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SUMMARY

Error-related potentials (ErrPs) are a prominent electroencephalogram (EEG)
correlate of performance monitoring, and so crucial for learning and adapting
our behavior. It is poorly understood whether ErrPs encode further information
beyond error awareness. We report an experiment with sixteen participants
over three sessions in which occasional visual rotations of varying magnitude
occurred during a cursor reaching task. We designed a brain-computer interface
(BCI) to detect ErrPs that provided real-time feedback. The individual ErrP-BCI de-
coders exhibited good transfer across sessions and scalability over the magnitude
oferrors.Anon-linear relationshipbetween theErrP-BCIoutputand themagnitude
of errors predicts individual perceptual thresholds to detect errors. We also
reveal theta-gamma oscillatory coupling that co-varied with the magnitude of
the required adjustment. Our findings open new avenues to probe and extend cur-
rent theories of performancemonitoring by incorporating continuous human inter-
action tasks and analysis of the ErrP complex rather than individual peaks.

INTRODUCTION

Skillful tennis players can hit and return a ball with the desired effect because of their ability to identify er-

rors between the predicted next states and the actual ones along the trajectory, which enables them to

adjust their actions seamlessly.1 However, this is a challenging task for novice players. This individual vari-

ability in our ability to detect errors of varying degrees is key for sensorimotor and adaptation learning.2,3

While previous research has uncovered a neural correlate of performance monitoring in the human electro-

encephalogram (EEG) elicited by the awareness of discrete erroneous actions, the so-called error-related

potentials (ErrPs),4–8 little is known about whether these potentials encode the magnitude of errors. Some

previous studies have reported co-varying characteristics of the ErrP with error magnitudes9–13 –such as

amplitude or phase coherence–, while others did not.14 Although previous studies suggested a linear rela-

tionship between the magnitude of errors and amplitude of ErrPs,9,10 a major limitation of these studies is

the use of a limited number of error categories (i.e., small, medium, and large) that failed to capture a

continuous relationship between the magnitude of errors and the characteristics of the ErrP. Such a rela-

tionship is critical to predict our individual ability to discern errors.

Here, we designed an experiment to further investigate these two open questions –namely, does ErrP

encode the magnitude of errors? Can they predict the individual threshold of error awareness?–, where oc-

casional visual rotations occur during a cursor reaching task. We also developed a brain-computer interface

(BCI) to detect in real time the presence or absence of an ErrP in the subjects’ EEG indicating a rotation of

the joystick-to-cursor mapping. Critically, in our study, induced errors are not constant, so as to avoid any

adaptation process, and are variable in magnitude.

ErrPs are elicited when subjects perceive an erroneous action, either committed by themselves4,5 or by

another person or agent.7,15 The ErrP is characterized by two main deflections thought to be originated

mainly from the anterior cingulate cortex (ACC),6,16–19 an initial error-related negativity (ERN) followed

by a positive peak (Pe), observed over the frontocentral cortex. Further, a recent study found an increase

of high-gamma band power along with ErrPs.20 Nevertheless, reports on the co-activating high-gamma ac-

tivity are still limited and required further examination.

ErrP-BCIs have shown to enable seamless and intuitive interaction with external devices.8,15,21–26 Neverthe-

less, in these studies actions were executed at discrete steps, not continuously as required here. Some BCIs
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Figure 1. Overview of the experimental protocol and behavioral results

(A) Graphical representation of the experimental design. The blue circle indicates a cursor controlled by the left-joystick

of a game-pad. The red square represents the goal location where participants were instructed to bring the cursor as

quickly as possible. Black arrow indicates the optimal cursor trajectory (straight line) to the goal. Gray dashed line

represents the boundary to induce visual rotations, which was randomly defined for each trial. In a correct trial (70% of

trials), no visual rotation occurred. In error trials (30%) of sessions 1 and 2, visual rotations could be 20� (red), 40� (blue) or
60� (green), while in session 3 rotations were from 3� to 60� with a step of 3� (lines not shown). All lines were invisible to

participants during the experiment. Note that participants cannot predict occurrence of visual rotations nor their

magnitude.

(B) Experimental timeline for each recording session. 90 s of EOG calibration data were recorded before the cursor

reaching task. In session 1, participants underwent the experiment without BCI feedback. In session 2, presence of ErrPs

was continuously monitored while updating the decoder after each run. In session 3, continuous decoding was performed

with a fixed decoder.

(C and D) Cursor deviations from straight trajectories and joystick speed in sessions 1 and 2 (mean, continuous or dotted

lines, and SE, shaded areas).

(E) Joystick speed of all sessions within the time window of [0.35, 0.45] s (mean G SE).

See also Figures S1 and S4.
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have succeeded in decoding the presence of an ErrP during a continuous task.27–30 However, these studies

used experimental protocols where erroneous actions are abrupt stops of the device,27,28 errors happen at

the samemoment during the interaction,29,31 or the device fails to reach a target30—all extreme conditions

that do not capture erroneous actions during a continuous interaction, but see Batzianoulis et al.32 Further-

more, none of these previous studies characterized the ErrPs as a function of the severity of the erroneous

action.

We designed a BCI experiment consisting of three recording sessions, in which ErrPs were elicited by a visual

rotation while the subject was using a joystick to continuously control a computer cursor to reach a target

(Figures 1A and 1B; Table 1 and Video S1). Errors (rotations of the joystick-to-cursor mapping) were induced

in 30% of the trials. On the first and second recording sessions, subjects performed the cursor reaching task

with three different degrees of rotation; i.e., 20�, 40� and 60�. On the third session, subjects experienced a finer

rangeof rotations; i.e., from3� to 60� witha stepof 3�, to characterize theErrPover the continuousmagnitudeof

errors. Furthermore, online continuousdecodingof ErrPswereperformedon the second and the third sessions

in a ‘‘Plug-and-Play’’ manner33 by using the data from the previous recording session. The BCI provided real-

time feedback to participants by changing the color of the cursor upon ErrP detection.

RESULTS

Consistent behavior over the three experimental sessions

Participants generated similar cursor trajectories across recording sessions and consistently initiated

corrective actions at 0.3 s with respect to the onset of the rotation (Figures 1C and 1D). The peak joystick
2 iScience 26, 107524, September 15, 2023



Table 1. Time differences in days between the three recording sessions

Subject ID s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 mean G SE

Session1 - Session2 52 63 42 42 51 49 56 56 51 59 43 44 35 24 35 37 46 G 3

Session2 - Session3 25 13 40 35 38 38 28 31 26 11 32 45 52 32 21 10 30 G 3
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speed was observed at 0.41, 0.40, and 0.42 s for the first, second, and third session, respectively. The mean

joystick speed increased along magnitude of rotation while keeping consistency over the recording ses-

sions (Figure 1E). Variance of averaged joystick speed was larger on the third session compared with the

first and the second session due to the lower number of trials recorded for each magnitude of rotation

(n = 6 G 1 [mean G SD]). We also measured their levels of engagement for the duration of the experiment

based on the reaction time between the onset of a trial and the initiation of cursor control. The average

level of engagement remained consistent throughout the ten runs of the experiment (Figure S1A). Alto-

gether, participants had a uniform behavior over the three recording sessions, and the speed of joystick

movement was a function of the magnitude of errors.

It is possible that participants make erroneous corrective actions in our experiments. To calculate the

number of erroneous corrective actions, we measured the distance between the cursor and the goal within

the 1 s time window following the onset of rotation. Since the visual rotations ranged from �60 to 60�, the
distance decreased even without corrective actions. The distance increased only when participants misde-

livered their corrective actions. Erroneous corrective actions were observed in only 3.9G 0.7% (meanG SE)

of the trials with visual rotations.

Theta-gamma brain oscillatory coupling co-varies with magnitude of errors

We observed band specific power modulation for theta [4, 8] Hz,29,30 beta [18, 30] Hz34,35 and gamma [60,

90] Hz rhythms20 (Figures 2A and 2B). Theta band exhibited increased power modulation within the time

window of [0.1, 0.6] s with respect to the onset of rotation. Beta and gamma band showed simultaneous

modulations within the time window of [0.3, 0.8] s. While beta band power decreased, gamma band power

increased when participants observed and corrected a visual rotation (paired Wilcoxon signed-rank test,

p < 0.001 for all three frequency bands). Whereas the two conditions of the control experiment (Figure S4),

active and playback, also inducedmodulations of theta power as a function of the degree of visual rotation,

the decreased beta and increased gamma activity after visual rotations were not observed in neither of the

conditions of the control study (Figures S5 and S6).

Theta and gamma band activity were modulated by the magnitude of rotation, while beta band activity

remained stable for the varying magnitudes of rotation (Figure 2C). Furthermore, at ERN, we observed

phase-amplitude coupling between high theta ([6, 8] Hz) and gamma band, while at Pe, coupling occurred

between low theta ([4, 6] Hz) and gamma band (Figure 2D). Similar to the temporal band power, phase-

amplitude coupling increased for larger magnitudes of rotation. These results confirm that theta and

gamma band activity, as well as their interaction, encode the magnitude of errors, while this is not the

case for beta band activity.

ErrP-BCI decoder exhibits transferability and scalability

The amplitude of ErrPs increased and the latency of the deflections shortened as the magnitude of rota-

tions increased (Figures 3A and 3B). We also observed this relationship in the control experiment for

both conditions, active and playback (Figure S5).

In the third session (Figure 3C) it is observed the two prominent deflections in the ErrPs when participants

consciously perceived the rotation (Yes), and similar but delayed and smaller sequential peaks when par-

ticipants were not sure whether they observed the rotation (Maybe). Topographical representations of all

trials with rotation (insets in Figures 3A–C) show similar patterns in the three recording sessions; namely,

broad activation of the central area at 0.25 s, followed by focal activation of the fronto-central area at

0.35 s. An activation of the parieto-central area was also observed at 0.4 s relative to onset of errors (Fig-

ure S2). The observed topographies are consistent with previous studies,36,37 where errors are not self-

generated. These results suggest that ErrPs encode magnitude of errors in its amplitude and latency

and are stable across different recording sessions.
iScience 26, 107524, September 15, 2023 3



Figure 2. Time-frequency representations of ErrPs at FCz electrode on the first two sessions

(A) Time-frequency decomposition of ErrPs averaged over all rotation trials with respect to the onset of rotation. Power was normalized by pre-stimuli

baseline ([-0.25, 0.0] s).

(B) Theta (4–8 Hz), beta (18–30 Hz) and gamma band (60–90 Hz) power modulation with respect to the onset of event (x = 0 s) for each magnitude of rotation

(mean G SE). Two dashed black lines at 0.25 s and 0.35 s indicate when ERN and Pe appeared. Theta band power increased within the time window of [0.1,

0.6] s with respect to the onset of rotation. Beta band power decreased, while gamma band power showed increase within the time window of [0.3, 0.8] s.

(C) Averaged band power modulation for eachmagnitude of rotation of the first two sessions (meanG SE). Theta and gamma band power in erroneous trials

were modulated as a function of magnitude of rotation (Spearman’s correlation analysis, Theta: r = 0.70, p < 0.001, Gamma: r = 0.39, p < 0.001), while beta

band activity remained stable for the different magnitudes of rotation (Spearman’s r = 0.10, p = 0.33).

(D) Theta-gamma phase-amplitude coupling at ERN and Pe. Coupling is larger for trials with larger magnitude of rotations.

See also Figure S6.
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Decoding performance was similar across sessions (for different rotations in the first two sessions, and

balanced accuracy in the third sessions, Figures 3D and 3E; Table 2). TPR increased along with the

magnitude of rotation in all conditions of classification (time-locked classification of the first and the second

session and continuous classification of the second session, Figure 3D). The continuous classification

performance (balanced accuracy) was significantly lower than the time-locked classification in the second

and third sessions (pairedWilcoxon signed-rank test, p < 0.001 for both sessions), which illustrates the chal-

lenge to perform continuous decoding of ErrPs.

During continuous decoding, presence of ErrPs were consistently detected with high temporal accuracy at

around 0.85 s after the onset of rotation (Figure 3F), which corresponds to the time window used to train the

classifier, [0.2, 0.8] s (second session: 0.853G 0.01 s, third session: 0.846G 0.01 s). Run-wise recalibration of

the decoder increased continuous decoding performance over the ten runs on the second session (Fig-

ure S3). We then characterized the continuous relationship between the magnitude of rotations and the

BCI output over the three sessions (Figure 4). Estimated posterior probabilities of time-locked classification
4 iScience 26, 107524, September 15, 2023



Figure 3. Grand-averaged signals and classification performance

(A–C) Grand-averaged signals at FCz channel for each recording session, respectively (meanG SE). The dashed line (x = 0 s) represents the onset of rotation.

On the first two sessions, each line corresponds to a magnitude of rotation; while lines correspond to the subjective behavioral answers on the third session

(mean; continuous lines, and standard error; shaded areas). Each panel includes topographical representations averaged over trials with rotation of the

negative and positive deflections at 0.25 and 0.35 s.

(D and E) Classification performance for time-locked classification and continuous decoding on the first two sessions and the third session, respectively

(mean G SE). Note that True positive rate (TPR) increased as a function of magnitude on session 1 and 2.

(F) Latency of the behavioral correction and online continuous decoding with respect to the onset of rotations (x = 0 s, mean G SE). Light colored lines

correspond to the onset of the corrective movement for the three sessions while dark colored lines represent latency to detect ErrPs on session 2 and 3.

See also Figures S2, S3, and S5.
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ranged from 0.21 (0�) to 0.78 on the first two sessions and to 0.86 on the third session (60�), while it ranged

from 0.63 to 0.93 on the second and third sessions for continuous classification. For both, time-locked and

continuous decoding, the estimated posterior probability linearly increased until 30�, then plateaued for

larger rotations. Thus, an exponential model successfully captured the modulation over the magnitudes

of visual rotation. These results illustrate that the ErrP-BCI output encodes not only errors, but also their

magnitude.
ErrP-BCI output predicts individual perceptual thresholds

Finally, we asked whether ErrPs predict individual perceptual thresholds to detect visual rotations. To

answer this question, we analyzed the ErrP-BCI output in the time-locked condition of the third session.

The perceptual threshold is defined as the magnitude of rotation for which participants detected only

50% of occurrences. On average, participants started to answer ‘‘Maybe’’ at 8 G 3� and ‘‘Yes’’ at

12 G 5 degrees of rotation (Figure 5A). Most importantly, the behavioral answer and the output of

the ErrP-BCI were modulated similarly, demonstrating the transferability of the decoder over sessions

and the scalability of ErrPs over the different magnitudes of rotation. The inferred individual perceptual

threshold from the ErrP-BCI predicted the behavioral individual perceptual threshold (Spearman’s r =

0.60, p = 0.015, Figure 5B), while having comparable median values (paired Wilcoxon signed-rank

test, p = 0.96). We further verified that the levels of engagement of the third session (time duration be-

tween the onset of trials and initiation of cursor movement) did not explain the individual perceptual

threshold (Spearman’s r = 0.18, p = 0.51, Figure S1B). In summary, individual ability to detect errors

was successfully inferred by characterizing the relationship between the magnitude of errors and their

corresponding ErrPs.
iScience 26, 107524, September 15, 2023 5



Table 2. Time-locked classification and online continuous decoding performance for each recording session (mean G SE)

Time-locked classification

Training session Test session TNR of 0� TPR of 20� TPR of 40� TPR of 60� Balanced Accuracy

Session 1 Session 1 93.63 G 1.54 57.73 G 2.31 84.76 G 2.13 89.74 G 1.77 87.13 G 1.65

Session 1 Session 2 93.84 G 1.66 62.27 G 2.88 87.55 G 1.78 93.59 G 1.77 89.16 G 1.29

Training session Test session TNR of No TNR of Maybe TPR of Yes Balanced Accuracy

Session 1 and 2 Session 3 93.13 G 0.97 77.52 G 4.38 89.99 G 2.32 89.38 G 1.38

Continuous decoding

Training session Test session TNR of 0� TPR of 20� TPR of 40� TPR of 60� Balanced Accuracy

Session 1 Session 2 95.30 G 0.76 35.37 G 3.86 60.37 G 5.48 71.54 G 5.34 75.64 G 2.51

Training session Test session TNR of No TNR of Maybe TPR of Yes Balanced Accuracy

Session 1 and 2 Session 3 94.54 G 0.97 88.11 G 3.52 67.84 G 4.38 80.96 G 2.36

Balanced accuracy was computed by using data with all magnitude of errors.
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DISCUSSION

Our results indicate that ErrPs encode not only the conscious perception of errors (i.e., visual rotations in

our experimental setup) (Figure 3C), but also their magnitude, in their amplitude and latency (Figures 3A

and 3B). Furthermore, classification results from session 3 demonstrates how the ErrP decoder —built from

data of sessions 1 and 2 that contains only rotations of 0�, 20�, 40� or 60�— generalizes across rotations

ranging from 0� to 60� with a step of 3� and across recording sessions (Figure 4). More fundamentally,

analysis of the ErrP-BCI output shows that ErrPs predict individual perceptual thresholds to detect a visual

rotation.

In the present study, participants used a joystick to control a cursor to reach a target (Figure 1A). Unlike

typical visual rotation tasks,13,38–40 the visual coupling between the cursor movement and the joystick

was occasionally disrupted during the continuous cursor controlling task with varyingmagnitudes to ensure

participants could predict cursor trajectories and, so, elicit ErrPs in their EEG. This design enabled to

induce stable and precise perturbations on the cursor trajectory and associated corrective actions across

sessions (Figures 1C and 1D). Furthermore, the elicited ErrPs were also stable across the three recording

sessions (Figure 3), in line with previous findings.8,21,41 On average, 46 and 30 days elapsed between

consecutive sessions, respectively (Table 1).

While most theories of performance monitoring consider ErrPs as a detector,36,42 some studies report that

amplitude of ErrPs co-vary with themagnitude of errors.9–13 In those studies, amplitude of Pe11 or both ERN

and Pe13 co-varied with the magnitude of errors induced by visual rotations. A consistent relationship was

identified for ERN with kinematic errors,12 for both ERN and Pe with pointing error10 and observational er-

rors in a virtual reality setup.9 Previous studies thus proposed a linear relationship between the magnitude

of errors and ErrPs.9,10 However, the magnitude of errors was limited to a short number of discrete error

categories (i.e., small, medium, and large), thus not capturing a continuous relationship between the

two —which is crucial to explain our individual ability to detect errors. Moreover, whether or not ErrPs

encode magnitudes of errors has remained controversial. Another study reported that different magni-

tudes of a visual rotation do not affect ErrPs by comparing rotations of 45� and 180�.14 Our results extend

and reconcile previous research as we have identified a continuous non-linear relationship between the

magnitude of errors and the output of the ErrP-BCI, which starts plateauing after 30� of rotation (Figure 4).

The observed relationship remained consistent in the control experiment for both conditions, active and

playback (Figure S5).

Having established this non-linear relationship, one fundamental question arises; namely, ‘‘Can we infer

participants’ perceptual threshold to detect errors?’’. Behavioral answers to conscious perception of errors

and inferred subjects’ responses from ErrPs were similarly modulated along with the magnitude of rotation

(Figure 5A). Interestingly, we observed that even at the magnitude where participants were unsure about

the presence of the rotation (i.e., ‘‘Maybe’’) the behavioral and inferred answers were closely aligned to

each other. ErrPs for ‘‘Maybe’’ exhibited smaller and delayed deflections than for ErrPs elicited by
6 iScience 26, 107524, September 15, 2023



Figure 4. ErrP-BCI output over the varying magnitude of errors

Estimated posterior probabilities of each recording session for each magnitude of rotation and fitted curve for both time-

lock classification and continuous decoding on the third session are presented (mean G SE). Note that estimated

posterior probability is modeled as an exponential function of the magnitude of rotation.
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conscious perception of the rotation (i.e., ‘‘Yes’’, Figure 3C). Additionally, we revealed a significant corre-

lation between the behavioral perceptual threshold, or inflection point, and the inferred perceptual

threshold (Figure 5B). Taken together, our results suggest that ErrPs encode not only the magnitude of er-

rors, but also the individual perceptual threshold to discern them consciously. Previous works also found a

relationship between the size of the ErrP, in particular the Pe component, and the participants’ confidence

on the accuracy of their own response, appraised on a discrete scale.43,44 This is a substantial difference

with respect to our study where errors are not committed by subjects, but by the device they are interacting

with. As recently shown,45 the neural substrate of confidence –how humans compute the likelihood that a

decision is correct, or metacognition– extends beyond the ErrP sources and, critically, metacognitive per-

formance is better for decisions made by the subjects as compared to decisions they just observed.

Our experimental setup and findings open new avenues to probe and extend current theories of perfor-

mance monitoring, which are based on response conflict tasks such as flanker (see, e.g.,36,42 for reviews),

by incorporating continuous human interaction tasks as well as analysis of the ErrP complex as a whole

rather than individual peaks. Moreover, while these theories interpret that the frontocentral Pe is simply

associated with fast orienting and attentional processes, our results show Pe encodes qualitatively and

quantitatively more information. In particular, while we observe a larger subsequent centroparietal Pe at

400 ms (Figure S2), which has been proposed to drive adaptation,36 the two positive deflections reflect

similarly the magnitude of errors.

Our results are not limited to the theta band activity of EEG. Völker et al.20 recently reported the presence

of the high-gamma band modulation during an Erikson flanker task in both invasive and noninvasive EEG

recordings. High-gamma band ([60, 90] Hz) power increased when humans performed erroneous motor ac-

tions time-locked to the Pe component of ErrPs. Consistent with their findings, our results also demonstrate

that the peak high-gamma power aligns with the Pe deflection in the same high-gamma band ([60, 90] Hz,

Figure 2B). Extending their results, we observed progressive increase of band power over magnitude of

errors only in theta and gamma bands, but not in beta. Further, a magnitude-dependent theta-gamma

phase-amplitude coupling, which has often been reported during sensory signal detection and visual

perception tasks,46,47 was also discerned (Figure 2D). Although we have further analyzed datasets collected
iScience 26, 107524, September 15, 2023 7



Figure 5. Inferring each subject’s individual perceptual threshold to detect a visual rotation

(A) Answer to the questionnaires collected after each trial and the results of the time-locked classification on the data

collected on the third session (mean G SE). Black solid vertical line corresponds to onset of conscious perception (Yes)

while black dashed line is onset of Maybe. For classification output (red), 1 means that all trials were estimated as

erroneous (there was a rotation), while 0 means that all trials were estimated as correct (no rotation). For behavioral answer

(blue), 1 indicates that all trials of a given rotation were consciously perceived (i.e., Yes), while 0 means that all trials were

not consciously perceived (i.e., Maybe or No). Behavioral answer and classification output increased similarly over the

magnitude of rotation before and after the perceptual threshold (i.e., Onset of Yes).

(B) Scatterplot of the behavioral individual perceptual threshold and the inferred perceptual threshold based on the time-

locked classification of ErrPs. Each dot corresponds to one subject. Inset represents the scatterplot of ranked thresholds,

and the solid line indicates the relationship between the ranked variables.

See also Figure S1B.
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during our previous studies,30,32 we did not observe such gamma band activity nor theta-gamma phase-

amplitude coupling. This was neither the case for the control experiment, for both the active and the play-

back conditions (Figure S6). A distinction between those previous and control studies against the present

study is that in the latter participants had to re-calibrate their mapping to control the cursor to complete a

task. Although the active condition of the control experiment allowed participants to perform corrective

actions, correct mapping was restored shortly after each error. Thus, participants did not need to adjust

their mapping to complete a task. Krigolson et al.48 showed that ‘‘correctability’’ of the task influences theta

band activity; however, how the ‘‘correctability’’ modulates gamma band activity remains unclear. Increase

of gamma band has been thought to represent ‘‘sharpening existingmemories and formation of newmotor

memories’’49,50 and coupling between frequency bands would promote memory formation and neural

communications.51 Particularly in motor adaptation learning, the increased gamma band power modula-

tion of frontal and motor brain regions has been reported during early learning, a time period in which

the adaptation performance increases rapidly.52,53 However, these reports were limited to trial-by-trial

changes during adaptation learning. Our results now identified millisecond-by-millisecond theta-gamma

oscillatory coupling that occurred during continuous interaction only in the case when re-calibration of a

deployed strategy to control the cursor was required to accomplish the task and co-varies with magnitude

of the required adjustment.

This study also uncovered a tight temporal relationship between corrective actions and the two character-

istic electrophysiological deflections of ErrPs; namely, ERN and Pe. We observed ERN at 0.25 s with respect

to the rotation onset (Figures 3A-3C), which corresponds to the time period where participants initiate the

corrective actions to re-aim the target (Figure 1D). Similarly, Pe was observed at 0.35 s, in the middle of

corrective actions. Interestingly, temporal patterns of both joystick speed and high-gamma band power

were monotonically increasing, while the beta-band power was decreasing from baseline toward its

peak value within the time window between ERN and Pe. Overall, our results suggest presence of rapid in-

formation transfer between theta and high-gamma band activity to activate corrective actions of right

amount after detection of an error.

Initiation of a movement causes event-related desynchronization (ERD) in mu and beta rhythms.54 In our

experiment ErrPs were induced during continuous movement, and so we do not expect much interference
8 iScience 26, 107524, September 15, 2023
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between ERDs and ErrPs. It has also been shown that event-related potentials like ErrPs (i.e., increase in

theta power) are distinguished while subjects operate a cursor to track a moving target.55

Finally, our study has implications for single-trial decoding of ErrPs during continuous human-computer in-

teractions. The individual BCI decoders exhibited good transfer across recording sessions and scalability

over the varyingmagnitude of errors. Stable ErrP patterns over the recording sessions enabled us to deploy

‘‘Plug-and-Play’’ ErrP-BCIs on the second and the third session (Figure 3), in which online decoding of ErrPs

were carried out since the first run of the session by transferring the decoder from the previous recordings.

Transfer learning to detect ErrPs has been investigated across different error types,56,57 cognitive workload

conditions30,58 and participants28,59; however, they often reported degraded classification performance.

This was not the case in our experiments, where we observed consistent classification performance by

transferring the personalized decoder over the different decoding sessions, especially during online

continuous classification (Figures 3D and 3E; Table 2). Nevertheless, our results revealed the difficulty to

detect small errors compared to large ones due to the reduced amplitude and delayed deflections of their

elicited ErrPs (Figures 3A, 3B, and 4). Importantly, the latency to detect ErrPs was close to the optimal la-

tency and very stable across sessions during online continuous decoding (Figure 3F), thus demonstrating

the temporal precision of the continuous ErrP-BCI. We conjecture that such a kind of ErrP-BCI could

enhance operation of assistive devices by people with severe motor disabilities. Indeed, because of their

degraded residual control, these subjects will occasionally deliver wrong commands similar to the visual

rotations in our experiments and will not be fast enough to execute corrective actions before the output

of the ErrP-BCI will be available.

Limitations of the study

We used only 16 EEG channels to record brain oscillatory activity, which limits the analysis of ErrP sources

for errors of varying magnitude. We predict, however, that neural substrates that signal ErrPs will slightly

differ depending on the magnitude of errors.60

In the present study, errors were not internally driven, but induced by the device subjects interacted with. A

previous study documented different temporal dynamics of ErrPs depending on the source of errors.36

Although it is challenging to collect a reliable number of self-generated errors over a varying magnitude,61

doing so will further help characterize the dynamics and neural substrates of ErrPs.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

Sixteen able-bodied healthy subjects (four females, 23G 1 years old) participated in the experiment, which

consisted of three recording sessions (days). The experimental protocol was approved by the local ethics

commission (PB_2017-00295). Written informed consent was collected from all participants before con-

ducting the experiment. During the experiment, participants sat on a comfortable chair in front of a laptop

with a 14-inch display that visualized the experimental protocol.
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METHOD DETAILS

Experimental design

The graphical interface of the experiment was displayed on a laptop. Each trial started after a button press

of a game-pad (DualShock4, Sony, Japan). A blue circle represented the cursor, which was controlled by the

left joystick of the game-pad, and a red square represented the goal location. Participants were instructed

to bring the cursor to the target as quickly as possible without performing gross movement nor excessive

eye blinks. The speed of the cursor was kept constant (750 pixel/s) during the cursor reaching task as long as

the joystick was pressed. Time duration of a trial and cumulative average duration of trials within a run were

displayed after each trial. Averaged duration of a trial was 3.5 G 0.2 s. A trial was considered complete

when the cursor reached the goal.

The goal location was randomly chosen for each trial among six potential locations; i.e., top-left, middle-

left, low-left, top-right, middle-right and low-right. Initial position of the cursor was at the other side of the

target at a random height to ensure enough distance (at least 1960 pixel) between the initial position of the

cursor and the goal. For example, if the goal was on the right side, the cursor was placed on the left side at a

random height and vice versa. In 30% of trials, the joystick-to-cursor mapping was rotated when the cursor

exceeded a pre-defined invisible boundary. The boundary was randomly determined for each trial. The

rotation persisted until the end of the trial, thus participants had to perform corrective action to complete

a trial. Trials with a visual rotation were defined as ‘‘erroneous trials’’, and others as ‘‘correct trials’’. The

magnitude of rotation was fixed to 20�, 40� and 60� on the first and the second sessions. On the third ses-

sion, themagnitude of rotation was between 3� to 60� with a step of 3�, and after each trial participants were

asked whether they perceived the rotation, maybe or not (‘‘Yes’’, ‘‘Maybe’’ or ‘‘No’’).

Participants performed 10 runs of 40 trials in each session (400 3 3 trials in total). Before these runs, par-

ticipants performed 20 trials where they got accustomed to the task and made eye movements for 90 s

for estimating regression parameters to remove EOG artifacts from their EEG during the actual

experiment.62

Participants executed the experiment without receiving online feedback on the first session. We provided

subjects with online feedback on the second and the third sessions by changing the color of the cursor

upon ErrP detection. On the second session, presence of ErrPs was continuously monitored during cursor

control, and the decoder was re-calibrated after each run. On the third session, we carried out continuous

decoding of ErrPs without re-calibrating the decoder, which was built with data from the first and the sec-

ond sessions, except for the parameters to remove EOG artifact.
EEG and EOG acquisition

16 EEG and 3 EOG electrodes were recorded at 512 Hz throughout the experiment (two synchronized g.

USBAmp, g.tec medical engineering, Austria). Active EEG electrodes were located at Fz, FC3, FC1, FCz,

FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2 and CP4 in 10/10 international coordinates, and EOG

electrodes were placed at above the nasion and below the outer canthi of the eyes. The ground electrode

was placed on the forehead (AFz) and the reference electrode was placed on the left earlobe. We used the

same reference and ground electrode for both EEG and EOG signals. EEG and EOG signals were notch

filtered at 50 Hz by the amplifiers. To reduce signal contamination, participants were asked to avoid exces-

sive eye movements and blinks during trials.
Time-frequency analysis

To characterize the time-frequency representation of ErrPs elicited by visual rotations, we computed a

Morlet’s wavelet time-frequency decomposition.63 After applying a 2nd order non-causal high-pass Butt-

terworth filter with the cut-off frequency of 1 Hz and current source density (CSD), EEG signals were

epoched in the time window [-0.2, 1.0] s with respect to the onset of rotations. For each single-trial EEG

epoch we performed the Morlet Wavelet time-frequency decomposition64 in the frequency range [3,

100] Hz, resulting in a wavelet coefficient matrix with 126 time points and 97 log-spaced frequency bins.

Each of time windows were composed of 427 samples (0.83 s) overlapped by 51 samples (0.1 s); while

the number of cycles ranges from 3 to 20 at highest. The resulting coefficients were used to extract spectral

power and phase-amplitude coupling.
14 iScience 26, 107524, September 15, 2023
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To compute the spectral power induced by visual rotations, we used the event-related spectral perturba-

tion (ERSP) approach.65 This approach is less sensitive to noisy trials than classical baseline correction

methods and produces a non-skewed power distribution. In detail, separately for each subject and exper-

imental condition, we apply a single-trial full-epoch baseline correction, before averaging across trials and

removing the trial-averaged pre-stimulus (i.e., from -0.25 to 0.0 s) baseline. Baselines were corrected using

the gain model assumption (i.e., divide by the baseline) instead of the additive model (i.e., subtract the

baseline).65,66 Finally, the trial-averaged pre-stimulus corrected time frequency coefficients were log-trans-

formed (10 log10).

To compute the phase-amplitude coupling, we first identified the latency of ERN and Pe (0.25 and 0.35 s,

respectively), then used the mean vector length (MVL) method.67 This method estimates the coupling be-

tween phase frequency fp and amplitude frequency fa from a number of epochsN, by mapping phase time

series 4fp ðt; nÞ and amplitude time series Afa ðt; nÞ to a complex-values vector at each time point, t, and each

epoch, n. To quantify the coupling between fp and fa, the MVL method measures the length of the average

vector and computes phase-amplitude coupling as follows:

MVL
�
fa; fp

�
=

�����
1

N

XN
n = 1

Afa ðt;nÞej4fp ðt;nÞ
�����

BCI decoding analysis

EEG signals were band-pass filtered with a 4th order causal Butterworth filter with cutoff frequencies of [1,

10] Hz, for both online and offline analyses. To build the individual decoders, ErrPs were segmented into

epochs in the time window of [0.2, 0.8] s with respect to the onset of the visual rotation. Firstly, to enhance

the signal-to-noise ratio of the EEG, we applied a spatial filter based on canonical correlation analysis

(CCA).41,68 This spatial filter method transforms the averaged ErrPs to a subspace containing different

ERP components.69 Only the first three components were kept for the subsequent analysis. This number

was determined based on the data collected on the first session by performing pseudo-continuous decod-

ing in cross validation.

For every trial, we extracted three complementary types of features: the decimated signal amplitude per

CCA component at 64 Hz; power spectral densities per CCA component from 4 to 10 Hz with a step of

2 Hz; and the covariance matrix on Riemannian geometry, which computes a low-dimensionality manifold

representation from a non-linear combination of the EEG component space.70 In order to include informa-

tion of the EEG temporal dynamics in the Riemannian spatial covariance matrix, the epoch X was

augmented with an individual template T representing the grand average of erroneous trials in the training

set:

Z = ½X T �
Cz =
1

s
ZTZ =

1

s

�
XTX XTT
TTX TTT

�

where s denotes number of time samples of an epoch.

The covariance between X and T allows to capture the temporal dynamics of multi-component EEG signals

with respect to the template. The covariance matrix was then projected on the tangent space, computed

only on the training dataset.71 All computed features were concatenated and normalized within the range

of [0, 1]. From this feature vector x, we computed the estimated posterior probability of having detected an

error, p(error|x) using diagonal linear discriminant analysis (LDA). The decoding outputs were then scaled

within the range of [0, 1] based on the following logistic function:

pðerror jxÞ = 1

1+e�ðw0 x+bÞ :

In order to continuously monitor the presence or absence of ErrPs, we analyzed the EEG signal with a

sliding window, online or offline.27,30

To compute the estimated posterior probability of the training data without overfitting, aforementioned

signal processing was performed in a leave-one-run-out cross-validation manner. Training folds were
iScience 26, 107524, September 15, 2023 15
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used to create an ErrP decoder, while the testing fold was used to compute the continuous modulation of

posterior probability during cursor control with a sliding window at 32 Hz, 16-sample shift. In order to infer

participants’ erroneous perception in a continuous manner and provide them with the feedback upon the

detection of ErrPs, two hyperparameters were optimized besides the ErrP decoder; namely, smoothing fac-

tor and decision threshold. The smoothing factor indicates length of the time window for an online moving

average filter on the estimated posterior probabilities, ranging from 1 to 16 with a step of 1. The decision

threshold determined presence or absence of erroneous perception, ranging from 0 to 1 with a step of 0.01.

Hyperparameter optimization was carried out in a grid search manner. Specifically, we computed the Mat-

thew’s correlation coefficient (MCC) for each pair of hyperparameters based on a confusion matrix. With a

pair of hyperparameters, a correct trial was properly classified if the smoothed posterior probability did not

exceed the decision threshold (True Negative). If the smoothed posterior probability in a correct trial ex-

ceeded the decision threshold, the trial was considered as erroneous (False Positive). On the other hand, an

erroneous trial was correctly classified if the posterior probability exceeded the decision threshold in a time

window of [0.5, 1.1] s with respect to the onset of the rotation (True Positive). This time window of [0.5, 1.1] s

was determined as the optimal latency was 0.8 s and we allowed 0.3 s of temporal difference with respect to

the optimal latency. If the averaged posterior probability in an erroneous trial exceeded the decision

threshold outside the aforementioned time window or did not exceed the decision threshold, it was

considered as wrong classification (False Negative). For each pair of hyperparameters we computed their

MCC, a 163 101 matrix for each testing fold. The pair of hyperparameters with the highest MCC, averaged

over the testing folds, was chosen as the optimal. Once the pair of optimal hyperparameters was deter-

mined, we used all the available data to re-compute the ErrP decoder to be deployed subsequently for on-

line continuous decoding. Decoder re-calibrations during the second session—from runs 2 to 10— used all

available data up to that moment (i.e., first session plus previous runs in second session), and re-estimated

the pair of optimal hyperparameters. On the third session, the ErrP decoder was calibrated by using all data

of the first and second session (800 trials in total) and EOG calibration data recorded at the beginning of the

third session. On the second and the third sessions, we provided participants with the online feedback

when the smoothed posterior probability exceeded the decision threshold for the first time in a trial.
Individual perception threshold

In order to model behavioral perception and ErrP decoding output over the magnitudes of rotation (Fig-

ures 4 and 5), we used the following exponential rule, which has been used to model participants’ binary

behavioral responses72,73:

y = k1 +
k2

1+e� k3ðx� k4Þ

where k1-4 represents the minimum value, maximum value, magnitude of slope and inflection point of the

curve, respectively; and x represents the magnitude of rotation. Parameters k1-4 were estimated by

gradient descent with the objective function defined as the root mean square error between the

observation and the fitted model. k1 was fixed to 0 when modelling the behavioral answer and

the classification output.73,74 The inflection point of the corresponding fitted curve (k4) was used as the

behavioral or inferred perception thresholds.
Control experiment

Twelve subjects (25-40 years of age, all males and right-handed) participated in the control experiment

(Figure S4). It consisted of two sessions aiming to confirm the impact of corrective actions on the observed

relationship between the visual rotation magnitude and the ErrP amplitude as well as on the gamma band

activity. In the first session, subjects used a standard PCmouse with their right hand to move the cursor and

click on the goal (active condition). Upon the cursor reaching the goal and the subject pressing the left

mouse button, the goal dimmed with an audible click. If the subject kept the cursor stationary on the

goal for 1 s, another icon lit up at a location 60 mm up, down, left or right of the current location, forming

a square. The experiment ended after the correct completion of 500 trials. In about 30% of trials, the

mouse-to-cursor mapping was rotated by 20�, 40� or 60� for either 300 or 500 ms relative to movement

onset. After this brief perturbation period, the normal mapping was reinstated, allowing subjects to com-

plete the movement. Thus, participants did not compensate the rotation of mapping, but required correc-

tive motor actions to complete a trial. During the second session, participants monitored their replayed

cursor movements from the first experiment and were asked to report any observed perturbation after

each trial (playback condition). We fixed the resting period preceding each movement to 2 s to eliminate
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the element of surprise. A 64-channel EEG was acquired at the sampling frequency of 2048 Hz with a 24-bit

resolution using active electrodes in an extended 10-20 setup (ActiveTwo system, BioSemi B.V., Amster-

dam, the Netherlands). We implemented the same time-frequency analysis and computed grand-aver-

aged EEG error-related activity relative to the onset of cursor movement.
QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis

Pearson’s correlation analysis was performed to test progression of run-wise mean reaction time over the

three experimental sessions.
Time-frequency analysis

Paired Wilcoxon signed-rank tests were used to compare baseline-corrected ERSP between correct and

erroneous trials. Time and frequency windows were visually identified for each frequency band. Subse-

quently, Spearman’s correlation analyses were performed to test progression of ERSP over the magnitude

of errors.
BCI decoding performance

The time-locked and the continuous decoding performance were tested for significance using paired

Wilcoxon signed-rank test. Pearson’s correlation analyses were used to test progression of run-wise decod-

ing performance for the second and the third session.
Individual perception threshold

Spearman’s correlation analysis and Wilcoxon’s signed rank test were used to evaluate if the inferred

perception threshold or the levels of engagement covaried with the behavioral one while having compa-

rable median values. We used these non-parametric approaches because of the small sample size

(N=16)75,76 and to reduce contamination by outliers.
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