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A B S T R A C T

Bread aroma is the principal characteristic perceived by the consumer yet it is mostly disregarded in the product
chain. The main aim of this study was to evaluate the potential to include bread aroma as a new target criterion
into the wheat product chain. The objectives of our study were to (i) quantify the influence of genetic versus
environmental factors on the bread aroma and quality characteristics, (ii) evaluate whether bread baked from
modern wheat varieties differ in terms of aroma from those baked from old varieties, and (iii) compare genomic
and metabolomic approaches for their efficiency to predict bread aroma and quality characteristics in a wheat
breeding program. Agronomic characters as well as bread aroma and quality traits were assessed for 18 old and
22 modern winter wheat varieties evaluated at up to three locations in Germany. Metabolite profiles of all 120
flour samples were collected using a 7200 GC-QTOF. Considerable differences in the adjusted entry means for all
examined bread aroma and quality characters were observed. For aroma, which was rated on a scale from 1 to 9,
the adjusted entry means varied for the 40 wheat varieties between 3 and 8. In contrast, the aroma of bread
prepared from old and modern wheat varieties did not differ significantly (P < 0.05). Bread aroma was not
significantly (P < 0.05) correlated with grain yield, which suggested that it is possible to select for the former
character in wheat breeding programs without reducing the gain of selection for the latter. Finally, we have
shown that bread aroma can be better predicted using a combination of metabolite and SNP genotyping profiles
instead of the SNP genotyping profile only. In conclusion, we have illustrated possibilities to increase the quality
of wheat for consumers in the product chain.

1. Introduction

Almost 700 million tons of wheat (Triticum aestivum ssp. aestivum)
are produced annually around the globe (Shewry & Hey, 2015), relying
on thousands of different varieties bred by hundreds of different plant
breeders in public and private institutes. Wheat is the third most im-
portant staple crop on earth, after maize and rice, providing about 20%

of the daily protein and calorie requirement (www.wheatinitiative.org).
The wheat required for human nutrition is mostly transformed into
bread before consumption, leading to the annual consumption of >9
billion kg of bread in the world (Pico, Bernal, & Gómez, 2015). Bread
aroma is one of the first characteristics perceived by consumers (Pico
et al., 2015). However, the potential of wheat varieties to contribute to
aromatic breads is mostly ignored during the breeding, growing, and
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trading process. Instead, with only slight differences among countries,
the main evaluation criteria are agronomic performance, resistance
against diseases, and bread-making quality (cf. Laidig et al., 2017, for
Germany). In the international trading of wheat, the evaluation of
wheat batches is further reduced to the protein and moisture content as
well as mycotoxin concentration.

Beside the intensity of milling the wheat grain, the type of dough
preparation, the baking process, and the ingredients used during the
dough preparation strongly influence the aroma of breads (Pico et al.,
2015; Ficco et al., 2017). Starr et al. have shown that not only the
aroma of the wheat grain (2013) but also the aroma of porridge and
bread crumb (2015) was influenced by the chosen wheat variety. The
authors concluded that the aroma of bread could become an important
future characteristic for the baking industry and, thus, wheat breeding.
For spelt wheat, Rapp et al. (2017) assessed the bread-making quality as
well as the flavor and odor of breads prepared from 30 varieties grown
at one location. The authors showed that a significant genetic varia-
bility for flavor and odor existed among the spelt varieties and that
these characteristics could be combined with high agronomic perfor-
mance and baking quality. However, a study investigating a higher
number of wheat varieties grown at different locations with respect to
the agronomic and baking properties as well as flavor and odor of their
breads is still lacking.

Breeding for bread aroma and quality characteristics is hampered by
the high effort necessary to assess these traits in baking trials. This is an
ideal situation for the use of genomic prediction, where a model is
trained based on the phenotypic information available for a subset of
the genotypes and the performance of the remaining genotypes is pre-
dicted from molecular marker information (Meuwissen, Hayes, &
Goddard, 2001). However, to the best of our knowledge, such ap-
proaches have not been evaluated in the context of aroma traits of
wheat.

Of all the molecular entities (e.g., genes, transcripts, proteins, me-
tabolites), metabolites have the closest relationship to expressed phe-
notypes as they are the end-points of upstream biochemical processing
(Rattray et al., 2018). Therefore, they have recently received attention
in the context of studying complex characteristics such as the bread
aroma. Yan et al. (2019) evaluated the key aroma compounds in Chi-
nese steamed bread by a metabolomics approach and identified 13
compounds that discriminate breads prepared with type I sourdough vs.
baker’s yeast. A study based on four durum varieties grown at multiple
field locations has illustrated the high environmental impact on the
expression of metabolites in the flour (Beleggia et al., 2013). However,
to the best of our knowledge, no earlier study has evaluated the pre-
diction ability of metabolome profiles generated from flour for bread
aroma and quality characteristics which could considerably facilitate
their alteration by breeding.

Recently, a distorted picture of wheat-based food has been pro-
mulgated in the mass media, leading to unsubstantiated concerns about
its safety and health implications (Brouns, Gilissen, Shewry, & van
Straaten, 2015). In addition, adoption of modern varieties has been
indicated as the main reason for the loss of the sensory properties of
pasta and breads (Rapp et al., 2017; Ficco et al., 2017). However, a
powerful evaluation of this hypothesis based on several modern and old
wheat varieties grown in the same field but across multiple locations is
lacking.

The main aim of this study was to evaluate the potential to include
bread aroma as a new target criterion into the wheat product chain. The
objectives of our study were to (i) quantify the influence of genetic
versus environmental factors on the bread aroma and quality char-
acteristics, (ii) evaluate whether bread baked from modern wheat
varieties differ in terms of aroma from those baked from old varieties,
and (iii) compare genomic and metabolomic approaches for their effi-
ciency to predict bread aroma and quality characteristics in a wheat
breeding program.

2. Materials and methods

2.1. Plant material, bread baking, and its evaluation

A total of 18 old (year of release 1962–1999) and 22 modern
(2005–2014) winter wheat varieties were used for this study (Suppl.
Fig. 2). All varieties, which will be designated in the following as
genotypes, have been cultivated in the season 2015/16 in 5 m2 plots in
Germany at o = 3 locations. Two locations were located in Baden-
Wuerttemberg, namely Hohenheim (HOH) and Ihinger Hof (IHO), as
well as at Gatersleben (GAL) in Saxony-Anhalt. The experimental de-
sign was an incomplete block design with one replication per location.
At each location, days to heading (HD), plant height (PH), and yield
(YD) were assessed.

The grains harvested from all 40 wheat varieties at HOH and GAL
(o= 2) were characterized for the raw protein content (RP) using Near-
infrared spectroscopy (NIRS, ICC-Standard-Method 159) (Hourston,
Ignatz, Reith, Leubner-Metzger, & Steinbrecher, 2017), the volume of
sedimentation according to Zeleny (SD, ICC-Standard-Method 116/1),
and the falling number according to Hagberg (FN, ICC-Standard-
Method 107/1). Furthermore, the wheat whole grain flour created by
milling the grains from the 80 samples was used for a bread baking
trial. The baking trial was performed with 1800 g of flour, 1.26 l of
water, 27 g of yeast, and 36 g of salt. The ingredients were combined,
mixed for four minutes on a low level and then kneaded on a high level
for 30 s. After 30 min of dough rest, the dough was lifted and folded.
This procedure was repeated twice and afterwards the dough was left to
rest again for 60 min. Afterwards,an experienced baker evaluated the
dough humiditiy (DH) and its quality (DQ) on a scale from 1 (low
humidity/quality) to 9 (high humidity/quality) by stretching it manu-
ally. The dough of each genotype of each of the two locations GAL and
HOH was then formed to three breads and baked as freely set and
moistened bread at a temperature of 250°C for 50 min.

The breads were evaluated one day after made as then a better
differentiation could be realized. The evaluation was performed ac-
cording to the rules of the German Agricultural Society (DLG e.V.; DIN
10969:2001-05, DIN 10964:2014-11, and DIN 10975:2005-04), which
is the standard method for testing bread-making quality in Germany
and performed by almost all bakeries regularly in the context of quality
management. The evaluation was performed as a consensus profiling
using a panel of six trained people which gave a jointly decided eva-
luation of the bread aroma which comprised the following aspects: The
odor (OD) was tested by closely smelling the crumb, the flavor (FL) was
assessed by tasting it. The intensity of the aroma was rated on a scale
from 1 = no aroma to 9 = very intense aroma, and the negative aroma
compounds were noted as well. However, in our study no negative
aromas were smelled/tasted and, thus, the scores for OD and FL re-
present the intensities of the pleasant aroma components.

Furthermore, the color of the crust (CC), the hardness of the crust
(CH), the pore structure (PS), the crumb moisture (CM), the crumb
elasticity (CE), and the volume of the bread (BV) were rated on a scale
from 1 to 9 (Table 1). Finally, the baking quality was determined as the
height/width ratio of the breads at their middle slice. To facilitate the
understanding, we designated in the following all assessments of phy-
sical flour, dough, and bread characteristics as quality characteristics
where odor and flavor were designated as aroma characteristics.

All wheat genotypes have been genotyped by TraitGenetics
(Gatersleben, Germany) using a custom 15K SNP array that comprises a
subset of the SNPs of the 90K SNPs array (Wang et al., 2014). After
performing quality checks and mean imputation of the remaining data
points, a set of 10,801 polymorphic SNPs was obtained. This set of
predictors, designated in the following as S, was used for all further
analyses.
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2.2. Metabolite analyses

The metabolite analyses of our study were based on the wheat flour
samples collected for the 40 wheat varieties from all three locations.
Each of the 120 samples was analyzed one time via gas chromato-
graphy-mass spectrometry (GC-MS) using an adapted protocol from
Lisec, Schauer, Kopka, Willmitzer, and Fernie (2006). Metabolites were
extracted from 45 to 55 mg dry flour samples with 750 μl of a 1:2.5:1
H2O:methanol:chloroform (v:v:v) mixture pre-cooled to −20 °C, then
mixed on a rotator for 10 min and centrifuged at 20,000g for 2 min
(both at 4 °C). A total of 50 μl of the supernatant were dried completely
in a vacuum concentrator and derivatized in two steps via an MPS-Dual-
head autosampler (Gerstel): (1) with 10 μl methoxyamine hydro-
chloride (Acros organics; freshly prepared at 20 mg/ml in pure pyridine
(Sigma-Aldrich)) and shaking at 37 °C for 90 min, (2) adding 90 μl N-
Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA; Macherey-
Nagel) and shaking at 37 °C for 30 min. After incubation for 2 h at room
temperature, 1 μl of derivatized compounds was injected at a flow of
1 ml/min with an automatic liner exchange system in conjunction with
a cold injection system (Gerstel) in splitless mode (ramping from 50 °C
to 250 °C at 12 °C/s) into the GC. Chromatography was performed using
a 7890B GC system (Agilent Technologies) with a 30 m long, 0.25 mm
internal diameter, HP-5MS column with 5% phenyl methyl siloxane film
(Agilent 19091S-433). The oven temperature was held constant at 70 °C
for 2 min and then ramped at 12.5 °C/min to 320 °C at which it was
held constant for 5 min; resulting in a total run time of 27 min.

Metabolites were ionized with an electron impact source at 70 V and
200 °C source temperature and recorded in a mass range of m/z 60 to
m/z 800 at 20 scans per second with a 7200 GC-QTOF (Agilent
Technologies). Raw data files exported from MassHunter Qualitative (v
b07, Agilent Technologies) in the mzData format (∗mzdata.xml) were
converted to the NetCDF format (∗.cdf) and baseline-corrected via
MetAlign (v 041012, Lommen, 2009) using default parameters. Base-
line-correction was visually inspected using OpenChrom (v 1.3.0,
Wenig & Odermatt, 2010). Quantitative analysis of GC-MS-based me-
tabolite profiling experiments was then performed using TagFinder (v
4.1, Luedemann, Strassburg, Erban, & Kopka, 2008). After evaluating
the uniqueness and linearity of each fragment, the aggregated fragment
intensity was calculated as the average of the maximum scaled frag-
ment intensity. For relative quantification, aggregated fragment in-
tensities of the compounds were normalized to those of the internal
standard ribitol (Sigma-Aldrich) which was added to the extraction
buffer. Mass spectral annotation was manually supervised using the

Golm Metabolome Database mass-spectral library (http://gmd.mpimp-
golm.mpg.de/download/) after conversion of absolute time in retention
indices (Strehmel, Hummel, Erban, Strassburg, & Kopka, 2008). The
raw data, details of the quantification and annotation steps, and the
processed metabolite profiles are available (https://doi.org/10.17632/
dyfsdcxkw3.2).

The analytes that corresponded to contaminations were removed.
Furthermore, if several analytes from the same metabolite were iden-
tified, the one with the higher heritability, for which the calculation is
described below, was retained. The adjusted entry means of the re-
maining 104 metabolites across GAL and HOH for all the 40 wheat
genotypes, for which the calculation is described below, was designated
as M. In addition, we also used the metabolite profiles observed for the
individual locations and these were designated as MHOH , MGAL, and
MIHO.

2.3. Statistical analyses

2.3.1. Phenotypic characters and metabolites
Upon the removal of outliers, each of the assessed phenotypic traits

as well as the metabolites were analyzed across the locations using the
following mixed model:

= + + + +y μ b l l g e: ,ijk k j j i ijk (1)

where yijk was the observed phenotypic trait or metabolite for the ith
wheat genotype in the jth location that was growing in the kth block, μ
the general mean, b l:k j the effect of the kth block nested within the jth
location, lj the effect of the jth location, gi the effect of the ith genotype,
and eijk the residual error. To estimate adjusted entry means for all
genotypes, gi and lj were considered as fixed and all other effects as
random. Furthermore, all effects, except lj, were considered as random
to estimate the genotypic variance (σg2) and the error variance (σe2).
Heritability on an entry mean basis was calculated as
= +h σ σ σ o/( / )g g e

2 2 2 2 .

2.3.2. Structuration and correlations
Principal component analyses were performed on the basis of (i)

bread aroma and quality characteristics collected for each genotype at
each of the two locations HOH and GAL, (ii) MHOH , MGAL, and MIHO, as
well as (iii) the SNP genotyping profile S. For each of the three analyses,
the individual variables were scaled and centered. Correlations between
different characteristics were assessed as Pearson correlation coeffi-
cient.

Table 1
Summary statistics, genetic (σg2) and error (σe2) variance components, as well as heritability (h2) estimates for the traits examined in this study.

Character Abbreviation Scale Adjusted entry mean Variance components Heritability

Min Mean Max σg2 σe2 h2

Falling number FN s 66.0 329 425 4433∗∗∗ 3898 0.69
Raw protein content RP % 10.3 11.6 12.9 0.238∗∗∗ 0.274 0.63
Volume of sedimentation SD ml 12.0 29.3 47.8 59.6∗∗∗ 15.8 0.88
Dough quality DQ Low elasticity = 1; high elasticity = 9 2.0 6.2 9.5 2.62∗∗∗ 2.75 0.66
Dough humidity DH Humid = 1; dry = 9 1.5 3.9 7.5 3.01∗∗∗ 1.70 0.78
Crust color CC Light = 1; dark = 9 2.0 4.1 8.5 0.960∗ 1.51 0.56
Crust hardness CH Soft = 1; crispy = 9 5.0 7.2 8.0 0.179 0.652 0.35
Pore structure PS Porous = 1; dense = 9 3.1 6.1 8.5 1.26∗∗ 1.35 0.64
Crumb elasticity CE Soft = 1; hard = 9 1.0 6.3 8.5 1.22∗ 1.97 0.55
Crumb moisture CM Dry = 1; moistly = 9 4.5 6.1 9.0 0.459∗ 0.753 0.54
Bread volume BV Small = 1; big = 9 1.5 6.4 9.0 1.21∗ 1.88 0.56
Height/width ratio HW 0.29 0.53 0.69 0.0026∗ 0.0045 0.53
Odor OD Flavorless = 1; very aromatic = 9 3.5 6.4 8.5 0.532 1.63 0.39
Flavor FL Unsavory = 1; flavorful = 9 3.0 5.5 8.0 0.829 2.31 0.41
Days to heading HD Days after January 1st 151 156 160 5.05∗∗∗ 0.963 0.91
Plant height PH cm 65.7 80.8 94.6 44.4∗∗∗ 17.0 0.89
Yield YD dt/ha 70.3 82.8 97.6 51.0∗∗∗ 46.1 0.77

∗, ∗∗, ∗∗∗ Significant at the 0.05, 0.01 and 0.001 probability level, respectively.

F. Longin, et al. Food Research International 129 (2020) 108748

3



2.3.3. ∗omic prediction
All prediction scenarios examined in this study relied on genomic

best linear unbiased prediction (GBLUP, (Meuwissen et al., 2001)). In
our study, only additive effects were modeled and the residuals

σ~ (0, )e2N .
In order to assess the effect of predictors with a low heritability, the

adjusted entry means of the wheat genotypes were predicted in a first
step using M, where only those metabolites with a heritability on an
entry mean basis across UHOH and GAL > > > >0, 0.05, 0.10, 0.25
(M M M M, , ,0.05 0.10 0.25) were considered. W is a matrix of feature mea-
surements for the respective predictor. The dimension of W is de-
termined by the number of wheat genotypes and the number of features
in the corresponding predictor (mM = 104, mM0.05 = 93, mM0.10 = 90,
mM0.25 = 84). The columns in W were centered and standardized to unit
variance. For each predictor, an additive relationship matrix was de-
fined as

= ∗mG WW1/ ,T (2)

where WT denotes the transpose of W (VanRaden et al., 2009). We
calculated the prediction ability ̂r g y( , ) as Pearson correlation between
the phenotypes and the genotypic values estimated on the basis of
genomic and/or metabolomic information.

In the second step, the adjusted entry means of the wheat genotypes
were predicted using combinations of metabolite profiles M and SNP
genotyping profiles S, where mS = 10,801. In accordance with Schrag
et al. (2018), additive relationship matrices G of both predictors were
established by weighting and adding up the individual matrices. The
matrices thus created will be designated in the following as joined
weighted relationship matrices. The relative weight of M for the cal-
culation of the joined weighted relationship matrix was designated in
our study as w, where the weight of S was 1-w. A grid search, varying w
from 0 to 1 in increments of 0.05, resulted in 21 different joined
weighted relationship matrices. In order to answer the question, how
predictive metabolite profiles collected from individual locations were,
we also used MHOH , MGAL, and MIHO for predictions.

The standard scheme for validation of genomic prediction was a
fivefold cross-validation that was replicated 200 times. The median of
the prediction ability across the 1000 cross-validation runs was calcu-
lated. For all examined scenarios, the same 1000 cross-validation as-
signments were used.

In addition to the above described prediction of adjusted entry
means of bread aroma and quality characteristics across multiple lo-
cations, we were interested in finding out whether the prediction allows
the precise selection of wheat genotypes in different environments.
Therefore, we assessed the prediction of location specific characteristics
of the 40 wheat genotypes using the following mixed model:

= + + + +βy X Z u Z v Z t e,G GL S (3)

where y is the vector of phenotypic observations, X is the incidence
matrix for the fixed effects, ZG is the incidence matrix relating each
genotype to its random additive genetic effect, and ZGL is the incidence
matrix relating each genotype to different locations. ZS is the incidence
matrix relating each genotype∗location combination, which we desig-
nated as the sample in the following, to its phenotypic observation. β is
a vector of fixed effects (in this case including general mean and lo-
cation effects), u a vector of random additive genetic effects ~N

σ G(0, )g
2 , v the vector of random genotype∗location interaction effects

~N σ(0, v
2 ⊗I G), where I is a 2∗2 identity matrix, and t is the vector

of random sample effects ~N σ H(0, )t
2 . In addition, e is a vector of

residuals with each element ~N σ(0, )e2 .
We examined four different versions of the above described model.

A1 was the baseline approach which corresponds to current standards
in predicting genotype∗location interaction (Jarquin et al., 2017). In
this approach, genomic covariance between genotypes was modeled for
the terms genotypes but also for genotype∗location interactions. In
detail, for A1,G was calculated from SNP genotyping profile S only and

H was an 80∗80 identity matrix. A2 was a modification of A1 in the
sense that G was calculated as the optimal combination of S and the
adjusted entry means of metabolites M as described above. For A3 and
A4, the location specific metabolome profiles MHOH andMGAL were used
to model the covariance between samples across the two locations. For
A3, G was calculated from S only and H was an additive relationship
matrix calculated as described above from a matrix of metabolomic
features V observed in each of the 80 samples, where

⎜ ⎟= ⎛
⎝

⎞
⎠

V
M
M .HOH

GAL (4)

For A4, G was calculated as the optimal combination of S and M as
described above and H was calculated from V as described before.

For the prediction of location specific characteristics, the breeding
values were estimated as +u vj, where vj is the location specific in-
teraction effect. We calculated then the prediction ability as the Pearson
correlation between the phenotypes and the estimated genotypic values
for each of the two locations and averaged the correlation across the
locations. A cross-validation procedure was used as described above.

If not described differently, all analyses were performed with sta-
tistical software R (R Development Core Team, 2016).

3. Results

We observed large differences in the adjusted entry means for the
different characteristics leading to highly significant genetic variances
for almost all traits (Table 1). Furthermore, medium (h2 = 0.35 for
crust hardness) to high (h2 = 0.88 for sedimentation volume) herit-
abilities were determined for the quality characters. The heritabilities
observed for the three agronomic traits were with values of 0.77–0.91
even higher. This underpins the reliability of the field and laboratory
analyses and makes our data set an ideal backbone for a deeper in-
vestigation of the metabolome and genome of the respective wheat
varieties.

In the principal component analysis of the 40 wheat genotypes
based on SNP genotyping profiles, no obvious clustering of the geno-
types was observed with respect to the first two principal components
(Suppl. Fig. 2). In the principal component analysis of the 80 bread
samples based on the bread aroma and quality characteristics, the first
two principal components explained 28% and 17% of the variance
(Fig. 1). The samples of the two investigated locations HOH and GAL
clearly separated from each other with respect to the second principal
component. This differentiation was mainly caused by differences in
protein content, crust hardness, crust color, sedimentation volume, and
bread volume.

Phenotypic correlation coefficients varied largely between the dif-
ferent bread aroma and quality characteristics as well as agronomic
traits (Suppl. Fig. 3). For instance, the highly significant (P < 0.05)
negative correlation between yield and protein content was confirmed
in this data set. In contrast, the sedimentation volume and the dough
quality correlated slightly positive with grain yield. This is of high in-
terest as both characters positively correlated (P <0.05) with the final
baking quality as measured by the bread volume or the height/width
ratio, while the protein content did not. This finding suggests that the
combination of high grain yield with high baking quality is possible and
can be evaluated in breeding programs via the proxy sedimentation
volume and by the baker via an easy dough quality test. Odor and flavor
of bread correlated positively with each other (Suppl. Fig. 3). However,
both were not significantly (P < 0.05) correlated with grain yield
(Fig. 2). By contrast, odor was significantly (P < 0.05) correlated with
bread volume and height/width ratio. A significant ( <P 0.05) differ-
ence between the average yield and the height/width ratio of old and
modern wheat varieties was observed (Fig. 3) which illustrates the se-
lection gain realized over the last decades. However such a difference
was not observed for odor and flavor.
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Fig. 1. Principal component (PC) analysis biplot of 40 wheat genotypes for their bread aroma and quality characteristics (for abbreviations, see Table 1) across two
locations. The arrows represent the bread aroma and quality characteristics. The numbers in parentheses refer to the proportion of variance explained by the PC.

Fig. 2. Correlation biplot of the adjusted entry means of the 40 wheat genotypes for flavor versus yield. The colors indicate the adjusted entry mean of the height/
width ratio (HW) of the bread.
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A total of 149 analytes were annotated (Suppl. Fig. 4). After fil-
tering, 104 metabolites remained for which the relative abundances
were used for our analyses. The set of metabolites was comprised of 20
organic acids, 17 amino acids, 13 fatty acids and lipids, eight sugars,
and 21 other metabolites with a known and 25 with an unknown
chemical structure. Heritabilities for the metabolites varied con-
siderably from 0 to 0.85 with a mean of 0.47 (Suppl. Fig. 5). This
confirms the results of Beleggia et al. (2013) that metabolite profiles in
wheat grains depend highly on the environment in which they are
grown.

In the principal component analysis of all 120 wheat flour samples
based on metabolite profiles, the first two principal components ex-
plained 21% and 18% of the variance (Fig. 4). The samples from the
location HOH were clearly separated from those from the two other
locations with respect to the second principal component. In contrast,
the samples from the two locations GAL and IHO were assigned to one
overlapping cluster. The correlation pattern among the 104 metabolites
revealed hot spots of highly correlated compounds in the metabolite
profile that corresponded to a functional classification of the metabo-
lites (data not shown). We observed that single metabolites were sig-
nificantly (P< 0.05) associated with the assessed phenotypic characters
(Fig. 5). Many metabolites were significantly (P< 0.05) correlated with
the height/width ratio of the breads. Furthermore, we observed a
cluster of five organic acids and polyols, and one unknown metabolite
that was highly correlated both with the odor and the flavor of the
breads.

Currently, the standard procedure in plant breeding programs is to
predict adjusted entry means from SNP genotyping profiles. In our
study, this corresponds to predicting adjusted entry means of bread
aroma and quality characteristics from S, for which cross-validated
prediction abilities between −0.29 and 0.57 (Fig. 6) were observed for
the different traits. For ten of the 14 examined characters, the predic-
tion abilities were increased, when using joined weighted relationship
matrices calculated from SNP genotyping and metabolite profiles
(Table 2). Only for crust hardness, dough quality, pore structure, and
volume of sedimentation was the maximum prediction ability observed
using only the SNP genotyping profile as predictor. Furthermore, we
observed on average a decrease of the prediction ability when in-
creasing the minimum h2 value of a metabolite to consider it for pre-
diction across all 14 characteristics. The prediction of the adjusted entry
means of the bread aroma and quality characteristics across HOH and
GAL from the adjusted entry means of the metabolites resulted in pre-
diction abilities that were not significantly different from those ob-
served when using the metabolite profiles from the individual locations
GAL or HOH as predictors (Table 2). Only the prediction abilities for the
predictions made withMIHO, a location from which no bread aroma and
quality characteristics were assessed, were lower.

In addition to the prediction of adjusted entry means of bread aroma
and quality characteristics across multiple locations, we were interested
in assessing the prediction of location specific characteristics of the 40
wheat genotypes. This was evaluated using four different approaches.
The lowest prediction abilities were observed on average across all 14
bread aroma and quality characteristics for the approach A1 in which
predictions were made based on SNP genotyping profiles only (Table 3)
and, thus, is the baseline model. The prediction abilities were increased
when using a joined weighted relationship matrix calculated from SNP
and metabolite profiles (A2). On average across all traits, the highest
prediction abilities for individual locations were observed for ap-
proaches A3 and A4 for which the location specific metabolite profiles
were considered in the predictions. The prediction abilities observed for
A3 and A4, however, were still only about 1/2 of those observed when
predicting the adjusted entry means of bread aroma and quality char-
acteristics.

Fig. 3. Violin plots of the adjusted entry means of the 40 wheat genotypes
grouped based on the year of release in old and modern varieties for height/
width ratio, yield, and flavor.
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Fig. 4. Principal component (PC) analysis biplot of the metabolite profiles of 40 wheat genotypes from three locations. The arrows represent the 104 metabolites. The
numbers in parentheses refer to the proportion of variance explained by the PC.

Fig. 5. Heat map of Pearson correlation coefficients calculated between all pairs of adjusted entry means of bread aroma and quality characteristics as well as the
adjusted entry means of the metabolites across HOH and GAL. Correlations marked with ∗,∗∗,∗∗∗ were significantly ( <P 0.05, 0.01, 0.001) different from 0.
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4. Discussion

Hundreds of wheat varieties are registered on a global scale with an
annual renewal of 10–15%. During the process of breeding and re-
gistering new wheat varieties, the agronomic performance, quality
characteristics such as protein content and quality, and baking char-
acteristics (cf. Laidig et al., 2017) are considered. However, the aroma
of breads, which is one of the first characteristics perceived by con-
sumers (Pico et al., 2015), is mostly disregarded. Therefore, in our
study the variation of odor and flavor in breads baked from 40 wheat
genotypes was examined and the ways to improve the selection possi-
bilities by predicting these parameters from SNP genotyping or meta-
bolite profiles were studied.

4.1. Flavor and odor of bread are heritable characteristics

The 40 investigated wheat varieties differed considerably in all

investigated characteristics, and significant genetic variances were ob-
served for most traits (Table 1, Figs. 2 and 3). Interestingly, the breads
of the 40 different wheat varieties also differed considerably in odor
and flavor. The heritability h2, which quantifies the proportion of
phenotypic variation that is caused by genetic variation, was about 0.4
for both characteristics. This finding illustrates that genetics and en-
vironment influence the expression of these characteristics. The ex-
ploitation of the environmental influence for producing wheat with a
more intense odor or flavor requires an understanding of the relative
influence of the components of an environment on these characteristics.
As this information is not available as of now and furthermore cannot
be currently altered on a commercial production scale, the exploitation
of the environmental influence for producing wheat with a more in-
tense odor or flavor is limited. In contrast, choosing varieties with a
genetically more intense bread odor and/or flavor is feasible and
tractable along the product chain. These pioneering results for wheat
confirm findings for spelt wheat, which have illustrated the potential of

Fig. 6. Prediction abilities to predict the adjusted entry means of 14 bread aroma and quality characteristics across two locations, for 21 different joined weighted
relationship matrices, where w is the relative weight of the metabolites compared to the SNP genotyping profiles in the joined weighted relationship matrix. The
plotted values represent the medians of the prediction ability across 1000 cross-validation runs.
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varietal choice and breeding for an improved bread aroma (Rapp et al.,
2017). If in the future the selection of wheat varieties with a more in-
tense odor and flavor becomes an objective, robust screening systems
have to be elaborated, thus warranting further research.

Wheat varieties have to fulfill several dozens of criteria in order to
be accepted by the farmers and the bread industry. In short, the re-
quirements are good agronomic performance, good baking quality,
which is often measured by baking volume, protein quality and content,
as well as starch-related characteristics like falling number (e.g., Laidig

et al., 2017). The consideration of additional selection criteria such as
odor and flavor will only not impair the gain of selection for the above
mentioned traits if there is no negative correlation between them. The
newly investigated characteristics, bread odor and flavor, did not cor-
relate negatively to yield or any other of the 14 investigated characters
(Fig. 2, Suppl. Fig. 3). In contrast, bread odor was positively correlated
with bread quality (as measured by the height/width ratio) and with
flavor. This finding indicated that breeding for intense bread aroma is
feasible without having a negative impact on the currently important
selection criteria.

This explanation agrees with the observation that no significant
mean differences in odor and flavor between old and modern wheat
varieties (Fig. 3) were observed. Such differences would have been
expected had negative correlations existed between odor/flavor and
traits that are strongly selected in wheat breeding programs. Instead,
we observed a higher variance of flavor for the group of modern wheat
varieties than for the old varieties. Therewith, more aromatic breads are
made out of modern rather than old wheat varieties. This finding
confirms preliminary results in spelt (Rapp et al., 2017) and durum
wheat (Ficco et al., 2017). Therefore, our results indicate that the
opinion of bakers and consumers that today’s bread is less aromatic
than before is not caused by the advances made in wheat breeding for
traits such as grain yield or height/width ratio (Fig. 3).

Besides the changes of the wheat varieties used for bread prepara-
tion, the changes in bread-making technology over the last decades has
the potential to considerably influence the aroma of bread (Pico et al.,
2015; Ficco et al., 2017). However, this was not the objective of our
study and requires further research.

4.2. Combining metabolomics with genomics to predict bread aroma and
quality characteristics

The breeding for bread aroma and quality characteristics is ham-
pered by the high effort necessary to assess these traits. This restricts
their assessment to late stages of the breeding process, which, in turn,
leaves only little variability for selection. Accordingly, the selection of
bread aroma and quality characteristics would be much facilitated if
these characters could be predicted from molecular features early in the
breeding process. Currently, the standard procedure in plant breeding
programs is to predict adjusted entry means from SNP genotyping
profiles. In our study, we have observed cross-validated prediction
abilities between −0.29 and 0.57 (Fig. 6). With the exception of the
values observed for odor, flavor, bread volume, and crust color, which
were particularly low, these were comparable to the prediction abilities
reported earlier for wheat, considering differences in the size of the
calibration set (Crossa et al., 2010). Moreover, the low prediction
abilities for odor and flavor might be explained as follows: both are
complex characters driven by many chemical compounds present in the
flour or modified during the dough preparation and baking process
(Grosch & Schieberle, 1997; Starr, Bredie, & Hansen, 2013; Starr,
Hansen, Petersen, & Bredie, 2015; Birch, Petersen, & Hansen, 2014;
Pico et al., 2015; Ficco et al., 2017). Due to technological advances, for
a few years, it is possible to assess the compounds in various tissues in a
large number of samples using various techniques (Lisec et al., 2006).
Such a characterization of breads has the potential to identify the
chemical compounds that are causal for the odor and flavor of breads
(cf. Yan et al., 2019) thus resulting in high prediction abilities. How-
ever, such approaches require baking breads, which is a limiting factor
for high throughput analyses. Therefore, the prediction of bread aroma
from metabolic profiles of bread is of limited utility in a plant breeding
context. In contrast, the prediction of bread aroma from metabolic
profiles of flour could be easily integrated in the breeding process.
Therefore, in our study, GC?MS of polar soluble metabolites was used to
characterize the metabolite profile of the whole grain wheat flour of 40
wheat genotypes, which were grown next to each other at three geo-
graphically divergent locations.

Table 2
Median of prediction abilities ̂r g y( , ) across 1000 cross-validation runs to predict
the adjusted entry means of 14 bread aroma and quality characteristics using
the SNP genotyping profile S in combination with the adjusted entry means of
all 104 metabolites across the field locations GAL and HOH as predictors (M) or
the metabolite profiles collected for individual locations (MGAL, MHOH , MIHO).
Here, w is the relative weight of the metabolites compared to the SNP geno-
typing profiles in the joined weighted relationship matrix for which the highest
prediction ability was observed in the grid search.

Trait S&M S& MGAL S& MHOH S& MIHO

w ̂r g y( , ) w ̂r g y( , ) w ̂r g y( , ) w ̂r g y( , )

Falling number 0.95 0.64 0.30 0.53 1.00 0.66 0.35 0.28
Raw protein content 0.95 0.65 0.70 0.49 0.95 0.58 1.00 0.65
Volume of

sedimentation
0.00 0.57 0.00 0.57 0.00 0.57 0.00 0.57

Dough quality 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28
Dough humidity 0.15 0.46 0.25 0.45 0.25 0.45 0.35 0.43
Crust color 0.30 0.31 0.25 0.16 0.45 0.23 0.00 0.04
Crust hardness 0.00 0.27 0.00 0.27 0.00 0.27 0.15 0.31
Pore structure 0.00 0.47 0.00 0.47 0.25 0.52 0.00 0.47
Crumb elasticity 0.50 0.43 0.35 0.42 0.35 0.43 0.45 0.34
Crumb moisture 0.30 0.36 0.45 0.38 0.30 0.40 0.00 0.24
Bread volume 0.75 0.15 0.00 0.09 0.50 0.32 0.45 0.21
Height/width ratio 0.20 0.55 0.25 0.54 0.15 0.52 0.25 0.49
Odor 0.05 0.17 0.35 0.21 0.00 0.16 0.00 0.16
Flavor 1.00 0.13 1.00 0.27 1.00 0.09 0.00 −0.30

Table 3
Median of prediction abilities ̂r g y( , ) across 1000 cross-validation runs to predict
genotype∗location interactions of the 14 bread aroma and quality character-
istics using four different statistical approaches A1–A4. For A1, the relationship
between genotypes was modeled only based on SNP genotyping profiles S. For
A2, the relationship between genotypes was modeled as optimal combination of
S and the adjusted entry mean of the metabolites across the locations M. For A3,
the relationship between genotypes was modeled only based on S and the re-
latedness between samples was modeled by the sample specific metabolites. For
A4, the relationship between genotypes was modeled as optimal combination of
S and M and the relatedness between samples was modeled by the sample
specific metabolite profiles. Here, w is the relative weight of the metabolites M
compared to that of the SNP genotyping profiles S in the joined weighted re-
lationship matrix. For details, see materials and methods.

Trait A1 A2 A3 A4

̂r g y( , ) w ̂r g y( , ) ̂r g y( , ) w ̂r g y( , )

Falling number 0.27 0.55 0.35 0.45 0.00 0.45
Raw protein content −0.39 1.00 −0.04 0.16 0.00 0.16
Volume of sedimentation 0.17 0.15 0.22 0.43 0.00 0.43
Dough quality −0.11 0.50 0.01 0.09 0.00 0.09
Dough humidity 0.21 0.15 0.29 0.22 0.20 0.27
Crust color 0.08 0.05 0.10 0.26 0.00 0.26
Crust hardness −0.13 0.75 0.12 0.00 0.60 0.07
Pore structure 0.15 0.00 0.15 0.12 0.00 0.12
Crumb elasticity 0.10 0.30 0.19 0.20 0.00 0.20
Crumb moisture 0.08 0.50 0.26 0.46 0.05 0.46
Bread volume 0.11 0.25 0.14 −0.04 0.50 0.07
Height/width ratio 0.16 0.45 0.21 0.24 0.00 0.24
Odor NA 0.85 −0.33 0.05 0.00 0.05
Flavor −0.04 0.35 0.04 0.02 0.30 0.05
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In the first step, we evaluated the correlation coefficients between
individual metabolites and the bread aroma and quality characteristics
on average across the locations. For some of the 104 determined me-
tabolites, we found highly significant correlations with the investigated
quality traits on average across the examined locations (Fig. 5). For
instance, a set of metabolites negatively correlated with both falling
number and height/width ratio, where falling number and height/
width ratio showed a strong positive correlation (Suppl. Fig. 3) (cf.
Klingler, 1995; Laidig et al., 2017). Of these metabolites, tyrosine, ly-
sine, glucopyranose, and glucose had a heritability >0.7. Furthermore,
the latter three showed the strongest negative correlation with the
falling number and height/width ratio, making them interesting as
potential metabolite markers.

A second remarkable finding concerns odor, flavor, and the height/
width ratio, all of which correlated negatively with a set of six meta-
bolites consisting of azelaic acid, suberic acid, hexanoic acid, galactinol,
mannitol, and one unknown metabolite. This is particularly interesting
because the three quality traits also correlated positively with each
other (Suppl. Fig. 3). From this group, however, only mannitol had a
heritability considerably greater than zero.

The assessment and quantification of single or few interesting me-
tabolites using current GC?MS approaches, however, do not offer ad-
vantages regarding time and costs compared to a comprehensive scan as
performed in the current study. Therefore, we used in analogy to the
above described prediction approach based on the SNP genotyping
profiles also a combination of the SNP information and all metabolites
for prediction. For ten of the 14 examined characters, the prediction
abilities increased when using joined weighted relationship matrices
calculated from SNP genotyping and metabolite profiles compared to
SNP only predictions (Table 2). This finding might be explained as
follows: the metabolome information incorporates metabolic and phy-
siological epistasis and therefore has a considerably higher prediction
ability compared to SNP information, even when modeling statistical
epistasis (Schrag et al., 2018). Therewith, our results suggests that for
the prediction of physiologically complex traits such as odor and flavor
(Grosch & Schieberle, 1997; Starr et al., 2013; Starr et al., 2015; Birch
et al., 2014; Pico et al., 2015; Ficco et al., 2017), the combination of
SNP and metabolome information is highly recommended.

Furthermore, when planning the integration of metabolite profiling
in the practical wheat breeding program, one important aspect is the
number of locations of which the wheat flour should be characterized
by metabolite profiling. The adjusted entry means of the bread aroma
and quality characteristics predicted from the adjusted entry means of
the metabolites resulted in the same prediction abilities compared to
the prediction based on metabolite profiles from only one location
(Table 2). This observation indicated that the mean of bread aroma and
quality traits can be well predicted when using the metabolite profiles
from only one location. This finding was unexpected as we have ob-
served a large environmental impact on the abundance of many me-
tabolites (Suppl. Fig. 5) as was also reported for other crop species
(Sprenger et al., 2018).

This environmental impact on the abundance of many metabolites
became also visible in a principal component analyses (Fig. 4). The
second component which explained >18% of the variance clearly se-
parated the wheat samples from the location HOH and GAL. This se-
paration of locations was in good accordance with the one observed for
the quality traits (Fig. 1). The metabolite profiles of the wheat samples
of the third location IHO were clustered together with the location GAL.
This finding was unexpected as both locations are>400 km distant from
each other while IHO and HOH are only 50 km away from each other.
Due to the enormous labor of bread baking tests, we were unable to
collect bread aroma and quality characteristics from breads baked from
the flour of the IHO locations. Therefore, we could not verify whether
the joint clustering of the location GAL and IHO holds true for the bread
aroma and quality characteristics.

According to the above described phenomenon, that the quality

traits as well as the metabolites showed a strong separation of the
samples from the two locations provoked for examination in addition to
the prediction ability of the adjusted entry means and the prediction
ability of location specific bread aroma and quality characteristics. The
prediction abilities of approaches A3 and A4 for which the location
specific metabolite profiles were considered in the predictions were, on
average across all traits, about fourfold the value of approaches using
SNP genotyping profiles only (Table 3). This suggests that location
specific metabolite profiles can boost the prediction ability of location
specific effects but at the extra costs that metabolite profiles must be
created for each location. Nevertheless, such approaches can be used to
assess the stability of characters across locations that are expensive to
evaluate such as bread aroma and quality characteristics.

4.3. Conclusions

Based on the gold standard of bread characterization in Germany,
we could show that flour from different wheat varieties led to different
aroma profiles of their breads. The estimation of variance components
indicated that the variety, and the environment under which the variety
is cultivated, influence bread aroma to about the same extent. While
environmental conditions in the production of wheat can hardly be
standardized, the choice of the wheat variety can be based on its po-
tential for intensive bread aroma. Interestingly, bread aroma was not
correlated with agronomic traits like grain yield or baking quality traits
such as height/width ratio or bread volume. Thus, wheat varieties that
combine high yield with high bread making quality as well as intensive
bread aroma exist. In summary, our results indicate that wheat
breeding for bread aroma is possible, especially if predictive breeding
based on combinations of molecular markers and metabolite profiles of
wheat flour is implemented.
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