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Abstract
Car mass production commonly involves a moving assembly line that mixes several car models. This requires plenty of
material supplies at the line side, but available space is scarce. Thus, material is placed apart from ideal positions. Then,
picking it up involves walking along the line. This time is non-productive and can encompass 10–15% of total production
time. Thus, it is important to estimate and minimize it during production planning. However, the calculations are difficult
because the conveyor continuously moves. Therefore, most literature bounds walking time by a constant, but this discards
valuable potential. To better approximate it, we use a time-dependent V-shaped function. A comparison indicates that for
a majority of instances, constant walking time estimates of 95% confidence are at least 51% higher. Then, we introduce a
model to optimize material positions such that the model-mix walking time is minimized. This poses an NP-hard sequencing
problem with a recursive and nonlinear objective function. Our key discovery is a lower bound on the objective of partial
solutions, established by a Lagrangian relaxation that can be solved in quadratic time. Resulting branch and bound based
algorithms allow to quickly and reliably optimize up to the largest real-world sized instances.

Keywords Scheduling · Moving assembly line · Walking time · Material placement · Mixed-model production

1 Introduction

Mass-production of cars was particularly made possible by
the moving assembly line. It continuously transports the
work pieces from worker to worker. Productivity is high-
est if the assembly operations are divided equally between
all workers. This is an NP-hard bin packing type optimiza-
tion problem (Álvarez-Miranda and Pereira, 2019) that is
called assembly line balancing (Salveson, 1955); surveys are
found in Battaïa and Dolgui (2013, 2022), Becker and Scholl
(2006), Boysen et al. (2022). Solutions can improve with
shorter time buffers given more accurate time estimates, e.g.,
for a worker’s workload when assigning operations.

A significant time sink can be a worker’s walking time
to fetch parts from the line side, amounting for 10–15%
of total production time at a major German car manufac-
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turer (Scholl et al., 2013). This time can hardly be estimated
with a constant: it is highly variable because the distance
is time-dependent. A method to estimate it is introduced in
Sedding (2020a) in production of a single model. Walking
time is then minimized by placing material supplies at opti-
mal positions along the line side (the operation sequence is
fixed). This optimized and more exact walking time estimate
allows to better gage the worker’s workload during assembly
line balancing, potentially increasing overall line utilization.
To employ the estimate in interactive planning software, fast
compute times are essential, which are provided by heuristics
in Sedding (2020a) with a median runtime of 0.002s. In this
paper, we adapt this approach to a model-mix production,
which is common in car assembly (Sternatz, 2014).

An assemblyworker fetches neededmaterial for an assem-
bly operation by walking to the respective material box. In
the typical moving car assembly line, boxes are located at the
line side, alongwhich theworkpiecemoves. Ideally, each box
is located close to the workpiece’s position at access time, as
this minimizes walking time. However, if the line side space
is scarce (Bautista and Pereira, 2007; Bukchin and Meller,
2005; Boysen et al., 2015), it is usually necessary to place a
box apart from its ideal location along the line.
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The moving workpiece’s distance to a box and the result-
ing two-way walking time can be modeled by a convex
function of time (Sedding, 2020a). However, most models
for assembly line planning in the literature are restricted to
constant processing time estimates, just like in the classic
assembly line balancing problem (Salveson, 1955).Although
sequence-dependent nonproductive processing times are
included inAndrés et al. (2008), Scholl et al. (2013), Esmaeil-
beigi et al. (2016), they cannot be applied to precisely plan
walking times at assembly lines with a moving workpiece:
Overly large safety factors are needed to upper bound the
walking time with a constant. This gives away potential to
increase the utilization of an assembly line. In this study, we
test the potential of time-dependent walking time estimates.

When assigning operations to a worker, a realistic walk-
ing time estimate needs to take possible local optimizations
into account. A minimization of a worker’s walking time can
be approached in two major ways for a given set of assem-
bly operations. On the one hand, it is possible to optimize
the operation sequence (Jaehn and Sedding, 2016; Sedding,
2020b). On the other, the positioning of the respective mate-
rial boxes can be adjusted (Klampfl et al., 2006; Finnsgård
et al., 2011; Sedding, 2017, 2020a). This requires to fix
the operation sequence to determine a walking time opti-
mized box placement. Finnsgård et al. (2011) describe a
manual optimization and report a walking distance reduction
by 52%. Schmid et al. (2021) optimize the placement with
a mixed-integer programming approach that considers vari-
able walking costs duringmaterial placement, but ignores the
workpiece’s continued movement while the worker walks.
Klampfl et al. (2006) take this movement into account, using
Euclidean distances to calculate time-dependent walking
times. In three approaches, they consider placement of boxes
along the line. First with overlaps, then without overlaps, and
finallywith stacking atop eachother.Nonlinear programming
is used to heuristically find placements. However, they record
rather long compute times already for a small instance of
five material boxes. A one-dimensional walking time model
yields a significantly quicker optimization in Sedding (2017,
2020a, 2020c) for the case of single model placement.

In this paper, we adapt the material placement opti-
mization in Sedding (2020a) to the mixed-model moving
assembly line. A mixed-model assembly shares the same
line for several product models (Thomopoulos, 1967). Then,
the production can better adapt to varying demands of each
model. This production method is standard in car assem-
bly (Sternatz, 2014). Line side space can be evenmore scarce
if further material is required for each model (Boysen et al.,
2015). In the mixed-model setting, the objective is to min-
imize total processing time weighted by model share. This
allows for longer processing times on some product mod-
els, especially rarer ones, provided this can be compensated
for on other product models. Allowance is provided by the

worker floating up- or downstream the line. However, an
overload over the course of several cycles cannot be com-
pensated anymore as increasing walking times exacerbate
the overload. Such situations must be prevented during plan-
ning, in particular of the production sequence, cf. Boysen
et al. (2009c) for a survey.

Our paper’s contribution lies in placing material boxes at
the line side for a worker’s assembly operations over a mix
of product models such that the model-mix weighted time-
dependent walking times to gather material are minimized:

– First, we display all assumptions and introduce an opti-
mization model in Sect. 2. In comparison to Sedding
(2020a, 2020c), it permits multiple models and an off-
set for the placement area (or indirectly the start time).

– We observe that the problem entails a recursive, non-
linear objective function, which impedes evaluation of
partial solutions and renders incremental solution proce-
dures difficult.We provide a proof of strongNP-hardness
for any number of product models (Sect. 3).

– A mixed-integer program is derived from the single-
model case in Sedding (2020a, 2020c).

– The main technical contribution of our paper is a
Lagrangian relaxation of the mathematical program, for
which we find a partition into two independent subprob-
lems, each of which is solved in quadratic time. This
results in a fast lower bound for partial solutions (Sect. 5).
This lower bound is the cornerstone of a branch and
bound algorithm that incrementally places the boxes. A
truncated branch and bound search provides a fast heuris-
tic (Sect. 6).

– Finally, a numerical experiment shows the effectiveness
of the approaches (Sect. 7). The total runtime of the best
heuristic is negligibly small: for the largest instances, the
median runtime is 0.071 s. Such a runtime is suitable for a
use in interactive planning software. Potential savings are
high in comparison to constant walking time estimates as
well as intuitive placements (Sect. 7.5).

– Our model is the first in the literature to efficiently con-
sider and minimize a time-dependent model of walking
times for material placement at the mixed-model moving
assembly line. As this production mode is standard for
car production, our approach has a far-reaching applica-
bility.

Preliminary versions of this paper are available in this special
issue’s workshop proceedings (Sedding, 2021) and in the
author’s dissertation (Sedding, 2020c, Chapter 6).

2 Modeling

This section presents the studied optimization problemPm
for placing boxes for a model-mix of m products. After a
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formal definition of all parameters in a Pm instance, its
prerequisites are introduced. The definition ofPm follows.

Note that Pm builds upon the optimization problem in
Sedding (2020a, 2020c) for a single product assemblym = 1.
While the single-model case is extended to a mixed-model
production, all other assumptions remain unchanged. A list
of assumptions made for Pm is gathered in Table 1.

Definition 1 An instance of Pm is given by

− a ∈ Q ∩ [0, 1] as walking time slope (box ahead),
− b ∈ Q ∩ [0,∞) as walking time slope (box behind),
− I as set of product models,
− m = |I | as number of product models,
− ri ∈ Q ∩ [0, 1] as production rate of model i ∈ I

s.t.
∑

i∈I ri = 1,
− J = {(i, j) | i ∈ I , as set of all jobs,

j ∈ {1, . . . , ni }}
− ni ∈ N as number of jobs of model i ∈ I ,

which remain in the fixed
sequence (i, 1), (i, 2), . . . , (i, ni ),

− n = |J | = ∑
i∈I ni as total number of jobs,

− �i, j ∈ Q ∩ [0,∞) as assembly time of job (i, j) ∈ J ,

− wi, j ∈ N as width of the box of job (i, j) ∈ J ,

− V ∈ Q as start of the placement interval,
− W = V +∑

(i, j)∈J wi, j as the placement interval end.

Before the optimization problemPm can be defined, we
specify how boxes can be placed, see how walking time for
fetching part of a boxes can be modeled, and define how to
calculate the makespan (completion time) of a production
cycle encompassing walking and assembly time. The result
is visualized for an example instance in Fig. 1.

2.1 Box placement

Necessary material of an assembly operation is provided in a
dedicated box (i, j) ∈ J . It takes up a certain box width wi, j

along the line side, expressed as a share of the available width
(in the dimension along the line). We may assume wi, j ∈ N

by scaling the coordinate system accordingly.
Let set J denote the set of boxes for the the worker.

The boxes are placed side-by-side without overlaps. Given
a scarce line side space, we assume there are no gaps
between boxes. Then, the boxes are placed in a contigu-
ous section at the line side: the space between V and W =
V +∑

(i, j)∈J wi, j .
Then, a box placement

{πi, j }(i, j)∈J (1)

Table 1 The model assumptions equal the study of the single-model case in Sedding (2020a, 2020c) except for A3 switching to a model-mix and
adding A16

A1 Single station Focus on one assembly station and work piece

A2 Single worker Focus on one worker. Interference is ruled out

A3 Multiple product variants We consider a model-mix of several product variants, each with a different production rate and its own set of
assembly operations and containers. While a production sequence of the product variants is not yet determined, it is assumed that the
sequence fulfills the production rates on average

A4 Fixed operation sequence A worker has an immutable sequence of operations albeit it may be changed in practice

A5 Single cycle A production cycle begins when the workpiece enters the worker’s zone, and it ends when all operations have been finished
on this workpiece. If that takes shorter or longer than the average cycle time, the worker can start the next cycle early or late. This may
cause a different starting point, highly depending on the production sequence. However, the sequence is not available during material
placement. Thus, we assume an average cycle time and disregard floating

A6 Single work point The work point is at one location at the workpiece. We assume that other work points are assigned to different workers
on assembly line balancing (Becker and Scholl, 2009)

A7 One box per operation One single box aggregates all material containers of an operation, e.g., as a stack or a shelf

A8 One-dimensional box placement Boxes are placed along a line parallel to the assembly line. Hence, the box width along this dimension is
the decisive size to measure a box’s occupied interval at the line side

A9 No space between boxes There are no gaps between adjacent boxes in our model. This assumption is realistic as space at the line side is
typically scarce (Sternatz, 2015). Note that more elaborate logistics operations like material sequencing or kitting may reduce required
space at the line side (Boysen et al., 2015; Schmid and Limère, 2019)

A10 Stationary box positions Box positions are fixed during production and optimized beforehand

A11 Uniform walking velocity Walking velocity is constant and the same for all operations

A12 One-dimensional walking Only walking in parallel to the assembly line is counted: Boxes are located in close tangency the conveyor to
reduce the orthogonal margin to a gripping distance

A13 One walk per operation The worker fetches necessary parts all and only before the start of an assembly operation from a single box as in
A7, An operation can aggregate several sub-operations, for all of which material is gathered in one single run

A14 No pick time Pick times are neglected. Finnsgård et al. (2011) reports that pick times encompass just 6% of nonproductive time

A15 Picking at upstream side We simplistically assume picking at the upstream (left) edge, albeit several pick points may exist for a box

A16 Placement area offset The box placement interval start can be given with a shift off the station start along the line
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Fig. 1 On planning the line side placement, boxes are positioned in a
sequence at the line side in [V ,W ), displayed in the figure’s top row.
Shown below are assembly operations (jobs) in fixed sequences for
three product models. The horizontal axis represents the time; it shows
assembly operations performed by the worker while a workpiecemoves
along the line over time t . Note that the time scale equals the space
scale. At the start of a production cycle, the worker is at time and spa-
tial position 0. Blue arrow lines indicate, exemplary for model 3, the
worker’s longitudinal movement along the line during one production

cycle, alternating between fetching material (walking the curved line)
and assembling, during both of which the workpiece moves. Job (3, 1)
starts at time 0; with walking time f3,1(0) (indicated by the striped area,
to&from the box at π3,1) and assembly time �3,1, the job completes at
C3,1(0). Job completion times, calculated recursively, are labeled in
blue color. A production cycle of model 3 is completed at time (and
position) C3,max. The objective is to minimize the average completion
time over all models by placing the boxes such that walking times are
minimal.

states, for each box (i, j) ∈ J , a rational-valued positionV ≤
πi, j ≤ W − wi, j to place it on interval [πi, j , πi, j + wi, j ) at
the line side such that

⋃
(i, j)∈J [πi, j , πi, j +wi, j ) = [V ,W ).

Note that attaining a box placement is equivalent to finding
a sequence for the boxes along the line side.

2.2 Walking time

The walking time calculation in Sedding (2020a) is briefly
described in the following. In this model, the worker only
walks along the moving assembly line; movement orthogo-
nal to the line can be ignored. Three walking strategies are
covered: Always walking on the fixed floor, atop the con-
veyor’s moving floor, or whichever is better in the current
movement direction.

For walking up to a box (i, j)∈ J , the worker leaves
the workpiece at a certain time t , arrives at the box’s posi-
tionπi, j , and then returns to the workpiece. All the while, the
workpiece continues to move. This gives several movement
equations, which are solved with a closed formula. Then, the
walking time is represented by the piecewise-linear function

fi, j (t) = max{−a · (t − πi, j ), b · (t − πi, j )} (2)

where πi, j is the box position encoded in time units, and
0 ≤ a ≤ 1 and b ≥ 0 are two slopes that depend on the
worker’s velocity and walking strategy. See also Fig. 2.

If the current time equals the box position (case t = πi, j ),
then the walking time is minimum, which occurs if the work-

piece just passes by the box position. Otherwise, the walking
time increases linearly. If the workpiece has not yet passed
the box position (case t < πi, j ), then the walking time cor-
responds to −a · (t − πi, j ), otherwise it is b · (t − πi, j ).

The two slopes relate the workpiece’s velocity vconveyor to
the worker’s walking velocity vworker > vconveyor. For exam-
ple, if the worker walks on a non-moving floor beside the
workpiece, then a = 2/(v + 1) and b = 2/(v − 1) where
v = vworker/vconveyor. The same slope values are attained
if the worker walks on floor plates that move together with
the workpiece. If a worker can always choose the best of
both options, then the slopes are a = (2v + 1)/(1+ v)2 and
b = (2v + 1)/v2. Note that this walking strategy yields, if
v = 13.6 as inKlampfl et al. (2006), awalking time reduction
by 3.5% if t < πi, j , else 4.1%, see Sedding (2020a).

2.3 Makespan calculation

Before an assembly operation can be processed, a walk-
ing time occurs to its distinct box (i, j) ∈ J . Together,
these two constitute a job, which is also denoted by (i, j).
Then, job (i, j) consists of two parts: the nonproductive
walking time function fi, j in (2), and after that, a produc-
tive assembly time �i, j ≥ 0 that is a constant nonnegative
rational number. Together, they form the job’s processing
time pi, j (t) = fi, j (t)+ �i, j . Starting at time t , the job com-
pletes at Ci, j (t) = t + pi, j (t). Substituting all components,
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Fig. 2 Visualization of the walking time function fi, j of job (i, j) ∈ J
in (2) as a function of start time t

the job’s completion time is expressed by

Ci, j (t) = t + �i, j + max{−a · (t − πi, j ), b · (t − πi, j )}.
(3)

Each product model i ∈ I requires processing of a certain
number ni of jobs in a fixed sequence denoted by

(i, 1), (i, 2), . . . , (i, ni )

where ni is the number of jobs in model i . Then, the last
completion time Cmax

i in a model i is the composition of job
completion times (3), starting the first job (i, 1) at time 0:

Cmax
i = Ci,ni (· · · Ci,2(Ci,1(0))) · · · ). (4)

Note that a start of the first job at tmin �= 0 is attained by
shifting the box placement interval by −tmin.

Remark 1 The job sequence is fixed here. As mentioned in
the introduction, it is also possible to optimize walking time
by permuting the job sequence (Sedding, 2020b, 2020c).
This belongs to the field of time-dependent scheduling (Gaw-
iejnowicz, 2020b, 2020a). Related piecewise-linear convex
Ci, j functions are described in Farahani andHosseini (2013),
Kawase et al. (2018), Kononov (1998), while a recent survey
is found in Sedding (2020b).

2.4 Optimization problem

Minimizing the overall walking time in the mixed-model
setting is equal to minimizing the total weighted makespan
(completion time) over all product models (Klampfl et al.,
2006). This can be attained by a sum of each model i’s last
completion time Cmax

i weighted by production share ri . This
objective is minimized in the studied optimization problem.

Definition 2 (ProblemPm) Given aPm instance (see Def-
inition 1), minimize the weighted average makespan

φ =
∑

i∈I
riC

max
i

by determining a box placement {πi, j }(i, j)∈J , which places
the boxes, each represented by box widthwi, j , in a sequence
in [V ,W ), see (1). This yields, for model i ∈ I , makespan

Cmax
i = (Ci,ni ◦ · · · ◦ Ci,2 ◦ Ci,1)(0),

which composes the completion times of model i’s job
sequence according to (4). By (3), the completion time Ci, j

of job (i, j) ∈ J as a function of job start time t is given by

Ci, j (t) = t + �i, j + max{−a · (t − πi, j ), b · (t − πi, j )}.

In the single-model case, the makespan cannot be larger
than the cycle time. Every cycle, a new workpiece arrives,
hence a larger makespan would require a line stoppage (or
a work overload situation). Herein lies a key advantage of
model-mix production: If the weighted average makespan φ

is not above the cycle time, then there is no work overload
(on average). Models with a higher makespan let the worker
float downstream, others upstream.

Hence, some models may be allowed a makespan longer
than the cycle time. However, note that such an overload
situation would affect the next production cycle’s start time.
Then,walking times are affected. If it occurs repeatedly, how-
ever, walking times can grow quickly as the worker is driven
away from the boxes. If the worker has floated downstream
behind the corresponding boxes, then any delay increases the
completion time by a factor of (1+b)n for n remaining jobs,
which follows from Sedding (2020b, Corollary 2). In excess,
the worker needs assistance and/or the line needs to stop.
Such overload situations must prevented in planning of the
production sequence.

Although the makespan should equal the cycle time, it can
well be different to the placement interval’s end W . More-
over, the model allows a nonzero placement interval start V .
In both cases, the placement area is incongruent to the assem-
bly station, covering only a part, or extending out of it. This
models that the placement area is offset to the assembly sta-
tion. This is required, e.g., when subdividing the line-side
space into different sized regions, which can benefit the over-
all assembly line balance. A nonzero start time of the first job
can depict floating of the worker up- or downstream the line.
This is represented in our model by shifting the placement
interval back by the same amount.

3 Computational complexity

The main difficulty of optimizing a box placement is caused
by the recursive and nonlinear nature of the objective. For
example, if the first job’s box is moved, then its walking
time changes. As a consequence, succeeding jobs start at a
different point in time. This time might be earlier or later
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than before. As each walking time function is nonlinear, the
objective value changes nonlinearly. Moreover, the respec-
tive ideal box location of succeeding jobs changes. Then, the
placement of these boxes needs further reoptimization.

To highlight the complexity ofPm, we prove that it isNP-
hard in the strong sense for an arbitrary number of product
models m ≥ 1. For this, we perform a reduction from 3-
Partition as defined in Garey and Johnson (1978), which is
NP-complete in the strong sense (Garey and Johnson, 1975).

Definition 3 (3-Partition) Given a bound B ∈ N and 3z ele-
ments in multiset X = {x1, . . . , x3z} ⊂ N with B/4 <

x < B/2 for x ∈ X , and
∑

x∈X x = zB. The question is:
does there exist a partition of X into z disjoint multisets Ai ,
i = 1, . . . , z with

∑
x∈Ai

x = B?

Theorem 1 Pm isNP-hard in the strong sense for arbitrary
m ≥ 1.

Proof For m = 2, we perform a reduction from 3-Partition
as of Definition 3. This requires a decision version of Pm
that specifies a threshold valueΦ and asks if a solution exists
with objective value φ ≤ Φ.

A corresponding instance is constructed as follows. First,
we freely choose any allowed nonzero slope 0 < a ≤ 1, b >

0 value. For the two models I = {1, 2}, we set production
share r1 = 0 and r2 = 1. Hence, model 1 incurs no walking
time in the objective function. However, it occupies space
at the line side for its n1 =3z jobs for which we let w1, j =
x j , j = 1, . . . , 3z, and choose an arbitrary �1, j value. The
secondmodel has n2 =z+1 jobs. For each j = 1, . . . , z+1,
we set w2, j = 1 and �2, j = B + 1. Finally, we set threshold
value

Φ =
∑

j=1,...,z+1

l2, j = (B + 1) (z + 1) .

This instance’s objective value is, given the unilateral pro-
duction shares, φ = C2,z+1. As C2,z+1 ≤ Φ, there is φ ≤
Φ ⇐⇒ φ = Φ. Let us assume that φ = Φ. This requires
in the second product model for each j = 1, . . . , z + 1 that
p2, j = �2, j . This is the case if and only if the correspond-
ing box is precisely positioned at (B + 1) · j . These boxes
leave gaps of width B. Each gap is closed by the first product
model’s boxes if and only if the 3-Partition instance can be
solved. Hence, Pm is NP-hard for m = 2.

We generalize this reduction to m > 2 by extending the
instance with m − 2 models I ′. For each i ∈ I ′, let ri =
0. Then, the last completion times of models I ′ yield no
impact on the objective function. Moreover, we introduce an
arbitrary number of jobs for each added model i ∈ I ′, each
with the same box width B + 1 and an arbitrary assembly
time. Because these boxes are too wide to be placed between
two adjacent boxes of the second product model for φ ≤ Φ,

they must be placed after the last one. Hence, they assert
no effect on the box placement of the first and the second
product model.

For m = 1, strong NP-hardness is shown in Sedding
(2020a). Concluding, a pseudopolynomial reduction of 3-
Partition to Pm exists for m ≥ 1. �

4 Mathematical programming

We describe Pm solutions using mathematical program-
ming, adapting the special case m = 1 in Sedding (2020a,
2020c) to m ≥ 1. This includes a makespan calculation for
each product model and changes the objective function to a
sum of makespans weighted by production share. Then, we
derive a mixed-integer program, reformulating box place-
ment constraints.

4.1 Mathematical program

We introduce continuous variables πi, j as box position and
Ci, j as completion time of job (i, j) ∈ J . Then, a mathe-
matical program for Pm can be stated as:

minimize
∑

i∈I
ri Ci,ni

subject to

Ci,0 = 0, i ∈ I , (5a)

Ci, j ≥ Ci, j−1 + �i, j − a
(
Ci, j−1 − πi,k

)
, (i, j) ∈ J , (5b)

Ci, j ≥ Ci, j−1 + �i, j + b
(
Ci, j−1 − πi,k

)
, (i, j) ∈ J , (5c)

{πi, j }(i, j)∈J being a box placement. (5d)

Completion times are set recursively in constraints (5b) and
(5c) starting with (5a). Constraint (5d) restricts the box posi-
tion variables to a valid box placement as defined in (1).

We observe that attaining a valid box placement corre-
sponds to a job sequencing problem on a single machine,
which determines each job’s processing interval from start
time to completion time. This is alike to the interval a box
is placed upon; the difference being that the job’s interval is
typically denoted by its end (the completion time), while we
instead describe a box position by the interval start.

On a side note, it is known from job sequencing that idle
times add a further layer of complexity, e.g., when opti-
mizing non-regular objectives like earliness and tardiness
penalties (Garey et al., 1988). Similarly, we presume that the
assumption of placing boxes without gaps provides, besides
the practical reason, a computational benefit.
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4.2 Mixed-integer program

Model (5) is restricted to a mixed-integer program by substi-
tuting the placement constraints (5d). There exists a variety of
possible formulations in the related domain of job sequenc-
ing, cf. Queyranne and Schulz (1994), Keha et al. (2009),
Baker and Keller (2010) for reviews. We use disjunctive
sequencing constraints to ensure consistency and compa-
rability with the mixed-integer program and the numerical
study in Sedding (2020c) for the single-model case m = 1.
For job sequencing, this method is treated, e.g., in Manne
(1960), Balas (1985), Queyranne (1993).

Disjunctive sequencing constraints yield a total order on
the boxes to decide the position of each. This is established
by disjunctive constraints between each pair of jobs.

Let us ease the notation by introducing (i, j) ≺ (h, k),
a relation between jobs (i, j), (h, k) ∈ J that holds if and
only if i < h, and in case of i = h, if j < k. Moreover,
we abbreviate a job’s pair notation by a single letter, i.e., by
writing x = (i, j) or y = (h, k) in this section.

Then, (5d) is substituted by

πx + wx ≤ πy ∨ πy + wy ≤ πx , x, y ∈ J , x ≺ y, (6)

V ≤ πx ≤ W − wx , x ∈ J . (7)

This can be reformulated as a mixed-integer program using
the ‘big-M’ method. This relaxes either of the inequalities in
(6) by adding W , because πx + wx ≤ W for all x ∈ J . Let
ux,y denote a binary variable for each job pair x, y ∈ J with
x ≺ y. Then, while (7) remains, (6) is replaced with

πx + wx ≤ πy + W
(
1 − ux,y

)
, x, y ∈ J , x ≺ y, (8a)

πy + wy ≤ πx + W ux,y, x, y ∈ J , x ≺ y, (8b)

ux,y ∈ {0, 1}, x, y ∈ J , x ≺ y. (8c)

The resulting mixed-integer program (MIP) encompasses
constraints (5a)–(5c), (7), (8a)–(8c), with n (n− 1)/2 binary
variables.

5 Lower bound

A lower bound on the minimum objective value φ∗ of a
Pm instance is introduced in the following. We consider a
Lagrangian relaxation of the mathematical program (5) and
show that it is possible to solve it with a quadratic time algo-
rithm.

The lower bound also accepts a partially solved instance
for use within a branch and bound search. A solution can
be constructed by placing the boxes in the placement inter-
val [V ,W ). It starts at V with the first box, and places the next

box besides. This is repeated until all boxes are placed. An
intermediate, partial solution can be subsumed as follows.

Definition 4 A partial solution provides the box position
πi, j , (i, j) ∈ JF, for a set of fixed jobs JF ⊆ J such that these
boxes are placed in [V , F) where F = V+∑

(i, j)∈JF wi, j ,
i.e., there is V ≤ πi, j ≤ F − wi, j for (i, j) ∈ JF. Then, we
call {πi, j }(i, j)∈JF a partial box placement. It is completed by
placing the boxes of the remaining open jobs JO = J \ JF
between F and W .

5.1 Recurrence solving

In (5), we solve the recurrence relation of the completion
time variables to a closed form. Let us introduce, for each
job (i, j) ∈ J , a continuous variable walking time ωi, j and
deviation δi, j of the job’s start time from its ideal start time
(i.e., πi, j ). Each completion time variable is replaced by
a sum of all assembly and walking times until then. This
replaces constraints (5a) to (5c) with

Ci, j =
∑

k=1,..., j

�i,k + ωi,k, (i, j) ∈ J , (9a)

ωi, j ≥ −aδi, j , (i, j) ∈ J , (9b)

ωi, j ≥ bδi, j , (i, j) ∈ J , (9c)

δi, j = −πi, j +
∑

k=1,..., j−1

�i,k + ωi,k, (i, j) ∈ J . (9d)

Walking time is piecewise linear and, because it is mini-
mized, limited from below in constraints (9b) and (9c). It
depends on the deviation of a job’s start time to its position,
set in constraints (9d).

The walking time variables’ domain can be limited to
strengthen the model: the domain is not less than zero, and at
most, it corresponds to thewalking time in forwards direction
to atmost the box positionW−1, and in the backwards direc-
tion, to the lowest possible position V (and back). Hence,

0 ≤ ωi, j ≤ max
{−a

(
Ci, j−1 − (W − 1)

)
, b

(
Ci, j−1 − V

)}

for (i, j) ∈ J . Substituting the completion times variables
with the sum in (9a) gives, for (i, j) ∈ J , the closed formula

0 ≤ ωi, j ≤ max

⎧
⎨

⎩
−a

⎛

⎝1 − W +
∑

k=1,..., j−1

�i,k + ωi,k

⎞

⎠,

b

⎛

⎝−V+
∑

k=1,..., j−1

�i,k + ωi,k

⎞

⎠

⎫
⎬

⎭
. (9e)
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5.2 Lagrangian relaxation

With the model modifications, we perform a Lagrangian
relaxation of constraints (9b) and (9c). This introduces the
corresponding Lagrangian multipliers λi, j ≥ 0, λ′

i, j ≥ 0 for
(i, j) ∈ J .

Then, the Lagrangian problem is

φ∗
Lagr(L) = min φLagr

with

φLagr =
∑

i∈I
ri Ci,ni +

∑

(i, j)∈J

λi, j
(−aδi, j − ωi, j

)

+ λ′
i, j

(
bδi, j − ωi, j

)
(10)

subject to

L =
((

λi, j , λ
′
i, j

))

(i, j)∈J
≥ 0,

as well as constraints (9a) to (9e), and constraint (5d).
The set of multipliers L can be optimized using a standard

subgradient optimization, see Fisher (2004). Note that the
lower bound inequality φ∗

Lagr(L) ≤ φ∗ holds for any L .
Substituting the completion time variables in (10) accord-

ing to (9a) yields

φLagr =
∑

(i, j)∈J

ri (�i, j +ωi, j )+(bλ′
i, j −aλi, j )δi, j −(λi, j +λ′

i, j )ωi, j

=
∑

(i, j)∈J

�i, j ζi, j +
∑

(i, j)∈J

ωi, j θi, j

︸ ︷︷ ︸
Ω

+
∑

(i, j)∈J

(
aλi, j − bλ′

i, j

)
πi, j

︸ ︷︷ ︸
Π

with constants

ζi, j = ri +
∑

k= j+1,...,ni

(
bλ′

i,k − aλi,k
)
, (i, j) ∈ J ,

and θi, j = ζi, j −
(
λi, j + λ′

i, j

)
, (i, j) ∈ J .

Observe that the walking time and box placement variables
occur only in different constraints.

Property 1 In the Lagrangian problem, thewalking time vari-
ables ωi, j , (i, j) ∈ J , and box position variables πi, j ,
(i, j) ∈ JO (from Definition 4), are independent.

Thus, it is possible to separately optimize walking times and
box positions. This gives us the partial objective

Ω =
∑

(i, j)∈J

ωi, jθi, j

for the walking times, and

Π =
∑

(i, j)∈J

(
aλi, j − bλ′

i, j

)
πi, j

for the box positions.

5.3 Optimizing box position values

The boxes of the open jobs JO (cf. Definition 4) are to
be placed within a box sequence between F and W . In
partial objective Π , each box (i, j) ∈ JO adds term(
aλi, j − bλ′

i, j

)
πi, j . Hence to minimize Π , we get a clas-

sic total weighted completion time scheduling problem of
the boxes (as jobs), which is solved in polynomial time by
sorting them (Smith, 1956).

Lemma 1 Partial objectiveΠ is minimum ifπi, j ,(i, j) ∈ JO,
are obtained by sequencing JO’s boxes nonincreasingly by

aλi, j − bλ′
i, j

wi, j
.

Thus for nO = |JO|, optimal box position values are attained
in O(nO log nO) time.

5.4 Optimizing walking time values

The walking time variables ωi, j , (i, j) ∈ J , are optimized
by minimizing Ω .

For each (i, j) ∈ J , the value range of ωi, j is limited by
constraints (9e). It can be transformed with constants qi, j =
−V+∑

k=1,..., j−1 �i,k and q ′
i, j = 1 − W + qi, j+V to the

range

0 ≤ ωi, j ≤ max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−a

⎛

⎝q ′
i, j +

∑

k=1,..., j−1

ωi,k

⎞

⎠

︸ ︷︷ ︸
αi, j

,

b

⎛

⎝qi, j +
∑

k=1,..., j−1

ωi,k

⎞

⎠

︸ ︷︷ ︸
βi, j

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (11)

We observe for any i ∈ I , and with increasing j from 1
to ni that term αi, j (as defined in (11)) is nonincreasing and
term βi, j (as in (11)) is nondecreasing. Hence, we can find
some κi ∈ {0, . . . , ni } such that αi, j > βi, j for all j = κi +
1, . . . , ni . Given such a κi , we can replace constraints (11)
by

0 ≤ ωi, j ≤ αi, j if j ≤ κi ,

0 ≤ ωi, j ≤ βi, j if j > κi .
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Hence, depending on the value of κi , either of the two range
constraints is active for job (i, j) ∈ J .

We replace the upper bound by an equality with slack
variable 0 ≤ yi, j ≤ 1. Then,

0 ≤ ωi, j = yi, jαi, j if j ≤ κi ,

0 ≤ ωi, j = yi, jβi, j if j > κi .
(12)

Property 2 Given κi , i ∈ I , of an optimal solution. If αi, j <

0 for any job (i, j) ∈ J with j ≤ κi , then it is possible
to decrease κi without changing the objective Ω such that
αi, j ≥ 0 for each job (i, j) ∈ J with j ≤ κi .

Proof Given the described case, then κi ≥ 1 and αi,κi < 0
because αi, j is decreasing with j . Hence, yi,κi = ωi,κi = 0
to fulfill constraints (12).

Let us decrease κi by one. Then, it is possible to leave
yi,κi+1 = ωi,κi+1 = 0 in the solution. Thus, Ω remains
unchanged. We repeat this step until αi,κi ≥ 0. �
Corollary 1 An optimum solution exists where αi, j ≥ 0 holds
for each (i, j) ∈ J with j ≤ κi .

Lemma 2 For each i ∈ I , let κ∗
i be the minimum value for

κi that permits an optimum solution. Then, there exists such
a solution where for each job (i, j) ∈ J there is

yi, j =

⎧
⎪⎨

⎪⎩

0, if θi, j +
∑

k= j+1,...,ni

yi,kci,kθi,k > 0,

1, else

with ci,k =
{

−a, if k ≤ κ∗
i ,

b, else.
(13)

Proof For each model i ∈ I , we show this by induction for
j = ni , . . . , 1. Then,

ωi, j = yi, j · ci, j
⎛

⎝di, j +
∑

k=1,..., j−1

ωi,k

⎞

⎠

︸ ︷︷ ︸
≥0

with ci, j =
{

−a, if j ≤ κ∗
i ,

b, if j > κ∗
i ,

di, j =
{
q ′
i, j , if j ≤ κ∗

i ,

qi, j , if j > κ∗
i .

By choice of κi and use of Property 2, the slack variable yi, j
multiplies a nonnegative value. Hence, ωi, j is nonnegative.
Moreover, ωi, j influences ωi,k for each k = j + 1, . . . , ni
unless yi,k = 0. Thus, ωi, j contributes to the objective Ω

not only with factor θi, j , but moreover via ωi,k with fac-
tor yi,kci,kθi,k . The total contribution of ωi, j to Ω is thus
with factor θi, j + ∑

k= j+1,...,ni yi,kci,kθi,k . If this factor is
positive, then the lowest slack value yi, j = 0minimizesΩ . If
it is negative, then the highest slack value yi, j = 1 is optimal.
If the factor is zero, any value for yi, j is optimal. �

Let κi ∈ {0, . . . , ni } for each i ∈ I be the maximum κi
for which −aq ′

i,κi
≥ 0 holds.

Property 3 An optimum solution exists where κi ≤ κi for
each i ∈ I .

Proof Assume we are given an optimum solution. Naturally,
all walking time variables ωi, j , (i, j) ∈ J , are nonnegative.
For each i ∈ I , both

∑
k=1,..., j−1 ωi,k and q ′

i, j are nonde-
creasing with respect to j , while −aq ′

i, j is nonincreasing.
Hence if −aq ′

i,κ ′
i
< 0 for any (i, κ ′

i ) ∈ J with κ ′
i ≤ κi , then

αi, j < 0 for j = κ ′
i , . . . , κi . However it is, according to

Property 2, possible to set κi < κ ′
i such that the solution is

optimum and −aq ′
i, j < 0 as well as αi, j ≥ 0 hold for any

(i, j) ∈ J with j ≤ κi . �
The presented results allow us to describe an algorithm to

minimize the walking time variables.

Lemma 3 In an outer loop, set κi = 0, . . . , κi for i ∈ I .
Given κi , Lemma 2’s recurrence (13) is used to set yi, j for
each (i, j) ∈ J , which also sets ωi, j and objective value Ω .
Then, the smallest obtained objective value is optimal.

This algorithm takes quadratic time in terms of ni . Over all
m models, the worst case runtime is O

(∑
i∈I n2i

) ≤ O
(
n2
)
.

Combining the algorithm in Lemma 3 with the box
sequencing procedure in Lemma 1, we are able to find a
solution for the whole Lagrangian problem.

Theorem 2 An optimum solution to φ∗
Lagr(L) is computed in

O
(
n2
)
time.

6 Branch and boundmethods

For solvingPm instances, we describe a branch and bound
search (B&B) and a heuristic version in the following. The
upper bound is initialized with basic heuristics. Bounding
is performed with the above Lagrangian based lower bound
and an additional combinatorial lower bound. The heuristic
version introduces a heuristic dominance rule and limits the
number of visited descending nodes.

6.1 Basic heuristics

To construct a good upper bound for the branch and bound
search we use a constructive heuristic, a local search, and a
simulated annealing metaheuristic.
Weighted nearest identity (WNID) As a construction heuris-
tic, an intuitiveway to place the boxes is in the same sequence
as the jobs, which is already reported in Ford and Crowther
(1922, p. 80). For a single model, this strategy is described in
Sedding (2020a); it canbe called identity sequenceplacement
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heuristic. Extending this to multiple models, our strategy is
to intersperse the identity sequences of all models I such that

πi, j < πi, j ′ for all (i, j), (i, j
′) ∈ J with j < j ′. (14)

Our approach is greedy, it places all boxes iteratively along
the line, starting at position 0. In an iteration step, we select
the next box to place. To fulfill (14), there are at most m
possible boxes to choose from. We rank the boxes by the
resulting walking time weighted by the reciprocal of the
corresponding model’s production share. Accordingly, we
call this method weighted nearest identity (WNID) sequence
placement heuristic, see Algorithm 6.1.

Algorithm 1 WNID: Weighted nearest identity sequence
placement heuristic

1: ( ji )i∈I ← 1 � set the next box of each model
2: (ti )i∈I ← 0 � set the current time in each model
3: F ← V � set the next position to place a box
4: loop |J | times
5: N ← {(i, ji ) ∈ J | i ∈ I } � get possible next boxes
6: (i, j) ← argmin

(i, j)∈N
1
ri
max{−a (ti − F), b (ti − F)}

7: πi, j ← F � place the selected box (i, j) at F
8: ti ← Ci, j (ti ) � advance model i’s time
9: F ← F + wi, j � increase F to the next free space
10: ji ← ji + 1 � select the next box in model i

11: return {πi, j }(i, j)∈J

Hill Climbing (HC)A local search typically improves a con-
structive heuristic’s solution. For this, we use the transpose
neighborhood that comprises all possible swaps of neighbor-
ing boxes. Hence, the number of neighbors is |J | − 1 for
|J | boxes. The local search procedure is initialized with the
WNID solution. Of the current solution’s neighborhood, this
procedure searches for the neighbor with highest improve-
ment of the objective value. If such a neighbor exists, it is
selected as the current solution. This is known as hill climb-
ing (HC) search.

Simulated Annealing (SA) is a metaheuristic that escapes
local minima (Kirkpatrick et al., 1983; Černý, 1985). In
comparison, the local search procedure stops at some local
minimum. It might occasionally correspond to a global min-
imum, but it is usually sensible to apply SA: Given certain
conditions, SA converges to a global optimum (Hajek, 1988).
To cross the solution space, SA permits worse solutions with
a decreasing probability. In our case, we use the basic and
widespread procedure of Press et al. (1992).

6.2 Branch and bound algorithm

An exact solution forPm can be computed by a branch and
bound search (B&B). We use the above described heuristics’
objective value as an initial upper bound.

BranchingOurB&Bperforms a depth first search, discarding
nodes that do not lead to an optimal solution. Any node cor-
responds to a partial box placement {π j } j∈JF of some fixed
jobs JF ⊆ J , as of Definition 4. The root node initializes
fixed job set JF = ∅ and open job set JO = J . A leaf node
is reached if JF = J and JO = ∅. A descending node is
created by fixing an open job j ∈ JO = J\JF, placing it at
π j = V+∑

k∈JF wk . A node is discarded if its lower bound
is not less than the upper bound. The latter corresponds to
the currently best known box placement’s objective value,
which is initialized with the described HC or SA heuristics
and updated whenever a better solution is reached at a leaf
node.

Combinatorial lower bound When our B&B search visits a
new node, it is first evaluated by a quickly obtained lower
bound. This allows to potentially discard it before comput-
ing the more elaborate Lagrangian lower bound. Let us first
consider a trivial lower bound: It places each box exactly at
its ideal time: the corresponding job’s start time. In a partial
solution, this bound can be increased by using the fixed πi, j

values of all fixed jobs (i, j) ∈ JF. Although the position of
the open boxes is not yet known, we know that they will be
placed in the unoccupied interval [F,W ). Hence, if the start
time ti, j of an open job (i, j) ∈ JO lies within [F,W −wi, j ],
then we still place the box exactly at this start time. Other-
wise, the box can be placed at F or at W − wi, j , whichever
is closer to ti, j . This increases the lower bound further. Con-
cluding, we calculate the start time for each job in a model
iteratively. If we encounter an open job (i, j) ∈ JO, then its
box position is temporarily set to

πi, j = max{F, min{t, W − wi, j }}.

Lagrangian lower bound Secondly, our B&B evaluates a
partial solution with the Lagrangian based lower bound of
Sect. 5.While the lower bound is calculated in quadratic time
for a given set of Lagrangianmultipliers L , themultipliers are
iteratively improved using a subgradient optimization based
on Fisher (2004), Held et al. (1974) as follows.

– In our case, the iteration step’s updated set of multipli-
ers L̂ for step size s > 0 is

λ̂i, j = max
{
λi, j + s

(−aδi, j − ωi, j
)
, 0
}
,

λ̂′
i, j = max

{
λ′
i, j + s

(
bδi, j − ωi, j

)
, 0
}
,
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for each i, j ∈ J . For the step size, we employ the com-
mon

s =
v ·

(
UB − φ∗

Lagr(L)
)

∑

(i, j)∈J

(−aδi, j − ωi, j
)2 + (

bδi, j − ωi, j
)2

where UB ≥ φ∗ is an upper bound value for φ∗, and
v ∈ (0, 2] is a step size factor. Our initial value for the
latter isv = 1.Then,wedividev by twoafter 10 iterations
of no improvement on the Lagrangian objective φ∗

Lagr.
– We reduce the number of iterations by reusing multiplier
values during the B&B search like in Fisher (2004). This
avoids optimizing L from scratch for each partial solu-
tion. Exactly one set of L values is memorized. Hence,
the last obtainedmultiplier values L provide awarm-start
in the next bound calculation.

– Our B&B performs a higher number of iterations earlier
in the search tree. A better bound has a greater utility
there. We iterate at most

max
{
1,
⌊
4 ·√|JO|

⌋}

times; except at the root node (with |JO| = n), where we
allow for up to 10n iterations, to initialize L from scratch.

Traversing order The Lagrangian lower bound calculation is
additionally used in our B&B search to set a traversing order.
This determines, in each node, the sequence for visiting the
descending nodes. More promising descending nodes should
be visited first. Each descending node places a different box
at F . Lemma 1’s artificial position value provides a hint for
good posititions of the open boxes JO. This motivates our
use of πi, j , (i, j) ∈ JO, as a traversing order value. We use
the nondecreasing order of πi, j for ranking the open boxes
and visit the descending nodes accordingly.

6.3 Truncated branch and bound algorithm

Our truncated branch and bound (TrB&B) leaves out some
nodes in the B&B search, which yields a heuristic. More-
over, a node is evaluated with a heuristic dominance rule
that compares a currently visited node to previously visited
nodes.

Adapting the approach in Sedding (2020a), we limit the
number of descending nodes to the maximum branching fac-
tor

BFmax = min

{

|JO|,max

{

�ψ�,
⌊ |JO|

σ

⌋}}

for constantψ > 0 and σ > 0.While the number of descend-
ing nodes is restricted by σ near the root of the search tree,
it is restricted by ψ when being deeper in the search tree.

With our heuristic dominance rule, the current node is
discarded if the partial solution is (probably) dominated by
any previous partial solution. For this, we adapt the approach
inSedding (2020a). Then, the heuristic dominance ruleworks
as follows. Based on a partial box placement, it creates two
complete artificial placements:

(a) All open jobs j ∈ JO are placed such that π j = F ,
(b) all open jobs j ∈ JO are placed such that π j = W −w j .

This yields two heuristic objective values φ(a) and φ(b). Then,
a partial solution is heuristically dominated (and can be dis-
carded) unless at least one of the two values is less than a
previously found value, respectively, for the same set JF of
fixed jobs.

7 Numerical results

A quantitative evaluation of the described solution methods
is performed in the following numerical study. We create
artificial instances and performa full factorial evaluationwith
the exact approaches and, secondly, with the heuristics.

7.1 Instance generation

We generate random instances in a variety of parameter set-
tings. Comparability to Sedding (2020c) is ensured by using
the same variants for assembly times, boxwidths, and slopes.

(1) The number of product models is set to m ∈ {2, 4, 8}.
(2) The production shares of all models I need to be positive

and sum up to one. We generate these shares randomly
analogous to Boysen et al. (2008, 2009a, 2009b) as fol-
lows. Let PC denote the total production cycle count.
Initialize each model’s demand to one unit. Then, select
a model with uniform probability, increase the model’s
demand by one unit. Repeat this step until the total
demand equals PC. This method is equivalent to a uni-
form sample (with replacement) of (PC − m) values
from I . Then, the frequency of each model plus one cor-
responds to the model’s demand. Finally, dividing the
demand of each model by PC gives its production share.
We let PC = 1000m to avoid quantization. Note that in
the limit for PC → ∞, the expected value for each share
is 1/m.

(3) The number of jobs is set to n ∈ {8, 12, . . . , 28}. A job’s
model is selected with uniform probability. Hence, each
model’s expected number of jobs is n/m.

123



Journal of Scheduling

Table 2 Exact algorithms’
runtime in seconds, grouped by
n and m

n m MIP B&B
Md Q75 solved (%) Md Q75 solved (%)

∗ ∗ 35.60 ≥ 3600 71 0.59 159.02 87

8 ∗ 0.02 0.09 100 0.00 0.00 100

12 ∗ 0.33 1.84 100 0.00 0.01 100

16 ∗ 10.59 105.84 97 0.12 0.29 100

20 ∗ 470.75 ≥ 3600 64 5.08 13.96 100

24 ∗ ≥ 3600 ≥ 3600 38 195.22 560.50 93

28 ∗ ≥ 3600 ≥ 3600 26 ≥ 3600 ≥ 3600 28

∗ 2 11.27 3194.58 75 0.33 86.90 88

∗ 4 30.40 ≥ 3600 70 0.56 136.04 87

∗ 8 102.84 ≥ 3600 66 1.40 299.77 85

8 2 0.02 0.02 100 0.00 0.00 100

8 4 0.02 0.03 100 0.00 0.00 100

8 8 0.25 0.51 100 0.00 0.00 100

12 2 0.14 0.39 100 0.00 0.00 100

12 4 0.26 0.83 100 0.00 0.00 100

12 8 3.16 17.73 100 0.01 0.01 100

16 2 3.73 16.58 100 0.08 0.21 100

16 4 7.42 58.39 99 0.10 0.22 100

16 8 105.42 441.26 91 0.21 0.48 100

20 2 129.71 1761.67 81 3.16 11.05 100

20 4 490.70 ≥ 3600 63 4.19 9.68 100

20 8 ≥ 3600 ≥ 3600 47 8.68 22.56 100

24 2 ≥ 3600 ≥ 3600 44 136.06 580.62 92

24 4 ≥ 3600 ≥ 3600 37 152.39 413.69 96

24 8 ≥ 3600 ≥ 3600 33 296.49 1033.29 92

28 2 ≥ 3600 ≥ 3600 28 ≥ 3600 ≥ 3600 37

28 4 ≥ 3600 ≥ 3600 22 ≥ 3600 ≥ 3600 28

28 8 ≥ 3600 ≥ 3600 28 ≥ 3600 ≥ 3600 18

Md, median runtime in seconds; Q75, upper quartile in seconds; solved, percentage of instances solved in 1 h
∗ aggregate of all variants of the respective parameter

(4) The jobs’ assembly times are generated in four vari-
ants (Jaehn and Sedding, 2016; Sedding, 2020a):

(L1) all equal (unitary value 1),
(L2) all distinct (a random permutation of (1, 2, . . . , n)),
(L3) uniform random variates from {1, 2, . . . , 10},
(L4) geometric random variates with mean λ = 2.

(5) The boxwidths of the jobs are drawn in either of four vari-
ants, and normalized by scaling and rounding to obtain a
uniform total width 10 · n (Sedding, 2020a):

(W1) all equal box widths (unitary value 1),
(W2) all distinct (a random permutation of (1, 2, . . . , n)),
(W3) uniform random variates from {20, . . . , 23} ∪ {3 ·

20, . . . , 3 · 22}, which represent the ISO1-pallet divi-
sions of Euro stacking boxes,

(W4) rounded up gamma variates with shape 1.25 and unit
scale.

(6) The slopes a, b are determined by the walking velocity v,
which is expressed in multiples of the conveyor veloc-
ity, and the walking strategy. Like in Sedding (2020a),
we vary the walking velocity v ∈ {2, 4, 8, 16} while the
conveyor velocity is kept unitary. Then, the slope values
follow from the chosen strategy:

(S1) a = 2/(v + 1) and b = 2/(v − 1) (walking either
besides or atop the moving conveyor),

(S2) a = (2v + 1)/(v + 1)2 and b = (2v + 1)/v2 (walk-
ing both besides and atop, always choosing the faster
option).

(7) Finally, processing times are harmonized with the box
widths with respect to the walking velocity. In the test,
we consider the case of a zero box placement interval
start V = 0 and that its end W is approximately equal or
larger than themixed-modelweighted averagemakespan,
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i.e., the objective value φ. Otherwise, the problem is
likely easier, as many start times will be after the box
position (if V � 0 or W � φ∗, cf. Sedding (2020b)) or
before (if V � 0 orW � φ∗). Note it is not necessary to
compute the optimum φ∗ during harmonization because
strict equality of W and φ∗ is not required. Thus, we can
use the rather intuitive solution of the WNID heuristic.
Then, the deviation |φ−W | isminimized by linearly scal-
ing all assembly times uniformly with the same factor,
using the univariate optimizationmethod inBrent (1971).
This procedure is repeated at most 10 times because the
WNID’s solution can change due to the scaling.

The parameter setting variants yield a product of 3 · 6 · 4 ·
4 · 4 · 2 = 2304 settings. For each setting, ten instances are
generated, which yields 23040 instances total.

7.2 Test setup

Performance comparablity to the single-model study in
Sedding (2020c) is ensuredby, besides using the samemixed-
integer programming approach, using equal hardware and
software.

The algorithms are all implemented in the C++11 pro-
gramming language. C++ STL containers are used for the
data structures. Computations remain single-threaded. The
code is compiled by GCC to x86-64 binaries. Mixed-integer
programs are given to the Gurobi 7.5 C++ API and solved
with it. For a fair comparison, the Gurobi computation is
limited to one thread. For Simulated Annealing, the refer-
ence implementation of Press et al. (1992, pp. 448–451) with
default parameters is used. The TrB&B heuristic is paramer-
ized with ψ = 5, σ = 7.

All programs are ran on Ubuntu Linux. Each instance gets
a dedicated CPU core of an Intel Xeon E5-2680.

A computation is terminated after a 1 h time limit. In
this case, although the final runtime is unknown, it is lower
bounded to at least 1 h. Thus, runtime percentiles (and
median) can still be calculated if the respective share of
instances finished within the time limit.

7.3 Exact algorithms

Tested exact approaches are themixed-integer program(MIP,
Sect. 4.2) and the branch and bound (B&B, Sect. 6.2). Result-
ing runtimes are aggregated in Table 2, in groupings by n and
m.

Let us first analyze the MIP and the B&B together:

– For both, we can observe an exponential growth of run-
time with increasing n, and some increase along with m.
This happens irrespective of the number of models m.
With the strong NP-hardness proof for Pm in Theo-

Table 3 Median B&B runtime in seconds for n = 24 and m = 4
grouped in walking velocity and walking strategy pairs

v = 2 v = 4 v = 8 v = 16

S1 210.55 271.23 131.73 67.08

S2 216.01 262.37 108.52 87.39

Table 4 Median B&B runtime in seconds for n = 24 and m = 4
grouped in pairs of assembly time and box width settings

L1 L2 L3 L4

W1 106.52 118.78 103.84 76.35

W2 102.37 180.76 136.40 154.03

W3 148.55 124.23 295.41 220.50

W4 202.12 201.55 265.69 237.31

rem 1, this behavior is not unexpected. Both approaches
exhibit high quartile deviations. The decrease in the quar-
tile deviation in groups of higher nmight be explained by
the smaller number of solved instances in such a group.
The correlation between B&B and MIP runtimes is 0.25,
which is weakly positive. Hence both approaches expe-
rience some similar difficulty with the instances.

– The B&B is consistently faster than theMIP. The B&B is
faster in 18718 (81.24%) of all 20200 solved instances.
While B&B is able to solve a clear majority of instances
until n = 24, the MIP can solve the majority only until
n = 16. On an aggregate level, the median speed advan-
tage of the B&B is 66-fold.

Further analysis of B&B performance shows peak dif-
ficulty for walking velocity v = 4 and for box width
settingW4. It has lowest difficulty forW1, but remains incon-
clusive for the different assembly time settings:

– Table 3 lists median runtimes grouped by each (v, S) pair.
Both walking strategies yield similar runtimes. The run-
time is smallest for v = 16, rises highest at v = 4, and
falls again for v = 2. Note that this picture is differ-
ent from the single-model case in Sedding (2020a): their
B&B for m = 1 had the highest runtime for v = 16, and
the lowest for v = 2.

– Table 4 groups each (L, W) pair. Compared to the other
box width settings W4 is highest with L1, L2, and L4;
W3 is highest with L3 (with W4 close up). Hence, W4 is
likely the most difficult case.

– Of the assembly time settings in Table 4, L2 runtime is
highest for W1 andW2; while L3 is highest withW3 and
W4. L4 is lowest for W1, L2 for W2, L3 for W3 andW4.
With this diverse ranking it remains unclear which case
has the highest or lowest performance.
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Concluding, the B&B is clearly the best performing exact
approach for solving the Pm with a median 66-fold speed
advantage over theMIP. TheB&Bexhibits relatively uniform
performance in all box width variants, is slower with the
more realistic assembly times W3 and W4, and is faster for
instances of the more realistic velocities v = 8 and v = 16.

7.4 Proportion of walking time to total work time

The exact solutions allow us to analyze the share of walking
time compared to the total work time in our instances. Scholl
et al. (2013) reports that material fetching amounts to about
10–15% of total work time at an assembly line of a large
German automobile manufacturer. Our most realistic worker
velocity cases are v = 8 and v = 16 (Klampfl et al. (2006)
document a similar assumption of v = 13.6). Table 5 shows
those cases attain 5.7–11%median walking time for walking
strategy S1. It is slightly lower 5.2–11% in strategy S2. Note
this is less than the 9–15% mean walking time in Sedding
(2020a) for a single product model m = 1.

7.5 Comparison with constant walking time
estimates

In most of the literature, it is assumed that the time to gather
material at the line side of a moving conveyor can be esti-
mated by constant estimates. This includes methods time
measurements (MTM) and most scientific literature. A com-
promise might be to represent walking time as costs (Limère
et al., 2015; Schmid et al., 2021; Müllerklein et al., 2022).
However, this can be imprecise if the space at the line side is
scarce and high walking times occur.

In Table 5, a high variability of the minimum walking
time can be observed. Thus, using the mean walking time
as a constant estimate poses the risk of misguided planning.
However, a conservative estimate can be far off. For exam-
ple for v = 8 in S1, the 95% percentile is 16.8% walking
time. Taking this as a conservative estimate yields an overes-
timation of walking time in a quarter of the instances (Q25)
by at least 75%, and in half of the instances (the median is
11.1%) by at least 51%. Similarly for v = 16 in S1: here,
the 95% percentile is 9.6%; hence the overestimation is over
108% compared to the lower quartile and 68% compared to
the median. Therefore, we conclude that constant estimates
of walking time are either misguiding or overly conservative
because of the observed variability in the instances’ mini-
mum walking times.

An accurate depiction of walking times would henceforth
improve planning accuracy, for example, in assembly line
balancing for an evendistributionofwork toworkers (Boysen
et al., 2022), or in product sequencing, which determines the
order of product models at the mixed-model line (Becker and
Scholl, 2006; Boysen et al., 2009c, 2012). Both problems

would ideally be considered simultaneously (Boysen et al.,
2022). An accurate, time-dependent walking time estimate
aids to reduce overload situations and minimize idle time.
As elucidated in Sect. 2.4, the worker may start a cycle at a
varying position due to floating, depending on the previous
cycle’s completion time. Hence, walking times are highly
dynamic. Tominimize them, it may be useful to continuously
reorder the worker’s operations where possible, e.g., with
methods described in Jaehn and Sedding (2016), Sedding
(2020b).

7.6 Heuristics

Tested basic heuristic approaches (cf. Sect. 6.1) are: the
weighted nearest identity sequence (WNID) placement
heuristic that provides the start for a best improvement local
search (HC) and a simulated annealing (SA) metaheuristic.
Also, we tested the truncated branch and bound (TrB&B,
Sect. 6.3), initialized with the WNID upper bound (denoted
TrB&BUBHC) and also the SA upper bound (TrB&BUB SA).
For a comparison, we let the MIP terminate on time limits of
10, 60, and 3600s.

We measure solution quality by the percentage increase
of walking time, which divides additional walking time by
minimum walking time. This is captured by the percentage
walking time error

PE(φ, φ′) = φ − φ′

φ′ −∑
(i, j)∈J ri�i, j

· 100% (15)

for two objective values.
We perform a subgroup analysis of the heuristics on the

instance subset that is exactly solved by B&B within the 1 h
time limit. Let MPE denote mean PE(φ, φ∗) of the attained
objective φ and an instance’s optimum φ∗. Please refer to
Table 6 to observe the share of optimally solved instances
andMPEvalues grouped by n andm values, and (n,m) pairs.
The number of finished instances increases over time, which
is plotted for several approaches in Fig. 3 for n = 24,m = 4.
The resulting PE is shown as box plots in Fig. 4.

The WNID yields a weak performance, still it is able to
achieve an optimum solution for some small instances. The
HC much improves on this, attains an optimum very fre-
quently in 39% of the cases. Its computation time is barely
measurable. The SA improves on this by optimally solving
68% of the instances. For n = 24 and m = 4, its median
runtime is measurable with 0.026 s.

The TrB&B greatly improves on both the HC and the SA’s
upper bound. In the former case, it finds the optimum solution
for 46% of the instances. It reduces the MPE from 121% to
5.05%. For n = 24 and m = 4, the median runtime rises to
0.146s.
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Table 5 Median (50%
percentile), quartile (25%, 75%
percentile), and 95% percentile
minimum walking time
percentage of total weighted
work time for n = 24 and
m = 4 instances with a known
optimum, in walking velocity
and walking strategy pairs

v S1 S2

Q25 (%) Q50 (%) Q75 (%) Q95 (%) Q25 (%) Q50 (%) Q75 (%) Q95 (%)

2 46 51 57 67 33 38 43 50

4 22 24 27 33 18 21 23 27

8 9.7 11 13 17 8.3 11 13 17

16 4.6 5.8 7.1 9.7 4.3 5.4 6.5 9.5

Fig. 3 Percentage of finished instances with n = 24 and m = 4 in a
line plot of algorithm runtime in seconds

Fig. 4 Box plots of percentage walking time error PE(φ, φ∗) of a
heuristic’s φ for n = 24 and m = 4 instances solved by B&B with
optimum φ∗

With the SA upper bound, an optimum is found for 72%
of the instances, further reducing the MPE to 1.77%. For
n = 24 and m = 4, the median runtime is 0.140s, which
includes the SA runtime.

Except for small instances, the time-limited MIP at 10 or
60s hasworse PE andMPE values even though the runtime is
much higher than of the other heuristics: The MIP’s median
runtime corresponds to the time limit because available com-
pute time is mostly used up completely. With a long runtime,
only a small PE remains.

An assessment of the full set of instances would require
knowledge of an optimal solution of all instances. For
2463 instances, an optimum could not be attained within
the 1 h time limit with neither exact algorithm (MIP, B&B).
To study the set of all instances in a consistent way, we use
the objective value φH of the long running MIP (<1h) as
a reference, because it returns the smallest overall MPE in
the preceding subgroup analysis. The heuristics’ objective
value φ can then be assessed with the percentage of instances
that yield φ ≤ φH, andwith themean of the percentagewalk-
ing time error PE(φ, φH) denoted by HMPE. We observe
similar results for this test as in the subgroup analysis. In
particular, executing the MIP for 60 s gives yields relatively
high HMPE for large instances. Compared to the MIP run-
time of 1 h, the HMPE of the TrB&B is noticeably less for
high n and m values, while maintaining a much shorter run-
time. See also Table 7.

Concluding, the TrB&BUB SA provides the best heuristic
solutions, makes good use of SA’s initial upper bound, and
retains a low runtime. This suggests that the research and
implementation effort for the TrB&B is worthwhile, espe-
cially in combination with SA. Both the TrB&B and theMIP
can be parameterized regarding solution quality, although the
latter admits greater walking time in the same runtime.

8 Conclusion

In this paper, we consider the mixed-model placement of
boxes to minimize worker walking at the moving assem-
bly line. The time-dependent walking time model allows for
a much higher precision according to our numerical experi-
ment: in most instances, constant walking time estimates that
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include 95% of cases are at least 51% higher than with our
time-dependent model (see Sect. 7.5).

We prove that this optimization problem is NP-hard in the
strong sense for any number of product models. We observe
that moderately sized instances with up to 16 jobs can be
solved with a mixed-integer program that employs disjunc-
tive sequencing constraints to avoid box overlapping. For
larger instances, we construct branch and bound-based algo-
rithms.ALagrangian relaxation leads to a lower bound that is
solved in quadratic time. This bound is employed in a branch
and bound search, for which a truncated search tree yields
a heuristic. Also, we describe an intuitive heuristic that is
complemented with a local search and simulated annealing
to find an initial upper bound.

The numerical results indicate that our exact branch and
bound based algorithms provide superior runtime and quality
compared to solving a mixed-integer program. The runtime
of the best heuristic typically remains below 1 s, contributing
to an interactive planning experience that is more accurate
and permits less safety buffer time.
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Černý, V. (1985). Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimiza-
tion Theory and Applications, 45(1), 41–51. https://doi.org/10.
1007/BF00940812

Esmaeilbeigi, R., Naderi, B., & Charkhgard, P. (2016). New formu-
lations for the setup assembly line balancing and scheduling
problem. OR Spectrum, 38(2), 493–518. https://doi.org/10.1007/
s00291-016-0433-3

Farahani, M. H., & Hosseini, L. (2013). Minimizing cycle time in
single machine scheduling with start time-dependent process-
ing times. The International Journal of Advanced Manufacturing

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cor.2019.04.005
https://doi.org/10.1016/j.ejor.2006.07.044
https://doi.org/10.1016/j.cie.2010.07.028
https://doi.org/10.1016/j.cie.2010.07.028
https://doi.org/10.1007/BFb0121051
https://doi.org/10.1007/BFb0121051
https://doi.org/10.1016/j.ijpe.2012.10.020
https://doi.org/10.1016/j.ijpe.2012.10.020
https://doi.org/10.1016/j.ijpe.2022.108673
https://doi.org/10.1016/j.ejor.2005.12.017
https://doi.org/10.1016/j.ejor.2005.12.017
https://doi.org/10.1016/j.ejor.2004.07.023
https://doi.org/10.1016/j.ejor.2004.07.023
https://doi.org/10.1016/j.ejor.2008.11.051
https://doi.org/10.1007/s00291-007-0095-2
https://doi.org/10.1007/s10696-009-9058-z
https://doi.org/10.1080/00207540701725067
https://doi.org/10.1080/00207540701725067
https://doi.org/10.1016/j.ejor.2007.09.013
https://doi.org/10.1016/j.ejor.2007.09.013
https://doi.org/10.1016/j.ejor.2011.08.009
https://doi.org/10.1016/j.ejor.2011.08.009
https://doi.org/10.1016/j.ejor.2014.09.065
https://doi.org/10.1016/j.ejor.2021.11.043
https://doi.org/10.1016/j.ejor.2021.11.043
https://doi.org/10.1093/comjnl/14.4.422
https://doi.org/10.1080/07408170590516854
https://doi.org/10.1080/07408170590516854
https://doi.org/10.1007/BF00940812
https://doi.org/10.1007/BF00940812
https://doi.org/10.1007/s00291-016-0433-3
https://doi.org/10.1007/s00291-016-0433-3


Journal of Scheduling

Technology, 64(9), 1479–1486. https://doi.org/10.1007/s00170-
012-4116-1

Finnsgård, C., Wänström, C., Medbo, L., & Neumann, W. P. (2011).
Impact of materials exposure on assembly workstation perfor-
mance. International Journal of Production Research, 49(24),
7253–7274. https://doi.org/10.1080/00207543.2010.503202

Fisher, M. L. (2004). The Lagrangian Relaxation Method for Solving
Integer Programming Problems.Management Science, 50(12 Sup-
plement), 1861–1871. https://doi.org/10.1287/mnsc.1040.0263

Ford, H., & Crowther, S. (1922).My life and work. Doubleday Page &
Co.

Garey, M. R., & Johnson, D. S. (1975). Complexity results for multi-
processor scheduling under resource constraints. SIAM Journal on
Computing, 4(4), 397–411. https://doi.org/10.1137/0204035

Garey, M. R., & Johnson, D. S. (1978). “Strong” NP-completeness
results: Motivation, examples, and implications. Journal of the
ACM, 25(3), 499–508. https://doi.org/10.1145/322077.322090

Garey, M. R., Tarjan, R. E., & Wilfong, G. T. (1988). One-processor
schedulingwith symmetric earliness and tardiness penalties.Math-
ematics of Operations Research, 13(2), 330–348. https://doi.org/
10.2307/3689828

Gawiejnowicz S (2020a) Models and Algorithms of Time-Dependent
Scheduling, 2nd edn. Monographs in Theoretical Computer Sci-
ence, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-
3-662-59362-2

Gawiejnowicz, S. (2020b). A review of four decades of time-dependent
scheduling: Main results, new topics, and open problems. Journal
of Scheduling, 23(1), 3–47. https://doi.org/10.1007/s10951-019-
00630-w

Hajek, B. (1988). Cooling schedules for optimal annealing.Mathemat-
ics of Operations Research, 13(2), 311–329. https://doi.org/10.
1287/moor.13.2.311

Held, M., Wolfe, P., & Crowder, H. P. (1974). Validation of subgradient
optimization. Mathematical Programming, 6(1), 62–88. https://
doi.org/10.1007/BF01580223

Jaehn, F., & Sedding, H. A. (2016). Scheduling with time-dependent
discrepancy times. Journal of Scheduling, 19(6), 737–757. https://
doi.org/10.1007/s10951-016-0472-2

Kawase, Y., Makino, K., & Seimi, K. (2018). Optimal composition
ordering problems for piecewise linear functions. Algorithmica,
80(7), 2134–2159. https://doi.org/10.1007/s00453-017-0397-y

Keha, A. B., Khowala, K., & Fowler, J. W. (2009). Mixed integer pro-
gramming formulations for single machine scheduling problems.
Computers & Industrial Engineering, 56(1), 357–367. https://doi.
org/10.1016/j.cie.2008.06.008

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
Simulated Annealing. Science, 220(4598), 671–680. https://doi.
org/10.1126/science.220.4598.671

Klampfl, E., Gusikhin,O.,&Rossi, G. (2006). Optimization ofworkcell
layouts in a mixed-model assembly line environment. Interna-
tional Journal ofFlexibleManufacturingSystems, 17(4), 277–299.
https://doi.org/10.1007/s10696-006-9029-6

Kononov, A. V. (1998). Problems in scheduling theory on a single
machine with job durations proportional to an arbitrary function.
Diskretnyı̆ Analiz i Issledovanie Operatsiı̆, 5(3), 17–37.

Limère, V., Landeghem, H. V., & Goetschalckx, M. (2015). A decision
model for kitting and line stocking with variable operator walking
distances. Assembly Automation, 35(1), 47–56. https://doi.org/10.
1108/AA-05-2014-043

Manne, A. S. (1960). On the job-shop scheduling problem. Operations
Research, 8(2), 219–223. https://doi.org/10.1287/opre.8.2.219

Müllerklein, D., Fontaine, P., & Ostermeier, F. (2022). Integrated
consideration of assembly line scheduling and feeding: A new
model and case study from the automotive industry. Computers
& Industrial Engineering, 170, 108288. https://doi.org/10.1016/j.
cie.2022.108288

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P.
(1992). Numerical recipes in C: The art of scientific computing.
Cambridge University Press.

Queyranne, M. (1993). Structure of a simple scheduling polyhedron.
Mathematical Programming, 58(1–3), 263–285. https://doi.org/
10.1007/BF01581271

Queyranne, M., & Schulz, A. S. (1994). Polyhedral approaches to
machine scheduling. (p. 3). Tech. rep.: Technische Universität
Berlin, Fachbereich.

Salveson, M. E. (1955). The assembly line balancing problem. Journal
of Industrial Engineering, 6(3), 18–25.

Schmid, N. A., & Limère, V. (2019). A classification of tactical assem-
bly line feeding problems. International Journal of Production
Research, 57(24), 7586–7609. https://doi.org/10.1080/00207543.
2019.1581957

Schmid, N. A., Limère, V., & Raa, B. (2021). Mixed model assembly
line feeding with discrete location assignments and variable sta-
tion space.Omega, 102, 102286. https://doi.org/10.1016/j.omega.
2020.102286

Scholl, A., Boysen, N., & Fliedner, M. (2013). The assembly line
balancing and scheduling problem with sequence-dependent
setup times: Problem extension, model formulation and efficient
heuristics.OR Spectrum, 35(1), 291–320. https://doi.org/10.1007/
s00291-011-0265-0

Sedding, H. A. (2017) Box placement as time dependent scheduling to
reduce automotive assembly line worker walk times. In Proceed-
ings of the 13th Workshop onModels and Algorithms for Planning
and Scheduling Problems, Seeon, Germany, pp 92–94.

Sedding, H. A. (2020a). Line side placement for shorter assembly line
worker paths. IISE Transactions, 52(2), 181–198. https://doi.org/
10.1080/24725854.2018.1508929

Sedding, H. A. (2020b). Scheduling jobs with a V-shaped time-
dependent processing time. Journal of Scheduling, 23(6), 751–768.
https://doi.org/10.1007/s10951-020-00665-4

Sedding, H. A. (2020c). Time-dependent path scheduling: Algorith-
mic minimization of walking time at the moving assembly line.
Springer. https://doi.org/10.1007/978-3-658-28415-2

Sedding, H. A. (2021). A lower bound for sequentially placing boxes at
the moving assembly line to minimize walking time. In Proceed-
ings of the 3rd International Workshop on Dynamic Scheduling
Problems, Adam Mickiewicz University, Poznań, Poland, pp 63–
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