto Type II distribution and estimating its parameters is to find the 
lues of 𝜉 and 𝛽 that maximize the log-likelihood under the constraint 
= 𝛽∕𝜉.
Selecting an appropriate threshold value 𝑢 is crucial when applying 
e POT method. If the chosen threshold value is too high, it results in 
wer exceedances, leading to increased variance. On the other hand, 
lecting a threshold value that is too low introduces a bias in the es-
ation. Various techniques can be employed to determine an optimal 
reshold value. Among the most common methods are graphical ap-
oaches such as the Mean Excess Plot (MEP). As such, MEP offers a 
sual representation of the mean excess function 𝑒𝑛(𝑢) with respect to 
e threshold levels 𝑢. The empirical mean excess function is defined 

∑𝑛
𝑖=1(𝑋𝑖 − 𝑢)𝐼{𝑋𝑖>𝑢}
(𝑢) = ∑𝑛

𝑖=1 𝐼{𝑋𝑖>𝑢}
, 𝑢 ≤𝑋(𝑛), (3)
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Fig. 1. Example of the Peaks Over Threshold method on simulated data sampled from a Gaussian-Laplace mixture distribution for illustration purposes. a) Sample 
of 100 values with the black lines indicating samples that exceed the threshold value 𝑢 (green dashed line); b) Normalized histogram with the threshold indicated 
by the dashed green line and the area above the threshold shaded in green; c) Histogram of the exceedances over the threshold and the fitted generalized Pareto 
distribution (red line); d) Mean excess in function of threshold values. (For interpretation of the colours in the figure(s), the reader is referred to the web version of 
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ith 𝑋1, ..., 𝑋𝑛 being the i.i.d. sample and 𝐼 the indicator function, i.e., 
𝑋𝑖>𝑢} = 1 if 𝑋𝑖 > 𝑢, otherwise 𝐼{𝑋𝑖>𝑢} = 0. Subsequently, the actual MEP 
nsists of the plot containing the points {(𝑋(𝑖), 𝑒𝑛(𝑋(𝑖)) ∶ 1 ≤ 𝑖 ≤ 𝑛 − 1}, 
here 𝑋(𝑖) denotes the 𝑖𝑡ℎ order statistic, i.e., the 𝑖𝑡ℎ smallest sample, 
d 𝑛 the number of samples. A suitable value for the threshold 𝑢 is 
ually taken as the smallest value where the MEP transitions into a 
ughly linear function. This linearity indicates that the GPD is a suit-
le approximation for the excess distribution above the threshold. An 
ample for a MEP is shown in Fig. 1, plot d).
Besides MEP, Thompson et al. [24] propose an automated threshold 
lection based on the distribution of the difference of parameter es-
ates. For a comprehensive overview on the topic of threshold value 
lection, the reader is referred to Scarrott and MacDonald [25]. In prac-
e, the choice of the threshold 𝑢 is a difficult exercise and Embrechts 
al. [16] recommends to conduct the analysis for multiple threshold 
3

lues. lik
 Methodology

In most collision risk models, aircraft are represented either as a 
boid or a cylinder. For the sake of simplicity, aircraft are represented 
 this paper as spheres with diameter 𝜆, which refers to the wingspan 
 the aircraft, as illustrated in Fig. 2. Using a sphere to represent the 
rcraft is generally a more conservative approach due to the larger 
lume encompassed compared to a cylinder or a cuboid. If available, 
e appropriate diameter of the sphere can be estimated from historical 
ta by extracting the average wingspan of the aircraft involved.
Having defined the geometrical shape to represent aircraft, the first 

ep in modelling the collision probabilities is to simulate pairs of air-
aft trajectories with Monte Carlo simulation runs. The pairs of trajec-
ries can be obtained in various ways, including (i) from an air traffic 
mulator such as Bluesky [26], which relies on a performance model 

e OpenAp [27] or EUROCONTROLs base of aircraft data (BADA) [28], 
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Fig. 2. Aircraft are represented by a sphere of diameter 𝜆.

i) from a data-driven model as proposed by Krauth et al. [29], or (iii) 
 re-enacting observed aircraft trajectories, such as historical radar 
acks. For each Monte Carlo simulation run, two aircraft trajectories 
e randomly selected. These two trajectories are replayed over time 
d the minimum observed three-dimensional Euclidian distance for 
e pair is extracted. This minimum distance is referred to as the spac-
g at the Closest Point of Approach (CPA), denoted 𝑑CPA. By simulating 
merous runs, a distribution of the spacings at the CPA is obtained.
In a second step, the POT approach is applied to the obtained dis-

ibution of the spacings at the CPA. In contrast to classical EVT, which 
cuses on modelling the behaviour of maximum values, our intention 
 to apply EVT to model the behaviour of minimum values, namely 
e minimum distance between the two aircraft obtained in each Monte 
rlo run. The motivation behind this approach is to determine the 
obability of the spacing at CPA becoming smaller than an aircraft’s 
ameter, i.e., the two aircraft collide. To achieve this, the following 
entity is used:

in(𝑋1,… ,𝑋𝑛) = −max(−𝑋1,… ,−𝑋𝑛). (4)

As a result, the 𝑑CPAvalues need to be converted into negative values 
d a collision is defined as −𝑑CPA ≥ −𝜆.
To select an appropriate value for threshold 𝑢, we employ the MEP 
ethod. As mentioned in Section 2, we plot the mean excess function 
r different threshold values and select the threshold at the minimum 
lue where the curve begins to exhibit linear behaviour.
Once a threshold value 𝑢 is determined, we extract the CPA spacing 
ceedances over the threshold 𝑢 for which we fit a GPD. Then, the 
rameters of the GPD are estimated using the Maximum Likelihood 
timation (MLE) technique. We assume that a perfect overlap (𝑑CPA =
 is possible, as this methodology is intended to be used for scenarios 
here collisions can occur. This implies that the support of the GPD 
 bounded between 𝑢 and 0. Consequently, we have the relationship 
= −𝜉𝑢 with 𝜉 < 0, and hence, only 𝜉 needs to be estimated. With the 
PD parameters in place, the probability of collision can be computed. 
sing Equation (2) yields the probability of a collision, given that the 
acing at CPA is lower than threshold value 𝑢:

MAC ∣ −𝑑CPA > 𝑢) = 1 −𝐻𝜉,𝛽(𝑢)(𝑢− 𝜆) =
(
1 + 𝜉(𝑢− 𝜆)

𝛽 (𝑢)

)−1∕𝜉

=
(
1 + 𝜉(𝑢− 𝜆)

−𝜉𝑢

)−1∕𝜉
=
(
𝜆

𝑢

)−1∕𝜉
(5)

pplying the chain rule to Equation (5) yields the probability of a colli-
on:

MAC) = P(MAC ∣ −𝑑CPA > 𝑢) ⋅ P(−𝑑CPA > 𝑢) ≈
(
𝜆

𝑢

)−1∕𝜉
⋅
𝑁

𝑛
(6)

ith 𝑛 the number of simulated pairs, 𝑁 the number of exceedances for 
e chosen threshold value 𝑢, and 𝜆 the diameter of the sphere repre-
4

nting the aircraft. lis
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In a third and final step, we estimate the uncertainty associated 
ith the MAC probability calculations. Equation (6) is the product of 
o probabilities which are both estimated with a certain degree of un-
rtainty. The estimate P̂(−𝑑CPA > 𝑢) of P(−𝑑CPA > 𝑢) is obtained from 
rnoulli trials at which success occurs at −𝑑CPA > 𝑢. Consequently, the 
timate of the probability of success can be described thanks to the 
T with a random variable following a normal distribution, where:

−𝑑CPA > 𝑢)∼
(
𝑁

𝑛
,
𝑁(𝑛−𝑁)

𝑛3

)
. (7)

The second source of uncertainty is due to the estimation of the 
PD parameters, in our case solely the parameter 𝜉. The standard er-
rs associated with the MLE are obtained from the square roots of 
e diagonal elements of the inverse of the observed Fisher Informa-
n matrix 𝐈(𝜉MLE), i.e., the Fisher Information matrix evaluated at the 
aximum likelihood estimates [30]. The Fisher Information 𝐈(𝜉) is ob-
ined by evaluating the Hessian of the log likelihood. In our case, 𝜉 is a 
alar and thus the variance corresponds to the inverse of the observed 
sher Information. The Maximum Likelihood Estimates being normally 
stributed, we get the following equation

LE∼
(
𝜉MLE, [𝐈(𝜉MLE)]−1

)
(8)

ith [𝐈(𝜉MLE)]−1 is the variance of the estimated shape parameter.
The distribution of the MAC probability estimate ̂P(MAC) can finally 

 estimated with Monte Carlo simulation by sampling random vari-
les P̂(−𝑑CPA > 𝑢) and 𝜉MLE for a sufficient number of times:

MAC) =
(
𝜆

𝑢

)−1∕𝜉MLE
⋅ P̂(−𝑑CPA > 𝑢). (9)

e obtained distribution can subsequently be used to extract descrip-
e statistics on P̂(MAC), such as the quantiles for different confidence 
tervals (CI).

 Practical example

The following practical example shows how the methodology pro-
sed in this paper can be used to compute the probability of mid-air 
llision in a real-world scenario. In this particular case, we quantify the 
obability of a collision between a departing aircraft and an aircraft 
multaneously flying a go-around procedure at the airport of Zurich, 
itzerland.

1. Scenario description

Various operating concepts are used at Zurich Airport. During the 
y, aircraft primarily take off from runway 28 and land on runway 14. 
ditionally, runway 16 is also used for both take-offs of heavier, long-
ul aircraft. However, since the flight paths of go-arounds on runway 
 intersect with those of departing aircraft on runway 16, see Fig. 3, 
ese runways cannot be operated independently. To address this issue, 
e following mitigation measure is currently applied by air traffic con-
ol: No departures on runway 16 are released if an aircraft approaching 
nway 14 is closer to the threshold than a certain cut-off distance. As 
ustrated in Fig. 4, the cut-off distance applied at Zurich Airport is 7 
autical Miles (NM) (or 8NM if the departing aircraft is of type Airbus 
380).

2. Assumptions

We make the assumption that every time an aircraft is cleared for 
ke-off on runway 16, another aircraft is simultaneously approaching 
nway 14, with the approaching aircraft consistently positioned ex-
tly 5NM from the runway threshold. The choice of 5NM instead of 
M is motivated by the higher probability of collision at this distance, 
hich, for the sake of this study, simplifies the estimation of the col-

ion probability. Essentially, a shorter cut-off distance increases the 
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Fig. 3. Observed go-arounds on runway 14 (blue) and a sample of 400 eastbound departures from runway 16 (red) at Zurich Airport extracted from ADS-B data. 
The runway 14 threshold, along with markers at 5NM and 7NM from it, are displayed in purple.
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g. 4. Current mitigation measures applied at Zurich Airport: No eastbound de-
rtures are released if an aircraft is approaching runway 14 is closer than 7NM 
m the threshold. If the departing aircraft is an A380, The cut-off distance is 
ual to 8NM.

sk, as it becomes more likely for the approaching aircraft to catch up 
ith the departing one.

3. Data

This study uses Automatic Dependent Surveillance-Broadcast (ADS-
 data retrieved from the OpenSky Network [31], which contains, 
ong other parameters, time-stamped position and altitude observa-
ns of aircraft. Go-arounds that have occurred since the year 2017 
ere retrieved and a total of 2,522 eastbound departures from the year 
22 were collected for analysis using the traffic library [32]. Out of 
proximately 800 GA collected, only 386 were retained for this study. 
any of the retrieved GA did not adhere to the published procedure 
e to early left turns, which was the result of air traffic control inter-
rence. As the primary objective of this study is to assess the safety of 
e published procedure, only GA that followed the published proce-
re were considered for further analysis. Fig. 3 shows the retained GA 
 runway 14 and a random sample of 400 eastbound departures on 
nway 16.
As mentioned in Section 3, aircraft are represented by a sphere of 
ameter 𝜆. To determine the value of 𝜆, a frequency analysis of the 
rcraft types approaching runway 14 and departing from runway 16 
 well as their wingspan was conducted. Fig. 5 summarizes the eight 
5

ost commonly observed aircraft types and their associated wingspan. be
n average, a departing aircraft has a wingspan of 55 m, while an ap-
oaching aircraft, i.e. one flying a GA, has an average wingspan of 
m. To maintain a conservative approach, it was decided to represent 
l aircraft with a sphere of diameter 55 m.

4. Monte Carlo simulation

The Monte Carlo method consists of simulating pairs of one GA and 
e departure. In this study, this is achieved not through traditional air 
affic simulation, but rather by re-enacting previously observed and 
corded ADS-B trajectories. After identifying both relevant departures 
d GAs, the system is simulated by sampling pairs of these observed 
ajectories. Combining each of the 386 GA with each of the 2,522 de-
rtures results in 973’492 combinations. A point of consideration is 
at the trajectories within a pair might have been observed during 
fferent atmospheric conditions, which may consequently impact the 
tcome. The simulation is conducted by initiating the GA aircraft at 
distance of 5NM from the threshold of runway 14 the very moment 
e take-off roll of the aircraft departing from runway 16 is initiated. 
is enables us to mimic a conservative scenario where a departure is 
itiated while a landing aircraft is positioned exactly at the minimum 
t-off distance allowed. In practice, the trajectory data quality of air-
aft still being on the runway is insufficient for initiating the take-off at 
e threshold of runway 16. As an alternative, take-offs are initiated at 
e end of runway 16. For this reason, the time of take-off needs to be 
justed by one minute, which corresponds to roughly the average time 
takes for an aircraft to reach the end of the runway after receiving a 
ke-off clearance.
For each simulated aircraft pair, the three dimensional Euclidian 
stance at the CPA is retrieved and saved for later analysis using the 
T method introduced in Section 2. For the distance at CPA to be ac-
rate, all the trajectories are re-sampled at a resolution of 0.02 s. For 
ustrative purposes, Fig. 6 show four different simulation runs, where 
 aircraft pair consisting of a GA and a departure are replayed. More-
er, Fig. 7 depicts the observed distribution of the negative minimum 
acings at CPA for the 973,492 GA/departure pairs. Since the aircraft 
 modelled as spheres of diameter 𝜆 = 55m, a collision is described by 
negative distance at CPA larger than −55m, which is indicated with a 
d dashed line.

5. Peaks Over Threshold method

Following the CPA calculation, we delve into the extreme value 
alysis of the spacing at CPA to model. To this end, we analyze the 

haviour at the tail of the CPA spacing distribution. The right plot 
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g. 5. The eight most commonly observed aircraft types flying go-arounds (left) and departures (right), and their associated wingspan. On runway 14, most of the 
 are flown by narrow-body aircraft having an average wingspan of 34 m. Runway 16 is mostly used by wide-body aircraft with an average wingspan of 55 m.

g. 6. Four pairs of replayed GA and departures illustrating various CPA spacings. The aircraft symbols illustrate the position of the respective aircraft at the CPA. 
6

p left has a three-dimensional CPA spacing of 187 m; top right, 1,619 m; bottom left, 4,383 m; and bottom right, 6,469 m.
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Fig. 7. The left plot shows the histogram of the negative spacings at CPA in meters for the 948,272 combinations of GA and departure pairs. The right plot is a zoom 
on the right tail of the distribution. The red line indicates the aircraft diameter 𝜆. No collision was observed and the smallest observed negative spacing at CPA is 
-78 m.

Fig. 8. Mean excess plot. The red line indicates the chosen threshold value 𝑢 of -940 m.
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 Fig. 7 provides a close-up view of this tail. Notably, no collisions 
ere observed. Indeed, the closest spacing at CPA observed is 78 m. To 
nduct the EVT analysis, we employ the POT method, which requires 
lecting an appropriate value for threshold 𝑢. Fig. 8 shows the sam-
e mean excess plot of the spacings at CPA. The threshold is chosen as 
e smallest value where the curve starts to exert a linear behaviour, 
., at a value of −940 m, which results in 73 samples that are over the 
osen threshold. As mentioned in Section 2, the choice of an appropri-
e threshold value can be difficult and it is recommended to repeat the 
alysis for multiple threshold values. This has been done for this study 
d the results are presented later in Section 4.8.
With the determined value for the threshold 𝑢, we proceed to fit 
GPD to the tail (or more formally, to the CPA spacing exceedances 
er the threshold 𝑢). The value of the shape parameter of the GPD, 𝜉, 
as estimated using MLE to get 𝜉MLE, while the other parameter 𝛽 is 
timated by the relationship 𝛽 = −𝜉MLE ⋅ 𝑢. Fig. 9 depicts the histogram 
 the exceedances over the threshold 𝑢 and the fitted GPD probability 
nsity function. Consequently, the fitted GPD is

( )−1∕𝜉MLE
7

𝜉,𝛽(𝑢)(𝑦) = P(𝑢−𝑋 ≤ 𝑦 ∣ −𝑑CPA > 𝑢) ≈ 1 − 1 + 𝜉MLE𝑦∕𝛽 (10) be
ith 𝑢 = −940, 𝜉MLE = −0.534, 𝛽 = 501.93, and 𝑑CPA being the spacing at 
A.

6. Collision probabilities

With the GPD fitted to the tail, we employed Equation (6) to express 
e probability of a mid-air collision. However, in the practical example 
esented in this study, a collision can only occur if landing aircraft is 
rforming a GA. Thus, the probability of a collision is conditioned on 
GA occurring simultaneously:

MAC ∣GA) ≈ 𝑁

𝑛
⋅
(
𝜆

𝑢

)−1∕𝜉MLE
(11)

sing the chain rule, the probability of a collision is expressed as

MAC) = P(MAC ∣GA) ⋅ P(GA) (12)

ith P(GA) being the probability of a GA. Note that, as stated in Sec-
n 4.2, it is assumed that every time a take-off is released, an aircraft 

 on the approach of runway 14. P(GA) was estimated by using the 
taset proposed by Monstein et al. [33], which contains a large num-

r of both landings and GAs at Zurich Airport (amongst many others). 
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Fig. 9. Histogram of the CPA spacings exceedances over the threshold and its associated GPD fit. The collision probability given an exceedance can be obtained by 
integrating the GPD between the two dashed vertical red lines.
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is dataset has been expanded to include landings from 2020 to 2023, 
lowing for a more precise estimation of the GA rate on runway 14 at 
rich Airport. Out of 181,933 recorded landings on runway 14, 598 
sulted in a go-around. Consequently, the estimated GA probability is 
GA) ≈ 598∕181, 933 ≈ 3.3∕1, 000.
Finally, we estimate the probability of a MAC as follows:

• Probability of a collision, given a simultaneous GA:

P(MAC ∣GA) ≈ 𝑁

𝑛
⋅
(
𝜆

𝑢

)−1∕𝜉MLE

≈ 73
973,492

(
𝜆

𝑢

)−1∕𝜉MLE

≈ 7.5 × 10−5 ⋅ 4.91 × 10−3

≈ 3.68 × 10−7

• Probability of a GA:

P(GA) ≈ 598
181,933

≈ 3.3
1,000

• Probability of a mid-air collision:

P(MAC) = P(MAC ∣GA) ⋅ P(GA) ≈ 3.68 × 10−7 ⋅ 3.3
1,000

≈ 1.22 × 10−9

The estimated probability for a mid-air collision is P̂(MAC) = 1.22 ×
−9. This implies that an eastbound departure from runway 16 has a 
obability of a mid-air collision of 1.22 ×10−9 if an approaching aircraft 
 runway 14 is situated at 5NM from the runway threshold when the 
ke-off is released.

7. Uncertainty estimation

Compared to the uncertainty estimation presented in Section 3, the 
actical example considered has another source of uncertainty. Indeed, 
e additional uncertainty of the estimate for the probability of a GA, 
GA) must be accounted for. Since the estimate P̂(GA) of P(GA) is 
tained by Bernoulli trials, the same method can be used as for the 
certainty estimation of P̂(−𝑑CPA > 𝑢) in Equation (7):

GA)∼
(

598
181,933

,
598(181,933 − 598)

181,9333

)
∼

(
3.3 × 10−3,1.8 × 10−8

)
The probability estimate of having the CPA over the threshold 𝑢 also 
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8

llows a normal distribution, such that: Ca
𝑑CPA > 𝑢)∼
(
𝑁

𝑛
,
𝑁(𝑛−𝑁)

𝑛3

)

∼
(

73
978536

,
73(978536 − 73)

9785363

)

∼
(
7.48 × 10−5,7.62 × 10−11

)
The inverse Hessian of the log likelihood is equal to 3.91 × 10−3, 
ding to the following expression for the uncertainty in 𝜉:

LE∼
(
−0.534,3.91 × 10−3

)
A Monte Carlo simulation with 100,000 runs was performed to ob-
n the distribution of probability estimate P̂(MAC) and the histogram 
the results is shown in Fig. 10. Fig. 10 also shows the values for the 
fidence intervals. It can be seen that for a 95% confidence interval, 
 have:

4 × 10−10 ≤ P(MAC) ≤ 3.35 × 10−9

It is worth highlighting that the confidence intervals obtained by 
T are smaller than the ones generated with other, simpler methods. 
r comparison, we analyzed the results of 978,536 Monte Carlo simu-
ions, in which no collision was observed. The Rule of Three ([34]), 
tes that for a sample of 𝑛 subjects with zero occurrences of a certain 
nt, a 95% confidence interval for the event’s occurrence probabil-
 ranges from 0 to 3∕𝑛. Applied to the case study, this means that the 
fidence interval for the probability of having a collision, given a GA, 

P(MAC ∣GA)MC ≤ 3.07 × 10−6.

The result of the Rule of Three is three times larger than the one 
tained using the EVT for the same confidence level:

AC ∣GA)EVT ≤ 1.02 × 10−6

Comparing the proposed method with a classical Monte Carlo 
ulation-based approach shows that the proposed method is computa-
nally more efficient. Using the Wilson score confidence interval [35], 
 can demonstrate that approximately 10.7 million Monte Carlo sim-
tions are necessary to achieve a comparable confidence interval for 
 upper limit of the collision probability. Recalling that the method 
posed in this study required fewer than one million Monte Carlo 
s, makes the proposed method ten times more efficient. Given the 
atively low number of observed GA, simulating 10.7 million Monte 

rlo simulations would be very challenging with the data available.
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Fig. 10. Histogram of the P̂(MAC) probabilities obtained by simulating 100,000 Monte Carlo runs. The lower and upper bounds corresponding to a 95% CI are 
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8. Robustness of the estimates

As suggested by Embrechts et al. [16], the robustness of the colli-
on probability estimates is assessed by using different values for the 
reshold 𝑢 for the POT method. Fig. 11 illustrates the probability of col-
ion for various threshold values, accompanied by the upper bound for 
95% confidence interval. Additionally, a Kolmogorov-Smirnov (KS) 
st has been performed to assess the goodness of fit for the GPD. The 
lour of the dots represents the p-value of the KS test, with the null hy-
thesis being that the two distributions being compared are identical. 
e results indicate that the calculated probability remains relatively 
able, irrespective of the chosen threshold. Threshold values ranging 
om -980 to -900 m appear to yield the most optimal fit for the GPD as 
dicated by higher p-values and narrower 95% confidence intervals.

 Discussion

In this work, we presented a novel methodology for estimating mid-
r collision risk by combining Monte Carlo simulation and the Extreme 
lue Theory’s Peaks Over Threshold approach. This method offers 
veral key advantages over traditional methods: (i) Reduced computa-
nal effort: Our approach decreases the number of Monte Carlo runs, 
ading to a tenfold reduction in the case study. While this reduction 
ay not seem extraordinary, we would argue that in the presented ex-
ple, pure Monte Carlo simulation would not have been possible due 

 the limited amount of historical data that is available. In situations 
here sufficient historical data is available, a data-driven approach is 
guably superior to simulated traffic that often relies on many assump-
ns and expert judgement. However, independently of how the data 

 generated, the proposed method makes efficient use of the data. (ii) 
uantification of confidence intervals: our methodology allows for the 
lculation of confidence intervals, an interesting feature not available 
 traditional collision risk models. In the practical example we showed 
at the MAC probability can be chosen for different confidence inter-
ls. For example, the nominal estimation is a probability of 1.22 ×10−9
t considering a 95% confidence interval, the obtained probability is 
low 3.35 × 10−9 leading to a risk of 6.7 × 10−9 (recall from the intro-
ction that one collision counts for two fatal accidents) fatal accidents 
9

r departure on runway 16. pu
For illustration, let’s compare the risk of 6.7 ×10−9 fatal accidents per 
ovement to a TLS of 1 ×10−8 fatal accidents per movement. This com-
rison indicates that implementing a mitigation measure with a cut-off 
stance of 5NM, rather than 7NM, would yield a risk almost in line 
ith the TLS. It is important to note, however, that mid-air collisions 
e not the sole cause of fatal accidents. Wake turbulence encounters 
ay also lead to catastrophic incidents, which could be a contributing 
ctor for the current application of a 7NM separation distance instead 
 5NM. Furthermore, it is worth mentioning that, due to data quality 
itations, certain simplifications have been employed in our analysis 
.g., the assumption of a one minute between take-off clearance and 
e point when a departure reaches the end of the runway). To opera-
nalize these findings, these simplifications would need to be refined 
d addressed to ensure a more accurate representation of real-world 
nditions.

While the proposed methodology offers significant advantages over 
re Monte Carlo simulation, it is important to acknowledge its lim-
tions. One must exercise caution in extrapolating the tail too far 
yond the observed data. In such a case, the large confidence intervals 
ould provide an indication that the uncertainty is too large to make 
y reasonable predictions. Additionally, the choice of an appropriate 
reshold is important, as it can significantly impact the accuracy of the 
al results. Despite the existence of numerous techniques for thresh-
d selection, each has its own shortcomings and remains susceptible 
 potential errors. By acknowledging these limitations and exercising 
ution in the application of the method, our EVT-based approach can 
ill provide valuable insights and contribute meaningfully to the field 
 mid-air collision risk modelling.

 Conclusion and outlook

In conclusion, our methodology allows for efficient mid-air colli-
on risk modelling by combining the strengths of Monte Carlo sim-
ation and EVT to optimize the estimation of low probabilities. As 
data-driven approach, it enables the accurate computation of risks 
r complex traffic patterns with relatively fewer assumptions com-
red to traditional methods. We have demonstrated the effectiveness 
d applicability of the proposed methodology by examining a real-
orld scenario, which would have been challenging to assess using 

re Monte Carlo simulation. Our findings indicate that this method-
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Fig. 11. Variation of the threshold values 𝑢 and its effect on probabilities. The top plot shows the estimated value P(−𝑑CPA > 𝑢), the middle plot displays the associated 
𝜉, and the bottom plot depicts the calculated probability of a collision. For each plot, the respective 95% confidence intervals are represented by the coloured area. 
The colour of the markers in the bottom plot is linked with the associated Kolmogorov-Smirnov test’s p-value of the fitted GPD. A higher p-value indicates a better 
fit
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ogy could potentially improve the efficiency of the use runway 14 in 
rich by refining the current mitigation measures to be less conser-
tive, while still maintaining an appropriate target level of safety. By 
ering a valuable tool for enhancing the safety and efficiency of air 
affic procedures and separation standards, our EVT-based approach 
ntributes meaningfully to the field. Future research could explore the 
plication of this methodology to other types of events, such as loss of 
paration, airspace infringements, or other safety-critical scenarios in 
iation. Moreover, researchers may also investigate opportunities for 
10

fining threshold selection techniques or further tailoring the approach Pr
 specific contexts, thereby expanding its versatility and applicability 
ross a wide range of aviation safety challenges.
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