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Abstract. Experimentally, periodically released droplets in systems of
widening pipes show clustering. This is surprising, as purely hydrody-
namic interactions are repulsive so that agglomeration should be pre-
vented. In the main part of this paper, we investigate the clustering of
droplets under the influence of phenomenological hydrostatic forces and
some hypothetical attraction. In two appendices, we explain why a direct
numerical simulation for this system is rather more difficult (and prob-
ably not possible with current methods) than the “simple” geometry
would suggest.
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Fig. 1. Cylindrical pipe of the model system (above) with dimensions in meter and
Hagen-Poiseuille flow profile (below) with the widening of the pipe to an “O”-shape
at the right of x = 0, where the fanning out of the flow is computed based on the
assumption of continuity, respectively incompressibility.
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1 Introduction

The purpose of this work is the search for a theoretical understanding of the
clustering of oil droplets (density 1.2 g/cm3) suspended in water (density 1.0
g/cm3) in an opening pipe as in the experiments by Li and Barrow [7]. Intuitively,
one would expect that under the influence of purely hydrodynamic interactions,
there should only dominate repulsion between droplets and no clustering should
occur. We investigate the basic properties of the interaction between droplets,
together with the effect of the simulation geometry with the phenomenological
modeling of hydrodynamic forces and interactions. We desist from trying to
implement a full-fledged direct numerical simulation (DNS) of droplets in flow, as
the state of the art of direct numerical simulation is still far away from modelling
particles, let alone droplets, in three dimensional fluid geometries with the exact
boundary conditions. Some problems of the standard discretizations for DNS
methods with freely moving bodies inside are explained in Appendix A, while
the issues of “approximate” boundaries are discussed in Appendix B, to make
it plain that we have selected our modeling approach from a higher insight of
simulation methods, not due to ignorance of more elaborate methods.
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Fig. 2. Flow entering a pipe from a wider vessel with constant flow profile so that only
after the “entrance length”, a trule parabolic Hagen-Poiseuille flow profile is reached.

2 Our Modeling approach

For simplification, we treat the experiment by Li and Barrow [7] as a widening
pipe (see Fig. 1 above) without the butterfly-pipe mechanism which triggers the
separation and release of the droplets.

2.1 Forces on droplets in pipes

We want to model small oil droplets with a radius of about 0.6 mm in water,
so the surface tension should be large enough so that the deformation can be
neglected and the droplets can be treated as rigid. We work with an experimental
inside flowrate of 3.8 [ml/h]. Assuming a Hagen-Poiseuille flow with a parabolic
profile, the maximal velocity in the center of the narrow inflow pipe (d=1.32
mm) will be uin = 0.76 [mm/s], while at the wider O-shaped outflow pipe it
will be uout = 0.34 [mm/s], see Fig. 1. The Reynolds number Re based on the
viscosity of water µ = 10−3 [Pa s] with unit density ρ and the total pipe diameter
at inflow of 1.3 mm is

Remax =
ρuinDH

µ
≈ 4.4 · 10−4,

“deep” in the viscous regime of the Stokes flow (Re < 1), and far away for inertia
dominated (Re > 50), let alone fully developed turbulent flow (Re > 1000), so
that vortices and turbulence should not play any role. For pipe flow, at inflows
from a constant flow profile, it takes a certain distance, the entry (or entrance)
length, until the flow profile changes to full developed Hagen-Poiseuille flow,
see Fig. 2. For laminar flow, is is typically taken “within 5%”[15] of the channel
diameter, scaled by the Reynolds number, so for our case at the narrow inflow
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Fig. 3. (Dimensionless) wall correction factor and added mass over the reduced diam-
eter from 0 to 1.

we have
Lh,n = 0.05 ·ReD = 5.2 · 10−7[m],

and at the wider outflow, Lh,w = 1.460 · 10−6[m], still considerably less than a
droplet diameter. This means that for our setup, the flow assumes a parabolic
profile practically instantaneously, even between droplets. The entrance length is
a confirmation that viscous forces dominate and that the assumption of Hagen-
Poiseuille flow is justified. (The assumption of a constant flow speed would re-
duce the Reynold number and therefore the entrance length, which would again
confirm the prevalence of Hagen-Poiseuille flow.) We neglect any “elastic” defor-
mations of the droplet which may lead to deformations of the shape, so for the
force on the droplet we use Stokes law

Fd = 6πµRv, (1)

where v is the velocity difference between the center of mass of the droplet and
the velocity of the flow in the pipe. The Stokes law is only valid for walls far
away. For more narrow geometries, a (dimensionless) wall correction factor F ∗

must be included, which takes the influence of the walls into account. Fitting
the experimental data from Iwaoka and Ishii[5] for the dimensionless

r∗ =
rparticle
rpipe

, (2)

we found that at least for the experimental data range (0 ≤ r∗ ≤ 0.9)

F ∗ =
1

(1 − r∗)2.45
. (3)

was a good parametrization, see Fig. 3. Another issue of the Stokes law is that it
is valid only for equilibrium velocities. When the spheres undergo an acceleration
in a dense liquid (with a density comparable to the density of the body), there
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is an added (or vitual) mass of the fluid around the particle which must be
accelerated, too.[14]. For a sphere, that gives an additional inertia term, which
in a cylindrical vessel depends on the vessel radius. For the boundaries at infinity,
the correction is 0.5, i.e. for the acceleration of a spherical mass of volume V, an
additional mass of 0.5V ρ must be taken into account. The correction coefficients
for boundaries in finite distance have been computed theoretically by Smythe[13]
and experimentally verified by Mellsen[8]. We have fitted the resulting graph to
a (dimensionless) prefactor of

m∗ =
0.5

(1 − 0.9243r∗2)1.2579
. (4)

The comparison to the wall correction factor can be seen in Fig. 3. Obviously,
the added mass effect (for the accelerated motion) is considerably smaller than
the wall correction factor for the motion at given velocity.

2.2 The interaction of droplets

It is possible to expand the repulsive force between two droplets which are ap-
proaching each other with velocity v as a correction to the Stokes law[2,3]. For
our simulation, we have parameterized the resulting prefactor of the interaction
law for equal sized spheres, see Fig.2a) of Goddard et al. [3]. This means that for
distances d > 10r with r being the particle radius, the repulsive force decays so
much that it corresponds to Stokes’ law alone while for distances d < 0.1r, the
repulsive force increases as a prefactor to Stokes’s law with a 1/d dependence,
while for the intermediate range 10r > d > 0.1r, there is a smooth transition
between the repulsive (short range) and the neutral (long range) regime.

3 Results: Gravity in x-direction

For this preliminary investigation, we make the system more symmetric by set-
ting the gravitation in x-direction: We first want to understand the effect of the
interactions we have implemented without interference of an asymmetric effect
from gravity between an upper and lower boundary. We integrate the equations
of motion with MATLAB’s adaptive time ode15s-integrator and enforce the use
of the BDF2 (Backward differentiation formula of second order) with a relative

Fig. 4. Release of the droplets with only hydrodynamic interactions and initial disorder.
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Fig. 5. Force between the droplets from Eq. (5) drawn for kmult = 1 with the extension
of the droplets.

error tolerance of 0.1% and absolute errors of 1% of the droplet radius and 1% of
the maximal velocity in the narrow channel. For this preliminary investigation,
we work with a constant augmented mass of 50% only, without the corrections
due to the closeness of the boundary. To take into account that the release of the
droplet at the inlet will be affected by an oscillation of the droplet which may
shift its center of mass, we add ±3.75 % equally distributed randomness. Our
hope was that this disorder in the initial coordinates would trigger the cluster-
ing. The result for hydrodynamic forces only was disappointing and is shown in
Fig. 4. The droplets are released like pearls on a string. While the initial disor-
der is amplified by the hydrodynamic interaction, so that the scattering of the
vertical position around the symmetry axis is enhanced, no clustering occurs.

3.1 Introducing an additional interaction

We next introduce an additional interaction. From comparison with the clus-
tering in the experiment, we have to assume that there must be an additional
attraction. On the other hand, once the droplets are in contact, they feel a kind
of “elastic” repulsion, because they do not fuse. We construct the interaction for
the droplet radius rdr so that

F int = kmult


−2.5 · 10−4

rdr
r2

for r > 2.15 rdr,

+10−4
(2rdr − r)

rdr
+ 10−5 exp

(
1.2

1.05rdr
r − 2rdr

)
else,

(5)
so the upper term is a Coulomb-type attraction, while the lower term is a linear
repulsion with an added exponential term to guarantee that no fusion (penetra-
tion) of droplets can occur. The Coulomb-type has been chosen because 1/r2 is
the only algebraic form which allows to model a spatially decaying interaction
between agglomerations by their centers of mass. While the coefficients in the
interaction look a bit strange, they have been chosen so that repulsion changes
continuously into attraction when the droplets come into contact, see Fig. 5.

X 
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Fig. 6. Wordlines (x-coordinates over time) above and (three-dimensional) clusters for
the final timestep of the worldlines below for kmult = 0.8. At t = 107[s] (not shown), the
first two clusters fuse to a seven-droplet cluster, but the three-droplet clusters behind
seem to be stable.

3.2 Clustering for different values of kmult

With attraction, the dynamics in the simulation develops two timescales: The
slow timescale of the advection of the droplets through the pipe and the fast
timescale due to the reordering of the droplet positions into clusters at close
range under the influence of the attractive force. Depending on the prefactor
kmult, we obtain clusters with a different number of droplets. In Fig. 6, we have
shown the result for kmult = 0.8 with three droplets per clusters in “equilibrium”
and only the first cluster with four droplets. The release of three-droplet cluster
was sustained also beyond the simulation time shown here. Interestingly, the
number of droplets in a cluster is not proportional to the attraction strength,
because the force equilibrium between attraction and hydrostatic repulsion is
rather subtle: For kmult = 0.4, a leading cluster of three droplets develops, which
is then followed by pairs of droplets which over time fuse into clusters of four
droplets, see Fig. 7. While the first four-droplet cluster fuses with the leading
three-droplet cluster, the later four-droplet clusters stay intact when they are
flushed along the system. Typically, the number of droplets in a cluster for a
given value of kmult is constant, except the first cluster, which may have one
droplet less or more and which then fuses with the second cluster.

4 Summary, conclusions and future work

For the current state of the art of fluid simulation techniques, direct numerical
simulations of (hydrophobe) droplets in (hydrophile) fluids seem to be unfeasible.

C 
0 

0.01 

:e 0 
en 
0 a. 

-0.01 

0 

15 

-0.01 

10 20 

14 13 12 

-0.005 

30 40 
time 

11 10 9 8 

0.005 

50 

7 5 
6 

O.Q1 

60 

O.Q15 0.02 



8 H.-G. Matuttis, J.J. Schneider et al.

Fig. 7. Wordlines (x-coordinates over time) above and (three-dimensional) clusters for
the final timestep of the worldlines below for kmult = 0.4. At the widening outlet, first
two-droplet clusters form which then fuse into four-droplet clusters.

Therefore, to understand the experimentally observed clustering of droplets, we
have proposed a phenomenological interaction of the droplets based on known hy-
drodynamic interactions with an additional Coulomb-type attraction. The phe-
nomenology of this model is rather rich, as the number of droplets in a cluster
is not proportional to the interaction strength: Due to a subtle balance of at-
traction and hydrodynamic repulsion, there can be clusters with more droplets
for weaker attraction. In the next step, a better physical understanding of the
possible attractive interactions and a matching with the experimental data have
to be obtained.

Appendix A: Problem of direct numerical simulation

Ideally, one would investigate the flow of spherical droplets in another fluid with
a “direct numerical simulation” of two-phase flow, with a geometry of droplets
(themselves a continuum) inside a continuum of the outer fluids, with a suitable
boundary in between. Unfortunately, such an approach is currently not feasible,
neither from the computational nor from the algorithmic aspect. The success
of the Finite Element Methods in structural dynamics (that means, problems
which are predominantly linear) is so much taken for granted that in engineering
tasks, there is a downright reflex to use (or at least recommend) Finite Elements.
For flow problems of particles (droplets included) which come closer than several
mesh sizes while additional refinement is not possible, there are indeed computa-
tional issues[9]. Already for two dimensions, the simulation of polygonal particles
in fluids is rather difficult and expensive if the boundary conditions have to be
taken into account exactly, see [9] for a suitable simulation method and [11,10]
for the resulting problems which have to be dealt with for the grid generation.
If the boundary conditions are approximated, there is a danger of numerical in-
stabilities which is treated in Appendix B. Curved boundaries of freely floating
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particles in fluids add an additional layer of computational complexity to the
problem and have not yet been implemented according to our knowledge.

There are various packages which offer the option to simulate multi-phase
flows via the Finite Volume method (FVM). In particular, the most striking
advantage of the FVM is that it implicitly fulfils the incompressiblity condition,
which for other continuum simulation methods must be ponderously enforced.
Nevertheless, there are other drawbacks: First of all, the discretization into fi-
nite volumes makes a uniform connectivity for the underlying mesh necessary.
As a result, in screenshots of simulations, small “steps” can be seen which rep-
resent the elementary volumes of the underlying uniformly connected grid. This
step-like outlines leads to the problems with the zero-order approximation of
boundaries which is discussed in Appendix B. A second drawback is that the
non-linear Navier-stokes equations are solved in a linearized form: This gives a
fast update speed, but leaves a remaining uncertainty about the validity of the
result.

The least suitable method for two-phase flows is the Finite Difference Method:
The finite-difference approximation of differential operators demands an under-
lying square grid, which severely limits the accuracy of the simulation. Worse, in
spite of various approaches which claim to “interpolate” boundaries with “im-
mersed”boundaries (interpolated and therefore of rather dubious validity), one
can show the congruence of finite-difference methods with zero-order Finite El-
ement methods [4]: This means that the boundaries in finite difference methods
are always approximated in zero order, there are no boundary conditions “on”
the boundary, just in the middle of the “element” next to the boundary. The issue
of zero-order boundaries and the very likely occurence of numerical instabilities
is treated in the next Appendix.

Appendix B: Little known hitches in the approximation of
boundary conditions to zero order

B. P. Leonard treated the snags in the application of low order finite difference
methods in his highly readable, enligthening and amusing treatise “A survey of
finite differences of opinion on numerical muddling of the incomprehensible de-
fective confusion equation”[6]. The title refers to the confusion in the discussion
of the error order when diffusion equations are augmented with advective terms,
as well as the “remedies” which make the numerical solutions more “stable”
but physically implausible. Nevertheless, Leonard’s treatise only focused on the
discretization of the equations. There are additional issues for the treatment of
boundaries, which affect in particular finite difference and finite volume meth-
ods, when smooth slanted or curved surfaces are implemented by a “stepped”
profile outline. For a partial differential equation

df(t)

dt
= L̂f(t), (6)---
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(with L̂ as the sum of the spatial differential operators) the product

f̃(t) = exp
(
t(L̂)

)
︸ ︷︷ ︸

time evolution operator

ψ0︸︷︷︸
initial condition

(7)

is the formal solution (including additional spatial dependencies). When we solve
the problem numerically, so that there is an additional error εL in the discretiza-
tion of the spatial differential operator, our solution becomes

f̃ = exp
(
t(L̂+ εL)

)
ψ0. (8)

The solution of a numerical simulation is “stable” if we don’t generate any
exponentially diverging noise via εL. If we add additional noise ε0 to the initial
condition by not using the exact, but stepped we can write the time evolution
formally as

f̃ = exp
(
t(L̂+ εL)

)
(ψ0 + ε0)

= exp
(
t(L̂+ εL)

)
ψ0 + exp

(
t(L̂+ εL)

)
, ε0 (9)

and we can hope that the additional exponential term will not add much. As a
simple test case of a higher-order solution method with zero order boundary, we
can try to solve the harmonic oscillator where we replace the trapeze-method
with the rectangle midpoint method. For quadrature over intervalls of length
∆x, the error for the midpoint method is

εmid =
1

24
∆x3f ′′(xi), (10)

while surprisingly, the error of the trapeze rule is twice as large,

εtra =
1

12
∆x3f ′′(xi), (11)

(both errors from [1]), but which can be understood graphically, see Fig. 8. We
can now shift from spatial coordinates x to time coordinates t and create time
integrators for differential equations

dy

dt
= f(t) (12)

from quadrature formulae by integrating Eq. (12) to

y(t+ τ) = y(t) +

∫ t+τ

t

f(t)dτ, (13)

and insert our favorite quadrature scheme, which is the basis of the trapeze rule
for time integration. When we replace the trapeze rule with the midpoint rule,
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Fig. 8. Approximation of the integral of function f in the interval xi to xi + 1 with
the trapeze rule, which underestimates (red area) the integral more than the midpoint
rule overestimates it (error compensation of red and green area).
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Fig. 9. Solution of a damped harmonic oscillator with the exact solution in black and
the ghost oscillations generated by the midpoint time integrator.

we would expect better accuracy, because of the smaller local error Eq. (10) for
the midpoint rule, compared to Eq. (11). The actual result can be seen in Fig. 9:
While it starts well enough (at least more accurately than the Euler-Integrator
would do), the numerical solution starts to develop high-frequency ghost os-
cillations with exponentially increasing amplitude, even for the (exponentially)
decaying exact solution. The culprit is the midpoint value f((xi + xi+1)/2) in
the integration, which, when we look at the original quadrature in Fig. 8, clearly
is not an initial or final value for the integral in Eq.13 - quite in contrast to
the values at the end of the interval which are used for the Trapeze rule. The
random osciallations around the true values at the initial value of each timestep
are then amplified to non-decaying oscillations of high frequency. The same can
be expected to happen for the random assignments of zero-order boundary con-
ditions in lattice methods. In fact, such oscillations have already been observed
for interpolated boundaries of circles moving over square grids[12], and in truely
zero-order fashion the noise amplitude did not decay even for increasing area size
of the circles: A good reason to keep one’s fingers away from DNS simulations
without the exact implementation of the boundaries. Such an exact implemen-
tation of spherical droplets in a fluid, on the other hand, would necessitate the
use of curvilinear meshes near the droplet boundaries, and, as the positions
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change in every timestep, an adaptive remeshing in every timestep becomes nec-
essary. From the standpoint of the first author of this article, who has experience
with such issues for polygonal particles and two dimensions [11,10], the issue of
droplets in fluids in three dimensions are at present not yet tractable in direct
numerical simulations.
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