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Abstract—Embedded controllers are used in many 

applications. It often happens that these do not offer any 

possibilities to set the controller parameters, because they are 

capsulated to outside. The closed-loop systems are then stable, but 

the systems are often weakly damped and their step responses 

exhibit overshoot. In the following, a method is described, how 

such embedded controlled systems can be controlled via a 

superimposed feedback loop using PID controllers in such a way 

that the system deviation of the step response is minimized 

according to the ITAE method. A method from artificial 

intelligence, hill climbing, is used for this purpose. For the control 

of such systems, the paper essentially provides PID controller 

parameters, which are usable for many weakly damped systems. 

The parameters are verified in a practical application with a speed 

control of a motor with inertial mass. 
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I. INTRODUCTION AND RELATED RESEARCH 

In the figure 1, there is shown an embedded controlled system 
with a superimposed control. The behavior of such embedded 
controlled systems is often as a black box, and then it is not 
possible to change the parameters or intervene in the system in 
any way. Many of these systems are not optimally adjusted and 
exhibit an overshooting behavior as a 2nd order system. 
Therefore, a PID controller is applied as a superimposed 
control. PID controllers are still most common used in such 
applications.  

Fig. 1. Superimposed control of an embedded capsulated system. 

It is therefore necessary that on the one hand the actual output 
value or the signal of the sensor can be picked up at the output. 
On the other hand, it must also be possible to feed the setpoint 
into the system.  
There are many methods and approaches to find suitable 
controller parameters. The first method for this was that of 
Ziegler-Nichols [1], but there are also several others known, 
such as that of Chien, Hrones and Reswick [2]. However, they 
only apply to time-delayed systems and not to overshooting 
systems. Most of these approaches are heuristic and the 
controllers found need to be further optimized. Today, 
however, also various other methods are in use to optimize 
controllers. 
In recent years, some methods in the topic of artificial 
intelligence, as examples particle swarm optimization (PSO) 
and also some others [3-9] have also been used for the 
optimization of controllers. Further related methods [10-16] 
were also used for optimization. In addition, there are existing 
many other optimization methods for the tuning of control 
parameters [17-20]. Good converging algorithms for the 

control with H∞ criterions were investigated in [3–5]. And 

also Mechatronic systems were regulated using such methods 
[6, 7]; these methods were used to control motors which are 
connected directly to wheels [6]. In addition, a new algorithm 
with a new particle type for the PSO algorithm was introduced, 
this was in the following also successfully used to control a 
non-linear system [8]. PSO was also used for the tuning of PID 
controllers for an electronic commutated DC Motor and also 
servo motors [9]. There were also other methods developed. In 
[11] a new self-tuning PID temperature regulator was 
developed using a neural network. In [12] a genetic algorithm 
was developed, which optimizes the parameters of PID control 
to do a position regulation of the electrohydraulic actuators. 
But the PSO methods can just find a local minimum. There, 
these parameters for Kp, Ti and Td are treated as particles in 
three dimensions. These are then calculated in iterations, based 
of random starting values from one iteration to another, using 
the three-dimensional vector for velocities. For these particles, 
the PSO algorithms use several components with different 
weights: these are the vectors from last iteration, and a velocity 



vector, which points into the direction of best criteria achieved 
using the specific particle, furthermore also a velocity vector, 
which points into the direction of the best criteria over all the 
particles. There is also the component of the social behavior of 
the particles, which influences the calculation.  
Here, the related method ‘hill-climbing’ [20] is introduced for 
the minimization of the ITAE criterion of PID controllers. It is 
similar to PSO. But the difference is, that that all particles are 
calculated serially with the algorithm, but not parallel. Here, 
also the social behavior is missing, there is no connection of the 
different particles. As result of this, much more different local 
minima of the criteria are found and this will increase the 
probability that smaller ITAE criterions will be found. At the 
end, the smallest one of all minima is then accepted as result 
parameter set. This method is described below. 
 
 

II. IDENTIFICATION OF A 2ND ORDER OVERSHOOTING SYSTEM 

 
 

Fig. 2. The step response of a damped 2nd order system. 

 

However, although many systems are stable, they exhibit 
system-related overshooting. In addition to the encapsulated 
systems shown in figure 1, there are also other weakly damped 
systems, for example spring-mass systems, which have to be 
controlled in the application of an active vibration damping. 
Figure 1 shows such a step response.  
Simple rules can be defined using figure 2 in order to read the 
parameters of the transfer function from a given step response 
of an overshooting system. The transfer function G(s) becomes 
as described below. Such systems are very common in practice, 
but will be described here for further use in the paper’s tables. 

 

  
∙∙∙∙                   (1) 

First the overshoot Δ1 is found. This is specified in relation to 
the stationary final value. From the graph in figure 2 one reads: 
Δ1 = 0.37. From this, the relationship between the first 
overshoot Δ1 and the system damping D can be calculated [21]. 

∆1  exp  ∙
              ∆

∆            (2) 

 
With the given system according to figure 2, this results in D = 
0.3. In practice, the damping can also be read from the graph in 
figure 3 [22]. 
 

 
 

 

Fig. 3. Overshoot of a 2nd order system in function of the system damping. 

Furthermore, the time constant T must also be identified. For 
this purpose, the time tp is measured according to figure 2. This 
is the time between the begin of the step and reaching the 
maximum overshoot. The time constant T is directly related to 
tp. 

 
   

                                         (3) 

 

For the example of the step response according to figure 2, there 
is T = 0.5s. The graphic represents a response to a unit step. 
Since the static end value is equal to 2, there is Ks = 2:1 = 2 in 
this example. The system with the parameters according to the 
figure 2 is therefore complete identified. 

 
  

∙∙∙∙  
.∙.∙     (4) 

 
The stable second-order systems discussed in this document 
have a damping D between 0 and 1. Their step responses show 
an overshoot behavior as shown in figure 2. Other second order 
systems with step responses without overshoot behavior have a 
damping D of > 1.0. Their control is dealt with in [18].  
 
 

III. HILL CLIMBING METHOD TO CALCULATE THE CONTROLLER 

PARAMETERS AFTER THE MINIMIZED ITAE CRITERION 

 
After the system was identified, it can be represented with the 
transfer function. All of the following considerations and 
calculations are based on the block diagram of figure 4. It 



represents the closed loop circuit of the controlled system. The 
system described above is shown there on the right. Depending 
on the damping factor D, it overshoots more or less. The PID 
controller is shown on the left. The integrator is designed with 
an output limitation. When using the optimal parameters of the 
controller calculated in the following, this is never active. 
However, these control output limitations are always built into 
practical designs. So that the PID controller can be 
implemented, a filter must also be added to the differential 
component. Its time constant is chosen here to be one hundred 
times faster than the time constant T of the second-order 
system. The controller output limitation between the controller 
and the second order system is also present in all practical 
systems. This will be taken into account in the parameter sets, 
which are calculated below. 

 

 
 

Fig. 4. Closed loop control loop, as it is used for all calculations. 

 

 
 

Fig. 5. The ITAE criterion in the time domain. 

 
In figure 5, there the criterion is drawn. This is the area of the 
deviation of a step response of the system from unit step. And 
It is also weighted by time, it is therefore multiplied by the time. 
Thus, the error has a greater influence when the time 
progresses. 
In theory, it is not difficult to calculate these controller 
parameters according to the minimal ITAE criterion. You only 
have to calculate all the possible parameter sets of P, I, D (Kp, 
Ti, Td) for the second order systems, using different damping 
masses D and controller output limitations.  

However, when calculating the optimal parameters for the PID 
controller, there the challenge arises that one has to calculate a 
large number of simulations. The three parameters span a three-
dimensional space. There are also two further dimensions for 
the calculation of the parameter sets with different controller 
output limitations and also the system dampings D. Thus the 
problem could be solved in polynomial time, but the complexity 
is x5 and it requires too much calculating capacity. Therefore, 
the calculation was made with the ‘hill-climbing’, that can find 
at least local minima. 
There is carried out a multiplication of a small change of new 
iteration with a random value (0, +1 and -1). This iteration is a 
minimal change in the controller parameters, for Kp and Ti and 
Td. It is then added to the parameters. After that, the ITAE 
criterion is recalculated. If the new value of the criterion is 
smaller, the new parameter sets are used for the next 
calculation. If not, then the old parameters are used.  
 
 

 
 

 

Fig. 6. Flow chart of the hill climbing method. 

 
However, this method only finds local minima. Therefore, 
many different random tuples of start values of the controller 
parameters were used in the parameter search. After 
calculation, many solutions of the converged minimum ITAE 
criteria agree with each other. Therefore, one can assume with 
reasonably good certainty that the parameters found are actually 
the PID parameters Kp, Ti and Td, which correspond to the 
absolute minimum of the ITAE criterion. In any case, they are 
at least very close to them. 
 

 

IV. PID PARAMETER TABLE FOR OPTIMAL ITAE 

 
In table 1, the parameter sets calculated in this way for different 
system dampings D and different controller output limitations 



are shown. It is noteworthy that the table scales with the static 
gain Ks and the time constant T. This makes the table usable 
for all subcritical damped systems of 2nd order. This table is 
the core of this publication. 
The meaning of +/− (2,3,5,10) is the controller output 
limitation. This is also part of the table and influences the 
parameter sets. Furthermore, the maximum values of the table 
are limited to 10. 

TABLE I.  PID PARAMETERS FOR MINIMAL ITAE CRITERION 

 
ITAE (controller limitation value – controller output before 

the step) divided by (controller output for stationary end 

value – controller output before the step) 

D +/- 2 +/- 3 +/- 5 +/- 10 

 
1.0 

0% 
overshoot 

 
Kp = 10/Ks 
Ti/T = 9.6 
Td/T = 0.3 

 
Kp = 10/Ks 
Ti/T = 7.3 
Td/T = 0.3 

 
Kp = 9.6/Ks 
Ti/T = 5.4 
Td/T = 0.3 

 
Kp = 9.8/Ks 
Ti/T = 4.7 
Td/T = 0.3 

 

 
0.9 

0.2% 
overshoot 

 
Kp = 9/Ks 
Ti/T = 8.4 

Td/T = 0.35 

 
Kp = 9.7/Ks 
Ti/T = 7.1 

Td/T = 0.35 

 
Kp = 10/Ks 
Ti/T = 5.4 
Td/T = 0.3 

 
Kp = 9.9/Ks 
Ti/T = 4.5 
Td/T = 0.3 

 

 
0.8 

1.5% 
overshoot 

 
Kp = 9.7/Ks 
Ti/T = 8.7 

Td/T = 0.35 

 
Kp = 9.9/Ks 
Ti/T = 7.0 

Td/T = 0.35 

 
Kp = 9.8/Ks 
Ti/T = 5.5 

Td/T = 0.35 

 
Kp = 9.9/Ks 
Ti/T = 4.8 

Td/T = 0.35 
 

 
0.7 

4.6% 
overshoot 

 
Kp = 10/Ks 
Ti/T = 8.6 

Td/T = 0.35 

 
Kp = 10/Ks 
Ti/T = 6.8 

Td/T = 0.35 

 
Kp = 10/Ks 
Ti/T = 5.4 

Td/T = 0.35 

 
Kp = 9.9/Ks 
Ti/T = 4.6 

Td/T = 0.35 
 

 
0.6 

9.5% 
overshoot 

 

Kp = 9.8/Ks 
Ti/T = 8.3 
Td/T = 0.4 

 

Kp = 10/Ks 
Ti/T = 6.9 
Td/T = 0.4 

 

Kp = 10/Ks 
Ti/T = 5.2 

Td/T = 0.35 

 

Kp = 9.9/Ks 
Ti/T = 4.9 
Td/T = 0.4 

 

 
0.5 

16% 
overshoot 

 
Kp = 9.9/Ks 
Ti/T = 8.1 
Td/T = 0.4 

 
Kp = 9.8/Ks 
Ti/T = 6.5 
Td/T = 0.4 

 
Kp = 9.8/Ks 
Ti/T = 5.3 
Td/T = 0.4 

 
Kp = 9.9/Ks 
Ti/T = 4.7 
Td/T = 0.4 

 

 
0.4 

25% 
overshoot 

 

 
Kp = 9.7/Ks 
Ti/T = 7.6 
Td/T = 0.4 

 
Kp = 10/Ks 
Ti/T = 6.4 
Td/T = 0.4 

 
Kp = 10/Ks 
Ti/T = 5.2 
Td/T = 0.4 

 
Kp = 9.9/Ks 
Ti/T = 4.5 
Td/T = 0.4 

 

 
0.3 

37% 
overshoot 

 

 
Kp = 9.4/Ks 
Ti/T = 7.3 

Td/T = 0.45 

 
Kp = 9.7/Ks 
Ti/T = 6.3 

Td/T = 0.45 

 
Kp = 9.9/Ks 
Ti/T = 5.4 

Td/T = 0.45 

 
Kp = 9.9/Ks 
Ti/T = 4.8 

Td/T = 0.45 
 

 
0.2 

53% 
overshoot 

 

 

Kp = 9.7/Ks 
Ti/T = 7.3 

Td/T = 0.45 

 

Kp = 9.9/Ks 
Ti/T = 6.2 

Td/T = 0.45 

 

Kp = 9.9/Ks 
Ti/T = 5.2 

Td/T = 0.45 

 

Kp = 9.9/Ks 
Ti/T = 4.6 

Td/T = 0.45 
 

 
0.1 

73% 
overshoot 

 

 
Kp = 9.9/Ks 
Ti/T = 7.5 
Td/T = 0.5 

 
Kp = 9.8/Ks 
Ti/T = 6.3 
Td/T = 0.5 

 
Kp = 10/Ks 
Ti/T = 5.5 
Td/T = 0.5 

 
Kp = 9.9/Ks 
Ti/T = 4.9 
Td/T = 0.5 

 

 
0.0 

100% 
overshoot 

 

 

Kp = 10/Ks 
Ti/T = 7.3 
Td/T = 0.5 

 

Kp = 10/Ks 
Ti/T = 6.2 
Td/T = 0.5 

 

Kp = 10/Ks 
Ti/T = 5.3 
Td/T = 0.5 

 

Kp = 9.9/Ks 
Ti/T = 4.7 
Td/T = 0.5 

 

 

V. CONTROL OF A MECHATRONIC SYSTEM AS APPLICATION 

 
As an example, a speed control of a motor is realized. In figure 
7, a very common system of a motor with a load is showed. The 
load is represented by a rotating wheel with a mass moment of 
inertia J. The brushless DC or DC motor is driven by an 
amplifier. The speed is measured and calculated via an encoder. 
 

 
   

Fig. 7. (Brushless) DC motor with a load, with a mass moment of inertia J. 

 

It is now assumed that the rotational speed of this system is 
controlled with an encapsulated embedded system. This means 
that its controller parameters are not accessible from the outside 
and cannot be changed. The step response of the system 
controlled in this way is shown in figure 8. 

 

 
 

Fig. 8. Step response of the capsulated embedded control loop. 

The system regulated in this way is already stable. The response 
to a jump to 1000 rpm is shown here. One would now like to 
regulate this system using the parameter table found in the last 
chapter in such a way that the ITAE criterion is minimized. For 
this purpose, a superimposed control according to the block 
diagram of figure 9 is used. In order to determine the correct 
control parameters according to the parameter table, the system 
with the step response from figure 8 will be identified. This is 
done according to the procedure outlined above. This results in 
a time constant T = 0.13 and a system damping D = 0.33 and 
Ks = 1. The transfer function G(s) is thus calculated as 
 

  
∙∙∙∙  

.∙.∙     (5) 

 



With this system, the conversion of the encoder corresponds to 
200 rpm/V. Therefore A setpoint step from 0 to 1000 rpm 
corresponds to a step from 0 to 5V. The motor amplifier is 
supplied with +/-15V. Thus it can give a maximum of 15V 
voltage to the motor. The control output limitation factor is 
therefore ± 15V / 5V = ± 3. The parameters Kp, Ti and Td are 
calculated according to the table values, with the approximate 
value D = 0.3. 

 

  .


 9.7        6.3 ∙   0.819       0.45 ∙   0.0585           (6) 

 

This results in the block diagram according to figure 9. 
 

 
 

 

Fig. 9. Closed loop of the controlled system. 

Finally, for this controlled system with the PID parameters read 
from the table for the minimized ITAE criterion, the very nice 
step response of the new closed loop system according to figure 
10 results. The table values perform the system very well. 
 

 
 

 

Fig. 10. Step response of the system controlled according to the parameters of 
the minimized ITAE criterion. 

 

VI. DISCUSSION AND OUTLOOK 

 

The step response of this system and also other ones discussed 
is very fine. This is clear in that sense, because the parameters 
of the PID controllers in the table were calculated before and 
then selected as the best ones. This example can show very 
well, that the PID controllers are not only usable for the control 

systems that do not exhibit any overshoot. Very good regulation 
parameters can also be found for the systems with overshoot, 
using the table, which was calculated with the 'hill climbing' 
method discussed here. These also result in good step response 
behavior according to the minimum ITAE criterion. 
And particularly, also the output limitations were used for the 
parameter calculation. These are always part of the real existing 
systems and influence the PID parameters. The calculated 
parameters are also dependent of system parameters T and D, 
and the amplification Ks. It can also be shown that the poles of 
the new closed loop overall systems also scale with it. 
Therefore, the controller parameters shown in the table can be 
used very generally. Therefore these parameter sets are usable 
for a wide range of such weakly damped systems, which show 
an overshoot behavior that are out in practice, in just using the 
table which is shown here. 
This publication may contribute to find adequate controller 
parameters for the systems to be controlled in practice, which 
show such step responses. 
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