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Abstract—This paper introduces a novel data-driven mid-air
collision risk model for an aircraft flying through a flow of air-
craft, modelled using a probability density function to describe
position, and a speed vector. The proposed model is, compared
to traditional Monte-Carlo simulations, computationally efficient
and, thus, facilitates exploration of risks as a function of key
parameters, such as aircraft performance, or with different
scenarios. Compared with traditional collision risk models, the
proposed solution can handle more complex trajectories and
traffic flows. The usefulness of the novel model is illustrated on
a real-world example by applying it to the terminal airspace
of Zurich airport, Switzerland. Specifically, the probability of
collisions between go-arounds on Runway 14 and departures
on Runway 16 is quantified. The results of the model were
validated through comparison with Monte-Carlo simulations,
with comparable outcomes but significantly lower computational
costs.
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I. INTRODUCTION

When designing new air traffic procedures and regimes,
or assessing existing procedures, one key factors is the
estimation of the mid-air collision risk (CR). This should be
below accepted Target Levels of Safety (TLS), below the risk
for equivalent accepted systems, or As Low as Reasonably
Practical (ALARP).

The TLS for CR in en-route airspace is usually 1.5×10−8

fatal accidents per flight hour, with one collision being two
fatal accidents. This is sub-divided into a risk of 5 × 10−9

per physical dimension (lateral, longitudinal and vertical),
when separation standards are defined by ICAO. The TLS
in the terminal area is less defined, with ’per flight hour’ not
always appropriate, and replaced by ’per movement’ (arrival
or departure). The overall aircraft risk has historically been
divided into the three similarly weighted phases of take-off,
en-route and landing; with equipment failure and collision
with terrain / obstacles dominating the risk. The total aircraft
risk is of the order of 10−7 per flight, with the mid-air
collision TLS designed to be in the order of 1/10 of this value.
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The TLS for terminal-area (TA) collisions is not formalised,
with values of orders 10−8 to 5×10−10 per movement being
used, depending on context. Since the terminal-area risk is
not neatly divided into lateral, longitudinal or vertical risk,
a convenient measure is then 1.5 × 10−8 fatal accidents per
movement, being similar to the en-route TLS. [1], [2] give
good reviews of TLS in aviation.

Aviation collision risk can be estimated using many differ-
ent models, often in combination: assuming traffic distribu-
tions along predefined routes based on required or observed
navigational performance [3]; considering distributions for
normal (core) and ab-normal (tail) operations, particularly
used to define separation standards for parallel tracks [4]; con-
sidering operational errors such as large deviations at given
angles [5]; doing pure Monte-Carlo simulations of traffic [6]–
[8]; and, considering traffic densities in small defined grids.
Different versions of these models have historically been
used by ICAO to define new separation standards (usually
assuming defined route structures), and by approved airspace
authorities (Regulators or Air Navigational Service Providers
- ANSP).

This paper introduces a novel, data-driven model to esti-
mate the collision risk in complex airspace. The model calcu-
lates the probability of collision for an aircraft flying through
a flow of aircraft. The flow of aircraft is modelled using a
probability density function (PDF) derived from historical
trajectories, and a speed vector. The aircraft flying through
the flow is represented as a 4-dimensional trajectory, with
the usual 3-dimensional (3-D) position and time. By using
historical data to estimate the probability density function of
the positions of the flow, the proposed model eliminates the
need for unreliable assumptions about traffic behaviour, while
preserving the stochastic nature of the process that generates
the PDF. This method is also computationally efficient, reduc-
ing the processing time by orders of magnitude compared to
traditional Monte-Carlo simulations. Furthermore, the model
is capable of handling more complex aircraft trajectories, such
as turns, which are not addressed by conventional models such
as Anderson-Hsu [9] or by the Reich model [3], [10] .

The model is illustrated with a case study from Zurich



airport (LSZH), Switzerland. Specifically, the collision risk
model (CRM) is used to quantify the risk between go-arounds
(GAs) on Runway 14 and take-offs (TOs) on Runway 16 if
they were operated independently. Fig. 1 illustrates the the
situation in Zurich laterally, and Fig. 2 shows the altitude
distribution of the aircraft when they cross the tracks. Cur-
rently, the runways are not operated independently, avoiding
simultaneous operation to mitigate the risk. However, the
novel method demonstrated in this paper may be of use in
defining the acceptable thresholds for separating an approach
to Runway 14 and a departure on Runway 16.

The paper is organised as follows: In Section II key con-
cepts related to collision risk modelling such as Monte Carlo
simulations, the crossing track problem, and position PDF
estimation using Kernel Density Estimation are introduced.
Section III provides a mathematical description of the devel-
oped model, its validation and its limitations. The proposed
model’s application to estimate collision probabilities between
GAs and TOs at Zurich airport is the focus of Section
IV. Finally, Section V concludes the paper and highlights
potential areas for future research.

Figure 1: Overview of the modelled scenario at the Zurich
airport. Blue lines: 620 go-arounds on Runway 14. Red lines:
500 randomly sampled departures on Runway 16. The grey
area indicates one area of potential conflict and a one nautical
mile reference line is shown.

II. THEORETICAL BACKGROUND

A. Collision risk modelling with Monte-Carlo simulations

Monte-Carlo simulations are useful to, among other things,
estimate the probability of an event happening when the
system under study cannot be modelled analytically, such as
the complex terminal-airspace. In the past, collision risk mod-
elling in TAs were often done using Monte-Carlo simulated
trajectories e.g., in [6]–[8].

Figure 2: Histogram of the altitude when crossing tracks.

Monte-Carlo simulations can be used to estimate the ex-
pectation of a probability density by leveraging the empirical
mean of a random variable sampled multiple times. For
instance, in the context of assessing the collision risk between
two aircraft, the event of a collision can be described by
a random variable following a Bernoulli distribution. It is
then possible to randomly generated n pairs of these two
aircraft trajectories and estimating the collision probability
by counting the number of observed collision such that the
probability of a collision, Pcol, is

Pcol =
nobserved collisions

n
. (1)

If historical aircraft trajectories are available, Monte-Carlo
simulations can be performed by sampling from those trajec-
tories. In cases where such data is not available, simulated
trajectories can be used. However, the accuracy of the colli-
sion risk estimation is directly impacted by the quality of the
simulated trajectories. Particularly in terminal areas, factors
such as aircraft type, weather conditions, and air traffic control
and pilot behaviour can lead to significant variations in these
trajectories and, thus, the results of the simulations. Addition-
ally, the slow convergence of Monte-Carlo estimators requires
large numbers of simulation runs to accurately estimate small
probabilities, such as in the case of estimating the probability
of a mid-air collision. Using the central limit theorem, it
is possible to define confidence interval on the probability
estimation. For example, for estimating a probability of 10−9

with an absolute error at 95% lower than 10−10 would require
about 4 × 1011 runs. Variance reduction techniques, such as
importance splitting, can help to overcome this issue [11].

B. Crossing track collision probability

The crossing track collision risk model computes the
probability of collision in a 2-D space for an aircraft crossing



Figure 3: A route where aircraft1 are flying at a speed V1

and separated by a distance δ. aircraft2 flying at a speed V2

crosses the route with an angle θ.

a flow of aircraft (such as a route or standard procedure). This
is a classic situation of interest for both procedure designers,
as well as those monitoring an airspace. For example in [5]
and [12], this model is used on deviating aircraft from a track,
inadvertently crossing an adjacent route: here the question
is what separation distance meets the TLS given a known
deviation rate (an operational error or blunder) and density of
traffic. Similarly, the monitoring of Reduced Vertical Separa-
tion Minima (RVSM) airspace risks by Regional Monitoring
Agencies requires the estimation of risk for an operational
error of an aircraft climbing through another flight level [13].
Airspace design often consists of two streams of aircraft
crossing each other, either separated vertically for procedural
separation, or at similar altitudes where it is assumed the
air traffic controller will manage conflicts. In both cases, the
modelling considers the rate of typical errors (aircraft at the
wrong altitude, pilot/controller errors in managing conflicts)
and then the risk associated with the aircraft crossing through
the other route.

Fig. 3 shows a stream of aircraft1 of speed V⃗1, all separated
by a distance δ and aircraft2 crossing the flow at a speed V⃗2

with an intersection angle θ. The aircraft are assumed to have
a circular shape with a diameter λ.

This type of crossing model has been used within ICAO [5],
[12] to define new oceanic separation standards for parallel
tracks with space-based ADS-B surveillance, but satellite-
based communications. Unlike traditional ICAO models for
parallel tracks [3], [4] which are based on assumed core and
tail lateral distributions, this model include a rate of deviating
aircraft, and then the risk associated with this aircraft crossing
the track of the adjacent route. This conservatively modelled
the aircraft as squares, with Barry 2022 [14] describing the
model for circular aircraft. This type of model, although
fundamentally equivalent to Reich-style models [3], is more
intuitive.

The novel model proposed in this paper can be seen
as a generalization of the crossing track model. Thus, the
derivation of the crossing track model is presented in this
section since its concepts are used for the development of the
proposed model. Furthermore, this model will also be utilized
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Figure 4: Aircraft (in red) crossing a stream (in blue) in the
reference frame (top) and in the co-moving frame (bottom).

later on as a mean to validate the new method.
To simplify the analysis of the situation shown in Fig. 3,

a co-moving frame fixed to aircraft1 is introduced. aircraft1
will then have zero speed, as shown in Fig. 4. Hence,
the respective aircraft speeds in the co-moving frame, can
expressed as

V ′
1 =

[
0
0

]
, V ′

2 =

[
||V⃗2|| cos θ − ||V⃗1||

||V⃗2|| sin θ

]
≡

[
V2 cos θ − V1

V2 sin θ

]
.

(2)
The cross-section is the distance between two aircraft2,

where one would scrape the left side of aircraft1 and the other
aircraft2 would scrape the right side of this same aircraft1, as
depicted in Fig. 5.

Since aircraft1 are separated by a distance δ, the collision
probability is expressed by the ratio 2λ′

δ where λ′ is the
aircraft2 cross-section in the co-moving frame as shown
in Fig. 4 and Fig. 5. The probability of a collision, Pcol
,extended to

Pcol =
2λ′

δ
=

2λ

δ sin θ′
(3)

with,

sin θ′ =
V2 sin θ√

(V2 cos θ − V1)2 + (V2 sin θ)2

=
1√

1 +
(

V2 cos θ−V1

V2 sin θ

)2
.

(4)



acac11

acac22 acac33

acac11
acac22acac22

VV22 VV22

VV11

VV22''VV22''

Reference Frame

Co-moving Frame

Figure 5: Cross sections in the reference frame (top) and in
the co-moving frame (bottom).

Combining (3) and (4) results in

Pcol =
2λ

δ

√
1 +

(
V2 cos θ − V1

V2 sin θ

)2

. (5)

Note that Pcol can, in some specific circumstances, be larger
than one. This is due to the fact that it allows for an aircraft
crossing the stream to have multiple collisions e.g., if an
aircraft is very slow, it could be hit by multiple aircraft
in the stream. This is a rather theoretical concern, though,
and can be mitigated by limiting the probability such that
{Pcol|0 ≤ Pcol ≤ 1}.

It is then possible to extend (5) to account for different
speeds, spacings and crossing angles using probability densi-
ties:

Pcol =
∫∫∫∫

2λ

δ

√
1 +

(
V2 cos θ − V1

V2 sin θ

)2

f(δ)f(V1)f(V2)f(θ) dδ dV1 dV2 dθ

(6)

where f(δ), f(V1), f(V2) and f(θ) are respectively the
probability density functions describing aircraft1 spacings on
the route, aircraft1 and aircraft2 speeds, and the crossing
angle.

C. Kernel density estimation

The PDFs in (6) are usually estimated from data. In some
cases, this can be done using classical, parameteric PDFs, but
in many practical cases parameteric PDFs are insufficient. In
these cases, a kernel density estimation (KDE) can be used.
KDE is a non-parametric method to estimate the probability
density function based on a finite sample. The method is well
established and was created by Rosenblatt [15] and Parzen
[16]. KDE became widely popular with the advent of machine

learning and many implementations in different programming
languages exist, both for univariate and multivariate data.

In the scope of this study, a KDE is fitted to the 3-D
positions of the trajectories of one of the two traffic flows.
The probability density function obtained by the KDE can be
interpreted as the function ρ : R3 → [0, 1], which describes
the probability of being at a given position.

The KDE has one free parameter, the bandwidth h, and
the selection of a suitable value is essential, as illustrated in
Fig. 6. In the figure, three KDEs with different values for h

Figure 6: The histogram (blue bars) and fitted KDE with
different bandwidth h (colored lines) on simulated univariate
data illustrate the importance of selecting a suitable band-
width.

are fitted to simulated univariate data. The KDE with h = 5
(violet line) is oversmoothing the underlying distribution,
h = 0.05 (red line) is overfitting, and h = 0.5 seems visually
appropriate. But this visual try-and-error approach to estimate
a suitable bandwidth is subjective and is not practical for
multivariate (i.e. higher dimensional) data. To avoid this issue,
multiple methods have been proposed to estimate a value for
h. Using a cross-validation method is popular and results in
robust estimates, but in the case of relatively large datasets
it becomes computationally expensive and infeasible. The
consensus in the literature is that plug-in selectors are valid
alternatives to cross-validation, while being significantly less
computationally expensive (see e.g. [17]). The selector used
in this project is the multivariate plug-in selector of Wand
and Jones [18].

In contrast with the univariate example in Fig. 6, the
bandwidth of a multivariate KDE is a matrix, not a scalar.
In this project, the matrix is assumed to be a diagonal matrix
with one parameter for each of the dimensions and zeros for
the off-diagonal elements: the three physical dimensions (x, y
and z) are independent and with different scales. For example,



it is expected that the horizontal dispersion would be different
than the vertical (altitude).

The PDF obtained by fitting a KDE to the position is
subsequently used in estimating the probability of an overlap
in the position, as described in the following sections.

III. PROPOSED METHOD: PROBABILITY OF COLLISION
USING LINE INTEGRATION ON A DENSITY

The proposed method extends the prior model presented
in Sec. II-B by computing the collision probability for an
aircraft flying through a flow of aircraft and offers several key
advantages over the crossing track model. First, it allows for
the consideration of aircraft crossing the flow with complex,
non-linear trajectories, rather than just straight paths. This
improved accuracy provides a better understanding of the
risk in real-world scenarios where aircraft may not follow
a single 1-D path. Second, the model addresses the challenge
of insufficient data through the use of KDE smoothing as
introduced in Sec. II-C, compensating for missing or sparse
data.

A. Mathematical formulation

The basic idea of the proposed method is to integrate the
fitted probability density function along the path of aircraft2.
The formulation of the collision risk model is presented in
the 2-D horizontal plane, with the capability to be extended to
three dimensions without loss of generality. Therefore, aircraft
are represented as circular shapes with diameter λ.

The flow of aircraft1 is not static (see Fig. 3) and it is, thus,
not possible to directly integrate the PDF along the path s of
aircraft2 without considering the direction and the speed of
the flow of aircraft1. Nevertheless, it is possible to use the
co-moving frame introduced in Sec. II-B and Fig. 4. Since
aircraft1 are static in the co-moving frame, the probability of
collision is obtained by integrating along the path of aircraft2
in the co-moving frame s′,

Pcol =
∫
s

cross-section(s′)ρ(s′) ds′ (7)

Unfortunately, integrating in the co-moving frame is not as
straight forward as integrating in the reference frame. There-
fore, next steps show how to compute Pcol by integrating in
the frame of reference using a speed factor.

For an interval of time ∆t, aircraft2 travels a distance
||V⃗2

′
||∆t in the co-moving frame, while it travels a distance

||V⃗2||∆t in the reference frame. We define the speed factor
kV as the ratio of the two speeds:

kV =
||V⃗2

′
||

||V⃗2||
=

√
(V2 cos θ − V1)

2
+ (V2 sin θ )

2

V2
(8)

This factor can be used to compute the collision probability
by integrating along aircraft2 path in the reference frame:

Pcol =

∫
s

cross-section(s)ρ(s)kV (s) ds

=

∫
s

2λρ(s)

√
(V2(s) cos θ(s) − V1)

2
+ (V2(s) sin θ(s) )

2

V2(s)
ds

=2λ

+∞∫
0

√
(V2(t) cos θ(t) − V1)

2
+ (V2(t) sin θ(t) )

2

V2(t)

ρ (x2(t), y2(t))
√
(V2(t) cos θ(t))2 + (V2(t) sin θ(t))2dt

=2λ

+∞∫
0

√
(V2(t) cos θ(t) − V1)

2
+ (V2(t) sin θ(t) )

2

ρ (x2(t), y2(t)) dt
(9)

where (x2(t), y2(t)) represent the 2-D coordinates of aircraft2
at time t, and ρ(x, y) is the probability of an aircraft1 being
at the coordinates (x, y). Note that this model assumes that
the PDF ρ is locally flat i.e., constant within the given cross-
section of the aircraft (2λ). In real-world applications this is
not a problem, since the risk will not change dramatically
within, say, 100 meter.

B. Model Validation

The novel model in (9) can be partially validated by
applying it to a case where an aircraft is crossing a flow
with constant density, as shown in Fig. 7.

Figure 7: An aircraft (in red) is crossing at a speed V2 and
an angle θ through a flow of aircraft going at a speed V1.

This scenario can be described defining the density ρ =
1
wδ with w being the track width and delta the longitudinal
spacing between aircraft. Since the different speeds and the



crossing angle are constant, (9) can be expressed as:

Pcol =
2λ

wδ

√
(V2 cos θ − V1)

2
+ (V2 sin θ )

2

V2

∫
s

ds

=
2λ

wδ

√
(V2 cos θ − V1)

2
+ (V2 sin θ )

2

V2

w

sin θ

=
2λ

δ

√
1 +

(
V2 cos θ − V1

V2 sin θ

)2

(10)

Equation (10) is equal to (5) and, therefore, the novel model
is shown to be equivalent in the special case of the crossing
track model with constant PDF.

C. Model limitations

The proposed collision risk model does not account for
variations in speed and heading within the aircraft flow; it
assumes that all the aircraft in the flow are flying with the
same speed vector. The effect of this assumption on the risk
can be accounted for by an appropriate sensitivity analysis
(i.e. analyse of the varying results with a range of speeds
and headings), which is possible given the computational
efficiency of the method.

IV. CASE STUDY

The scenario presented in the following case study was
mainly chosen because it is relatively simple and can be
validated with Monte-Carlo simulations with a reasonable
effort. Of course, the proposed model can be applied to many
different scenarios. This includes the estimation of collision
risk between manned aircraft and Unmanned Aerial Vehicles
(UAV) or between UAVs and UAVs.

A. Scenario Description

At Zurich airport, the intersecting flight paths of take-offs
from Runway 16 and go-arounds from Runway 14 may pose
a risk of mid-air collision, shown in Fig. 1 and 2. This risk
depends on the aircraft departing and going around simultane-
ously (within a relatively short time window). To mitigate the
risk, Runways 14 and 16 cannot operate independently; with
departures held until an approach has landed. This negatively
impacts the capacity of the airports. In this study, the collision
risk is evaluated assuming that the two runways operate
independently, and that there is always an aircraft approaching
Runway 14 (uniformally positioned between 0 and 5 nautical
miles from the threshold) when a take-off on Runway 16 is
initiated, as illustrated in Fig. 8.

B. Dataset

This case study is based on historical Automatic Depen-
dent Surveillance-Broadcast (ADS-B) data from the OpenSky
Network [19]. From the historical data, 6300 departures
were identified on Runway 16 from January to November
2022. After removing observations that were incomplete or
noisy, about 5100 trajectories were eventually used. Since
the number of observed go-arounds is significantly smaller, a
longer period is needed to obtain sufficient observations. In
the period from 2017 to 2019, 620 go-arounds were detected

Figure 8: Simultaneous operation concept: a landing is ap-
proaching (between 0 and 5 nautical miles from the threshold)
when a take-off on Runway 16 is initiated.

on Runway 14. Taking the conservative assumption that all
go-arounds fly through the volume of potential collision (i.e.,
removing trajectories that turn left early), 237 go-arounds
remained for modelling.

C. Modelling

In this study, the collision risk is modelled with the
Bernoulli random variable C, where P(C = 1) (denoted as
P(C) for simplicity) is the probability of a collision occurring
and P(C = 0) is the probability that no collision occurs.

The novel method is illustrated on one of the potential
conflict zones highlighted with the grey box in Fig. 1. For a
collision to occur in this scenario, a Runway 14 GA and a
Runway 16 TO have to be in the highlighted volume V at
the same time. The probability of a collision, per Runway 16
TO, is calculated for simultaneous operation of approaches
to Runway 14 and Runway 16 take-offs. This definition of
simultaneous operation is conservative and means that for
every aircraft departing on Runway 16, an aircraft is on the
approach within five nautical miles from the threshold. The
probability of a collision, given a simultaneous GA, can be
expressed as

P(C|GA) =P (C|(GA in V|TO in V))

·P(GA in V|TO in V).
(11)

The terms in this equation are:
• P(C|GA): Probability of a take-off to have a collision,

given a simultaneous GA on Runways 14.
• P (C|(GA in V|TO in V)): Probability of a take-off to

have a collision, given that a GA is in the volume V
whenever the TO is in the volume V .

• P(GA in V|TO in V): Probability of a GA being in the
volume V , given that a take-off is in the volume V .

The probability of a collision of a take-off P(C), assuming
(i.e., given) simultaneous operation of Runways 14 and 16,
can calculated:

P(C) = P(C|GA) · P(GA). (12)



with P(GA) being the probability of a landing to perform a
go-around.

The probability of a take-off to have a collision, P(C),
can also be interpreted as the probability of a collision per
take-off. Knowing that P(C) is the probability of a Bernoulli
random variable, the expected value is E[C] = P(C). With
this in mind, the collision risk R, namely the expected number
of fatal collisions per take-off, can be expressed as

R = 2 · P(C). (13)

The factor of 2 is due to the fact that a collision event involves
two aircraft and, thus, counts twice. The risk R, and the
probability of a collision P(C), are in this scenario the same
for a landing and a departing aircraft, since for each aircraft
landing there is one aircraft departing. In scenarios where
the traffic is not balanced, R and P(C) can analogously be
expressed per landing.

To estimate the risk of a collision, all the terms in (11)
and (12) can be estimated from the data. The GA rate P(GA)
in (12) is based on data from a large, publicly available dataset
of go-arounds [20]. This data suggests that the GA probability
of an aircraft landing on Runway 14 in Zurich is about 3.2
per thousand i.e., P(GA) = 0.0032.

The term P(GA in V|TO in V) in (11) can be estimated
from the data by using a simple Monte-Carlo simulation.
This simulation uses historical trajectories for the GAs and
the TOs. In each simulation run, a randomly selected GA is
randomly placed within five nautical miles from the threshold
of Runway 14. At the same time, a randomly selected aircraft
is taking-off on Runway 16, as depicted in Fig. 8. With the
two historical trajectories evolving over time, the number of
samples within the volume V can then be counted (presuming
an equal, constant, and sufficiently large sampling rate of the
trajectories). The probability of a GA being in the volume V ,
given that a take-off is in the volume V , can be calculated by

P(GA in V|TO in V) =
nGA in V ∩ TO in V

nTO in V
(14)

with nGA in V ∩ TO in V being the number of samples where
both the GA and the TO are in the volume at the same time
and nTO in V being the number of samples where the TO is in
the volume.

The term P (C|(GA in V|TO in V)) in (11) is shortened
in the following to P(C|V ) to increase readability. This term
describes the novel model proposed in Sec. III and represents
the probability of an overlap in the position of the two aircraft
(i.e., a collision). The following describes how this can be
calculated.

1) Fitting the probability density function: In a first step,
a probability density function, namely a KDE, is fitted to the
observed trajectories of the go-arounds. The KDE applied in
this study uses a Gaussian kernel and the bandwidth h is
estimated using the multivariate plug-in selector of Wand and
Jones (see Sec. II-C). The estimated bandwidth matrix is

h =

11.1 0 0
0 11.2 0
0 0 1.8

 . (15)

As stated earlier, the bandwidth h is a diagonal matrix and
with the elements on the diagonal representing the bandwidth
for each axis. The estimated matrix h has very similar
estimates for the first two axis, which represent the lateral
position in x and y. The third row represents the bandwidth of
the altitude and is much smaller. This matches the expectation
that the dispersion in the horizontal plane (x and y) would be
similar, while the one in the vertical axis would be different.
A slice through the 3-D PDF at about 3900 feet is shown
in Fig. 9. The areas in darker red show a higher probability

Figure 9: Visualisation of a horizontal slice at around 3900 ft
through the fitted 3-D probability density function.

that an aircraft performing a go-around will be at this position.
As expected, the probability is higher in areas where multiple
trajectories were crossing through the volume.

2) Computing the probability of overlap: To estimate the
probability of collision when both a take-off and a go-around
are simultaneously in the volume, the 3-D version of (9) has
been applied to 5100 Runway 16 departures. All aircraft have
been modelled as cylinders with a diameter λ = 70m and
a height λz = 10m. The GAs have been modelled with a
constant speed of 216Knots, a climb rate of 809 ft/min and
a track angle of 137◦, with these values being the mean
of the corresponding data as extracted from the historical
trajectories. For a given take-off TOi, the probability is

P(C|V )TOi
= 4λλz

t=tend∫
t=0

(
(V2(t) cos θ(t) − V1)

2

+(V2(t) sin θ(t) )
2
+ (V z2(t)− V z1 )

2

)1/2

ρ (x2(t), y2(t), z2(t)) dt

(16)

where V1 is the average ground speed of the GAs, V z1 the
average vertical rate of the GAs, and x2(t), y2(t), z2(t) the



3-D position of the considered TOi at time t. Equation (16)
integrates along the path of TOi from the moment it enters the
volume (t = 0) until it leaves it again (t = tend). This integral
can be computed numerically relatively easily. An illustration
on a random sample of take-offs is shown in Fig. 10. The

Figure 10: Risk of collision for 15 randomly chosen take-offs
inside the area of interest. The risk varies in function of the
position of each take-off and is indicated by the color of the
markers. The red lines corresponds to the GAs trajectories.

color for each observation of the trajectories indicates the
probability of a collision. The integral in the equation above
integrates along one such trajectory.

The estimate of the probability of an overlap in position,
P(C|V ), can be obtained by averaging the probability of each
individual take-off:

P(C|V ) =
1

n

n∑
i=1

P(C|V )TOi (17)

D. Results

1) Probability of an overlap in position estimation: Fig. 11
shows the histogram of the P(C|V )TOi for each take-off. It
can be seen that the probability of an overlap in position for
an individual take-off is 0 < P(C|V )TOi

< 0.085. Averaging
over all take-offs results in:

P(C|V ) = 2.42× 10−3 (18)

2) P(GA in V|TO in V) estimation: The probability of a
GA being in the volume V , given that a take-off is in
the volume V , was computed according to (14). Performing
1,280,000 Monte-Carlo simulation runs resulted in

P(GA in V|TO in V) = 0.334 (19)
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Figure 11: P(C|V ) estimation using 5100 take-offs. The red
line corresponds to the mean value.

3) Probability of collision: Combining all the obtained
probabilities and a go-around rate of P(GA) = 3.2 × 10−3,
the probability of a collision, given simultaneous operation,
is

P(C) = P(C|V ) · P(GA in V|TO in V) · P(GA)

= 2.42× 10−3 · 0.334 · 3.2× 10−3

= 2.58× 10−6

(20)

Therefore, the probability of a take-off to collide with an
aircraft performing a GA, assuming simultaneous operation,
is 2.58 × 10−6. This value is well above the target level of
safety, as would be expected, since the two runways under
study are not operated independently. This result is validated
with the following Monte-Carlo simulation.

4) Comparison with Monte-Carlo simulations: A Monte-
Carlo simulation of 1,280,000 runs, where TOs and GAs
where sampled independently, has been conducted to compare
the results obtained with the newly proposed method. For
the Monte-Carlo simulation, it is possible to estimate the
probability of collision using:

P(C)MC = P(C|GA)MC · P(GA)

= 1.32× 10−4 · 3.2× 10−3

= 4.22× 10−6.

(21)

The results obtained with the Monte-Carlo simulation are:
P(C)MC = 4.22×10−6 while a result of P(C) = 2.58×10−6

was obtained by integrating TO trajectories in the density.
The slight discrepancy between the results obtained form
the Monte-Carlo simulation and the proposed method can be
attributed to the smoothing effect of the KDE on the estimated
probability density. While a perfect match between the results



was not expected , the close proximity of the results suggests
that the proposed method is reliable.

E. Using the model to gain insight into the system

The proposed method can also be used to gain insight
into the system under study. For example, the same model
could be applied to compute the probability of a near mid-air
collision or close proximity event; a procedure may have a
collision risk well below a TLS, but still have an unacceptable
rate of close-proximity events. The method can also be used
to determine which types of aircraft have a greater risk of
collision as shown in Fig 12. In the case study shown, aircraft
with lower climb performance have a smaller probability to
collide with a go-around, since they do not reach the altitude
of the go-around procedure. This type of insight can be useful
to ANSPs where procedures may be defined for specific
aircraft types (for example, wake-turbulence separation by
categories).
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Figure 12: Box plot of collision probabilities for the 7 most
common aircraft type in the historical data. The plain hori-
zontal lines from top to bottom correspond to the minimum,
the first, second and third quartiles and finally the maximum
respectively. The dashed line corresponds to the mean value.

Thanks to the comparably low computational cost, this
method is suitable to quantify the risk of multiple different
scenarios. In the presented case study, the model could be
used to develop an operational concept that meets the target
level of safety, while maximising the airport throughput.

V. CONCLUSIONS AND OUTLOOK

The novel collision risk model proposed in this paper is
based on a data-driven approach. It mathematically describes
an aircraft crossing a flow of aircraft, with the latter being
modelled as a probability density function. This approach is,
compared to Monte-Carlo simulations, computationally more

efficient while, in comparison to classical analytical models,
suited for the complex traffic flows encountered in a terminal
airspace.

A real-world application of the model is illustrated on a
case-study from the airport of Zurich, Switzerland. The novel
model was used to estimate the collision risk between go-
arounds on Runway 14 and take-offs on Runway 16, which
have intersecting flight path. The same system was in parallel
modelled with Monte-Carlo simulations to validate the results
of the new method. A comparison of the two methods shows
similar results, suggesting that the new method is reliable in
such applications.

Compared to other methods, the advantage of the novel
model is that it is able to model complex traffic patterns,
while still being relatively computationally light-weight. This
allows the model to be used in gaining insight into the system
under study, for example to efficiently identify aircraft types
that, due to their performance, create lower or higher collision
risks. Such insights can be helpful in finding a balance
between meeting the target level of safety and maximising
the throughput of an airport.

while the proposed model is a useful and efficient tool to
model the collision risk in complex airspaces, it also has its
limitations that could be addressed in future research. The
main limitation in the current model is the assumption of
a constant speed and heading of all the traffic modelled by
the probability density function. Developing a model that
can handle distributions for these parameters would give
the model yet more flexibility and would open up further
applications. A more ambitious extension to the model would
be to estimate the collision risk based on two probability
density functions that represent the positions of the traffic.
If successful, this would be a significant step to estimate
the collision risk independently of its geometry and would
significantly simplify collision risk modelling and monitoring.

We are convinced that the proposed model can be a useful
tool in modelling collision risk in complex airspaces and
we are looking forward to seeing it applied in real-world
applications, both in the world of manned aviation and in
unmanned aviation.
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