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A B S T R A C T

The application of machine learning to physics problems is widely found in the scientific literature. Both
regression and classification problems are addressed by a large array of techniques that involve learning
algorithms. Unfortunately, the measurement errors of the data used to train machine learning models
are almost always neglected. This leads to estimations of the performance of the models (and thus their
generalization power) that is too optimistic since it is always assumed that the target variables (what one
wants to predict) are correct. In physics, this is a dramatic deficiency as it can lead to the belief that theories
or patterns exist where, in reality, they do not. This paper addresses this deficiency by deriving formulas for
commonly used metrics (both for regression and classification problems) that take into account measurement
errors of target variables. The new formulas give an estimation of the metrics which is always more pessimistic
than what is obtained with the classical ones, not taking into account measurement errors. The formulas given
here are of general validity, completely model-independent, and can be applied without limitations. Thus,
with statistical confidence, one can analyse the existence of relationships when dealing with measurements
with errors of any kind. The formulas have wide applicability outside physics and can be used in all problems
where measurement errors are relevant to the conclusions of studies.
1. Introduction

The main goal of training a supervised machine learning (ML)
model is to find a relationship between a set of 𝑀 inputs 𝑥𝑖 (with
𝑖 = 1,… ,𝑀) and some outputs 𝑦𝑖 (with 𝑖 = 1,… ,𝑀). The values of
the variable to be predicted are often called labels in the literature.
In general, 𝑥𝑖 and 𝑦𝑖 can be multidimensional; for simplicity, in this
paper, the output variable is assumed to be a real number 𝑦𝑖 ∈ R. In
any application of ML to a physics problem the output variables 𝑦𝑖 will
be either the direct result of a measurement or determined through
some calculations from multiple ones. For example, 𝑦𝑖 could be the
oxygen concentration or temperature of a gas (Michelucci & Venturini,
019), oxide glass-forming ability (Wilkinson et al., 2022), temperature
n melt-pool fluid dynamics (Zhu, Liu, & Yan, 2021), or a measure of
the dissolution kinetics of gases (Krishnan et al., 2018).

ML is used in physics in a large number of cases. For example, to
locate phase transitions without any physical knowledge (Carrasquilla
& Melko, 2017; Morningstar & Melko, 2018; Tanaka & Tomiya, 2017),
to select events in collisions (Baldi, Bauer, Eng, Sadowski, & Whiteson,
2016; de Oliveira, Kagan, Mackey, Nachman, & Schwartzman, 2016)

∗ Corresponding author at: TOELT LLC, Birchlenstrasse 25, 8600 Dübendorf, Switzerland.
E-mail addresses: umberto.michelucci@toelt.ai (U. Michelucci), vent@zhaw.ch (F. Venturini).

and to flavour tagging (Guest et al., 2016) in particle physics. In cos-
mology, ML has been applied, for example, to estimate the photometric
redshift (Carrasco Kind & Brunner, 2013; Collister et al., 2007) and to
predict fundamental cosmological parameters based on the dark matter
spatial distribution (Ravanbakhsh et al., 2016). The list of examples
is incredibly long, and applications can be found in almost all fields
of physics. For an extensive review, the interested reader is referred
to Carleo et al. (2019).

Apart from a few papers (Luo, Lorentzen, & Bhakta, 2021; Zhang,
Xiao, Luo, & He, 2022), typically the performance of the models is
reported without taking into account the measurement errors on the
labels. Target variables that have errors present a certain uncertainty,
and it is not clear how this uncertainty propagates to the metrics used
to measure the performance of ML models. Research starts to indicate
that in many physics problems, ignoring measurement errors may lead
to an underestimation of ML model uncertainties (Ghosh & Nachman,
2022).

The problem is of fundamental relevance since typically models
are trained on a specific dataset, typically split into a training and
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test part, and results are given in terms of specific metrics, such as
the mean squared error (MSE), the mean absolute error (MAE) for
regression problems or the accuracy (𝑎) for classification problems
(or slightly different metrics in case of unbalanced datasets of multi-
class classification problems). The problem is that in almost all cases,
measurement errors on the variables to be predicted (𝑦𝑖) are ignored.
his will lead to overly optimistic estimates of the mentioned metrics
such as the MSE, MAE or 𝑎).
The problem of noisy labels (a different kind of problem than

he one analysed in this paper) is a relatively widely researched
opic (Cour, Sapp, & Taskar, 2011; Menon, Rooyen, Ong, & Williamson,
015; Natarajan, Dhillon, Ravikumar, & Tewari, 2013; Yao, Yang, Han,
Niu, & Kwok, 2020; Zheng et al., 2020). Some articles deal with meth-
ods to identify wrongly labelled observation (Bahri, Jiang, & Gupta,
2020) and some try to define modified loss functions that can deal with
noise (Liu & Tao, 2016). All efforts are directed towards understanding
how to get better model performance or model stability when labels
are noisy. However, none of these works addresses the problem of
how labels errors can influence the metrics evaluated. Particularly in
physics (but in all sciences for that matter), measurement errors must
be included in any results as any physicist learns early in his or her
career. This paper addresses this deficiency and provides formulas that
take into account errors to better estimate the metrics most commonly
used in ML, both for regression and classification problems.

The main contributions of this paper are four. Firstly, formulas are
given for the MSE, the MAE, the accuracy 𝑎, and their variances that
take into account measurement errors on the variable to be predicted
𝑦𝑖. These formulas are of general validity and are independent of the ML
model used. Secondly, all the formulas are fully derived mathematically
with a statistical approach. Thirdly, an a-priori mathematical derivation
for the formulas is given in the appendices of the paper. Finally,
guidelines are presented on how to use those formulas.

2. Problem formulation and notation

This paper considers the following thought experiment: find a re-
lationship between a set of 𝑀 inputs 𝑥𝑖 (with 𝑖 = 1,… ,𝑀) and some
outputs 𝑦𝑖 (with 𝑖 = 1,… ,𝑀) that are assumed to be independent. The
typical steps to achieve this are to split the dataset into training and
test datasets, train the model on the training dataset, and validate the
results by applying the model to the test dataset, namely, on unseen
data. The training is done by minimizing an appropriate loss function,
typically the MSE or MAE for regression, or the cross entropy for clas-
sification. Several metrics can be evaluated to assess the performance
of the trained model. In this paper, the metrics most commonly used
are discussed: MSE, MAE and accuracy 𝑎.

An important step to evaluate the generalization properties of the
trained model is to perform a cross-validation (Michelucci & Ven-
turini, 2021). An example of cross-validation is the split-train approach,
achieved by performing the dataset split multiple times thus obtained
multiple training and test datasets. Each time a new model is trained
and its performance evaluated on the test dataset. Naturally, every
time a new split is used, the model changes. Looking at the metrics
obtained by evaluating them on the multiple test datasets, one can get
an indication on the average performance of possible models obtained
with the initial datasets. Unfortunately, this method does not take
into account in any way the errors that are inevitably present on
the 𝑦𝑖. Therefore, the metrics’ values will lead to an overly optimistic
impression of the goodness of the model.

Let us introduce a measurement error on the labels 𝑦𝑖 with the
random variable 𝜖𝑖

𝑦𝑖 = 𝑦𝑖 + 𝜖𝑖 (1)

where 𝑦𝑖 is the average value of 𝑦𝑖 and 𝜖𝑖 follows a normal distribution
with average zero and variance 𝜎2𝑖 , or more formally,

𝜖 ∼  (0, 𝜎2) (2)
2

𝑖 𝑖
or in other words

𝑦𝑖 ∼  (𝑦𝑖, 𝜎2𝑖 ). (3)

This is based on the hypothesis that measurement errors follow a
Gaussian distribution (Taylor, 1997). This work provides formulas for
the expected value and variance of metrics, specifically MSE, MAE, and
𝑎, over the distribution of the random variable 𝜖𝑖.

In this paper, two generic problems are considered: a regression
problem and a classification problem. A generic regression problem
has the objective of predicting a continuous variable using a set of 𝑀
observations tuples (𝑥𝑖, 𝑦𝑖), with 𝑖 = 1,… ,𝑀 . 𝑥𝑖 is the 𝑖th input, and 𝑦𝑖
s the 𝑖th target variable. In this case, the two metrics considered here
re the mean squared error (MSE)

SE = 1
𝑀

𝑀
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (4)

nd the mean absolute error (MAE)

AE = 1
𝑀

𝑀
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (5)

where �̂�𝑖 indicates the prediction of the ML model.
A generic binary classification problem has the objective of clas-

sifying a set of 𝑀 observations 𝑥𝑖 with 𝑖 = 1,… ,𝑀 into two classes 1
and 0. The class labels to be predicted are indicated, as in the regression
problem, with 𝑦𝑖 ∈ {0, 1}. In this case, the most used metric is the
accuracy (𝑎) obtained simply by

𝑎 =
Number of correctly classified observations

𝑀
(6)

The impact of unbalanced datasets on the accuracy is not discussed here
and the reader is referred to other works (Michelucci, 2018).

The estimation of the expected value and variance of the metrics
of Eqs. (4)–(6) that account for the uncertainty 𝜖𝑖 on 𝑦𝑖 will be given
in Sections 3 and 4 for the regression and classification problems
espectively.

. Regression problem

.1. Mean Squared Error (MSE) estimate

As discussed earlier, the target variables measurements 𝑦𝑖 are as-
umed independent and following a normal distribution (this is a
ommon assumption when dealing with measurement errors) with av-
rage 𝑦𝑖 and standard deviation 𝜎𝑖 (see Eq. (3)). The standard deviation
𝜎𝑖 may differ for different 𝑖, for example if 𝑦𝑖 has different errors in
different ranges of its value. The standard deviation 𝜎𝑖 is a way of giving
an estimate of the measurement error.

Let us consider first the special case when 𝜎𝑖 = 𝜎 for 𝑖 = 1,… ,𝑀
in other words, when the standard deviation of the 𝑦𝑖 is constant). In
his case, there is an elegant way to understand everything about the
SE behaviour without any complex calculations. This is reported in
ection 3.1.1. The general formulas that apply for 𝜎𝑖 not constant are
iven in Section 3.1.2.

.1.1. Constant variances 𝜎2𝑖
This section covers the case where 𝜎𝑖 = 𝜎 for 𝑖 = 1,… ,𝑀 . Let us

ewrite the MSE as

SE = 𝜎2

𝑀

𝑀
∑

𝑖=1

(

𝛿𝑖
𝜎

)2
(7)

where 𝛿𝑖 ≡ 𝑦𝑖 − �̂�𝑖. Note that since 𝛿𝑖 are normally distributed, clearly

𝛿𝑖
𝜎

∼ 

(

𝛿𝑖
𝜎
, 1

)

(8)

Eq. (7) is the sum of normally distributed random variables squared
with a variance of one, and, therefore, their sum follows the non-central



Expert Systems With Applications 224 (2023) 120013U. Michelucci and F. Venturini

w

w

𝜆

A

E

I
f

b

E

v
t
m
d

3

w
o
g
a
r

f
f

E

u

V

t

t

E

chi-squared distribution with 𝑀 degrees of freedom (indicated here
ith 𝜒 ′

𝑀 (𝜆)) (Hogg, Tanis, & Zimmerman, 2010)
𝑀
∑

𝑖=1

(

𝛿𝑖
𝜎

)2
∼ 𝜒 ′

𝑀 (𝜆) (9)

ith the noncentrality parameter 𝜆 given by

=
𝑀
∑

𝑖=1

𝛿
2
𝑖

𝜎2
(10)

where 𝛿𝑖 = 𝑦𝑖 − �̂�𝑖 Thus from Eqs. (7) and (9) we can say that the MSE
satisfies
𝑀
𝜎2
MSE ∼ 𝜒 ′

𝑀 (𝜆). (11)

fter knowing this, it is straightforward to evaluate
(

𝑀
𝜎2
MSE

)

(12)

and

Var
(

𝑀
𝜎2
MSE

)

(13)

n fact, it is a well-known result that for a random variable 𝑋 that
ollows a noncentral chi-square distribution 𝜒 ′

𝑀 (𝜆) (Hogg et al., 2010)
it is true that

E(𝑋) = 𝑀 + 𝜆 (14)

and

Var(𝑋) = 2𝑀 + 4𝜆. (15)

With the help of Eqs. (11) and (15) the expected value of the MSE can
e rewritten in a compact and quite interpretable form:
(

𝑀
𝜎2
MSE

)

= 𝑀 + 𝜆 (16)

and, therefore,

E(MSE) = 1
𝑀

𝑀
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 + 𝜎2. (17)

Eq. (17) indicates that a better estimation of the expected value is
obtained by the MSE evaluated with the average of the labels plus
variance of the measurements 𝑦𝑖.

The formula for the variance of the MSE is given, using Eq. (15), by
the formula

Var(MSE) = 2𝜎4
𝑀

+ 4𝜎2

𝑀2

𝑀
∑

𝑖=1
𝛿
2
𝑖 . (18)

Note that the formulas given are only valid in the case where the
ariances of the single 𝑦𝑖 are equal to a constant 𝜎. This is not always
he case, and especially in real life cases, quantities may have different
easurement errors depending on their values. The general case is
iscussed in the next section.

.1.2. Non-constant variances 𝜎2𝑖
To evaluate the MSE expected value and its variance in the case

here the 𝜎𝑖 are all different, one can use two approaches: a statistical
ne and an a-priori one that consist in evaluating the necessary inte-
rals directly. The statistical approach is described in this section. The
priori in Appendix A. For non-constant variances, it is impossible to
educe the sum

1
𝑀

𝑀
∑

𝑖=1
𝛿2𝑖 (19)

to a sum of 𝑀 variables with different averages but unit variances (the
prerequisites to get the noncentral chi-square distribution used in the
previous section). In fact, in this case, in general

𝛿 ∼ 
(

𝛿 , 𝜎2
)

(20)
3

𝑖 𝑖 𝑖
and, therefore, we cannot use the same strategy that was used in the
previous section. To determine the expected value and variance, let us
observe that

𝛿𝑖
𝜎𝑖

∼ 

(

𝛿𝑖
𝜎𝑖
, 1

)

(21)

thus
(

𝛿𝑖
𝜎𝑖

)2
∼ 𝜒 ′

1(𝜆) (22)

with 𝜆 = 𝛿
2
𝑖 ∕𝜎

2
𝑖 is the noncentrality parameter. Using the expected value

ormula for a non-central chi-squared distribution with one degree of
reedom the expectation value is
[

(

𝛿𝑖
𝜎𝑖

)2
]

= 1 +
𝛿
2
𝑖

𝜎2𝑖
⇒ E(𝛿2𝑖 ) = 𝜎2𝑖 + 𝛿

2
𝑖 (23)

Now

E(MSE) = E

(

1
𝑀

𝑀
∑

𝑖=1
𝛿2𝑖

)

(24)

and substituting Eq. (23) in Eq. (24)

E(MSE) = E

(

1
𝑀

𝑀
∑

𝑖=1
𝛿2𝑖

)

= 1
𝑀

𝑀
∑

𝑖=1
E(𝛿2𝑖 ) =

= 1
𝑀

𝑀
∑

𝑖=1
(𝛿

2
𝑖 + 𝜎2𝑖 )

(25)

that is the generalized version of Eq. (17). Let us turn our attention to
the variance. From Eq. (15) with 𝑀 = 1 it follows that

Var
(

𝛿2𝑖
𝜎2𝑖

)

= 2 + 4
𝛿
2
𝑖

𝜎2𝑖
(26)

and by using the property that

Var
(

𝛿2𝑖
𝜎2𝑖

)

= 1
𝜎4𝑖
Var(𝛿2𝑖 ) (27)

the variance becomes

Var(𝛿2𝑖 ) = 2𝜎4𝑖 + 4𝛿
2
𝑖 𝜎

2
𝑖 (28)

and thus since

Var(MSE) = Var
(

1
𝑀

𝑀
∑

𝑖=1
𝛿2𝑖

)

= 1
𝑀2

𝑀
∑

𝑖=1
Var(𝛿2𝑖 ) (29)

sing Eq. (28)

ar(MSE) = 2
𝑀2

𝑀
∑

𝑖=1
𝜎4𝑖 +

4
𝑀2

𝑀
∑

𝑖=1
𝛿
2
𝑖 𝜎

2
𝑖 (30)

hat is the generalized version of Eq. (18).
The a priori determination of E(MSE) is performed by evaluating

he integral

(MSE) = 1
𝑀

𝑀
∑

𝑖=1

⎡

⎢

⎢

⎣

1
√

2𝜋𝜎𝑖
∫R

(𝑦𝑖 − �̂�𝑖)2𝑒
− (𝑦𝑖−𝑦𝑖 )2

2𝜎2𝑖 𝑑𝑦𝑖
⎤

⎥

⎥

⎦

(31)

This calculation requires some work and is shown in Appendix A for
completeness.

3.2. Mean Absolute Error (MAE) estimate

Let us turn our attention to the MAE. Since 𝑦𝑖 ∼  (𝑦𝑖, 𝜎2𝑖 ) the
quantity

|𝛿 | = |𝑦 − �̂� | (32)
𝑖 𝑖 𝑖
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follows a folded normal distribution, indicated here with  (𝛿𝑖, 𝜎2𝑖 ). The
xpected value of a random variable 𝑋 following a folded distribution,
∼  (𝜇, 𝜎2) is given by Hogg et al. (2010)

(𝑋) = 𝜇
√

2
𝜋
𝑒−𝜇

2∕(2𝜎2) + 𝜇
(

1 − 2𝛷
(

−
𝜇
𝜎

))

(33)

where 𝛷 is the normal cumulative distribution function. The same
formula can be expressed in terms of the error function as

E(𝑋) = 𝜇
√

2
𝜋
𝑒−𝜇

2∕(2𝜎2) + 𝜇 erf
(

𝜇
√

2𝜎

)

. (34)

The expected value of MAE is given by

(MAE) = E

(

1
𝑀

𝑀
∑

𝑖=1
|𝛿𝑖|

)

= 1
𝑀

𝑀
∑

𝑖=1
E(|𝛿𝑖|) (35)

the expected value is given by

E(MAE) = 1
𝑀

𝑀
∑

𝑖=1
|�̂�𝑖 − 𝑦𝑖| +

1
𝑀

𝑀
∑

𝑖=1

{
√

2
√

𝜋
𝜎𝑖𝑒

−𝛿2𝑖 ∕(2𝜎
2
𝑖 )+

− |𝛿𝑖|erfc
(

|𝛿𝑖|
√

2𝛿𝑖

)} (36)

here Eq. (34) has been rewritten using the function erfc() to write
(MAE) as the sum of the known formula for 𝑀𝐴𝐸 (albeit evaluated
ith the averages of 𝑦𝑖) plus a correction term 𝛥(𝑀𝐴𝐸)

(MAE) = 1
𝑀

𝑀
∑

𝑖=1
|�̂�𝑖 − 𝑦𝑖| + 𝛥(𝑀𝐴𝐸) (37)

ith

(MAE) = 1
𝑀

𝑀
∑

𝑖=1

{
√

2
√

𝜋
𝜎𝑖𝑒

−𝛿2𝑖 ∕(2𝜎
2
𝑖 ) − |𝛿𝑖|erfc

(

|𝛿𝑖|
√

2𝛿𝑖

)}

(38)

Finally, the variance of the MAE Var(MAE) is analysed. The variance of
a random variable 𝑋 such that 𝑋 ∼  (𝜇, 𝜎2) is given by

Var(𝑋) = 𝜇2 + 𝜎2 −𝑋
2

(39)

Considering 𝑋 = |𝛿𝑖|

Var(|𝛿𝑖|) = 𝛿
2
𝑖 + 𝜎2𝑖 −

(

𝛿𝑖

√

2
𝜋
𝑒−𝛿

2
𝑖 ∕(2𝜎

2) − 𝛿𝑖erf
(

𝛿𝑖
√

2𝜎

))2

(40)

Since the different measurements 𝑖 are independent, the property
Var(𝑋 + 𝑌 ) = Var(𝑋) + Var(𝑌 ) can be used (in fact, in this case
Cov(𝑋, 𝑌 ) = 0). Thus, by using Eq. (40) one can derive the following
ormula

ar(MAE) = 1
𝑀2

𝑀
∑

𝑖=0

⎧

⎪

⎨

⎪

⎩

𝛿
2
𝑖 + 𝜎2𝑖 −

(

𝛿𝑖

√

2
𝜋
𝑒−𝛿

2
𝑖 ∕(2𝜎

2) − 𝛿𝑖erf
(

𝛿𝑖
√

2𝜎

))2⎫
⎪

⎬

⎪

⎭

(41)

4. Classification problem

In a binary classification problem the machine learning model typ-
ically outputs the probability �̂�𝑖 of an observation of being in class 1
the labels are 𝑦𝑖 ∈ {0, 1}). The conversion of the probability into a
class is then done using the Heaviside step function 𝐻(𝑥 − 𝛼) where 𝛼
is a threshold that is normally chosen as 𝛼 = 1∕2. The accuracy 𝑎 can
be written for a binary problem in the following form

𝑎 = 1
𝑀
∑

[

𝑦𝑖𝐻(�̂�𝑖 − 𝛼) + (1 − 𝑦𝑖)(1 −𝐻(�̂�𝑖 − 𝛼))
]

(42)
4

𝑀 𝑖=1
The two terms appearing in Eq. (42) correspond to the true positives
(TP) and true negatives (TN). In facts

TP = 1
𝑀

𝑀
∑

𝑖=1

[

𝑦𝑖𝐻(�̂�𝑖 − 𝛼)
]

N = 1
𝑀

𝑀
∑

𝑖=1

[

(1 − 𝑦𝑖)(1 −𝐻(�̂�𝑖 − 𝛼))
]

.

(43)

Let us consider the case where there is a probability 𝑞 < 1 that an
observation label 𝑦𝑖 is wrong. Let us start by considering 𝑏𝑗 , a Bernoulli
random variable with a probability 𝑝 of being one (and consequently a
probability 𝑞 = 1 − 𝑝 of being 0). Let us define the random variable

𝑟𝑦𝑖 = 𝑦𝑖𝑏𝑗 + (1 − 𝑏𝑗 )(1 − 𝑦𝑖). (44)

𝑟𝑦𝑖 will assume the value 𝑦𝑖 with a probability 𝑝. 𝑟𝑦𝑖 will assume the
value of 1 − 𝑦𝑖 with a probability 𝑞. The expectation value and the
variance of 𝑟𝑦𝑖 are given by

E(𝑟𝑦𝑖) =𝑦𝑖E(𝑏𝑗 ) + (1 − 𝑦𝑖)E(1 − 𝑏𝑗 ) = 𝑦𝑖𝑝 + (1 − 𝑦𝑖)𝑞 =

=𝑦𝑖(1 − 2𝑞) + 𝑞
(45)

and
Var(𝑟𝑦𝑖) =𝑦2𝑖 Var(𝑏𝑗 ) + (1 − 𝑦𝑖)2Var(1 − 𝑏𝑗 ) =

=𝑦1𝑝𝑞 + (1 − 𝑦𝑖)𝑝𝑞 = 𝑝𝑞
(46)

Eq. (46) can be derived by noting that since 𝑦𝑖 ∈ {0, 1} it is true that
𝑦2𝑖 = 𝑦𝑖 and (1 − 𝑦𝑖)2 = (1 − 𝑦𝑖). The accuracy in the presence of errors
in the labels is obtained by using the random variable 𝑟𝑦𝑖 in Eq. (42),
which results in

𝑟𝑎 = 1
𝑀

𝑀
∑

𝑖=1

[

𝑟𝑦𝑖𝐻(�̂�𝑖 − 𝛼) + (1 −𝑟 𝑦𝑖)(1 −𝐻(�̂�𝑖 − 𝛼))
]

(47)

Now all ingredients are available to calculate E(𝑟𝑎) and Var(𝑟𝑎) with the
elp of Eqs. (45) and (46). Using the properties of the expected value
nd of the variance, the following results can be obtained in just a few
teps
{

E(𝑟𝑎) = 𝑎 + 𝑞(1 − 2𝑎)
Var(𝑟𝑎) = 𝑝𝑞 = (1 − 𝑞)𝑞.

(48)

In Appendix C an alternative and more intuitive way of obtaining
(𝑟𝑎) is described.
Eq. (48) is a very interesting result that needs some discussion.

irst of all, it can be observed that for any model for which 𝑎 > 1∕2,
(𝑟𝑎) < 𝑎, as expected. The errors of the labels effectively reduce the
erformance of the model. Note that any model in a binary classifica-
ion problem that has 𝑎 < 1∕2 can be transformed into one with 𝑎 > 1∕2
y simply exchanging all predictions: 1 into 0 and vice versa.
The expected value of the accuracy, can also be written in a more

ompact form as

(𝑟𝑎) =
1
𝑀

𝑀
∑

𝑖=1

[

(1 − 𝑞)(𝑦𝑖) + 𝑞(1 − 𝑦𝑖)
]

(49)

where (𝑦𝑖) is

(𝑦𝑖) = 𝑦𝑖𝐻(�̂�𝑖 − 𝛼) + (1 − 𝑦𝑖)(1 −𝐻(�̂�𝑖 − 𝛼)) (50)

from Eq. (47). To better understand this formula, one needs to rewrite
it a slightly different form by using Eq. (C.5) derived in Appendix B,
reported here for clarity

E(𝑟𝑎) = (1 − 𝑞)TP + TN
𝑀

+ 𝑞 FP + FN
𝑀

(51)

This formula can be interpreted with the help of Fig. 1:

• If an observation is a true positive or a true negative and the
label is wrong, it will be classified with a probability 𝑞 as either a
false positive or false negative, respectively. In other words, the
error of the label will reduce the number on the diagonal of the
confusion matrix and will contribute to the off-diagonal terms.
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Fig. 1. A visual representation of the effect of a wrong label for an observation: the red arrow indicates how the observation will be classified in the confusion matrix. TP: true
ositives, TN: true negatives, FP: false positives and FN: false negatives.
• Analogously, if an observation is a false negative or false positive
and the label is wrong, the error on the label has the effect
of reducing the off-diagonal term of the confusion matrix and
contributes to the diagonal terms.

q. (48) gives an estimate of accuracy taking into account a possible
error in the labels, due for example to measurement errors. The simple
accuracy 𝑎 obtained neglecting measurement errors is an overesti-
mation and does not give a correct picture of how a model could
perform.

Let us consider for example a hypothetical model that has obtained
𝑎 = 0.85 with labels with a probability of 5% of being wrong. Eq. (48)
gives an estimate of the accuracy of E(𝑟𝑎) = 0.815%. The difference is
not negligible and must be taken into account for any application of
machine learning to scientific results that involves measurement errors
(basically always).

5. How to use the formulas

Tables 1 and 2 summarize the formulas derived in this paper. Note
that the application of formulas requires not only the standard devia-
tion of the measurements 𝜎𝑖, but also its average 𝑦𝑖. When measuring a
uantity 𝑦𝑖 the scientist should try to get enough measurements to be
ble to estimate average and standard deviation. Measurements may be
xpensive, and therefore could lead to having only a limited number
f them, making estimating average and standard deviation difficult
r, in extreme cases, impossible with a statistical approach. In such a
ase, the standard deviation should be replaced with the measurement
rror obtained by a classical propagation of the experimental errors.
he average should be evaluated by calculating the mean of the few
vailable values of 𝑦𝑖, or, in the extreme case where only one value is
vailable, using this value in place of the average.
When calculating the MSE, MAE or accuracy the following process

hould be followed:

1. Multiple measurements for the 𝑦𝑖 should be performed to be able
to evaluate 𝑦𝑖. 𝜎𝑖 can be estimated statistically (by evaluating the
variance of the multiple measurements of 𝑦𝑖) or by doing error
propagation by using the knowledge about how the measure-
ment were performed. The latter way is more practical. In fact
to get a good estimate of errors by statistical means one needs a
large amount of measurements, and that is not always possible.

2. The appropriate metric from Table 1 (depending on the kind of
problem one is trying to solve) should be chosen and calculated
according to the formula.

3. If needed, the variance corresponding to the chosen metric
should be chosen from Table 2.

he use of the formulas described in this paper will give a more realistic
stimate of machine learning metrics (here MSE, MAE and accuracy)
nd therefore of the model performance since it takes into account
easurement errors on the target variables.
5

Table 1
Formulas for the expected value of the MSE, MAE and accuracy (𝑎) that take into
account errors on the target variables.
Metric Formula

MSE E(MSE) = 1
𝑀

𝑀
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 + 𝜎2

Case when 𝜎𝑖 = 𝜎 for 𝑖 = 1,… ,𝑀

MSE E(MSE) = 1
𝑀

𝑀
∑

𝑖=1
((𝑦𝑖 − �̂�𝑖)2 + 𝜎2

𝑖 )

For 𝜎𝑖 not constant

MAE E(MAE) = 1
𝑀

𝑀
∑

𝑖=1
|�̂�𝑖 − 𝑦𝑖|+

1
𝑀

𝑀
∑

𝑖=1

{
√

2
√

𝜋
𝜎𝑖𝑒

−𝛿2𝑖 ∕(2𝜎
2
𝑖 ) − |𝛿𝑖|erfc

(

|𝛿𝑖|
√

2𝛿𝑖

)}

For 𝜎𝑖 not constant

Accuracy E(𝑟𝑎) = 𝑎 + 𝑞(1 − 2𝑎)

Table 2
Formulas for the variance of the MSE, MAE and accuracy (𝑎).
Metric Formula

MSE Var (MSE) = 2
𝑀2

𝑀
∑

𝑖=1
𝜎4
𝑖 +

4
𝑀2

𝑀
∑

𝑖=1
𝛿
2
𝑖 𝜎

2
𝑖

MAE Var(MAE) = 1
𝑀2

𝑀
∑

𝑖=0

⎧

⎪

⎨

⎪

⎩

𝛿
2
𝑖 + 𝜎2

𝑖 −

(

𝛿𝑖

√

2
𝜋
𝑒−𝛿

2
𝑖 ∕(2𝜎

2 ) − 𝛿𝑖erf

(

𝛿𝑖
√

2𝜎

))2⎫
⎪

⎬

⎪

⎭

Accuracy Var(𝑟𝑎) = 𝑝𝑞 = 𝑞(1 − 𝑞)

It is important to discuss the applicability of the formulas derived in
this paper. Firstly, the formulae are based on the assumption that the
errors on labels are distributed according to a Gaussian distribution.
This is not always the case, as can be seen in various cases as for
example in Astrophysics (Chen, Gott III, & Ratra, 2003) or degradation
analysis (Zhai & Ye, 2017). The interested reader is referred to the
review by Bailey (2017). In their work, the authors analyse different
cases in medicine and physics and highlight how error distributions
deviate in some cases from a Gaussian distribution and are more close
to a Cauchy distribution.

Secondly, the formulas are applicable when the measurements are
independent (see Section 2). This is of course not always applicable,
as spatio-temporal correlations may be present. In such a case, the
covariance matrix is non-diagonal. Nevertheless, the assumption of
the independence of the measurements is often a good approximation
in many practical cases, thus making the derived formula a good
approximation of the expected value and the variance.

Lastly, it should be noted that, although there is no assumptions on
the value of 𝑀 , the formulae are most useful when applied to classical
machine learning use-case where 𝑀 ≫ 1. If a set of measurements
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consists of very few values, it is questionable how machine learning
could be applied.

6. Conclusions

This work presents for the first time formulas for calculating the
metrics commonly used in ML, namely MSE, MAE, and accuracy, taking
into account the errors in the target variables. The formulas, which are
of general validity, are derived using both a statistical and an a priori
approach. They give more realistic estimates of the metrics that are
otherwise overly optimistic. The analysis shows that the MSE and MAE
calculated with the derived formulas are always larger than the one
obtained ignoring errors in the measurements (in other words, setting
𝜎𝑖 = 0 for 𝑖 = 1,… ,𝑀). The accuracy evaluated according to the
formula given in Table 1 is always lower than the one evaluated by
using only the target variables and ignoring possible errors.

Another important contribution of this paper is that it shows the
relevance of performing multiple repeated measurements to calculate
averages and variances of measurements. These are crucial to obtain
scientifically accurate estimates of ML metrics, and therefore, ML model
performances. The reported formulas have a very wide applicability
and should be used any time the target variables are known within an
error.
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Appendix A. Direct calculation of E(MSE)

The integral to be evaluated is

(MSE) = 1
𝑀

𝑀
∑

𝑖=1

⎡

⎢

⎢

⎣

1
√

2𝜋𝜎𝑖
∫R

(𝑦𝑖 − �̂�𝑖)2𝑒
− (𝑦𝑖−𝑦𝑖 )2

2𝜎2𝑖 𝑑𝑦𝑖
⎤

⎥

⎥

⎦

(A.1)

To solve this integral, the following change of variable can be used

𝑠 =
𝑦𝑖 − 𝑦𝑖
√

2𝜎𝑖
(A.2)

this of course leads to

𝑑𝑦𝑖 = 𝑑𝑠
√

2𝜎𝑖. (A.3)

Therefore, Eq. (A.1) can be rewritten as

1
√

𝜋𝑀

𝑀
∑

𝑖=1
∫R

(𝑠𝜎𝑖
√

2 + 𝑦𝑖 − �̂�𝑖)2𝑒−𝑠
2
𝑑𝑠 (A.4)

and by expanding the polynomial squared and defining 𝛿𝑖 = �̂�𝑖 − 𝑦𝑖 one
obtains

1
√

𝜋𝑀

𝑀
∑

𝑖=1
∫R

(2𝑠2𝜎2𝑖 + 𝛿2𝑖 − 2
√

2𝜎𝑖𝑠𝛿𝑖)𝑒−𝑠
2
𝑑𝑠 (A.5)

in Eq. (A.5) there are three terms that need to be evaluated.

E(MSE) = 𝐴 + 𝐵 + 𝐶 (A.6)
6

with

𝐴 = 2
√

𝜋𝑀

𝑀
∑

𝑖=1
𝜎2𝑖 ∫R

𝑠2𝑒−𝑠
2
𝑑𝑠

𝐵 = 1
√

𝜋𝑀

𝑀
∑

𝑖=1
𝛿2𝑖 ∫R

𝑒−𝑠
2
𝑑𝑠

𝐶 = −
2
√

2
√

𝜋𝑀

𝑀
∑

𝑖=1
𝜎𝑖𝛿𝑖 ∫R

𝑠𝑒−𝑠
2
𝑑𝑠

(A.7)

iven the symmetry of the function under the integral sign in 𝐶 it is
mmediately evident that 𝐶 = 0. Using the results,

R
𝑒−𝑠

2
𝑑𝑠 =

√

𝜋 (A.8)

and

∫R
𝑠2𝑒−𝑠

2
𝑑𝑠 =

√

𝜋
2

(A.9)

𝐴 and 𝐵 can be easily calculated

𝐴 = 1
𝑀

𝑀
∑

𝑖=1
𝜎2𝑖

= 1
𝑀

𝑀
∑

𝑖=1
𝛿2𝑖

(A.10)

Note how 𝐵 is the MSE evaluated with the measurement averages 𝑦𝑖,
while 𝐴 is the average of the measurement standard deviations. So
Eq. (A.5) can be finally rewritten as

E(MSE) = 1
𝑀

𝑀
∑

𝑖=1
𝜎2𝑖 +

1
𝑀

𝑀
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (A.11)

his concludes the derivation. The calculation of Var(MSE) is not
eported here, as it is similar to the one for the expected value and
ould make this paper unbearably long.

ppendix B. Direct calculation of E(MAE)

The integral to be evaluated is

(MAE) = 1
𝑀

𝑀
∑

𝑖=1

⎡

⎢

⎢

⎣

1
√

2𝜋𝜎𝑖
∫R

|𝑦𝑖 − �̂�𝑖|𝑒
− (𝑦𝑖−𝑦𝑖 )2

2𝜎2𝑖 𝑑𝑦𝑖
⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽

(B.1)

Let us consider for the calculation only 𝐽 . The following change of
variables can be used

𝑠 =
𝑦𝑖 − 𝑦𝑖
√

2𝜎𝑖
→ 𝑑𝑠 = 𝑑𝑦𝑖

1
√

2𝜎𝑖
(B.2)

therefore

𝐽 = ∫R
|𝑠
√

2𝜎𝑖 − (�̂�𝑖 − 𝑦𝑖)
⏟⏞⏟⏞⏟

𝛿𝑖

|𝑒−𝑠
2
𝑑𝑠 =

= 1
√

2𝜋 ∫R
|𝑠
√

2𝜎𝑖 − 𝛿𝑖|𝑒
−𝑠2𝑑𝑠

(B.3)

due to the absolute value, the integral must be split into two parts:
𝐽 = 𝐽𝐴 + 𝐽𝐵 . Part A for 𝑠

√

2𝜎𝑖 − 𝛿𝑖 ≥ 0 and part B for 𝑠
√

2𝜎𝑖 − 𝛿𝑖 < 0.
The two integrals are

𝐽𝐴 =

√

2𝜎𝑖
√

𝜋 ∫

∞

(𝛿𝑖∕(
√

2𝜎𝑖))

(

𝑠 −
𝛿𝑖

√

2𝜎𝑖

)

𝑒−𝑠
2
𝑑𝑠 (B.4)

and

𝐽𝐵 = −

√

2𝜎𝑖
√ ∫

(𝛿𝑖∕(
√

2𝜎𝑖))
(

𝑠 −
𝛿𝑖

√

)

𝑒−𝑠
2
𝑑𝑠 (B.5)
𝜋 ∞ 2𝜎𝑖
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Let us start with 𝐽𝐴. To further simply the notation let us define

𝛿𝑖 =
𝛿𝑖

√

2𝜎𝑖
(B.6)

so 𝐽𝐴 can now be evaluated

𝐽𝐴 =
𝜎𝑖
√

2
√

𝜋

[

∫

∞

𝛿𝑖
𝑠𝑒−𝑠

2
𝑑𝑠 − ∫

∞

𝛿𝑖
𝛿𝑖𝑒

−𝑠2𝑑𝑠

]

=
𝜎𝑖
√

2
√

𝜋

[

1
2
𝑒−𝛿

2
𝑖 − 𝛿𝑖

√

𝜋
2
erfc(𝛿𝑖)

]

=
𝜎𝑖

√

2𝜋
𝑒−𝛿

2
𝑖 − 1

√

2
𝛿𝑖erfc(𝛿𝑖)

(B.7)

nalogously

𝐵 = −
𝜎𝑖
√

2
√

𝜋

[

∫

𝛿𝑖

∞
𝑠𝑒−𝑠

2
𝑑𝑠 − ∫

𝛿𝑖

∞
𝛿𝑖𝑒

−𝑠2𝑑𝑠

]

=
𝜎𝑖
√

2
√

𝜋

[

1
2
𝑒−𝛿

2
𝑖 + 𝛿𝑖

√

𝜋
2
erfc(−𝛿𝑖)

]

=
𝜎𝑖

√

2𝜋
𝑒−𝛿

2
𝑖 + 1

√

2
𝛿𝑖erfc(−𝛿𝑖)

(B.8)

herefore, with some simplifications

=

√

2𝜎𝑖
√

𝜋

[

𝑒−𝛿
2
𝑖 +

√

𝜋𝛿𝑖erf(𝛿𝑖)
]

(B.9)

Now this form is not easy to interpret, and it can be brought in a more
interpretable form with some additional manipulation. Let us start by
noticing that

𝛿𝑖erf(𝛿𝑖) = |𝛿𝑖|erf(|𝛿𝑖|) (B.10)

since 𝛿𝑖erf(𝛿𝑖) = −𝛿𝑖erf(−𝛿𝑖) due to the fact that erf(−𝑥) = −erf(𝑥).
Additionally, Eq. (B.10) can be rewritten as

𝛿𝑖erf(𝛿𝑖) = |𝛿𝑖|erf(|𝛿𝑖|) = |𝛿𝑖|(1 − erfc(|𝛿𝑖|)) (B.11)

where erfc(𝑥) is the complementary error function. Using Eq. (B.11),
Eq. (B.9) can be rewritten as

𝐽 = |𝛿𝑖| +

√

2
√

𝜋
𝜎𝑖𝑒

−𝛿2𝑖 − |𝛿𝑖|erfc
(

|𝛿𝑖|
√

2𝜎𝑖

)

(B.12)

ow E(MAE) can be finally written

(MAE) = 1
𝑀

𝑀
∑

𝑖=1
|�̂�𝑖 − 𝑦𝑖| +

1
𝑀

𝑀
∑

𝑖=1

{
√

2
√

𝜋
𝜎𝑖𝑒

−𝛿2𝑖 ∕(2𝜎
2
𝑖 )

− |𝛿𝑖|erfc
(

|𝛿𝑖|
√

2𝛿𝑖

)} (B.13)

his concludes the derivation.

ppendix C. Alternative calculation of E(𝒓𝒂)

The starting point of this alternative derivation is the formula

(𝑟𝑎) =
1
𝑀

𝑀
∑

𝑖=1

[

(1 − 𝑞)(𝑟𝑦𝑖) + 𝑞(1 −𝑟 𝑦𝑖)
]

(C.1)

here (𝑟𝑦𝑖) is

( 𝑦 ) = 𝑦 𝐻(�̂� − 𝛼) + (1 − 𝑦 )(1 −𝐻(�̂� − 𝛼)) (C.2)
7

𝑟 𝑖 𝑟 𝑖 𝑖 𝑟 𝑖 𝑖
from Eq. (47). Eq. (C.1) can be expanded by using Eq. (C.2) as

E(𝑟𝑎) = 1
𝑀

𝑀
∑

𝑖=1

[

(1 − 𝑞)𝑟𝑦𝑖𝐻(�̂�𝑖 − 𝛼) + (1 −𝑟 𝑦𝑖)(1 −𝐻(�̂�𝑖 − 𝛼))+

𝑞(1 −𝑟 𝑦𝑖)𝐻(�̂�𝑖 − 𝛼) +𝑟 𝑦𝑖(1 −𝐻(�̂�𝑖 − 𝛼))
]

= 1
𝑀

𝑀
∑

𝑖=1

[

𝑟𝑦𝑖𝐻(�̂�𝑖 − 𝛼) − 𝑞 𝑟𝑦𝑖𝐻(�̂�𝑖 − 𝛼) +

+(1 −𝑟 𝑦𝑖)(1 −𝐻(�̂�𝑖 − 𝛼))+

−𝑞(1 −𝑟 𝑦𝑖)(1 −𝐻(�̂�𝑖 − 𝛼)) + 𝑞(1 −𝑟 𝑦𝑖)𝐻(�̂�𝑖 − 𝛼) +

+𝑞 𝑟𝑦𝑖(1 −𝐻(�̂�𝑖 − 𝛼))
]

(C.3)

fter some algebra, this can be simplified and brought in the form

(𝑟𝑎) = 1
𝑀

𝑀
∑

𝑖=1

⎡

⎢

⎢

⎢

⎣

(1 − 𝑞) (1 −𝑟 𝑦𝑖)(1 −𝐻(�̂�𝑖 − 𝛼))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

TN

+

+ (1 − 𝑞) 𝑟𝑦𝑖𝐻(�̂�𝑖 − 𝛼)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

TP

+

+ 𝑞 (1 −𝑟 𝑦𝑖)𝐻(�̂�𝑖 − 𝛼)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

FP

+𝑞 𝑟𝑦𝑖(1 −𝐻(�̂�𝑖 − 𝛼))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

FN

⎤

⎥

⎥

⎥

⎦

(C.4)

n Eq. (C.4) it is clearly indicated which part gives (when summed) the
true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). So Eq. (C.4) can be rewritten as

E(𝑟𝑎) = (1 − 𝑞)TP + TN
𝑀

+ 𝑞 FP + FN
𝑀

(C.5)

The final formula can be easily obtained by noting that

𝑎 = TP + TN
𝑀

1 − 𝑎 = FP + FN
𝑀

(C.6)

This concludes the derivation.
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