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ABSTRACT
Physical models can help improve solar cell efficiency during the design phase and for quality control after the fabrication process. We
present a data-driven approach to inverse modeling that can predict the underlying parameters of a finite element method solar cell model
based on an electroluminescence (EL) image of a solar cell with known cell geometry and laser scribed defects. For training the inverse model,
75 000 synthetic EL images were generated with randomized parameters of the physical cell model. We combine 17 deep convolutional neural
networks based on a modified VGG19 architecture into a deep ensemble to add uncertainty estimates. Using the silicon solar cell model,
we show that such a novel approach to data-driven statistical inverse modeling can help apply recent developments in deep learning to
new engineering applications that require real-time parameterizations of physical models augmented by confidence intervals. The trained
network was tested on four different physical solar cell samples, and the estimated parameters were used to create the corresponding model
representations. Resimulations of the measurements yielded relative deviations of the calculated and the measured junction voltage values of
0.2% on average with a maximum of 10%, demonstrating the validity of the approach.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0139707

I. INTRODUCTION
The transition of the world energy system to renewable, fossil-

free sources relies heavily on photovoltaic (PV) electricity.1 Due
to the high energy consumption in the manufacturing process, the
energy payback time of monocrystalline solar modules is in the
range of 10% of the total lifetime.2 Therefore, further improvements
in cell design and cell production are desirable.

One possible way to shorten the energy payback time of solar
cells is to reduce power conversion losses due to electrical resis-
tance in the solar cell and due to cell defects.3,4 To investigate
these losses in detail, various measurement techniques, such as elec-
troluminescence (EL), photoluminescence (PL), and infrared (IR)
imaging, have been established both during the design process in
the laboratory and for quality assurance integrated in the production
line.5,6

By combining the imaging techniques with physical model-
ing, it is possible to gain detailed insight into the impact of specific

design decisions and defects on the expected module performance.
To do so, the defining parameters of the cell have to be extracted
from measurements. It has been shown that the characteristics of
solar cells can be modeled with Finite Element Method (FEM) mod-
els that solve an equivalent circuit representation that is defined
by spatially distributed resistances, such as the sheet resistance of
the electrodes, contact resistivity, and parallel shunt resistivity, and
spatially distributed diode model parameters.7

The present work is part of a larger effort to use model calcula-
tions of solar cells to characterize defects, quantify their effects on the
solar cell, and predict the impact of defects and design decision dur-
ing upscaling to larger cell areas andmodules.8 Standard silicon cells
are used in this work because of better reproducibility and ease of
use in measurements. However, the method is intended to be trans-
ferred to novel cell technologies, such as perovskite cells, where the
origin of the defects is less well understood and major challenges
exist regarding inhomogeneity, upscaling, and stability.9,10
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Parameterization of the numerical model of a physical system
can be challenging if its parameters are not directly measurable.
Finding an appropriate set of model parameters that will enable the
model to reproduce important features of the system must often be
done indirectly, by finding a set of parameters that lead to model
results that agree with the available measurements. Solving such an
inverse problem is often a non-trivial, ill-posed task. In research
and laboratory work, model parameters are often manually fitted to
match model predictions with measurements. This process can be
automated by minimizing the model error with least squares opti-
mization techniques.11 If statistical analysis is required, the problem
can be reformulated in a Bayesian framework and Markov Chain
Monte Carlo (MCMC) algorithms can be used to sample from the
posterior distribution of the input parameters.12

For many foreseeable applications of physical models of solar
cells, such as quality control in a production line, these traditional
approaches are insufficient due to their high computation time.
This is particularly true in the use case presented here where two-
or three-dimensional models are needed to describe features of
the measured solar cell images. Therefore, an explicit form of an
inverse model that can replace these steps by directly computing
the model parameters based onmeasured data would be beneficial.13
Deep neural networks (DNNs) are promising candidates to serve as
such inverse models, as they are able to adapt arbitrary nonlinear
mappings when trained on a sufficiently large training dataset.14–17

The use of a neural network as an inverse model has success-
fully been demonstrated by training an autoencoder surrogatemodel
to recover the material parameters from simulated current–voltage
(IV) curves.18 A hybrid approach in which part of the model para-
meters are predicted by a convolutional neural network (CNN)
while the others are estimated with traditional optimization tech-
niques has showed promising results for determining layer prop-
erties based on reflectance spectroscopy.19 In addition, it has been
demonstrated that CNNs can be used to predict the cell efficiency or
the location of defects based on electroluminescence images.20–22 By
combining EL, PL, and reflectance spectroscopy, CNNs have been
used to predict the full IV curve of a cell together with other key
characteristics of the cell.23,24 In a further work, a spatially resolved
approach based on a U-net has been used to determine the local dark
saturation current.25

In this work, we propose an approach using a convolutional
neural network (CNN) as an inverse model that computes cell para-
meters from EL measurements of silicon solar cells. The CNN is
trained on a training set of synthetic EL images simulated with the
numerical model that it aims to invert.26 The simulated training set
has a predefined cell geometry. Shunt defects with high parallel con-
ductivity are added to the cell geometry by placing standardized
rectangular subdomains. The numerical model is a 2D+1D FEM
model that calculates the 2D potential distribution of the cell’s top
and bottom electrodes based on domain specific electrode proper-
ties and coupling laws. The model is implemented in the simulation
software Laoss 4.0 and distributed by FluximAG.8,27 In order to pro-
vide an uncertainty estimate of the calculated model parameters, we
use a deep ensemble CNN model that is able to predict a Gaussian
approximation of the model parameter probability distribution.28
The CNN model can then be applied to data acquired in an EL
measurement setup to estimate the underlying physical model para-
meters of the solar cells. If successfully applied, this method enables

the development and training of a CNN that can almost instantly
create a model representation of the presented measurement
sample.

The proposed method demonstrates a novel implementation of
recent developments in machine learning that could extend existing
engineering applications of deep learning for industrial practice.29,30

Bridging the gap between data-driven and physical models raises
new challenges that are less frequently discussed in the deep learning
literature: First, CNN network architectures are designed and imple-
mented for classification tasks in the majority of cases. Dealing with
physical parameters requires the use of multivariate regressionmod-
els, which increases the complexity of the training. Second, in science
and engineering, there is often a need to provide an uncertainty
measure to evaluate the confidence in a result. Common deep neu-
ral network architectures are designed to provide point predictions.
The use of deep learning in the context of physical models, therefore,
makes it necessary to test and exploit the potential of recent develop-
ments in network architectures that provide uncertainty estimates.31
Our work provides a comprehensive example of an engineering
application of a regression CNN that incorporates such an uncer-
tainty estimation. Themethodology could be applied to several other
regression tasks in the surging area of physics-based deep learning
where either sufficient training data or a detailed numerical model is
available.32

The contributions of this work can be summarized as follows:
We train deep ensemble CNNs to estimate physical parameters
based on PV cell imaging data. The training data are generated by
a physical simulation model whose inverse is to be approximated by
the CNN. To our knowledge, such a combination of deep ensem-
ble CNNs and inverse modeling is a novel combination of already
successful concepts in science and engineering. It is shown that the
presented method can be used to estimate physical model para-
meters without relying on specific symmetries in the layout of the
grid lines and busbars that form the front contact of the PV cell.
Therefore, our approach can be applied more generally to differ-
ent PV cell types. We show that the extracted parameter sets can
be used to parameterize the model and reproduce the measured
images with high precision. We discuss the changes in the CNN
structure and training hyperparameters required to implement and
train such a deep ensemble CNN inverse model. In doing so, we pro-
vide further evidence that standard implementations of deep neural
networks can be adapted for use in a scientific setting with minor
modifications.

A schematic of the proposed workflow is shown in Fig. 1. The
steps of the developed method are described in this paper as follows:
The measurement samples are described in Sec. II A. The geometry
of this cell sample was extracted from an EL measurement and used
as the basis for the inverse model. The Laoss simulation model is
explained in Sec. II B. Section II C shows how Laoss is used to model
the measured solar cell samples. Additional post-processing steps
applied to the Laoss simulation results are explained in Sec. II D.
The structure of the inverse model is defined in Sec. II E. The inverse
model is trained on a set of simulated EL images. The Laoss parame-
terization used to generate the training data is discussed in Sec. II F.
The network architecture and training of the inverse CNNmodel are
explained in Sec. II G. The results of the inverse model method are
evaluated in Sec. III. A discussion and a brief outlook are given in
Secs. IV and V.
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FIG. 1. Workflow of the proposed inverse CNN model training.

II. MATERIALS AND METHODS
A. Measurement sample

The proposed method was carried out and tested for a
monocrystalline solar cell of type XS156B3-200R from Motech
Industries.33 Due to electrical current strength limitations in the
available measurement equipment, a laser cutter was used to cut a
2 × 2 cm2 area from the wafer cell with a busbar at the top. The

smaller area of the cell sample also reduced the computation time
of the FEM model. An additional laser cut was used to introduce an
artificial shunt between two grid lines. Two contact strips were then
soldered to the busbar and rear solder pads of the sample cell.

The electroluminescence signal of the sample cell was recorded
with a Nikon D800 digital SLR camera. The calibration constant for
relating the EL signal with the junction voltage was determined with
a low forward voltage of 0.55 V assuming a negligible current and,

FIG. 2. (a) EL measurement of a sample cell. (b) Cell geometry of the sample cell used for simulation (white: active area, black: grid lines, red: and shunt). (c) Unprocessed
simulated EL image. (d) Post-processed simulated EL image.
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therefore, a constant voltage across the whole image.34 The high-
voltage EL image was acquired with a forward voltage in the range
of 0.60–0.64 V. To increase the signal-to-noise ratio of the measure-
ment, the camera exposure time was set to 450 s at an ISO level
of 200. The measurement image was exported in NEF (RAW) for-
mat and converted to grayscale. The resulting measurement image
is shown in Fig. 2(a).

The measured image shows dark areas at the edges of the cell
that are not present in the simulation. It is assumed that the edge
effects are caused by defects in the junction as a result of the laser
cutting process. Since edge effects were not included in the sim-
ulation model, this nonsimilarity was removed by cutting an area
in the center that is not affected by the edge effects as the input to
the inverse model [see Fig. 2(a)]. Since the calibration constant was
calculated based on the averaged luminance signal with the assump-
tion of constant junction voltage in the low-voltage image, the edge
effects will decrease the average low-voltage signal and, therefore,
lead to an overestimation of the junction voltage in the area used as
the model input.

B. FEM model
The simulation model of Laoss uses a 2D+1D concept, also

known as the “interconnected diode model.”8,35–37 In this modeling
approach, the potentials of the top (vt) and bottom (vb) electrodes
of the solar cell are calculated using the Finite Element Method
(FEM) to solve Ohm’s law for the given sheet resistance R◻. The
current continuity formula for the top electrode is given in Eq. (1).
The formula for the bottom electrode differs in an additional minus
sign on the right-hand side,

1
Rt
◻
Δvt = j(vt , vb). (1)

The source current density j(vt , vb) in Eq. (1) is dependent on the
2D potential distribution and calculated from a user-provided cou-
pling law that represents the diode properties of the solar cell’s p–n
junction. In this work, the one-diode model is used, which includes
both a parallel (ρpar) and an internal series (ρint) area specific
resistivity,

j(vt , vb) = j(Δv) = j0[exp(
Δv − j(Δv)ρint

VT
) − 1]

+ Δv − j(Δv)ρint
ρpar

. (2)

The additional parameters used in Eq. (2) are the dark satura-
tion current j0 and the thermal voltage VT . A schematic represen-
tation of the model used in Laoss as well as the input parameters
required and the output parameters provided is shown in Fig. 3.

Alternatively, the algebraic diode model can also be replaced
by a numerical charge drift-diffusion model considering the entire
vertical cell structure (Fluxim’s drift-diffusion simulation software
Setfos integrated with the 2D+1D model in Laoss). The advantage
of the algebraic diode model, however, is the small number of free
model parameters to define the coupling law.

FIG. 3. Structure of the Laoss FEM solver.38

C. Model representation of the measurement sample
The bias voltage applied to the solar cell during an EL exper-

iment can be represented in Laoss as a fixed potential boundary
condition. In the experiment, we applied the forward voltage at the
busbar, which is visible as a dark area at the top edge of the mea-
surement image and highlighted by an orange line in Fig. 2(a). The
corresponding position of the fixed potential boundary condition
in the model representation with value Vappl is shown analogously
in Figs. 2(b)–2(d). The busbar was not included in the simulation
geometry assuming that the fixed potential boundary condition rep-
resents the intersection between the busbar and the grid lines as
well as the active area on the top electrode. 75 000 parameter/image
pairs have been generated to build the training data of the inverse
model. For each parameter set, two images were generated at differ-
ent bias voltages to account for the calibration procedure used in the
measurement. The simulated images were generated at random bias
voltages. The lower voltage was sampled from a uniform distribution
in the range [0.54, 0.55 V], and the higher bias voltage was sampled
in the range [0.60, 0.64 V].

A coupling law with a non-zero value for the internal resistivity
ρint is not yet implemented in Laoss 4. Therefore, Eq. (2) was solved
externally with the hybrid algorithm of MINPACK and passed to
Laoss as discrete values in a text file. The other values of the diode law
were ideality factor nid = 1, thermal voltage VT = 2.38 × 10−2 V, and
internal resistivity ρint = 2.88 × 10−4 Ω m2. These values remained
unchanged during the simulation.

Laoss exports the potential and current results on a rectangular
grid that can then be converted to a raster image. In the follow-
ing, the spatial positions of the simulated and measured values are
denoted by [x, y]. The simulated luminance value was calculated
according to the following formula:34

SEL[x, y] = exp(
v junc
sim [x, y]
nidVT

). (3)

The junction voltage is calculated from the voltage difference
between vtop and vbottom provided by the Laoss results.

An unprocessed image of SEL(x, y) generated with parameters
set manually to reproduce themeasured sample is shown in Fig. 2(c).
The silver grid is assumed to completely block fluorescent light and,
therefore, appears as sharp dark lines.
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D. Simulation post-processing
The simulated image and the camera image of themeasurement

sample were brought into closer agreement in an additional post-
processing step. EL images exhibit inherent blurring due to lateral
carrier diffusion in the emitting silicon cell,39 photon scattering in
the silicon CCD caused by absorption depths that are longer than
the pixel size,40,41 and metal finger scattering.42 Therefore, the sim-
ulated image was convoluted with a Gaussian kernel of size 5 pixels
to match the blur level of the EL measurement. In a second step,
148 patches of dark areas were cropped from the camera image.
These were then scaled to the range of the pixel values of the sim-
ulated image, randomly rotated and flipped, and overlaid with the
simulated image to imitate the precise camera noise of the setup
that consists of a combination of Gaussian noise, shot noise, and
salt-and-pepper noise. The post-processed version of the simulation
image example is shown in Fig. 2(d). A comparison with the unpro-
cessed image in Fig. 2(c) shows the effects of blurring and noise,
resulting in features similar to the measured image in Fig. 2(a).

E. CNN inverse model
The Laoss modeling approach to calculate the simulated junc-

tion voltage v junc
sim [x, y] described in Sec. II B can be formalized as

follows:

v junc
sim [x, y] =

k

∑
l=−k

k

∑
m=−k

F(Vappl,R◻, j0, 1/ρpar)

× [x − l, y −m] ⋅ h[l,m] + ε[x, y]. (4)

The function F represents the Laoss simulation model, h is the
convolution kernel of the artificial camera blur, and ε is the arti-
ficial camera noise added. Given a measurement vmeas[x, y], the
goal of parametrizing the Laoss model to create the best possible
model representation of the measured cell results in the following
minimization problem:

res = min
Vappl ,R◻ , j0 ,1/ρpar

∑
x
∑
y
(v junc

sim [x, y] − v
junc
meas[x, y])2. (5)

In this work, we attempt to avoid this optimization problem
by replacing it with an inverse model. The inverse model F−1 of the
forward calculation

F(Vappl,R◻, j0, 1/ρpar) = v junc
sim/meas[x, y] (6)

is a function that directly maps measurement outcomes to the model
parameter space,

F−1(v junc
sim/meas[x, y]) = (Vappl,R◻, j0, 1/ρpar). (7)

To construct a suitable inverse function F−1, we follow a data-
driven approach based on training a regression CNN. The Laoss
forwardmodel is used to create training data that converts themodel
parameter ranges of interest. In the following, the CNN will be
trained to recover the model input parameters for each simulated EL
image. A conventional way of CNN training is to perform gradient

descent steps based on a mean squared error loss function averaged
over N training samples,

loss = 1
N

N

∑
i=1

∑
α∈Vappl ,R◻ , j0 ,1/ρpar

(αpredi − αi)2

= 1
N

N

∑
i=1

∑
α∈Vappl ,R◻ , j0 ,1/ρpar

(F−1α (v junc
sim [x, y]i) − αi)

2. (8)

Here, we follow an approach based on deep ensembles that
extends the point prediction of neural networks with an uncertainty
measure. This is accomplished predicting both a mean μ and a vari-
ance σ2 value for each model parameter that replaces the inverse
function as follows:

F−1
∗(v junc

sim/meas[x, y])

= (μVappl ,μR◻ ,μ j0 ,μ1/ρpar , σ
2
Vappl , σ

2
R◻ , σ

2
j0 , σ

2
1/ρpar). (9)

The variance prediction of the neural net is then included in the
training by using the negative log-likelihood loss function,

loss∗ = 1
N

N

∑
i=1

∑
α∈Vappl ,R◻ , j0 ,1/ρpar

1
2 log (σ2α,i)

(μpredα,i − αi)
2

2σ2α,i
(10)

The predicted parameter pairs {α, var(α)} are assumed to define
a Gaussian probability distribution.28 By minimizing the negative
log-likelihood loss function, the network tries to find the predicted
distribution in which the probability of the real model parameter α
is maximized. Thus, if insufficient correlations are found between
the simulated data vsim[x, y] and a model parameter α, the network
has the freedom to reduce the loss function value by increasing the
predicted variance σ2α .

The deep ensemble prediction is then completed by trainingM
networks in parallel using different splits for the training and valida-
tion data and different initial weights for the CNN. The predictions
of the different CNNs are assumed to form a Gaussian mixture. For
simplicity, the mean and the variance of this Gaussian mixture are
then used to present the results and for further computation,

μ∗α =
1
M

M

∑
i=1

μαi , (11)

σ2α =
1
M

M

∑
i=1
(σ2αi + μ

2
α) − μ2α. (12)

F. Training and validation data generation
The simulations for generating the training data were per-

formed using Laoss 4.38 The used geometry has three subdomains
(active area, grid, and shunt) and is shown in Fig. 2(b). The input
geometry was manually adjusted to match the dimensions and grid-
line structure of the sample cell. In the final workflow, this step could
be replaced by an algorithm that assists in extracting the cell geom-
etry from the EL image using edge detection and morphological
operations. A random number of up to four shunts were placed on
the artificial images. The position of the shunt was randomly chosen
but was constrained by the following conditions:
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TABLE I. Model parameters used for the simulation of the training data.

Subdomain Vappl (V) j0 (A/m
2) 1/ρpar (S/m

2) R◻ (Ω/◻)

Active area Uniform [0.6, 0.7] Log-uniform [1 × 10−10, 1 × 10−8] Constant (50) Uniform [10, 120]
Grid line Uniform [0.6, 0.7] Log-uniform [1 × 10−10, 1 × 10−8] Constant (50) Log-uniform [1 × 10−4, 1 × 10−2]
Shunt Not defined Log-uniform [1 × 10−10, 1 × 10−8] Log-uniform [1 × 103, 2 × 106] Constant (10)

1. The shunts cannot intersect with a grid line.
2. The shunts cannot intersect each other.
3. All shunts have the same dimensions and orientation (height
= 0.01 mm; width = 1 mm). This corresponds to the assumed
shape of the laser shunt scribed into the measurement sample.

A total of 75 000 images were simulated and used for training
the inverse CNN model. In each of the three subdomains, four free
parameters are chosen to be predicted later by the CNN model and,
therefore, varied during the simulation of the training images. An
overview of the parameters is given in Table I. Some of the para-
meters are sampled from a probability distribution. The others, such
as the parallel resistivity ρpar of the active area, are kept constant at a
physically meaningful value. The values of ρpar were independently
sampled for shunts on the same simulated cell, resulting in shunts
with different intensities that the neural network should learn to
distinguish.

G. Network setup and training
The network was implemented using the Keras/TensorFlow

framework. The network architecture was adapted from the VGG19
implementation of Keras.43 All modifications follow the recommen-
dations given for transferring CNN networks from classification
to regression problems.44 In all hidden layers, ReLu activation

functions are used. Dropout layers have been included after the two
dense layers at the top of the network, and a batch normalization
layer was included in front of the last dropout layer. The top layer
was removed and replaced by a dense layer consisting of eight out-
put neurons with a linear activation function to obtain a regression
network for the four target parameters’ (μ, σ2) pairs.

The input image presented to the CNN was built from the
cropped, post-processed simulation images. In order to reduce the
memory consumption during training, the images were downsam-
pled to a resolution of 80 × 40 pixels. Since every subdomain of
a simulated EL image has its own distinct model parameters, we
designed the CNN such that it predicts the values for one subdomain
at a time. The first channel of the input contains the complete volt-
age image. The second channel encodes the mask in which the pixels
defining the subregion for which the parameters should be predicted
are set to 1 and the pixels of areas that should be ignored are set
to 0. Since a standard implementation of VGG19 was used, a third
channel was present but remained empty in all images to keep the
original architecture and dependent hyperparameter ranges intact.
Figure 4 shows the structure of the input and the output data for
the example image of Fig. 2(b), which contains a single shunt. The
approach results in three different two channel images as inputs to
the CNNmodel with identical values in the first voltage image chan-
nel and different masks in the second channel. The parameters of
the subdomains can then be collected and used to build a complete

FIG. 4. Structure of the CNN input and output data.
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simulation model. The CNN model provides all four parameters
independently from the subdomain defined in the mask. For shunt
subdomains, Vappl has no direct physical definition since the fixed
voltage boundary condition is only applied to the upper edge of the
grid lines and the active area. Therefore, the parameter V shunt

appl can be
omitted when constructing the simulation model based on the pre-
dicted parameters and is put in brackets in Fig. 4. The training set
consisted of 94% of all available images, while the validation set con-
tained the remaining 6%. The target values were scaled to a feature
range of 0.01–0.99 before training. A batch size of 512 and the Adam
solver were used. Training was performed over a total of 200 epochs
with an early stopping as soon as the validation loss did not improve
for 20 epochs. The negative log-likelihood loss function defined in
Eq. (10) can lead to numerical instabilities during network training
when intermediate predictions of the variance σ2 are zero or close to
zero. To avoid this, the activation of the output neurons for the vari-
ance σ2 was set to a strictly positive ELU+1 function with alpha = 1.
In addition, the values for the variance σ2 have been clipped to the
range [0.0001, 1] in the calculation of the loss function and gradient
clipping with a value of 0.5 was used in the Adam solver.

III. RESULTS
Four different measured samples (MO, M1, B1, and T2) were

used to test the proposed approach. For all samples, the previously

FIG. 5. Regression results of a single instance inverse CNN model’s predictions
for the applied voltage (a), the sheet resistance (b), the dark saturation current (c),
and the parallel resistivity (d), including predicted uncertainties. The plot shows
the results for 100 randomly selected images for both the validation set and the
training set. The value ranges of the different subdomains are highlighted in (c)
and (d). The sheet resistance of the shunts and the parallel resistivity of the active
area as well as the grid line were constant in all images. Therefore, all data points
of the two sets are superimposed.

trained deep ensemble was used to predict a model parameteri-
zation of the FEM simulation model. The quality of this inverse
model was then tested by comparing the forward simulation based
on these parameters with the original measured data. In addition to
the measured test data, a simulated image (MO-sim) included in the
validation set during CNN training was used to analyze the extent to
which the performance of the approach degrades when real instead
of synthetic data are used as input.

The results of the regression output of a single CNN model
from the deep ensemble are shown in Fig. 5. The x axis value
represents the value used during the simulation of the EL image.
The points on the y axis show the mean of the predicted Gaus-
sian probability distribution of the parameter. The error bars show
the standard deviation calculated from the predicted variance. The
results show that the CNN learns to predictVappl from the simulated
EL image with very high accuracy, which is correctly represented by
the corresponding low variance predictions. The predictions of the
parameters ρpar and R◻ show higher uncertainty values, which also

FIG. 6. Model predictions for the applied voltage (a), the sheet resistance (b), the
dark saturation current (c), and the parallel resistivity (d) for the validation image
MO-sim. The marker shapes indicate the subdomain type for which the parameters
were varied and learned during training (see Table I). They are listed in the legend
in black and apply to both single model (blue) and ensemble prediction (orange)
data points. The color markers and the black shape markers have to be used in
combination (e.g., the blue diamonds correspond to single model predictions in
the active area). The green cross shows the values used during the simulation of
MO-sim.
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correspond to larger offsets between predicted and true values. The
largest uncertainties with respect to the defined parameter range are
found in the predictions of j0. Interestingly, the model seems to cor-
rectly identify values with large offsets by predicting high variance
values in these cases.

The trained deep ensemble consists of 17 CNNs. The ensem-
ble results of the simulated validation image MO-sim are shown in
Fig. 6. In the case of the simulated validation image, the original
parameters used to simulate the image are known and can be com-
pared to the predictions. In general, the mean predictions of each

FIG. 7. Comparison of the input images (a)–(c) and the corresponding resimulations (d) and (e) based on the parameters predicted by the CNN inverse model.

FIG. 8. Horizontal (a)–(c) and vertical (d)–(f) cross sections of the input image and the corresponding resimulation based on the parameters predicted by the CNN inverse
model, including the simulation model uncertainty.
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network vary significantly and so the predicted confidence inter-
vals do not necessarily overlap. The true parameter used for the
simulation of MO-sim is within the confidence interval of the pre-
dicted ensemble distribution in the case of Vappl, R◻ of grid lines,
and ρpar of the laser cut shunt area. The predicted probability dis-
tributions of j0 and R◻ parameters of the active area deviate signifi-
cantly from the actual simulation parameters, indicating that the EL
image does not provide sufficient information to determine the two
parameters.

The full parameter prediction results for all four measurement
samples and the simulated validation image are shown in Fig. 9.
The validation images and the corresponding resimulations using
the mean values of the distribution predicted by the deep ensem-
ble are shown in Fig. 7 for MO-sim, MO, and M1. The part of the
image that was used as the input of the CNN is highlighted with a
red rectangle. A general visual inspection of the images shows good
agreement in terms of EL intensity and voltage drops due to the
gridline layout. The intensity of the resimulated shunt resembles the
measurement closely in the case of the simulated test image. For the
measured images, the predicted distribution’s mean values for ρpar of
the laser cut area result in visually more pronounced voltage drops.
The average error in the junction voltage value when comparing the
resimulated image with the measured image is 0.2%. The maximum
error that can be found in both images is 10%.

The horizontal and vertical cross sections of the test cells are
shown in Fig. 8. For each pixel, the standard deviation has been
calculated by simulating 24 images with parameters that have been
sampled from the parameter distributions predicted by the deep
ensemble. The values of the cross section confirm the impression
that the applied voltage range and voltage drops between grid lines
are correctly modeled by the mean values of the predicted distribu-
tions. The deep ensemble tends to overestimate 1/ρpar in the laser
cut region. In addition, the parallel resistance of the cell samples M1,
B1, and T2 were calculated by fitting a lumped-parameter equivalent
circuit diode model to the cell’s current–voltage curve. The global
parallel resistance has then been multiplied with the total shunt area
to estimate the area specific resistivity of the shunts. In the case of
M1, it is assumed that the two shunts contribute equally to the mea-
sured global parallel resistance. The results shown in Fig. 9 confirm
that the CNN model overestimates the value 1/ρpar , which leads
to a stronger voltage drop in the vicinity of the shunt subdomain.
However, the calculated confidence ranges for 1/ρpar show that the
model is able to correctly deliver uncertainty values such that three
out of four measured values lie within the predicted confidence
interval.

IV. DISCUSSION
The results presented in Sec. III show that the deep ensemble

CNN used is a promising candidate for an inverse model for a sil-
icon solar cell. It was possible to train the network to predict the
used model parameters with high accuracy based on the simulation
results. In cases with lower prediction accuracy, the model correctly
predicts high error bars, thanks to the negative log-likelihood loss
function used. Resimulations based on the parameters predicted by

the deep ensemble inverse model confirm the overall consistency of
the approach by showing good agreement between original data and
resimulations where the inverse calculation of the parameters was
used for a forward simulation.

High uncertainties exist in the inverse prediction of j0 and
R◻. Nevertheless, the forward calculation confirmed that the pre-
dicted parametrizations lead to a valid model representation of the
given sample. This is an indication that the inverse problem defined
by the equations implemented in the Laoss model is ill-posed. By
substituting Eq. (2) into Eq. (1), one can show that in the regime
of low internal resistivity ρint, the derivative of Δvt depends only
on the product of j0 and Rt

◻. This leads to a strong correlation of
the two parameters that makes it difficult to resolve them indepen-
dently from a voltage image alone. The dependency is also confirmed
by the resimulation of the ensemble prediction results of MO-sim
shown in Fig. 6. The CNN model underestimates the value of j0.
Since the value of R◻ is simultaneously overestimated, the resimu-
lation of MO-sim in Fig. 8 agrees well with the CNN input image.
This behavior is also consistent with the luminance imaging theory,
which requires a combination of EL and PL imaging to determine j0
andR◻ separately. Therefore, if only amodel based reconstruction of
the EL image is of interest, a possible modification for inverse mod-
eling could be to predict only the product of j0 ⋅ R◻, which would
simplify the problem. Similarly, in the discussed regime of low inter-
nal resistivity ρint , the parallel resistivity affects Eq. (1) only through
the quotient R◻/ρpar . Since there is no domain in which these two
parameters have been varied simultaneously, this did not lead to fur-
ther implications in the present study since one of the two values
of the quotient has always been constant. An alternative to avoid
the ill-posedness of the problem by guessing well-defined para-
meter combinations could be a physics-informed neural network
that includes the knowledge of the governing equations during train-
ing of an inverse model neural network. Such an approach could
help to force the network to correctly account for interdependent
model parameters.

The parallel resistivity of the shunt region was less accurately
predicted by the inverse deep ensemble model. Since the deep
ensemble performed significantly better on the simulated validation
image, it can be assumed that this is partly due to differences in the
detailed appearance of the shunt region in the measurement when
compared to the simulated data. Although much effort was put into
accurately modeling the resulting voltage drop, even the best mod-
eling results showed significant deviations from the measured data.
During training, the CNN only learns to recognize the shape of the
model-based shunts. Therefore, shunts in the measured data with
different appearances are not expected to be handled correctly by
the deep ensemble CNN. This is particularly evident for the second
shunt in sample M1, which has a more triangular shape compared
to the ellipsoidal shunts in the other test cells. Due to this unknown
geometry, the CNN significantly overestimates the conductance of
the shunt in this case. Another reason for the overestimation of
the shunt conductivities is the overestimation of the measurement’s
junction voltage in the area that was used for the input to the CNN
model due to the inclusion of the areas affected by edge effects in
the calibration procedure (see Sec. II A). The CNNmodel will inter-
pret this as a higher level of applied voltage in which case the same
absolute voltage drop in the shunt area will only be possible with an
increased shunt conductivity.
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The use of synthetic data for training a neural network can only
be successful if the distribution of the training data fully covers all
samples of interest to which themodel is to be applied. If the network
is applied to data that have features that are not present during the
training phase, uncontrollable extrapolations are possible. The deep
ensemble did not provide reasonable results for two of the four test
samples. The results of the failed cases are shown in the Appendix
in Fig. 10 and in Fig. 11. In these cases, the measurement samples
were not perfectly aligned due to inaccuracies in the chosen mea-
surement setup. As a result, the grid lines and the mask in channel
2, which define the pixels of the subregion to be predicted, have a
small shift that causes the network to calculate values for R◻ that are
averaged between the high conductivity of the grid line and the low
conductivity of the active region of the cell. This leads to a complete
breakdown of the method. The results demonstrate the sensitivity
of data-driven methods to the quality and comprehensiveness of the
training dataset.

V. CONCLUSION AND OUTLOOK
In many engineering applications, finding model parameters of

numerical models based on an indirect measurement can be a dif-
ficult and time-consuming task. In this paper, an inverse modeling
approach based on a deep ensemble CNN was demonstrated utiliz-
ing a numerical model for the simulation of EL images of silicon
solar cells with known cell geometry and known defect areas.

The work confirmed that a CNN is a valuable candidate for a
data-driven inverse model. In total, 75 000 simulated images have
been created with Laoss based on parameters randomly sampled
from a predefined range. With 94% of the images in the training set
and 6% in the validation set, the CNN model has successfully been
trained to learn the inverse mapping from the measurement image
to the corresponding model parameters. By using a deep ensemble
CNN model, an uncertainty prediction for the model parameters
was included, which is a key component for using the method in
a scientific environment.

The model performance was tested with forward simulations
based on the predicted model parameter distributions. The tests
showed relative deviations of the calculated mean junction voltage
from the original measured junction voltage of 0.2% on average
with a maximum of 10%. The measured junction voltage was within
the estimated uncertainties of the model results. The resistivities
of the shunt subdomains have been estimated based on the mea-
sured current–voltage curve and compared to the values predicted
by the CNN model. Three out of four measurements are within the
predicted uncertainty range, which confirms the consistency of the
approach. Failures of the method can be explained by mismatches
between the simulation model results and the measurement data,
which leads to a simulation–reality gap. This critical dependency on
the accuracy of the synthetic training data is well known in similar
methods.45,46

By essentially pre-calculating an inverse model, the method
shows a promising approach to enable a fast and accurate calcu-
lation of the parameters of a physical cell model. Since domain
specific information is only present during the training data sim-
ulation stage, the approach is highly transferable to other types of

solar cell or other engineering applications where a numerical sim-
ulator is available. For each cell layout, a separate model has to be
trained. In addition, the presented results are restricted to shunts
with a standardized affected area and orientation. In order to include
other defect types, they would have to be included into the training
data generation. This would significantly increase the computation
time needed for the generation of the images. However, this train-
ing stage is responsible for the main effort of the method and the
model can still provide fast and reliable results during the prediction
stage. In particular, we expect that such a model can be used in the
near future for efficient extraction of parameters of batches of novel
solar cells with identical layout, for quality control, and to enable fur-
ther improvements in the production and upscaling process. The full
potential of such a model would be realized if it is used for quality
control in an industry scale production line to characterize cells or
modules and improve quality assurance, default classification, and
defect removal.

In a next step, we plan to apply the method to perovskite cells,
where there is a high potential for improvement through detailed
defects and cell characterization. Future improvements of the meth-
ods could also include integrating physical knowledge into other
parts of deep neural network training, such as the loss function or
network architecture, to improve data efficiency and out-of-sample
predictions.47
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APPENDIX: ADDITIONAL FIGURES

Detailed ensemble parameter predictions for the validation
image and the investigated measurement samples. Comparison of
the input images (a) and (b) and the corresponding resimulations
(c) and (d) based on the parameters predicted by the CNN inverse
model (failed cases). Horizontal (a) and (b) and vertical (c) and (d)
cross sections of the input image and the corresponding resimula-
tion based on the parameters predicted by the CNN inverse model,
including the simulation model uncertainty (failed cases).

FIG. 9. Detailed ensemble parameter predictions for the validation image and the
investigated measurement samples.

FIG. 10. Comparison of the input images (a) and (b) and the corresponding resim-
ulations (c) and (d) based on the parameters predicted by the CNN inverse model
(failed cases).

FIG. 11. Horizontal (a) and (b) and vertical (c) and (d) cross sections of the input
image and the corresponding resimulation based on the parameters predicted by
the CNN inverse model, including the simulation model uncertainty (failed cases).
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