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Abstract—The fairness of machine learning-based decision
support systems has become a critical issue, also in the field
of predicting the success of venture capital investment startups.
Inappropriate allocation of venture capital, fueled by discrimi-
natory biases, can lead to missed investment opportunities and
poor investment decisions. Despite numerous studies that have
addressed the prevalence of biases in venture capital allocation
and decision support models, few have addressed the importance
of incorporating fairness into the modeling process. In this study,
we leverage invariant feature representation learning to develop
a startup success prediction model using Crunchbase data, while
satisfying group fairness. Our results show that discriminatory
bias can be significantly reduced with minimal impact on model
performance. Additionally, we demonstrate the versatility of our
approach by mitigating multiple biases simultaneously. This work
highlights the significance of addressing fairness in decision-
support models to ensure equitable outcomes in venture capital
investments.

Index Terms—model fairness, gradient reversal, venture capi-
tal, success modeling

I. INTRODUCTION

Venture capitalists (VCs) play a crucial role in providing
funding to private companies by managing a pool of capital
and acting as financial intermediaries. They connect investors
with entrepreneurs holding promising venture ideas, often
serving as the only source of capital for startups. Despite
this important role, identifying promising startups remains
a challenge for VCs as the screening process relies heavily
on subjective assessments and is prone to human error. In
addition, the startup screening process in traditional investment
practices is very time-consuming due to the complexity of the
assessment process.

Machine learning has seen a significant upsurge in data-
driven investment approaches [1]. Numerous studies have been
conducted to better understand and predict the success of a
startup by leveraging machine learning. In particular, several
studies have been conducted to build predictive models with
accuracy consistently exceeding 85% based on large datasets
from Crunchbase which contain extensive information about
the company, founding team, investor, and funding [2]–[5].

However, these models are subject to demographic biases
that tend to overestimate the success of male founders, found-
ing teams with higher education, and graduates of prestigious
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universities, while underestimating the success of non-white
founders. Moreover, these models are biased toward startups
from economically developed countries, such as the United
States, Germany, the United Kingdom, and China. The lack of
model generalization is likely due to the under-representation
of minority populations in the Crunchbase datasets, e.g., fewer
female entrepreneurs in the tech industry or fewer startups
from countries with lower levels of entrepreneurial activity.

Biases in the underlying machine learning models lead to
discrimination against certain groups of founders and startups.
This can lead to an unfair distribution of venture capital,
resulting not only in missed investment opportunities, but also
in poor investment decisions with fatal consequences for VCs
[6].

Previous works towards fairness in the VC industry focused
on the identification of discriminatory biases [7], [8]. Surpris-
ingly, there has been little effort in mitigating these biases
when creating success prediction models for VCs. Simple
approaches such as removing the attributes driving the biases
before a model is trained will still result in a biased model
because the correlations with the omitted attributes are not
eliminated from the dataset [9].

This paper therefore investigates the mitigation of discrimi-
natory biases during the modeling of startup success. Gradient
Reversal Layer by Ganin et al. [10] is applied to effectively
learn fair feature representations before a binary classification
model for success is trained. We compare our models to a
baseline model that does not incorporate fairness (BL1) and
another baseline model that attempts to account for fairness by
omitting attributes related to the biases under study (BL2). We
show that our models are substantially fairer while providing
a nearly equivalent level of accuracy.

The rest of the paper is structured as follows. Section II
provides an overview about biases in venture capital and
approaches for achieving fairness. Section III outlines the
methodology employed in the study. Section IV demonstrates
selected experiments and finally, section V and VI discuss the
results and conclusions of the study.

II. RELATED WORK

A. Biases in venture capital

There has been a great deal of effort to examine biases in
venture capital [7], [8]. In this paper, we discuss discriminatory
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biases which are both well documented in the literature and
are also present in the Crunchbase dataset to be investigated.

Kanze et al. [11] investigated the well known gender gap
in startup funding and concluded that female entrepreneurs
often position their startups to ”playing not to lose” while
male entrepreneurs position their startups to ”playing to win”,
causing the gender gap in startup funding to perpetuate.
Zhang [8] examined whether early-stage investors are biased
toward gender, educational background, and certain racial
minority groups of founders during the investment process.
Zhang found that investors have implicit biases against female
and Asian founders, especially when evaluating high-growth
startups. Moreover, investors are more likely to establish the
first contact with founders with a high level of education.
Bengtsson & Hsu [12] studied whether there is racial and
ethnic discrimination in crowdfunding. Using data from one
of the largest crowdfunding platforms, they found that funding
is lower on average for African Americans and that African
Americans receive less funding from U.S. funders compared
to whites.

A much debated bias related to the company itself is
location [13]. Although venture capitalists claim that they do
not intentionally distinguish between geographic regions in
their investment decisions, studies have shown that venture
capitalists actually invest predominantly in startups that are
located in their own immediate region [14]. The phenomenon
in which venture capitalists tend to invest predominantly in
startups that are located near their own offices is also referred
to as local bias. This bias is driven by information asymmetries
and access to local networks. The presence of local bias has
significant implications for the venture capital industry, such
as missing out on opportunities to invest in promising startups
located outside the immediate region and leading to inefficient
allocation of resources.

B. Approaches for achieving fairness

Despite considerable interest in the ethical implications of
biases in venture capital, little work exists describing the extent
to which predictive models - developed to support investment
due diligence - satisfy the requirements of fairness.

Datasets commonly used to model success predictions are
often biased because they disproportionately represent de-
mographic groups or startups from major countries, which
can lead to performance disparities in trained models. A
straightforward mitigation strategy is to balance samples from
a dataset by adjusting sampling frequency or weight for each
datapoint based on the proportion of its group in the dataset
[15]. Another approach is ”fairness by unawareness”, in which
sensitive attributes are omitted in the input and feature space
such that the trained models cannot use the excluded attributes
to make predictions [9]. However, omitting an input variable
may not always eliminate the bias in the model, as the
bias can still be inferred from other proxy variables. In
general, bias mitigation algorithms can be categorized into
three techniques, namely pre-processing, in-processing, and
post-processing, depending on their application timing [16].

In-processing methods differ from pre-processing and post-
processing techniques as they directly incorporate fairness
during model optimization. This means that even with biased
data as input, the model can attain fairness [17].

Another line of work focuses on invariant feature rep-
resentation learning to ensure model fairness. In particular,
recent studies explored the gradient reversal approach in non-
investment domains. In the context of credit risk modeling,
Zheng et al. [18] proposed a framework for privacy-preserving
risk modeling based on gradient reversal. They showed that
latent representations can be effectively generated where sensi-
tive information is obstructed, providing a solid foundation for
privacy-aware machine learning for credit risk analysis. The
gradient reversal approach for fairness was further explored
by [19] for data that is imbalanced in both the distribution of
outcomes and sensitive attributes.

III. METHODOLOGY

A. Fairness metrics

The definition of fairness in machine learning has attracted
much attention. In particular, two different notions of fairness
are widely used [20]: (1) group fairness, which requires similar
treatment of the disadvantaged group and the advantaged
group, and (2) individual fairness, which requires similar
treatment of observations with similar characteristics.

In this paper, we use equal opportunity to evaluate group
fairness and consistency for individual fairness. To simplify
the following definitions we focus on a binary outcome. In
the following definitions ŷ corresponds to the predicted label,
z to the sensitive attribute and y to the true label.

1) Equal opportunity: A classifier satisfies equal opportu-
nity if the groups defined by the protected feature z ∈ {z1, z2}
achieve equal true positive rates. Formally, equal opportunity
is defined as

P (ŷ = 1|z = z1, y = 1) = P (ŷ = 1|z = z2, y = 1) (1)

Therefore, we aim to minimize the equal opportunity gap,
which is defined as the absolute difference between the two
groups

|P (ŷ = 1|z = z1, y = 1)− P (ŷ = 1|z = z2, y = 1)| (2)

In the context of venture capital, this means that startups
should have an equal chance of success regardless of their
sensitive attributes, such as the gender or race of the founders.

2) Consistency: For each observation xi, its prediction ŷi
is compared to the average of its k nearest neighbors, and
the average of this score is reported over the entire dataset,
containing N elements. Formally, consistency is defined as:

1− 1

N

N∑
i=1

∣∣∣∣ŷi − 1

k

N∑
j∈k−NN(xi)

ŷj

∣∣∣∣ (3)

Individual fairness is fully established if the consistency is
equal to 1.



Fig. 1: Illustration of the applied neural network architecture. The feature extractor f contains three dense layers (128, 64, 32)
to extract features from the input data. The network is then divided into two types of branches: target branch and attribute
branch. The target branch t is responsible for predicting the success of a startup. The protected branch pi is used to unlearn
the prediction of the sensitive attribute by employing a Gradient Reserval layer. A protected branch is used for each sensitive
attribute.

B. Gradient Reversal

We suggest utilizing an in-processing approach known as
Gradient Reversal. The concept of a Gradient Reversal layer
has been first introduced in domain adaptation [10] and since
then generalized to fair classification [21], [22]. In essence, the
domain adaptation approach proposes to learn representations
of the data which are domain-invariant. In this setting, Ganin
et al. [10] proposed a neural network model which is trained
to optimize two training objectives at the same time by two
sub-networks, one optimized to predict the labels and another
to predict the domain. When backpropagating the domain
gradients into the network, the gradient’s sign is reversed,
effectively removing domain-specific information from the
feature representation shared by both networks. Ganin et al.
show that this learning scheme is able to find a saddle point
equilibrium between the two training objectives. By treating
the sensitive attribute as the new domain, we can use the same
approach to prevent the network from being biased by the
sensitive attribute.

We employ Gradient Reversal to learn feature representa-
tions which are invariant to the sensitive attributes. Gradient
Reversal allows us to simultaneously train the network to
predict our target variable, while it aims to unlearn the
prediction of the sensitive features. Figure 1 depicts our model
architecture.

Our network consists of three fully connected layers (128,
64, 32) for feature extraction (feature extractor), which is

then divided into several branches. The first branch is for
the prediction of the target variables (target branch), while
the other branches are used to unlearn the prediction of the
sensitive attributes (protected branches). One branch is used
for every sensitive attribute to be protected. Each protected
branch consists of a Gradient Reversal layer with a scaling
factor λ, followed by two fully connected layers (64, 32) which
are then connected to a softmax layer before the attribute
output. The parameter λ controls the influence of the target
branch t and protected branch p responses on the total loss
[23]. The target branch is directly connected to the feature
extractor shared by all branches and consists only of a softmax
layer before the target output.

The total loss of the whole network is calculated as the sum
of the target variable losst and the weighted losses for the n
protected attributes losspi

, i ∈ {1...n}:

loss = losst + w1 · lossp1
+ ...+ wn · losspn

(4)

The coefficients w1, ..., wn specify the weights for the losses
of the protected branches and can be optimized according to
task at hand.

IV. EXPERIMENTS

A. The Dataset and Success Definition

We use a dataset from Crunchbase consisting of approx-
imately 20,000 startups. The definition of success used by
researchers and practitioners is not uniform. Various defi-
nitions have been used in studies that have attempted to



Fig. 2: Data selection for feature engineering follows the definition of feature engineering in [5]. Only data prior to the
occurence of Series A funding is considered, including company, founder, and investment information. Features related to
sensitive attributes are found in all information groups, e.g., location in company data and gender, ethnicity, and education in
founder and investor data.

explain business success. Following [5], obtaining a Series
A financing is used as the definition of business success
because it is of great importance to VCs [24]. It represents
a significant early investment into a startup and signals a
successful demonstration of progress and a clear path to
revenue growth. Moreover, obtaining a Series A financing is
an objective measure that reflects the potential future business
value of the startup. Therefore, the main objective of this
study is to classify startups into successful and failed startups.
Startups are defined as successful if they have received a Series
A funding. The definition of a failed startup requires several
additional steps in which the details of the previous funding
as well as the company size were examined in more closely.
For example, recently founded startups and those that cannot
be conclusively categorized as either successful or failed are
excluded from this study. More details on the definition can
be found in [5]. Consequently, the dataset consists of 8,537
successful and 12,457 failed startups.

B. Sensitive Attributes

We consider country, gender, education, university, race
and ethnicity as sensitive attributes, as discussed in section
II-A. For country, we consider the origin of the startup’s
foundation. Country can be considered sensitive as it may
reveal information related to the founder’s race or religion. For
gender, we consider whether a team consists of mixed genders,
only female or only male founders. Education is evaluated
based on the subjects studied (such as law, economics, or
technology), as well as the level (BSc, MSc, PhD, etc.) and
number of degrees achieved. University takes into account the
reputation of the university according to QSWorld University
Rankings [25]. For race, the dataset is partitioned into six
groups: Asian, Black, Hispanic, Other, Unknown, and White.
For ethnicity, we consider 19 groups including: African, Asian,
British, Germanic, GreaterAfrican, IndianSubcontinent, Jew-
ish, Muslim, Nordic, to name a few. Race and ethnicity are not
explicitely available in the Crunchbase dataset. We therefore

use a transformer-based model to derive race and ethnicity
based on founder name [26]. It is crucial to acknowledge that
this serves as an approximation and should not be regarded as
an absolute truth.

C. Feature Engineering

Fig. 2 illustrates the data selection process for feature
engineering. For each startup, we first filter the historical data
to include only the information that was available prior to
the occurrence of a Series A financing (if available). Then,
extensive feature engineering is performed to cover a wide
range of factors influencing company success. In total, over
400 features are generated, which can be categorized into
three macro groups according to [27]: features related to
(1) the company, such as location and industry, (2) founder
characteristics, including demographic information, education
background, and prior work experience, and (3) investment
factors, including funding details, investor demographic in-
formation, and investment track record. The created features
include information related to the sensitive attributes, which
are converted into binary features by one-hot encoding for the
application of Gradient Reversal learning.

D. Fair models protecting a binary sensitive attribute

In this study, a comprehensive evaluation of our approach
is conducted through a series of experiments. The objective
of these experiments is to demonstrate the validity of our
approach and provide guidance to practitioners.

First, we demonstrate through a simple example that omit-
ting sensitive attributes during model training alone does
not eliminate discriminatory biases. Instead, we find that
explicit mitigation techniques such as the Gradient Reversal
are necessary to effectively address such biases. To this end,
two baseline models are considered. The first baseline model
(BL1) incorporates the sensitive attributes in the dataset, while
the second baseline model (BL2) discards them. A fair model
(FM) is trained using Gradient Reversal to effectively remove



(a) BL1 includes sensitive attributes, while BL2 omits them.
FM uses Gradient Reversal to mitigate local bias related to
the origin of U.S. startups. The experiment indicates that the
equal opportunity gap (EO) decreases for FM while its model
performance remains stable.

(b) Re-training all three models to predict the sensitive attribute
shows that BL1 and BL2 still implicitly contain the information
related to the sensitive attribute, while FM suppresses it.

Fig. 3: Sample illustrations of experiments with one discriminatory attribute.

information related to the sensitive attributes from the feature
representation, as illustrated in Fig. 1. To ensure a consistent
model comparison, all three models use the same neural
network architecture for the feature extractor f and target
branch t. For the purpose of illustration, we demonstrate our
findings using a single sensitive attribute based on the local
bias, specifically whether a startup was founded in the United
States or not.

Fig. 3a depicts the AUC-ROC curve along with the auc
score (AUC), equal opportunity gap (EO) and consistency
(Cons) of BL1, BL2 and FM (i.e., de-biased with regards to
whether the startup was founded in the United States or not).
The results show that all three models exhibit comparable
performance in terms of predicting the success of startups,
as indicated by the similar AUC scores. However, it can be
observed that the equal opportunity gap of the FM model
is significantly lower than those of BL1 and BL2, while its
consistency is significantly higher. This suggests that our fair
model clearly outperforms both baseline models in terms of
fairness while maintaining a comparable level of performance
in predicting startup success.

To further corroborate our findings, a second experiment
was conducted to emphasize the presence of latent information
related to the sensitive attribute in the feature representation.
This was achieved by retraining the target branch t to pre-
dict the sensitive attribute, while keeping the weights of the
hidden layers in the feature extractor f fixed. The results
of this experiment are depicted in Fig. 3b and reveal that
both BL1 and BL2 are capable of accurately predicting the
sensitive attribute, i.e., whether the startup is founded in the
United States or not, with AUC scores of 79.7% and 77.8%,
respectively. On the other hand, FM is only able to moderately
predict the sensitive attribute, with an AUC score of 60.7%.
These results indicate that even though the sensitive attribute
was omitted during model training in BL2, the information

related to it remains implicit in the feature representation, due
to its correlation with other features such as the type of funding
currency (e.g., seed financing conducted in U.S. dollars). The
application of Gradient Reversal in FM effectively suppresses
this information in the feature representation of the feature
extractor f .

E. Fair models protecting a categorical sensitive attribute

In another experiment, we demonstrate the application of
Gradient Reversal learning on a categorical sensitive attribute
to evaluate model fairness. The startups in the dataset orig-
inate from over 15 countries, including the United States,
Germany, the United Kingdom, and India, to name a few. To
apply Gradient Reversal to the categorical country variable, a
protected branch p for each country is created and attached to
the feature extractor f . Therefore, one-hot encoding is applied
to the country variable (thereafter called country codes). The
fair model is trained by optimizing the parameters of the
underlying feature mapping of the feature extractor f by
minimizing the loss of the target branch t and to maximize
the loss of all protected branches p simultaneously [10].

To report the fairness performance of the model, the EO and
Cons are first calculated for each sensitive attribute and then
the weighted average is obtained based on the sample size with
respect to country code. The results are illustrated in Fig. 4a. In
addition, the presence of latent information related to country
codes in the feature extractor f is evaluated by retraining the
target branch to predict the countries (dashed lines). The AUC-
ROC curve for the country is calculated using the weighted
average of the AUC-ROC curves of the each country code.
The EO score suggests that our FM is relatively fair in terms
of local bias (EO equal to 0 indicates complete fairness). The
result is further supported by the finding that the retrained FM
predicts the sensitive attributes poorly, with a mean AUC score
of 0.614.



(a) This experiment examines the categorical sensitive attribute
country, which includes five levels: United States, India, Ger-
many, Great Britain and others.

(b) This experiment explores the categorical sensitive attribute
gender, which contains three levels: mixed gender, only female,
and only male.

Fig. 4: Two sample illustrations of Gradient Reversal on the categorical attribute. The blue line shows model performance
for the target outcome. In addition, the presence of latent information related to the sensitive attribute in the feature extractor
f is evaluated by retraining the target branch to predict the protected attributes (dashed lines). The AUC-ROC curve for the
sensitive attribute is calculated using the weighted average of the AUC-ROC curves of each level of the categorical attribute
(pink line).

Fig. 4b illustrates the results of the fair model with regards
to the gender of the founders. Three protected branches are
used for the binary sensitive features mixed gender, only
female and only male.

F. Fair models protecting multiple sensitive attributes

The methodology explained in section IV-E can be extended
such that multiple sensitive attributes can be protected simul-
taneously. This enables the construction of a model that is fair
with respect to country, gender, education, university, race,
and ethnicity. A comprehensive summary of the results from
all experiments can be found in Table I and will be thoroughly
discussed in section V. The approach demonstrated for binary
and categorical attributes can be applied to continous attributes
as well, by using a regression head with an appropriate loss
(e.g. mean squared error) in the target branch.

V. RESULTS

The results of the experiments are given in Table I. For
all experiments, we conduct an extensive hyperparameter
tuning for the scaling factor λ ∈ [1, 100] and the loss
weights wi ∈ [0.01, 1], i ∈ {1...n}, with a fixed set of
hyperparameters for the employed neural network. The first
two models (BL1 and BL2) are the baselines, with the BL1
model incorporating sensitive attributes during training and the
BL2 model excluding these attributes. The remaining models
(FM country, FM gender, etc.) are fair models that protect
a specific sensitive attribute group during training, including
country, gender, education, university, race, and ethnicity. The
last model (FM) is a fair model that protects all sensitive
attributes simultaneously. The performance metrics reported
in the table include the area under the curve (AUC), accuracy,
equal opportunity gap, and consistency.

A comparison of BL1 and BL2 shows that simply removing
the sensitive attributes from the dataset slightly improves
model fairness without significantly decreasing the predictive
ability of the model. The group fairness of BL2 increased (i.e.,
the equal opportunity gap decreased for all attribute groups),
whereas the individual fairness of BL2 decreased slightly (i.e.,
consistency decreased) compared with BL1.

The metrics of the fair models FM * suggest that model
fairness can be further improved by training models that aim
to protect specific sensitive attribute groups without compro-
mising predictive performance. For all FM *, it can be shown
that the equal opportunity gap decreases with respect to the
protected attribute group, while the consistency remains more
or less the same compared to BL1 and BL2. For example, the
value for the equal opportunity gap with respect to country
is 0.021 for FM country, compared to 0.049 and 0.093 for
BL1 and BL2, respectively. Moreover, to our surprise, AUC
and accuracy of fair models can even increase when protecting
specific attribute groups, such as the auc and accuracy scores
reported for FM race.

Furthermore, the results suggest that protecting a single
sensitive attribute group leads to an increase in the equal
opportunity gap for other (i.e., unprotected) attribute groups.
As demonstrated in the case of FM gender, where only gender
is protected, the equal opportunity gap for gender decreases,
but higher equal opportunity gaps are observed in comparison
to BL1 and BL2 for the unprotected attribute groups, including
country, education, and university. This trend is also evident
when evaluating the average equal opportunity gap for all
sensitive attributes in models where only one attribute group is
protected (refer to Table V, column ”All attributes”). However,
if all sensitive attribute groups are protected simultaneously
(FM), the equal opportunity gap for each attribute group



TABLE I: Summary of experimental outcomes. The first baseline model BL1 incorporates the sensitive attributes during training,
whereas the second baseline model BL2 excludes them. The fair models FM * are trained by protecting the respective attribute
of focus, such as country, gender, etc. The fair model FM is trained by protecting all discriminatory biases simultaneously.
Evaluation metrics including AUC, accuracy, equal opportunity gap, and consistency are reported. While equal opportunity
gap is optimized at 0 (indicated by a downward pointing arrow), the other metrics are optimized at 1 (indicated by an upward
pointing arrow). The best results are highlighted in bold, and the scores corresponding to the protected attribute are denoted
in italics.

Equal opportunity gap ↓

Model AUC ↑ Accuracy ↑ Country Gender Education University Race Ethnicity All attributes Consistency ↑

BL 1 0.849 0.782 0.093 0.056 0.063 0.077 0.046 0.055 0.061 0.772
BL 2 0.839 0.777 0.049 0.050 0.054 0.055 0.050 0.038 0.041 0.769

FM country 0.847 0.777 0.021 0.095 0.128 0.127 0.052 0.042 0.070 0.777
FM gender 0.859 0.794 0.097 0.014 0.122 0.129 0.024 0.042 0.065 0.809
FM education 0.861 0.795 0.092 0.113 0.029 0.013 0.025 0.048 0.052 0.779
FM university 0.853 0.781 0.078 0.122 0.043 0.017 0.032 0.043 0.054 0.786
FM race 0.871 0.798 0.108 0.138 0.079 0.097 0.019 0.050 0.071 0.779
FM ethnicity 0.843 0.777 0.114 0.123 0.100 0.114 0.040 0.027 0.071 0.783

FM 0.827 0.761 0.028 0.033 0.040 0.041 0.015 0.038 0.033 0.781

can be reduced, leading to a reduction in the average equal
opportunity gap and thus to an overall improvement of the
model fairness.

In summary, our findings suggest that the explicit simulta-
neous protection of all sensitive attributes is the only reliable
method for reducing discriminatory bias in the model. For
FM, we did not observe a significant change in the AUC
and accuracy of the target when compared to BL1 and BL2.
The results were also similar for consistency, which measures
individual fairness. Although our approach has an impact
on group fairness, it does not necessarily affect individual
fairness.

VI. CONCLUSIONS

In this work, we demonstrate the capabilities of Gradient
Reversal learning to build startup success prediction models
satisfying group fairness using high-dimensional Crunchbase
data including multiple sensitive attributes. Inline with prior
research, our findings suggest that it is not sufficient to
simply remove sensitive attributes to ensure group fairness.
Furthermore, we demonstrate that protecting individual sensi-
tive attribute groups may worsen the group fairness of other
sensitive attributes and thus, simultaneously protecting all
sensitive attributes is the only safe way to increase the overall
group fairness of the model. In addition, our results suggest
that Gradient Reversal can be effectively applied to tackle
model fairness with minimal adversarial effect on the model
performance.

However, there are still some key challenges that need to
be addressed. There exists a tradeoff between fairness and
prediction accuracy. A completely fair model may not be able
to make useful predictions. Our approach allows for balancing
prediction accuracy and fairness by assigning different weights
to the total loss (see Equation 4). Practioners must determine
the acceptable level of standard accuracy and, therefore, the
extent to which the model can be debiased.

Gradient Reversal can be used to improve group fairness,
but it does not necessarily increase individual fairness i.e.,
consistency. To establish VC investor confidence in a success
prediction model, it is important that similar startups are given
similar predictions. Therefore, different approaches must be
explored and evaluated to ensure individual fairness. These
key challenges require further investigation in future research.
Nevertheless, the methodology presented can serve as a basis
for developing a predictive model for startup success that
incorporates fairness considerations.

ACKNOWLEDGMENT

The authors would like to thank Penny Schiffer for her continued support,
as well as business partner Raized.ai for supplying the data set utilized in this
paper.

REFERENCES

[1] C. M. Schmidt, “The impact of artificial intelligence on decision-making
in venture capital firms,” Ph.D. dissertation, 2019. [Online]. Available:
http://hdl.handle.net/10400.14/29250
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