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Abstract 
Context Wildlife–vehicle collisions (WVCs) are a 
significant threat for many species, cause financial 
loss and pose a serious risk to motorist safety.
Objectives We used spatial data science on regional 
collision data from Switzerland with the objectives of 
identifying the key environmental collision risk fac-
tors and modelling WVC risk on a nationwide scale.
Methods We used 43,000 collision records with roe 
deer, red deer, wild boar, and chamois from 2010 to 
2015 for both midlands and mountainous landscape 
types. We compared a fixed-length road segmenta-
tion approach with segments based on Kernel Den-
sity Estimation, a data-driven segmentation method. 
The segments’ environmental properties were derived 
from land-cover geodata using novel neighbourhood 
operations. Multivariate logistic regression and ran-
dom forest classifiers were used to identify and rank 
the relevant environmental factors and to predict col-
lision risk in areas without collision data.

Results The key factors for WVC hotspots are road 
sinuosity, and two composite factors for browsing/for-
age availability and traffic noise—a proxy for traffic 
flow. Our best models achieved sensitivities of 82.5% 
to 88.6%, with misclassifications of 20.14% and 
27.03%, respectively. Our predictions were better in 
forested areas and revealed limitations in open land-
scape due to lack of up-to-date data on annual crop 
changes.
Conclusions We illustrate the added value of using 
fine-grained land-cover data for WVC modelling, and 
show how such detailed information can be annotated 
to road segments using spatial neighbourhood func-
tions. Finally, we recommend the inclusion of annual 
crop data for improving WVC modelling.

Keywords Wildlife–vehicle collision · Kernel 
Density Estimation · Neighbourhood functions · 
Spatial data science · Random Forests

Introduction

Wildlife–vehicle collisions (WVCs) cause financial 
loss in the millions, can lead to human harm and in 
severe cases human fatalities. Switzerland alone 
counts up to 20,000 accidents with medium size and 
large wildlife every year, resulting in more than 25 
million Swiss Francs material damage (Roth 2012). 
Depending on the various landscape types, the most 
affected species are roe deer (Capreolus capreolus), 
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red deer (Cervus elaphus), wild boar (Sus scrofa), 
and chamois (Rupicapra rupicapra). With thriving 
populations most notably with wild boar and red deer 
and increasing traffic flow, these figures are expected 
to grow.

The causes for WVC are manifold and their inter-
play is complex. Wildlife accidents often occur 
in  situations where roads cross favorable wildlife 
habitats (Malo et al. 2004; Garrah et al. 2015). Col-
lision predictors include species-specific factors (“the 
animal”), traffic related factors (“the driver”), and 
factors related to the road and it’s embedding in the 
immediate and broader environment (“the road”). 
Gunson et  al. (2011) categorize a plethora of land-
scape-related predictors (e.g., proximity to forest, 
proportion of open area or built-up area along road, 
Shannon diversity index) and road-related predictors 
(slope, in-line visibility, speed limit, traffic volume). 
WVC show furthermore significant spatio-temporal 
patterns related to diurnal light changes and seasonal 
changes of the road conditions (Neumann et al. 2012; 
Ascensão et al. 2019).

Research gap and contribution

This article presents results of a multi-year nation-
wide study in Switzerland aiming at a better under-
standing of the complex processes leading to WVC 
aiming at the implementation of better collision pre-
vention measures. Extensive small-scale field studies 
at collision hotspots were combined with large-scale 
geospatial analysis and modelling. Six years of col-
lision records were collected from emergency ser-
vices and hunting associations for three Swiss can-
tons representing two typical landscape types (Zurich 
and Fribourg for midlands, Grisons for mountainous 
areas). These collision records were then associated 
to segments of the road network and then analysed 
with respect to their embedding into the natural and 
built environment. After identifying the most relevant 
predictors, collision risk was modeled for the road 
network on a nation-wide scale for all other Cantons. 
The long-term goal of the overarching project was to 
identify hotspots, where then locally adapted preven-
tion measures could be realised to finely reduce WVC 
and thereby reduce socio-economic costs. This article 
summarizes the results of the large-scale geospatial 
analysis and modeling part of the project. The spe-
cific research questions for this article were:

– What are the key predictors for WVC on Swiss 
roads and what are differences between the mid-
lands and mountainous areas?

– How can neighbourhood functions operational-
ize the environmental variables embedding col-
lision hotspots into the natural and built environ-
ment?

– How well do these variables predict collision risk 
using regression models and machine learning?

Our research is in line with a number of closely 
related studies. Bíl et al. (2016, 2019) studied WVC 
on Czech roads using a specifically developed net-
work-based Kernel Density Estimation (KDE+) 
approach on a very similar data set. In their report 
for the Conference of European Directors of Roads 
(CEDR), Seiler et al. (2016) used a modified version 
of KDE+ for a similar study on WVC in Catalonia, 
Spain and south-central Sweden. Our study aims at 
comparing our results to these other studies investi-
gating similarities and differences with respect to (i) 
environmental differences between the study areas, 
and (ii) spatial and semantic granularities of the geo-
data and methodologies used.

We argue that our study adds further evidence that 
the overall workflow put forward by the just men-
tioned studies (segmentation, annotation, prediction) 
works well, exemplified in two more landscape and 
ecosystem types (Swiss midlands and alps). We fur-
thermore advance WVC analysis through the conse-
quent use of spatially fine-grained and semantically 
detailed geodata mainly from the Swiss National 
Mapping Agency, and thereby systematically reduc-
ing the share of qualitative and semi-manually derived 
data found in precursory studies. Consequently, the 
contributions of this article are as follows: 

(1) Development of WVC models for fine-grained 
and semantically detailed areal landscape geo-
data.

(2) Development of geospatial neighbourhood func-
tions for WVC studies for annotating road seg-
ments with landscape geodata from topographic 
landscape models from national mapping agen-
cies (both vector and raster data).

(3) Comparison between fixed 200  m segmentation 
and data-driven KDE segmentation. This com-
parison also allows contrasting workflows with 
and without the need of coldspot controls.
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(4) Comparison between midlands and mountain 
models for the same country, identification of (i) 
variations in the factor ranking, and (ii) differ-
ences in model performance depending on land-
scape types.

Related work

There is a large body of literature covering vari-
ous aspects of WVCs. The review article by Gunson 
et al. (2011) offers a well-structured entry point into 
the subject. We first give an overview of the most 
recently used methodologies to analyse WVC and 
then summarize the most important ecological results 
relevant for our study.

The most recent WVC studies agree on the general 
methodology of first segmenting the road network 
into collision hotspots (and where necessary colds-
pots for comparison), then annotating the segments 
with environmental variables characterizing their 
embedding into the natural and built environment, 
and finally using statistical modelling or machine 
learning for predicting collision risk.

Road network segmentation. Most WVC studies 
aim at finding road sections with significantly more 
collisions than on comparable road sections. Such 
road segmentation can be done using fixed-length 
intervals (e.g., 100 m, 200 m, 500 m) or using some 
form of data-driven clustering. Garrah et  al. (2015) 
use predefined fixed-length segments and then count 
the number of collision incidents per segments in 
order to identify hotspots (or coldspots). Bíl et  al. 
(2016, 2019) recommend the clustering method 
KDE+ for the initial segmentation, a form of Kernel 
Density Estimation tailored to the identification and 
ranking of hotspots along networks. Map matching 
might be necessary to relocate the point locations of 
the collision reports onto the closest road in the first 
place (Kubicka et al. 2018).

Many studies on WVC use coldspots, that is 
road sections where no or only few accidents were 
recorded, as controls for statistical analysis (Gar-
rah et  al. 2015). Several approaches for identify-
ing and constructing coldspots have been proposed. 
Seiler et al. (2016) selected for every hotspot cluster 
a closeby coldspot with a predefined upper threshold 
of collisions (e.g. ≥ 3 for hotspots, < 3 for coldspots) 
and a minimal distance of 1 km. Garrah et al. (2015) 

used the Getis–OrdGi* statistics that compares colli-
sion records for given segments with their neighbor-
ing segments and an expected overall distribution. 
Bíl et al. (2019) argue, however, that the use of colds-
pots as controls might distort the results, as coldspots 
could be identified and used where animals could 
physically not enter. In our study we use coldspots but 
use spatial masks excluding areas not visited by our 
target animals.

Environmental annotation of road segments. Once 
the collision clusters or hotspot segments are identi-
fied, they must be semantically annotated. This typi-
cally includes landscape-related and road-related 
factors that both potentially cause accidents related 
to the animals’ or the motorists’ behaviours (Gun-
son et  al. 2011). The semantic annotation requires 
spatial data science or Geographic Information Sys-
tems (GIS) operations and landscape-related geodata. 
Landscape-related factors mostly involve distance 
metrics to landscape elements (e.g., distance to forest, 
water, built-up areas) and neighbourhood functions 
(e.g., fraction of open land or a landscape diversity 
index within a predefined buffer) (Gunson et al. 2011; 
Seiler et al. 2016; Bíl et al. 2019). Road-related fac-
tors can be feature attributes of the roads (e.g., speed 
limit, traffic intensity), shape descriptors of the road 
features (e.g., slope, line sinuosity, visibility param-
eters), or again neighbourhood factors characterizing 
the infrastructure setting of the road (e.g., guard rails, 
embankments, shrubs, grass belts) (Seiler et al. 2016; 
Bíl et al. 2019). The latter factors are often given as 
categorical or Boolean variables (e.g. presence of 
guard rails yes/no).

Some studies include also more complex factors 
that have to be modelled in the first place, such as vis-
ibility along the roads or linear landscape structures 
leading the animals towards the roads (Seiler et  al. 
2016). Visibility can serve here as an example for 
many other parameters that can be operationalized in 
many different ways. Laliberté and St-Laurent (2020) 
use the simple line property sinuosity, whilst oth-
ers use complex viewshed analysis based on digital 
surface models and LiDAR data (Castro et al. 2017; 
Jung et  al. 2018). The same holds for leading struc-
tures that some studies capture manually from Google 
Street  ViewTM (Seiler et al. 2016) whilst others model 
likely passages using complex multi-criteria habitat 
modeling with least cost paths functions (Gülci and 
Emin 2015).
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The availability and spatio-temporal quality of 
geodata for annotation largely dictates any WVC 
analysis, as not always geodata is available for eco-
logically meaningful factors. Most studies use a mix 
of available geodata from national mapping agen-
cies, statistical offices, open data providers and aer-
ial imagery. For example, Bíl et al. (2019) used both 
geodata (road network) and image interpretation of 
Google Street View™ and orthophoto maps result-
ing in 50% ratio data and 50% categorical data fac-
tors. Seiler et  al. (2016) used a similar mix of ratio 
vs. categorical factors (approx. 50% each) again using 
interpretation of aerial photographs, satellite imagery, 
and Google Street View™   combined with geodata 
from official databases, digital topographic maps and 
in few cases field data.

Finally, some authors furthermore make a dis-
tinction between local factors describing the spatial 
neighbourhood of a road segment or hotspot, and 
global factors influencing WVCs in the entire study 
area (Neumann et al. 2012; Bíl et al. 2019). Daytime 
is a typical global factor.

Statistical modelling and prediction. Multivari-
ate prediction models acknowledge the interplay of 
multiple predictors (Malo et  al. 2004). Seiler et  al. 
(2016) used univariate tests for exploration of the 
individual predictor variables followed by correla-
tion models. They developed logistic models for 
three model approaches: mixed, road and landscape. 
Furthermore they evaluated expert models based on 
road section attractiveness and accessibility to wild-
life determined by personal, subjective impressions. 
Similarly, logistic regression models were developed 
by Bíl et al. (2019) and interpreted in terms of odds 
ratios. Included parameters were selected in correla-
tion and principal component analysis. Important 
variables were chosen in bidirectional step-wise pro-
cedure based on Akaike information criterion (AIC).

A series of studies closely related to our study have 
identified key WVC predictors for a range of differ-
ent landscape types. Collisions are to be expected 
where roads cross habitats (Malo et  al. 2004). Road 
sections with high traffic loads and poor visibility are 
particularly prone to collisions (van Langevelde and 
Jaarsma 2005; Barrientos and Bolonio 2009). Vehi-
cle speed is a further key factor in wildlife accidents 
(Elvik 2008; Huijser et  al. 2015; Seiler et  al. 2016). 
As speed increases, the braking distance and the 
impact energy increase in proportion to the square 

of the speed. Clearly, interspecies ecological differ-
ences further complicate analysis and prediction, as 
the influence of, for example, the road-side vegetation 
composition or the use of deicing-salt depends heav-
ily on the covered species (Grosman et al. 2009; Gun-
son et  al. 2011). Garrah et  al. (2015) also conclude 
that mortality on roads is strongly seasonal and that 
this seasonality is strongly species-specific. Laliberté 
and St-Laurent (2020) confirm WVC seasonality for 
WVC with moose and deer in southeastern Canada, 
along with diurnal effects.

Seiler et al. (2016) studied both landscape factors 
and road factors for their studies in Catalonia, Spain 
and south-central Sweden. They found that WVC 
are more likely on busier roads with higher vehicle 
speeds and an absence of fences, safety rails, or large 
embankments. Their study, however, also revealed 
clear differences in predictor relevance between the 
two landscape types. In the Catalonian model with 
a dominance of wild boar collisions, the amount of 
built-up urban area close by and the proximity to 
water were the strongest landscape predictors. In 
Sweden, by contrast, the importance of landscape 
diversity and linear leading structures directing ani-
mals towards the roads reflected the different ecol-
ogy of roe deer and moose being the main collision 
victims. Bíl et  al. (2019) identified the presence of 
closed habitats and shrubs along roads and the dis-
tance to forest as key predictors. Also Garrah et  al. 
(2015) confirmed the correlation of collision hotspots 
with the presence of suitable habitats, in their exam-
ple wetland habitat explaining found amphibian and 
reptile road mortality hot spots. For Canadian moose, 
Laliberté and St-Laurent (2020) found interaction 
between collision risk and slope and elevation, for 
deer interaction with road sinuosity and the fraction 
of mature coniferous stands.

Research gaps. Few WVC studies could have been 
based solely on computed quantitative (ratio data) 
derived from spatially and semantically fine-grained 
geodata through specifically developed neighbour-
hood functions. The excellent data supply from sev-
eral official Swiss data providers allows us to do just 
that. Furthermore, in our opinion further evidence is 
needed for selecting one segmentation approach over 
the other. For that reason we conducted a comparative 
study opposing different segmentation approaches 
with and without coldspots. No large scale WVC 
study has been done for the diverse Swiss landscape 
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types. Our goal is to compare our results with the 
listed related studies. We furthermore compare two 
contrasting landscape types, the midlands vs. the 
alps, in order to achieve regional factors and factor 
rankings.

Methods

Data and preprocessing

Our study is based on a dataset counting in total 
43,000 collision records from the Swiss Cantons of 
Zurich and Fribourg (midlands) as well as Grisons 
(alps), mainly collected by emergency services and 
hunting associations. Although the precise data cap-
ture procedures vary in between institutions and 
regions, the minimal attribute set per record includes 
coordinates, date, and species. The study is limited 
to larger species, that is roe deer (C. capreolus), red 
deer (C. elaphus), wild boar (S. scrofa), and chamois 
(R. rupicapra), the most responsible species for WVC 
in Switzerland. We used data from 2010 to 2015 
offering the longest data overlap for all three Can-
tons. After restricting the collision data to our target 

species and the before mentioned time span, a total of 
12,431 records were used for our final analysis.

The key geodata set for the environmental anno-
tation of the road segments was swissTLM3D, the 
large-scale topographic landscape model issued by 
the Swiss National Mapping Agency Swisstopo.1 
SwissTLM3D is the most extensive and accurate 3D 
vector dataset for Switzerland. This source provided 
crucial geodata for the road network, hydrology fea-
tures, forests and further vegetation layers (Table 1). 
Swisstopo also provided accurate digital terrain and 
surface models (DTM, DSM, 2  m resolution). Geo-
data by the National Mapping Agency is comple-
mented by additional environmental data from the 
Federal Office for the Environment FOEN2 (biodiver-
sity, traffic noise), the Swiss Federal Institute for For-
est, Snow and Landscape Research WSL3 (vegetation 
height index based on Lidar), and the Federal Office 
for Spatial Development ARE4 (traffic volumes).

Table 1  List of geodata sources used characterizing the natural and built environment embedding collision hotspots

All data sets are of fine spatial and semantic granularity, originate official data providers, and are directly machine-readable without 
need for additional manual data capture

Landscape variable Type Data set Layer Year Source

Road network Line swissTLM3D Roads and paths 2018 Swisstopo
Waterways Line swissTLM3D Waterways 2018 Swisstopo
Waterways Line swissTLM3D Landuse type 2018 Swisstopo
Forest Polygon swissTLM3D Landuse type 2018 Swisstopo
Hedges Line swissTLM3D Tree and hedge rows 2018 Swisstopo
Primary areas Polygon Vector25 Built-up area 2008 Swisstopo
Built-up areas Polygon Vector25 Primary areas 2008 Swisstopo
Canton boundaries Polygon Boundries3D Canton boundaries 2018 Swisstopo
DTM Raster Digital elevation models swissALTI3D in 2 m resolution 2018 Swisstopo
DSM Raster Digital elevation models Digital surface model, 2 m resolution 2018 Swisstopo
Biogeographic regions Polygon Biodiversity Biogeographic regions 2004 FOEN
Wildlife corridors Polygon Biodiversity Wildlife corridors transregional 2017 FOEN
Noise Raster Noise Noise and traffic noise at night 2015 FOEN
Vegetation height Raster National forest inventory Vegetation height index 2016 WSL
Traffic volume Line National traffic model Mean daily traffic load and speed 2010 ARE

1 https:// shop. swiss topo. admin. ch/ en/ produ cts/ lands cape/ 
tlm3D.
2 https:// www. bafu. admin. ch/ bafu/ en/ home. html.
3 https:// www. wsl. ch/ en/ servi ces- and- produ cts.
4 https:// www. are. admin. ch/ are/ en/ home. html.

https://shop.swisstopo.admin.ch/en/products/landscape/tlm3D.
https://shop.swisstopo.admin.ch/en/products/landscape/tlm3D.
https://www.bafu.admin.ch/bafu/en/home.html.
https://www.wsl.ch/en/services-and-products.
https://www.are.admin.ch/are/en/home.html.
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The road dataset was filtered excluding traffic 
infrastructures where wildlife collisions were impos-
sible (driving bans, tunnels, bridges, ferries) or very 
rare (fenced motorways, narrow gravel roads with low 
traffic loads). The collision data revealed that acci-
dents with our target species (see above) hardly ever 
occur within the built-up area, hence roads within 
the built-up area were also excluded. This filtering 
resulted in a road network of 18,100 km. The colli-
sion records were finally allocated to the closest road 
with a map matching procedure having a maximal 
matching threshold of 100 m (Fig. 1a).

Segmenting the road network

This study used two approaches for segmenting the 
roads, a fixed-length segmentation and a data-driven 
segmentation based on a Kernel Density Estimation 
of the collision records.

Fixed-length segmentation. For the determinis-
tic fixed-length segmentation reg200, the road net-
work was cut into segments of a predefined length 
(Fig. 1b). The selection of 200 m as segment length 
is based on the literature (Elvik 2008; Garrah et  al. 

2015) and on the median of the KDE-based seg-
mentation discussed below. Collision hotspots could 
thereafter be defined with a minimal threshold n of 
incidents per segment.

KDE-based segmentations. The second segmen-
tation was based on the overlay of the road network 
with collision record density isolines computed using 
Kernel Density Estimation KDE (Bíl et  al. 2013). 
This procedure requires two parameters (Fig. 1c): first 
radius r for the density kernel, and second, p the den-
sity percentile threshold defining the cluster boundary 
outline. The literature recommends r-values between 
50 and 500  m (Bíl et  al. 2013). For this study we 
defined and used two KDE segmentations, one based 
on a narrow kernel and one based on a wide kernel:

– kden . Narrow kernel with r = 100m and p = 95% 
percentile.

– kdew . Wide kernel with r = 200m and p = 90% 
percentile.

The validation of the models in Sect.  Statistical 
analysis (predictions) require control segments, that 
is coldspots of similar road segments with little to 

Fig. 1  Map matching 
and segmentation. a Map 
matching to the closest 
road, P

1
 lies outside maxi-

mal matching threshold, b 
fixed-length segmentation, 
c KDE-based segmentation 
with two kernel sizes kde

n
 

and kde
w
 , and d selec-

tion of coldspot control 
segments n − H , within a 
donut-shaped neighbour-
hood between d

min
 and d

max
 

around H 
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no collisions. With the fixed-length segmentation all 
segments not identified as hotspots can serve as con-
trols and no further coldspot selection is required. For 
the KDE-based segmentation, however, these control 
segments must be defined. Our procedure to construct 
coldspots is closely related to Seiler et  al. (2016) 
(Fig.  1d). coldspot segments must have a similar 
length as the hotspot segment ( ±10m ), have the same 
road category, and must be located within a donut-
shaped neighbourhood delineated by a minimal and a 
maximal distance ( d

min
 , d

max
).

The preliminary of requiring the same road cat-
egory shall prevent the selection of control segments 
with entirely different characteristics (e.g. side roads) 
that could bias the results (Bíl et  al. 2019). This in 
turn excludes road category from the list of possible 
predictors for the KDE-based segmentation models. 
By contrast, in the models based on the fixed-length 
segmentation, road category can be a predictor.

Spatial modelling of local factors

Compared to related work, our study is entirely based 
on computed quantitative environmental factors 
derived from fine-grained official geodata (Table 2). 
This required the development and tailoring of a set 
of geospatial operations for the environmental anno-
tation of the road segments. The study used five 
categories of factors with increasing computational 
complexity. All but the first category required tailored 
geospatial operationalizations for the factors based on 
Geographic Information Systems and Science (GIS) 
functions and spatial data science routines.

– Attribute factors. Primary feature attributes or 
combinations thereof (e.g. road speed limit),

– Form factors. Derived from geometry or shape 
(e.g. sinuosity of a road segment),

– Distance factors. Nearest neighbour distances to 
target features (e.g. distance to forest),

– Areal neighbourhood factors. Areal characteristics 
within a defined neighbourhood around the road 
segment (e.g. forest share within 200 m buffer),

– Complex, modeled factors. Derived based on a 
specifically developed model including one to 
many geodata layers (e.g. leading structures).

The used attribute factors include the road_cat-
egory from swissTLM3D (characterized in width 

categories), a modelled daily traffic volume in vehi-
cles per 24 h, and a modeled average speed per 
segment. The form factor sinuosity was used as 
a proxy for visibility. It was computed as the ratio 
between the Euclidean distance between start and 
endpoint of a segment and the actual segment length 
(Fig. 2a).

All distance factors assess per segment the nearest 
neighbour distance to point, line, or polygon features 
of the targeted landscape element (Fig. 2a). Such sim-
ple distance factors used in the study were dist.
forest, dist.builtup, and dist.corri-
dor, the last one giving the distance to wildlife corri-
dors. dist.water was a compound distance factor 
assessing the shortest distance to several hydrology 
layers, even including point (well), line (creek, river), 
and polygon features (ponds, lakes).

Areal neighbourhood factors characterize the 
spatial composition of landscape elements within a 
buffer around the road segment, for both vector and 
raster data (Fig. 2b–d). This includes the areal share 
of a landscape element (% forest or % primary areas) 
and particularly for raster data indicating spatial vari-
ation within a buffer also zonal statistics (min, max, 
mean, standard deviation within buffer). Since every 
choice of a buffer width is somewhat arbitrary, we 
computed for some buffers various buffer widths and 
subsequently used them in the predictor ranking (see 
Sect.  Statistical analysis (predictions)). In our study 
we finally used noise_Xm (X referring to the vari-
able buffer widths), primary_areas_200, and 
vegetation_height_Xm.

Exploiting the fine-grained detail of our base data 
we furthermore developed three complex factors. In 
accordance with Seiler et al. (2016) we used leading 
structures, that is linear landscape elements leading 
the wildlife towards the roads and hence potentially 
predicting collisions. We propose, in contrast to aerial 
image interpretation, two analytical approaches calcu-
lating leading structures from geodata.
leadstruct.DTM derives leading structures 

from the digital terrain model using run-off hydrol-
ogy tools. To this end, leading structures are mod-
elled as ridges and trenches. We then propose the 
use of two buffer zones around a road segments, 
binner and bouter (Fig.  3a). Leading structures are 
then identified and counted that “lead” from bouter 
to binner . The same methodology is proposed for 
leadstruct.TLM, however, now based on the 
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swissTLM3D topographic landscape model vector 
data set considering linear features such as forest 
edges, water bodies, and hedges (Fig. 3b).
feeding_Xm models the availability of feed-

ing grounds within a neighbourhood buffer based 
on a fine-grained Lidar-based vegetation height 
index. Feeding grounds are modelled as low veg-
etation (potential feeding area) that is surrounded 
by high vegetation giving cover (Fig. 2f). Comple-
mentary to the simple sinuosity proxy for visibility, 
we furthermore modeled a complex visibility 

using a line-of-sight approach and the digital sur-
face model (DSF, see Fig. 2e).

Statistical analysis (predictions)

The goal of the statistical modelling was the identi-
fication of significant parameters for the prediction 
of hotspots and coldspots. The analysis was based on 
the data of wildlife accidents from three Swiss can-
tons: Zurich, Fribourg and Grisons, for which the 
data was available. The two types of segmentation 
used resulted in a different distribution of segments. 

Fig. 2  Operationalizing factors. a Form and distance factors, 
Segment S

1
 is more sinuous that S

2
 , d

P
 indicates the nearest 

neighbour distance to point features, d
L
 to line features, and d

P
 

to polygon features. b Areal neighbourhood factors with buff-

ers for vector data and c, d raster data. e Line of sight visibility. 
f Complex factor feeding_Xm modeled from white cells with 
low vegetation surrounded by a fraction of green high vegeta-
tion
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In case of both kernel models ( kden and kdew ) the dis-
tribution was balanced with an equal number of hot-
spots and corresponding coldspots. The fixed-length 
segmentation resulted in a highly unbalanced distri-
bution of segments, where hotspots accounted for 
only about 5% of total segments. Therefore, the statis-
tical analysis below was done on the segments gener-
ated with kernel algorithms.

The first step of the statistical analysis was per-
formed on the three cantons separately. We started 
with univariate tests to check for significant differ-
ences (significance level � = 5% ) between hotspots 
and coldspots. Since the investigated parameters were 
continuous and not normally distributed, non-para-
metric paired Wilcoxon tests were used. Furthermore, 
we tested correlations of the parameters with Spear-
man coefficients to reduce multicollinearity among 
the predictors. To choose the optimal radius for the 

Fig. 3  Operationalizing leading structures. a Ridges and val-
leys derived from a DTM, and b linear leading structures lead-
ing from an outer zone into an inner zone

Table 2  List of environmental factors used in our models, their operationalisation, and sources

Type Factor Description Data source

Attribute road_category Road category 4 m, 6 m, 8 m, 10 m, 
fast road

swissTLM3D

traffic Mean daily traffic volume in (number 
of vehicles per pro 24 h)

National traffic model ARE

speed Modeled speed National traffic model ARE
Form sinuosity Sinuosity as a proxy for visibility swissTLM3D
Nearest neighbour dist.water Shortest distance to standing or flow-

ing waters (m)
swissTLM3D

dist.forest Shortest distance to forest (m) swissTLM3D
dist.builtup Shortest distance to built-up area (m) swissTLM3D
dist.corridor Shortest distance to wildlife corridor 

(m)
Wildlife corridors FOEN

Areal neigbourhood noise_Xm Traffic noise at night (min, max, 
mean, std) for buffers 20 m, 50 m, 
100 m, 200 m, 300 m, 500 m

Traffic noise BAFU

primary_areas_200m Primary areas (%) within buffer of 
200 m

Vector25

vegetation_height_Xm Vegetation height (min, max, mean, 
std) for buffers 20 m, 50 m, 100 m, 
200 m, 300 m, 500 m

Vegetation height WSL

Complex leadstruct.TLM Number of leading structures (forest 
edges, water bodies, hedges)

swissTLM3D

leadstruct.DTM Number of ridges and ditches swissALTI3D
leadstruct.all Union of all leading structures swissTLM3D, swissALTI3D
feeding_Xm Potential feeding grounds, low veg-

etation surrounded by cover (%) for 
buffers 100 m und 200 m

Vegetation height WSL

visibility Line of sight model with DSM swissTLM3D, swissALTI3D und DSM
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zonal parameters, we have built several logistic 
regression models and observed their performance.

This first analysis showed that there are differences 
mostly between Canton of Zurich and Grisons, there-
fore we have decided to perform further analysis and 
build models for Switzerland’s mountain and midland 
regions separately. Zurich and the main part of Fri-
bourg represent the Swiss midlands, while the Canton 
of Grisons and the remainder of the Canton of  Fri-
bourg are representatives of the Alpine region.

Due to differences between the alpine region and 
the Swiss midlands, separate models were devel-
oped. A total of four logistic regression models and 
two ensemble classifiers (FML for Midland and Alp 
region separately) were established.

– KNR. KDE-based segmentation, Narrow kernel 
kden , Logistic Regression model, for two land-
scape types: KNR Midlands and KNR Alps.

– KWR. KDE-based segmentation, Wide kernel 
kdew , Logistic Regression model, for two land-
scape types: KWR Midlands and KWR Alps.

– FML. Fixed-length segmentation, Machine Learn-
ing tree based classifier, for two landscape types: 
FML Midlands and FML Alps.

Independent of region and segmentation type, all 
models were built from randomly selected 70% of 
the data, while the remaining 30% was used as test 
data for the validation of the model, analogous to 
Seiler et  al. (2016). All models were evaluated with 
the following performance metrics: sensitivity (abil-
ity to identify hotspots), specificity (ability to identify 
coldspots) and misclassification error. The goal being 
to identify as much hotspots as possible, the models 
were optimized with respect to sensitivity.

Regression models were built for KDE-based road 
segments, where each hotspot was followed by a cor-
responding coldspot. The important parameters of the 
regression models were selected by bidirectional step-
wise procedure based on the AIC. Furthermore we 
also investigated the pseudo R 2 and Area Under the 
Curve (AUC) for the models.

In the case of regular segmentation, with highly 
unbalanced data sets building a regression model 
even with Bayesian approach was not successful. 
Therefore, for this segmentation tree based machine 
learning methods were applied. We investigated 
random forest and ensemble sklearn Extra Trees 

classifier with Gini impurity, which resulted in best 
performance. For the hyperparameter tuning Grid-
SearchCV was used. The models were evaluated with 
k-fold cross-validation.

Software and hardware

All GIS operations were executed with ArcGIS Pro 
(2.4) and Python 3.6 with the libraries pandas 0.25.1 
and geopandas 0.6.0. We furthermore used Post-
greSQL 9.4.5, with the extension PostGIS 2.2.1. Spa-
tial data science and statistical modelling used R 3.6.0 
with the libraries sf 2.8-1 and tidyverse. Machine 
learning-based modelling used python 3.6 with scikit-
learn 0.23 package.

Results

Local factors

The first analysis, including univariate paired Wil-
coxon tests and regression models for the three can-
tons separately, excluded average daily traffic vol-
ume and speed due to lack of significance and the 
amount of missing values ( ∼ 10% ). Average traffic 
volume was found to correlate positively with road 
noise. These two parameters are, however, indirectly 
represented in the model via the variable road noise 
(noise_Xm). Similarly, road_category was 
not a significant factor in the regression models for 
all of the cantons and hence not investigated further. 
The following radii were chosen for the zonal param-
eters: 50  m for road noise (mean, noise_50m), 
100  m for feeding grounds (feeding_100m), 
200 m for primary areas (primary_areas_200m) 
and 100  m for vegetation height (vegetation_
height_100m). The complex visibility did 
not significantly improve the model and was only sig-
nificant for one region in the univariate tests. For this 
reason, the visibility was excluded from further anal-
ysis. It was nevertheless incorporated into the models 
indirectly via the parameter sinuosity.

The univariate tests of individual variables indi-
cated differences between coldspot and hotspot seg-
ments. However, the significance of the factors var-
ies from region to region. Table 3 shows a summary 
of the results of the univariate paired Wilcoxon test 
for the final variables used for modeling with chosen 
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radii for the zonal parameters. The parameters that 
were significantly different independent of model 
and region are sinuosity, feeding_100m 
and noise_50m. The parameters dist.buil-
tup, dist.forest, feeding_200m, as well 
as vegetation_height_100m and pri-
mary_areas_200m are significant only in midland 
regions. Due to the fact that data in fixed-length seg-
mented model (FML) were highly unbalanced and not 
paired, we decided not to carry out univariate tests in 
FML.

The performance of the two KDE-based mod-
els is comparable for both regions, Midlands 
and Alps. However, each of the two models con-
tained a slightly different combination of vari-
ables. Regardless of the model, the following 

variables are always significant: sinuosity, 
feeding_100m and noise_50m (Table 4). The 
following parameters (in decreasing order of sig-
nificance): dist.forest, sinuosity, dist.
builtup, noise_50m, and feeding_100m 
are significant in the KNR model for the Midland 
region. Other variables of the model are not signifi-
cant (p-value > 0.05 ), but were still included in the 
model because of the AIC and better performance 
( 3.75% increase in sensitivity and 2.08% decrease 
in misclassification error). In the KNR model for 
the Alpine region, on the other hand, the parame-
ters sinuosity, dist.forest, noise_50m, 
dist.water ,primary_areas_200m , 
feeding_100m and finallyvegetation_
height_100m are significant, arranged in 

Table 3  Results (p-values) 
of the univariate paired 
Wilcoxon tests between 
hotspots and corresponding 
coldspots

∗Significant (significance 
level � = 5% ) 1exact 
p-values could not be 
computed due to ties 2 no 
data available

Variable Midland KNR Alps KNR Midland KWR Alps KWR

sinuosity < 0.001* < 0.001* 0.0013* < 0.001*
dist.builtup < 0.001* 0.0696 0.5975 0.8400
dist.forest < 0.001* 0.0689 0.4469 0.0119*
dist.water 0.7750 0.0089* 0.7346 0.4801
dist.corridor 0.1857 0.0269* 0.5072 0.2111
feeding_100m < 0.001* 0.0378* < 0.001* 0.0297*
feeding_200m < 0.001* 0.1095 < 0.001* 0.0639
vegetation_height_100m < 0.001* 0.0020* < 0.001* 0.0947
noise_50m < 0.001* < 0.001* < 0.001* < 0.001*
primary_areas_200m < 0.001* 0.0442* < 0.001* 0.8108
leadstruct.DTM 0.7707 0.8259 NA

1
NA

1

leadstruct.TLM < 0.001* 0.1963 < 0.001* 0.4662
leadstruct.all 0.0023* 0.4124 < 0.001* 0.4662
visibility < 0.001* 0.6828 NA

2
NA

2

Table 4  Variables included in the regression models ranked in decreasing order of their explanatory power

Significance: ***p < 0.001 , **p < 0.01 , * p < 0.05

Midland KNR Alps KNR Midland KWR Alps KWR

dist.forest*** sinuosity*** feeding_100m*** sinuosity**
sinuosity** dist.forest*** vegetation_height_100m*** feeding_100m

noise_50m** noise_50m** noise_50m*** noise_50m*
dist.builtup** dist.water* sinuosity*** leadstruct.TLM*
feeding_100m* primary_areas_200m* primary_areas_200m** dist.forest

leadstruct.TLM feeding_100m* leadstruct.TLM
vegetation_
height_100m

vegetation_height_100m*

dist.water leadstruct.DTM
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decreasing order. Table  4 summarizes the parame-
ters included in the regression models. The classifi-
cation of the segments between the KNR and KWR 
models differs in the Midland region in 23% and in 
the Alpine region in 21% of the segments. In both 
regions, the KNR model identified twice as many 
hotspots as the KWR model.

In the classification of the FML model the 
most significant factors on which the decisions 
were made were road_category_4m and 
road_category_6m, noise_50m, sinu-
osity and vegetation_height_100m, 
with slight differences between regions (Table  5). 
The most important features in the alpine region 

were road_category_6m and road_
category_4m, followed by sinuosity. 
Whereas, in the Midland region the most important 
features were road_category_6m together with 
noise_50m, and vegetation_height_100m. 
Feature importance for the two FML models are 
summarized in Table 5.

Table 6 summarizes all investigated variables with 
indication of their presence and absence in the mod-
els. Table  7 shows the selected best model variants 
with standardized estimates.

Table 5  Feature 
importances in FML model 
ranked in decreasing order

Midland FML Alps FML

vegetation_height_100m road_category_6m

noise_50m road_category_4m

road_category_6m sinuosity

feeding_100m noise_50m

primary_areas_200m primary_areas_200m

sinuosity road_category_throughway

road_category_4m vegetation_height_100m

road_category_throughway feeding_100m

dist.water road_category_8m

Table 6  Included variables in models

Variable Midland KNR Alps KNR Midland KWR Alps KWR Midland FML Alps FML

sinuosity X X X X X X
dist.builtup X
dist.forest X X X
dist.water X X X
dist.corridor

feeding_100m X X X X X X
vegetation_height_100m X X X X X
noise_50m X X X X X X
primary_areas_200m X X X X
leadstruct.TLM X X X
leadstruct.DTM X
leadstruct.all

visibility

road_category X X
traffic

speed
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Model evaluation (predictions)

All models were able to significantly distinguish 
between hotspots and coldspots. However, all of them 
were more effective in the identification of hotspots 
than coldspots (Table 7).

In the Midland region, both regression models 
(KNR and KWR) can identify the hotspot segments 
relatively well (sensitivity 82.5% and 79.5%, respec-
tively). The pseudo R 2 and the AUC of these two 
models are comparable. Higher specificity accounts 
for less false positives. Together with lower misclas-
sification error, the KNR model is preferable. The 
performance of the FML models was slightly worse. 
In the case of the Alpine region, the performance of 
model KNR is also the best. The ability to identify 
hotspot segments is similar for both KDE based mod-
els (sensitivity 88.6% and 92.7%, respectively). The 
same applies to the parameters misclassification error 
and AUC. Specificity and pseudo R 2 are significantly 
lower in the KWR model (by around 15% each), 
which means that the corresponding model identi-
fies non-hotspot segments worse and explains signifi-
cantly less data. Therefore, for the Alpine region the 
KNR model is also preferable. The models based on 
tree algorithms are a little less effective in both Mid-
land and Alpine region (sensitivity 77.2% and 76.0%, 
respectively). With ∼ 71% specificity in the Alpine 
region the FML model results in a lower number of 
falsely identified hotspots, especially important for 
such unbalanced dataset. At the same time, sensitivity 
lower by ∼ 14% on average than in the kernel based 
logistic regression models, results in more hotspots 
missed.

Exemplary focus areas for Midlands and Alps models

The results section concludes with a closer look at 
the model results embedded in the geography and 
landscape ecology of two exemplary focus areas rep-
resentative for the Midlands and Alps models. The 
featured maps reveal large-scale details about the 
strengths and weaknesses of the KNR, KWR, and 
FML models, allowing a comparison between the 
Midlands and Alps models, respectively. The Midland 
focus area is located near Uster, Canton Zurich, and 
represents the forested colline rural areas of the Swiss 
Midlands (Fig. 4). The Alps focus area lies near the 
lower Engadin capital of Scuol, Canton Grisons. It 
represents the subalpine zone with its elongated val-
leys stretching several elevation zones, typically tra-
versed with a single major road and some branching 
minor roads connecting the rural outposts on elevated 
terraces (Fig. 5).

In order to improve readability of the maps, prob-
abilities are shown as color gradients over discrete 
probability classes instead of continuous probabili-
ties per segments. The road segments were identified 
binary as hotspots and coldspots based on the optimal 
probability cutoff value. The probability ranges of 
each class were then divided equally into two halves 
by a higher hotspot probability and a lower hotspot 
probability. Although this method does not reflect the 
distribution of the hotspot/coldspot segments, it does 
improve the visualization of the classified segments. 
Very high (dark red), high (orange), low (dark purple) 
and very low (light purple) accident probability can 
now be distinguished on the map. For orientation the 
maps show the settlement areas, a generalized road 
network and the forests.

All Midland models (Fig. 4) show good results for 
the collision clusters on the main traffic-heavy roads 
cutting across larger woodlands (variables dist.

Table 7  Comparison of 
models

Model Sensitivity (%) Specificity (%) Missclass. 
error (%)

Pseudo R 2 (%) AUC 

KNR Midlands 82.50 76.56 20.14 25.95 0.83
KNR Alps 88.64 50.00 27.03 29.75 0.84
KWR Midlands 79.46 57.94 31.05 23.24 0.82
KWR Alps 92.86 34.38 25.49 14.09 0.74
FML Midlands 77.19 76.80 23.18 NA 0.83
FML Alps 76.00 70.56 29.17 NA 0.76
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forest, noise_50m as a proxy for traffic load 
and speed), partially even emphasising curvy sec-
tions (sinuosity). The prominent missed colli-
sion hotspots along Lake Pfäffikon (some success 
in KNR, less in KWR and even worse in FML) are 
indicative of noticeable deficiencies of the models in 
open agricultural sections. Here the lack of up-to-date 
geodata on annual crop changes limits the models’ 
power. FML picks up on most hotspots, but mainly 
predicts the high risk category, hardly ever very high. 
The five most important features of the Midland FML 
model are related to vegetation and traffic infrastruc-
ture (vegetation_height_100m, noise_50m, 
road_category_6m, feeding_100m, as well 
as primary_areas_200m), whereas sinuos-
ity and dist.water are less important. This may 
explain FML’s solid results with the main hotspots 
along the fast main roads cutting through the forest 

patches but also its failure on the curvy road along the 
Lake.

The Alps focus area is dominated by the main road 
spanning the lower Engadin Valley from the SW to the 
NE (the continuous central road with the majority of the 
collisions, Fig. 5). The much less busy roads reaching 
out to the smaller villages on the elevated terraces (e.g., 
Sent) feature much less collisions. All models pick up 
on this general pattern, again with KNR achieving the 
best results, here followed by FML. The better perfor-
mance of the FML model in the Alps may be explained 
by its advantage of including explicit road categories as 
features (see Table 5, features road_category_6m, 
road_category_4m). The maps also illustrate the 
absence of forest and the much less dense settlement 
pattern in the mountainous areas explaining the reduced 
importance of dist.forest and dist.builtup 
in all Alps models. Sinuosity, the most important 

Fig. 4  Focus area Midlands. Network of several-traffic heavy 
main roads connecting provincial towns and cutting through 
expanded colline forests. All models capture the main hotspots 

along the main roads, whilst FML misses some collision clus-
ters in the northern forest belt. Data source Federal Office of 
Topography Swisstopo
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variable of the KNR Alps model, may also explain the 
false positive hotspots along the curvy roads to sent in 
KNR.

Discussion

In comparison to many related previous studies on 
WVC that used up to 50% categorical factors (e.g., 
Bíl et  al. 2019; Seiler et  al. 2016) our study used 
almost no categorical data with the only exception 
of road type. Instead, it could rely entirely on areal 
geospatial variables with excellent spatial and seman-
tic granularity due to very good geodata availability. 
For example, instead of relying on qualitative infor-
mation on the vegetation cover next to road inter-
preted from GoogleMaps or other aerial imagery we 
were able to compute a similar indicator from the 

vegetation structure based on a nationwide LiDAR 
dataset (feeding_Xm). This enhanced spatial and 
semantic granularity forced us to invest much more 
in the development of spatial neighbourhood func-
tions relating the environmental factors to the hot-
spot/coldspot segments, hence producing methodo-
logical progress regarding semantic road annotation 
neighbourhood functions tailored for WVC analysis. 
In that regard, a further methodological contribution 
comes in the form of the operationalization of leading 
structures, based on linear landscape features oriented 
towards the road segments.

The selection of variables simplified the predic-
tive process. Using simple road sinuosity over 
the computationally expensive visibility approach 
significantly reduced the computation load. Similarly, 
noise_Xm served as an excellent proxy for traffic 
volume and speed. Comparing the Midlands and Alp 

Fig. 5  Focus area Alps. Elongated lower Engadin Valley with 
main road trough larger villages in valley floor (Scuol) and 
smaller villages on the elevated terraces (Sent). KNR picks up 

on most hotspots along the main road but also predicts some 
false positives, FML performs rather well. Data source Federal 
Office of Topography Swisstopo
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models reveals several differences in their landscape 
ecology impacting on collision risk. Distance to set-
tlement (dist.builtup) features only in Midland 
KNR, but in no Alps model where settlements are 
much sparser and have hence little predicting power. 
Similarly, distance to water (dist.water) is more 
important in mountainous areas whereas in the low-
lands water features are ubiquitous and hence less 
predictive.

Since leading structures were of special interests 
to the experts, the influence of these parameters on 
model performance was investigated in detail. Includ-
ing the leading structure was decreasing the AIC in 
all models, resulting in slightly lower misclassifica-
tion error and slightly higher pseudo R 2 . On average, 
either sensitivity or specificity was increased by 1.5% , 
except for KWR Midland. In this model specificity 
was increased by 5% with a decrease in sensitivity of 
6%.

When comparing between a KDE data-driven seg-
mentation approach with a fixed-length segmentation 
the performance of the models is comparable, with a 
slight favor of KNR model. This is mostly due to the 
KNR model’s higher explanatory power compared 
to other models. This is not surprising as the way 
the data was prepared for both models is different. 
Whereas with the KDE models the segmentation is 
fitted to the hotspots, with the fixed-length segmenta-
tion the actual segment cutting points are somewhat 
arbitrarily positioned, resulting, for example, in split-
ting a hotspot into two neighboring segments, both 
however with lower collision counts. This issue can 
be considered as a one-dimensional case of the modi-
fiable areal unit problem (MAUP) known in spatial 
data science, namely the effect of unstable patterns 
in choropleth maps when point data is aggregated to 
varying administrative units (Cressie 1996). Further-
more, logistic regression may outperform decision 
tree algorithms on smaller data sets and low signal to 
noise ratios. However, when increasing the size of a 
more imbalanced dataset the forest algorithms outper-
form it, which was the case in the regular segmenta-
tion approach.

For the current paper our validation of the models 
is limited to the three Cantons where we have access 
to actual collision data with the required spatial pre-
cision. Within Zurich, Fribourg and Grisons data-
splitting was applied for all models, referred to as 
historical data validation in Rykiel (1996), resulting 

in the performance numbers in Table 7. However, no 
ground truth data is available for the rest of Switzer-
land covered by our models.

Wildlife accidents often occur in situations where 
roads cross favorable wildlife habitats (Malo et  al. 
2004; Garrah et  al. 2015). The animal species stud-
ied here are all bound to the forest, at least at lower 
altitudes. Our models performed good in forest areas 
distant from built-up areas and in the presence of 
feeding grounds. We had less good results with seg-
ments embedded in agricultural areas, due to a lack of 
up-to-date data on annual crop changes. Some crops 
can have a double impact on collision occurrence, 
with this impact even showing a positive feedback. 
A corn field next to a road for example represents a 
severe collision risk. On one hand there are more ani-
mals attracted because of the food and shelter that a 
field may offer. This is relevant for roe deer but also 
and increasingly for wild boar and red deer that are 
expanding their range in the lowlands of Switzerland 
(Graf et al. 2021). On the other hand the visibility is 
significantly reduced. Due to crop rotation the pres-
ence of different crops changes from year to year and 
also within one year the growth status of the crops 
and thus their attractiveness for wildlife changes. Not 
having annual crop data we are missing out important 
collision causes. As an alternative to crop data, spe-
cies abundance could have been included as an even 
more direct predictor. However, this information is 
not available in a homogeneous form throughout the 
country and many cantons lack data with the required 
granularity for our purpose. We included abundance 
at least in an indirect form by using variables like 
forest, hedges, distance to corridors and vegetation 
height.

When comparing our ecological implications with 
related work, we find consent with related studies. 
Our overall most important factors are road sinuos-
ity, food availability and traffic noise, in accordance 
with the related studies (Seiler et al. 2016; Bíl et al. 
2019). In our study road sinuosity turned out to be 
an important factor increasing the risk of WVC. The 
more curvy a road is, the greater the risk of wildlife 
accidents. This can be explained by the fact that when 
the road is curvy, both drivers and wildlife recognise 
a potential hazard later compared to the situation on 
a straight road. Early hazard recognition is crucial 
for the prevention of accidents. It has already been 
shown that unfavourable visibility conditions caused 



1781Landsc Ecol (2023) 38:1765–1783 

1 3
Vol.: (0123456789)

by sinuosity, vegetation or weather conditions can 
strongly influence the accident risk (van Langevelde 
and Jaarsma 2005; Barrientos and Bolonio 2009; 
Laliberté and St-Laurent 2020).

Low vegetation below 1  m surrounded by high 
vegetation, such as we find along forest edges, lead-
ing structures (hedges, groups of trees, streamside 
vegetation) or clearings are attractive areas for ungu-
lates as they find both food and cover. If such grazing 
areas are located near transport infrastructures, wild 
animals stay close to the danger zone or even cross 
it. In comparable studies in Sweden and the Czech 
Republic, grazing areas also seem to be an important 
influencing factor in connection with wildlife acci-
dents (Seiler et al. 2016; Bíl et al. 2019). In a study 
in Spain, grazing does not seem to be an important 
influencing factor, which can be explained by the 
main species studied there, the wild boar (Seiler et al. 
2016). Wild boar also search for food in pastures or 
meadows, but are not interested in the actual grazing, 
but in invertebrates found in the soil.

Road noise is related to speed and traffic volume, 
which in turn are two important factors influencing 
accident risk (van Langevelde and Jaarsma 2005; 
Elvik 2008; Barrientos and Bolonio 2009; Huijser 
et al. 2015; Seiler et al. 2016). If speed increases, the 
time between the detection of a hazard and the poten-
tial collision between vehicle and wildlife decreases. 
The braking distance and impact energy also increase 
with speed. Average daily traffic volume (DTV) and 
speed were excluded from the initial analyses due 
to lack of significance. The lack of significance can 
be explained by the fact that both the hotspots and 
non-hotspots are located on main roads and there-
fore have similar speeds, and in addition the resolu-
tion of the data set is not sufficient for our analyses 
due to the punctual measurements. Also in terms of 
traffic volume, the measurement network may not be 
dense enough to prove the influence of this factor. 
Alternatively, the so-called deadly trap hypothesis, 
which predicts an increased number of falling deer at 
medium traffic volumes, could explain why no cor-
relation between traffic volume and risk of wildlife 
accidents was found (Iuell 2003).

However, it is not the absolute number of vehicles 
on a road section (vehicles per day) that is decisive 
for the accident risk, but the time when the vehicles 
are on the road, because wildlife is mainly on the 
road at dusk and during the night (Bíl et  al. 2020). 

Studies show that the frequency of wildlife accidents 
varies depending on the time of year and time of 
day (Garrah et  al. 2015) and that this seasonality is 
strongly species-dependent (Laliberté and St-Laurent 
2020). Depending on the species, different roadside 
vegetation or other characteristics such as road salt 
as a measure for winter maintenance also influence 
the occurrence of wildlife accidents (Grosman et  al. 
2009; Gunson et al. 2011; Bíl et al. 2020).

In our models, wildlife corridors were not a sig-
nificant factor in causing more accidents compared 
to other studies (Seiler et  al. 2016). This could be 
explained by the fact that many roads also cross opti-
mal wildlife habitats in places where there are no 
wildlife corridors. It is also possible that measures to 
reduce wildlife accidents have preferably been taken 
and implemented in wildlife corridors already.

Conclusions and implications

In this study we present an extensive WVC study 
making use of very rich regional collision data sets, 
excellent fine-grained landscape geodata, using novel 
spatial neighbourhood functions for annotating road 
segments and machine learning for up-scaling the 
regional data to a national model. In accordance with 
most related studies, but based on geodata with much 
improved spatial and attributal granularities, we iden-
tified road sinuosity, browsing/forage availability, and 
traffic flow as key factors for WVCs. Our best models 
achieved sensitivities of 82.5% to 88.6%, with mis-
classifications of 20.14% and 27.03%, respectively. 
Our results also highlighted intrinsic limitations of 
modelling WVCs from land-cover data, especially 
in areas with transient vegetation cover (annual crop 
rotation). Further limitations arose from inhomoge-
neously collected collision data, adding uncertainties 
about the spatial and temporal precision and accuracy 
of collision incidents.

Our paper makes both methodological and ecologi-
cal contributions to the theory of WVC. From a meth-
odological perspective, we illustrate the added value 
of using fine-grained land-cover and ecological data. 
We also show how such detailed information can be 
annotated to road segments using spatial neighbour-
hood functions. Such functions can be implemented 
as straightforward buffer operations or more complex 
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models, as illustrated with the leading structures. The 
experimental section of our paper furthermore com-
pares two different approaches of road segmentation, 
collision data-driven KDE and fixed-length segmen-
tation, both for two different landscape types (mid-
lands vs. alps) and combined with multiple aspects 
of sensitivity analysis (variable segmentation kernels, 
variable neighbourhood thresholds). This compara-
tive experimental section illustrates and quantifies the 
importance and implications of modelling choices, 
key aspects of WVC analysis often overlooked.

As major ecological contributions we extrapolated 
solid national WVC models from three rich but heter-
ogeneous regional data sets, with sensitivities beyond 
82%. Our models and the therefore selected vari-
ables are in accordance to related work, acknowledg-
ing regional characteristics. We identified the most 
important collision factors for the studied Swiss land-
scape types (road sinuosity, browsing/forage avail-
ability and traffic noise), with few but interesting dif-
ferences between midland and alpine landscapes (e.g. 
distance to built-up area is less important in sparsely 
populated mountain areas).

Even though our study benefited from very good 
geodata availability, it also highlighted key aspects 
that could further improve WVC modelling. First, 
annual crop data would be of outmost interest, we 
plan on using Sentinel data for that purpose (see e.g. 
Sigrist et  al. 2022). Such data could also serve for 
modelling the abundance of target species through-
out the country and for the different seasons. This 
spatially and temporally explicit estimation of target 
species abundance could improve the prediction of 
hotspots of WVC’s, especially in regions dominated 
by agriculture. Other data sets available for some test 
regions but not for others were excluded from the 
beginning. For example, road illumination is so far 
only available for some regions, but would be a great 
asset when becoming available nationwide. Harmoni-
zation of collision data capture protocols will further 
extend the range of analytical options. Most impor-
tantly here is the harmonization of the time stamps 
(time of day) to include diurnal collision patterns. 
In future work we intend making use of additional 
ground truth data that will be made available for areas 
beyond our three Cantons. We plan to closely col-
laborate with collectors of the collision data nation 
wide, making sure the insights from our study help 
homogenizing data capture protocols whilst widening 

the coverage of data collision data collection for vali-
dation purposes.

Since both drivers and wildlife tend getting accus-
tomed to permanent warning measures, such as road 
signs or fix installed reflectors (Huijser et  al. 2015; 
Benten et al. 2018), our study helps positioning more 
effective but expensive interactive prevention meas-
ures: warning systems alerting wildlife to approach-
ing cars, and vice versa alerting drivers to present 
and active wildlife. Hence, our prediction maps will 
be used for pre-selecting collision hotspots, that will 
then be further investigated via in  situ analysis and 
local decision makers.
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