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Abstract—Telecommunication networks are shifting to multi-

cloud environments. This trend is expected to shape the stan-

dardization and implementation of future networks. Thus, the

protection of virtualized services has become more critical. One

of the promising methods to secure virtual resources in that

setting is Moving Target Defense (MTD). This paper presents

the Network Topology Fuzzer (TopoFuzzer) module, enabling

different MTD operations that change the topology of a 5G

network. An emphasis is given to live re-instantiations and live

migrations of running services and, consequently, security gains

against Advanced Persistent Threats (APTs). This work utilizes

a 5G testbed to evaluate the TopoFuzzer module and MTD

operations on Virtual Network Functions (VNFs).

Index Terms—Moving Target Defense (MTD), live service

movement, 5G Network Management and Orchestration.

I. INTRODUCTION

In telecommunication networks, the management and or-
chestration of virtualized network resources is already a broad
and fundamental research topic [1]. Following the Network
Function Virtualization (NFV) architecture [2], telecommu-
nication networks deploy network services (NSs) and virtual
network functions (VNFs) in cloud infrastructures as a set of
virtual machines (VMs) or container runtimes. This architec-
tural paradigm is also expected to be a fundamental part of
future networks like 6G.
In general, virtual resources can be orchestrated for security

purposes using Moving Target Defense (MTD) principles [3].
MTD periodically alters a network’s topology and respective
configurations, changing the attack surface constantly to make
the network a moving target for attackers. The objective is to
reduce the attacker’s effective action space in time and space.
With the former, attackers have to perform the attack in a
reduced amount of time to make it possibly successful or to
exploit the collected intelligence. With the latter, the attackers
are forced to re-scan the network and gather new data as
previous reconnaissance becomes obsolete, i.e., a feasibility
and overhead problem for attackers. However, changing or
moving a running telecommunication network might also
disrupt its service and its availability, heavily impacting the
Quality of Service (QoS) and possibly violating Service Level
Agreement (SLA) requirements.

This work considers MTD operations, such as automated
migrations and re-instantiations of VNFs, and discusses the
benefits and possible concerns that may arise. To address both
explicitly, this paper introduces “TopoFuzzer”, a novel solution
to reduce the overhead of MTD operations on QoS of services
deployed and used by end users. Specifically, the contributions
of the TopoFuzzer and its underlying work are summarized
as follows: 1) The design, architecture, and development of
a network module for network topology fuzzing. 2) Enabling
moving stateless VNFs, while they are being used and without
service disruption. 3) Changing the network topology with lim-
ited resources and network overhead, utilizing Virtual Network
Interface Cards (vNIC), also preserving 5G network slicing
isolation 4) Measurement-based data and analysis for empir-
ical evaluation. 5) An open source implementation, publicly
available at GitHub [4].

II. TECHNICAL BACKGROUND AND RELATED WORK

For implementing MTD in virtualized network environ-
ments, a major design choice, as well as a research question,
is what actions are available and reasonable for security
protection. In general, two main categories define the set of
possible MTD actions:

• Soft MTD actions: These involve the modification of the
network topology, e.g., using SDN-based shuffles of traf-
fic flows, reconfiguring network interfaces, or replacing
switches and routing nodes. To this scope, TopoFuzzer
serves as a middle virtual network.

• Hard MTD actions: These operations directly modify
the services’ VNFs, e.g., migrating a VNF to a different
location or re-instantiating it with an authenticated image.

The advantages of Hard MTD actions rely mainly on the us-
age of an authenticated image, removing from the service any
post-instantiation infection and Advanced Persistent Threat
(APT) originating from malware (e.g., installed backdoors,
spyware, botnet command and control (C&C), ransomware, or
other hijacked services). Moreover, a service can increase the
fault-tolerance to its host, by migrating the VNF to a different
edge node, in case the current node is under attack or simply
under maintenance.
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In an NFV environment, these actions are typically enforced
by a controller logic for executing the MTD operations on
the VNFs by interacting with the NFV Orchestrator. As
an example of this design, Soussi et al. have proposed an
MTD Controller module, MOTDEC, to integrate with the new
NFV Security Manager component defined in the ETSI NFV-
SEC 024 draft standard in [5]. MOTDEC directly enforces
soft MTD actions via the TopoFuzzer module presented in
this work. Hard MTD actions, instead, additionally need the
coordination of the NFV MANO and Network slice Manager.

A. Traffic Redirection

The traffic redirection to the new service instance has to
be transparent, meaning that the shift to the new instance has
to be unnoticed by users and possible attackers. Each VNF
has a public IP address and a private one. During hard MTD
actions, the public IP is immutable and fixed, while the private
IP changes each time a new instance replaces an old one.
When dealing with UDP based communications, the traf-

fic redirection is done by using a simple Network Address
Translation (NAT) gateway. As UDP is connectionless at the
transport layer, packets are accepted and directly pushed to
the application layer. However, when dealing with TCP based
traffic, each packet is bound to a connection defined by the
tuple (src ip, src port, dst ip, dst port). Using
simple NAT will work only for newly established connections,
while running connections keep using the old private IP as
the destination until their termination. Waiting for persistent
connections to terminate might be unfeasible or highly costly
in terms of resource consumption as two instances of the same
service are forced to run simultaneously. Other NAT-based
techniques, such as Hole Punching [6], have the same issue
with TCP and may expose the private IP of the VNF when
trying to establish a direct connection. Binder et al. [7] showed
that the connection could be handed over to a new server by
changing IP packet fields related to the “TCP state machine”
such as SYN/ACK number, congestion window, and checksum
value.
In the scope of redirecting traffic to a honeypot server,

Cunha et al. [8] introduced a traffic redirection process using
a proxy with two sockets: i) an in socket, to establish a
connection with the client, and ii) an out socket, to establish
a connection with the moving server. The client node can only
see the connection established with the public IP of the VNF
used by the proxy. When the VNF moves, a new connection is
established using the out socket and sending the payload to
the new server. In [8], it is shown that this method allows
redirecting the traffic with less impact on the performance
compared to the SDN method used in [7].
While the use case defined in [8] only considers redirecting

the traffic of a service running behind one specific port (e.g.,
a web server on port 80), VNFs are full servers with possibly
all the ports open. Moreover, a different proxy node is used
for each VNF as its NIC is mapped to the VNF’s public IP,
interfacing the service to the client.

TopoFuzzer uses the two-socket proxy method inspired by
[8] but excludes the usage of the TCP REPAIR kernel module.
It also solves the above-mentioned problems of redirecting
traffic to only one port and uses one proxy for one VNF,
maintaining slice isolation. Finally, in contrast to the afore-
mentioned works, the implementation of TopoFuzzer is made
open source to facilitate reproducibility and future research
developments.
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Fig. 1: TopoFuzzer architecture

III. TOPOFUZZER ARCHITECTURE

TopoFuzzer architecture is depicted in Figure 1, which
comprises three main components: 1) The shared memory
containing an IP mapping table, 2) The redirection module
composed of multiple proxy-NICs, and 3) The Fuzzing Virtual
Network allowing to implement Soft MTD actions.

A. IP mapping and interface to MOTDEC
Public IPs are predefined for each VNF as they remain

fixed during Hard MTD actions. When a VNF is deployed,
the private IP assigned by the Virtual Infrastructure Manager
(VIM) hosting the VNF is given to the MTD controller
MOTDEC, which then sends both IPs to TopoFuzzer. Topo-
Fuzzer maintains the mapping between private and public IPs.
The mapping is a hash table with two entries per mapping
(i.e., pubIP!privIP and privIP!pubIP). The hash table,
implemented in Redis [9], is then accessible with an API
interface for communication with MOTDEC.

B. 2-socket proxy redirection improvement using conntrack
and port forwarding
A server proxy instance binds the in socket to a fixed

known port. A port forwarding rule is going to change the
destination port of all the traffic sent to a VNF. This allows the
proxy to receive all the traffic despite listening to one port. In
order to get back the original destination port, TopoFuzzer uses
a Linux Kernel feature that keeps track of all the connections
and that is used to enable NAT operations, namely conntrack
[10]. To identify the right connection of forwarded packets,
TopoFuzzer uses three available values: the connection type
(which, in this case, is always TCP), the source IP of the client,
and the source port of the client. Knowing the connection is
session based, the pair (source IP, source port) is unique
per connection (contrary to UDP, where the same pair can
send packets to different IPs and ports). The set of (vNIC,
proxy) per VNF is implemented using the Mininet [11] host
abstraction, which creates a new vNIC and starts separate
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python interpreters (for the 2-sockets proxy function) per host,
keeping them in the same Linux kernel space of the Topo-
Fuzzer node. This implementation proves to be considerably
flexible and efficient as it uses the same amount of resources
while quickly scaling up TopoFuzzer for large-scale realistic
networks with hundreds of VNFs. Moreover, it reduces the
network overhead of the TopoFuzzer solution since the proxy
nodes get direct system access to the mapping table without
using network resources for the data exchange. As Redis is
an in-memory hash-table store, fetching a new private IP for
a specific connection has a constant complexity of ✓(1).

C. Fuzzing Virtual Network
To perform Soft MTD actions without affecting the real

network topology but changing the topology view from the
client perspective (e.g., if they scanned the network with tools
like traceroute and nmap), a virtual network composed of
switching and routing nodes is placed between the proxy nodes
and the User Plane Function (UPF). Adding a gateway in the
route, removing one, or replacing it with another gateway, are
all operations that affect only the visible session to the clients.
In contrast, the sessions from the out sockets of the proxy
nodes to the VNFs are internal by nature, hence, not modified.
These operations are enforced by using an SDN controller
connected to the switches of the Fuzzing Virtual Network.
The SDN Controller is hosted in the MOTDEC module, as it
orchestrates MTD operations, while the Mininet API is used
to initiate the fuzzing virtual network and the proxy nodes at
runtime.
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Fig. 2: 5G testbed deployment for TopoFuzzer

TABLE I: Average bandwidth for different traffic types

Traffic type Avg. bandwidth

Sender

(Mbps)

Avg. bandwidth

Receiver

(Mbps)

Standard

deviation

Direct TCP 159 159 8.95

Direct UDP 225 138 37.85

Indirect TCP 157 157 10.22

Indirect UDP 221 136 39.26

IV. 5G TESTBED

Fig. 2 illustrates the topology of the TopoFuzzer 5G
testbed, comprising two separate OpenStack deployments for
the Edge, Radio Access, and Core network domains. The
Edge Openstack NFVI includes the 5G UEs, the gNB, the
Edge User Plane Function (UPF), and a generic VNF that
provides an application service to the connected users. The
Core Openstack includes the control plane of the 5G Core
Network, the subscriber database, and generic VNFs for
service provisioning. The Core Openstack also provides the
MTD orchestration entities, namely the MOTDEC, the Katana
Slice Manager [12], and the Network Function Virtualization
Orchestrator (NFVO) implemented by Open-Source MANO
(OSM) [13]. A Topofuzzer is deployed at both Edge and
Core Openstack instances. This deployment allows emulating
a distributed UPF architecture, where the UPFs are co-located
with the gNB on the Edge domain. The control plane of the
5G network is deployed on the Core OpenStack and includes
the control plane functions of the 5G network.
The core 5G network is implemented with Open5GS [14],

an open-source 3GPP Release-16 compliant implementation.
The Radio Access Network (RAN) and the mobile UEs are
implemented by UERANSIM [15], an open-source UE and
gNB simulator. The 5G architecture is Standalone (5G SA).
UERANSIM connects to Open5GS via a control interface with
the AMF and a user interface to the UPF. The UEs and the
gNB connect via a simulated radio interface. Unlike actual
hardware equipment, UERANSIM allows the deployment of
multiple virtual UEs to test the solution’s scalability, i.e., the
operational cost of the solution under an increasing network
workload.

V. EXPERIMENTAL RESULTS

To evaluate the TopoFuzzer overhead on connection band-
width, both TCP and UDP traffic is generated from the UE
using Iperf3 [16]. As illustrated in Table I, TopoFuzzer
did not show any relevant overhead on the bandwidth in
the 5G testbed environment. However, what became evident
during the tests is the importance of the allocated networking
hardware resources and their capabilities. In our 5G testbed,
the communication bottleneck was the UPF, which manages
the data plane communication both at the core and edge
domains (each domain with a different instance of the service).

A. TopoFuzzer QoS Overhead - HTTP/2 and HTTP/3

This set of tests runs HTTP/2 communication traffic to
evaluate the QoS overhead based on latency and packet loss
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rate metrics. The RTT is used for determining the latency,
while a request that does not receive a response within
one second is counted as a packet loss. When establishing
connections with 30 different UEs, in case of adding a UE
every 5 seconds, TopoFuzzer overhead on the RTT is 4.5%,
while for 50 UEs, this increases to 29% (from an average RTT
of 23.384 ms to 30.35 ms). In both cases, no packet is lost.
To test the scalability of TopoFuzzer, 100 connected UEs

are deployed by adding 5 UEs simultaneously every 5 seconds.
The RTT overhead reaches 38% as depicted in Figure 3). RTT
values with (orange line) and without TopoFuzzer (blue line)
are the same most of the time (showed by the measured latency
overlap depicted in Figure 3).
As TopoFuzzer can also redirect communications over the

QUIC protocol (built over the UDP transport protocol), the
QoS overhead is tested on the recently standardized HTTP/3
protocol. The first noticeable difference compared to HTTP/2
is the reduction of the latency overhead, with 4% when having
50 UEs connected (against the previous 29% in HTTP/2) and
0.9% when having 70 UEs (compared to 37% in HTTP/2).
With and without TopoFuzzer, the testbed could not scale to
100 HTTP/3 UEs, assuming that the cause is the additional
TLS encryption the VNFs have to support with their limited
resources (1 vCPU and 512 MByte of RAM).
Another observable difference is the absence of the limita-

tion on the number of simultaneous connection establishments:
instead of seven simultaneous connections with HTTP/2, the
number of connections with HTTP/3 has to be over 48 to
start observing packet losses. However, this limit is the same
when running direct HTTP/3 traffic (i.e., without TopoFuzzer),
inducing that it might have reached the limits of the resources
allocated for the VNFs. Hence, the latency gap between direct
and indirect communication does not increase.
Tests alternate between re-instantiate and migrate operations

on the VNF 30 times using HTTP/2 and 30 times using
HTTP/3. During a [re-instantiate – migrate – re-instantiate]

Fig. 3: HTTP/2 QoS overhead – Latency overhead and packet
loss rate of TopoFuzzer (orange), compared to normal perfor-
mances (blue), when increasing UEs by five every five seconds
up to 100 UEs

sequence, the QoS overhead becomes observable with 10 UEs
connected to the VNF via HTTP/2. The average packet loss
rate increase in a one-second frame window is 7% for the
VNF re-instantiations and 33% for VNF migrations. Packet
losses affect the latency (i.e., the RTT), occasionally up to
hundreds of milliseconds for one second. Considering the
measured data, where a 33% packet loss rate in one second
corresponds to a downtime of around 330 ms, if a Service
Level Agreement (SLA) with 99.999% of availability has
to be maintained, TopoFuzzer would allow up to 911 MTD
migrations or 4293 MTD re-instantiations per service per year.
This is equivalent to 17 migrations or 82 re-instantiations per
week, an upper limit sufficient to proactively neutralize and
kick off any infection from the VNF.
When only one UE is connected to the VNF, there is

no latency or packet loss rate increase when performing
migrations and re-instantiations. With HTTP/3, the traffic load
of 10 UEs shows a migration’s latency overhead of 5 ms in a
one second window, from 5 ms to 10 ms, before going back
to 5 ms. Unlike HTTP/2, there is no packet loss during the
simultaneous redirection of the UEs traffic, and this scales up
to 50 simultaneous UEs. The downtime of 5 ms for HTTP/3
would allow performing up to 60126 migrations per year (and
283338 re-instantiations) under a 99.999% SLA availability
requirement. To generally keep the values mentioned in terms
of SLA requirements, TopoFuzzer could be optimized to
progressively migrate connections based on its vNIC capability
and the protocol involved (TCP or UDP) rather than simply
redirecting all existing sessions at once. This comes with an
additional cost stemming from running two instances of the
service for a longer time, which might be a negligible cost
compared to having an occasional service downtime.

VI. SUMMARY AND PRELIMINARY CONCLUSIONS

TopoFuzzer enables the live migration of open connections
built on TCP and UDP. HTTP/3 reduces the redirection
complexity, improving its flexibility and QoS overhead com-
pared to HTTP/2. TopoFuzzer shows a continuous bandwidth
overhead of 1.33% for UDP and 1.25% for TCP, when services
are not moving. QoS metrics, namely jitter and RTT, show
a negligible increase when moving connections, with the
best performance on UDP-based connections. For HTTP/3 a
respective increase of 1.33% and 4% was achieved. Overall,
this capability is instrumental and enables MTD proactive and
reactive protection against any malware infection that leads to
critical security threats such as APTs.
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