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Abstract—The combination of physics and engineering infor-
mation with data-driven methods like machine learning (ML) and
deep learning is gaining attention in various research fields. One
of the promising practical applications of such hybrid methods
is for supporting maintenance decision making in the form of
condition-based and predictive maintenance. In this paper we
focus on the potential of physics-informed data augmentation for
ML algorithms. We demonstrate possible implementations of the
concept using three use cases, differing in their technical systems,
their algorithms and their tasks ranging from anomaly detection,
through fault diagnostics up to prognostics of the remaining
useful life. We elaborate on the benefits and prerequisites
of each technique and provide guidelines for future practical
implementations in other systems.

Index Terms—physics-informed Machine Learning, Condition-
Based Maintenance, Predictive Maintenance, Anomaly Detection,
Fault Diagnostics, Fault Prognostics, Deep Learning.

I. INTRODUCTION

Decision making for optimal health management of indus-
trial assets has been traditionally performed based on domain
knowledge and physical models, whenever available. However,
in recent years, with the abundance of machine data and the
industry 4.0 revolution, there is an increasing trend towards
data-driven solutions, focusing on condition-based and predic-
tive maintenance algorithms [1]–[4]. A natural step forward is
being made with the recent movement into hybrid methods,
that combine the best of both worlds: exploiting the vast basis
of domain knowledge and years of experience on one hand,
and making use of data-driven innovations and resources on
the other hand. This combination of physics with data-driven
models is known as ”physics-informed machine learning”
(PIML) and can be applied in many fields and various ways, as
summarized in a recent seminal review paper [5]. One of the
approaches mentioned there is to use physics information in
order to augment and supplement the training data for machine
learning (ML) algorithms. As in other fields, some examples
of PIML applications for equipment prognostics and health
management (PHM) have been recently demonstrated [6]–[8].

In this paper we demonstrate different approaches to
physics-informed (PI) data augmentation for ML algorithms
applied to PHM problems. The approaches are demonstrated
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on 3 different industrial use cases. The use cases differ not
only in their application fields but also in the task that the
ML is aimed at, ranging from anomaly detection, through
degradation trending and diagnostics and up to prognosis of
the remaining useful life (RUL) of the machines.

The use cases concretely demonstrate the various benefits of
PIML for practical applications. A central advantage over pure
data-driven approaches is an enhanced prediction accuracy
even when labeled data is scarce, which is a common challenge
in PHM problems. The second obvious advantage is that
physics allows for a high degree of interpretability of the
model outputs compared to models based on data alone.
This, in turn, has the added value of increasing the trust and
acceptance of the local domain experts in the outcomes of the
models. In the other direction, the possibility to supplement
traditional knowledge-based approaches with modern data-
driven ones offers higher fidelity of the models on individual
units despite the heterogeneity of their operative conditions.

An important contribution of this paper is to point out
universal concepts of PIML over diverse application fields,
data types, and tasks, which are transferable to many other
systems. At the same time, we elaborate on the differences
between the use cases and provide guiding principles for
practitioners that allow to select the most appropriate approach
for their own use case.

The paper is organized as follows: Sections II, III and IV
describe the 3 use cases. In Section V we compare the use
cases and provide guidelines for future applications.

II. USE CASE I: PIML FOR FAULT DETECTION IN SOLAR
POWER PLANTS

In this section we describe the application of PIML for
automatic fault detection (FD) in utility-scale operational
photovoltaic (PV) power plants. One of the common fault
mechanisms in PV plants are tracker faults. Solar trackers are
devices that orient the solar panels towards the sun, thereby
maximizing the amount of energy produced from a fixed
amount of installed power generating capacity [9]. A tracker
fault usually occurs when the tracker gets stuck at a certain
orientation instead of tracking the sun.

Tracker faults can lead to a significant reduction in the
power produced by the PV strings that are mounted on the
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faulty trackers. Early and automatic detection and localization
of such faults can therefore prevent large production losses,
thereby increasing the cost-effectiveness of solar energy and
thus helping to accelerate the transition towards renewable
energy sources. Despite the potential efficiency gains, the
scientific literature addressing tracker faults is very scarce [10].

In our work [11] we suggest an algorithm for tracker
FD based on operationally available power data and use a
physical model to augment the data. We train a classification
Convolutional Neural Network (CNN) on the augmented field
data from an operational PV plant under various healthy
(normal) conditions. The plant is monitored at string level, thus
the input to the CNN is the measured produced power of the
single PV strings (rather than from individual solar panels).
The approach we take is somewhat uncommon: instead of
developing a full system simulator, we rather collect field
data from a healthy system and use a physical model of the
tracker mechanism exclusively for the generation of synthetic
faults out of the healthy field data. In this way we obtain an
augmented training set, containing 50% healthy power profiles
from the field data and 50% faulty profiles that were generated
using a physical model to corrupt healthy profiles (see Figure
1). This data set is used to train a binary CNN classifier to
distinguish faulty from healthy daily string profiles, thus detect
the faulty strings every day. The trained CNN was tested on
two data sets: i) a synthetic data set, where all faults are model-
generated. ii) a field data set with real historical tracker faults.
The test results are shown in Figure 2 (a) and (b) for test sets
with synthetic and real faults respectively. The precision-recall
curves (PRC) are compared with the ones of a purely data-
driven anomaly detection convolutional autoencoder trained
with the healthy data only. The performance of the PIML is
better, both for synthetic and for real faults. However, on real
faults, the data-driven model performs extremely poorly and
suffers strong instability against randomness in the training
process (observed through strong fluctuations of the PRC over
multiple training repetitions). The PIML, on the other hand,
generalizes very well from the synthetic to the real conditions
and shows highly reproducible and robust results. For more
details about the model we refer the reader to [11].

The motivations to take the described hybrid approach
for this use case are multiple: i) field data under healthy
conditions is typically abundant ii) the field data captures
complex phenomena that are very hard to simulate. In our
case, these are highly non linear weather dynamics and their
effect on the power production. iii) the field data covers the
realistic variability between strings within one power plant.
iv) we were able to express the effect of the faults as function
of the physical variables in the healthy component, i.e., to
generate faulty power profiles by corrupting the healthy ones
using a simplified approximate physical model. It is important
to note that since the richness and complexity of the operative
conditions is covered by the healthy field data, the level of
accuracy of the fault simulator is allowed to be rather low.

Some key aspects of the approach are universal and may be
found useful irrespective of the specific application:
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Fig. 1. Training scheme of the physics-informed deep learning model for
fault detection in solar power plants. Healthy field data (left) is augmented
using a physics-based fault simulator (middle) to generate synthetic faulty
data (right). The augmented data is used to train a deep CNN classifier.
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Fig. 2. physics-informed vs. a pure data-driven model. The fault classification
performance of two models is evaluated in terms of their precision-recall
curves. A purely data-driven convolutional autoencoder is compared with a
physics-informed (PI) deep learning model on two test data sets: (a) with
synthetic faults simulated using the physical model (b) with real annotated
faults from field data. For each model, we show the results of 10 training
runs and their median (thick curve). The AUC of the median curve is given
in brackets.

• Using physical models to synthesize faulty data from field
healthy data is a recommended approach when very little
or even no faulty field data is available. The approach
requires rich healthy data, which represents all operative
conditions during normal operation of the machines.

• Another prerequisite for the approach is access to an
approximate physical model of the effect of faults on the
healthy data. this allows to ”corrupt” the healthy data in
a physics-informed manner.

• If the field data covers the complexity and variability of
the healthy states, the physical model need not be highly
precise.

• Introducing noise to the synthetically augmented data can
improve the performance and the robustness significantly.
The noise should be physics-informed rather than com-
pletely random. In this way, potential sources of physical
noise in the data can be simulated (for details, see [11]).
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Fig. 3. Overview of the hybrid PIML framework for degradation trending
and fault detection in gas turbines (GTs). A fleet-level digital twin is based
on a physical model of the GT and is adapted to predict individual turbines
using a transfer learning discrepancy model.

III. USE CASE II: PIML FOR FAULT DIAGNOSTICS OF GAS
TURBINES

In this section we describe the application of PIML for the
purpose of health monitoring and diagnosis of faults in heavy
duty gas turbines (GTs). GTs are complex machines with a
typical economical lifetime of decades and different degrada-
tion and wear-out behavior of the different components [12].
Continuous monitoring of the condition of GTs is essential
in order to detect upcoming failures or estimate degradation
levels and have a clear understanding of the root cause. This
condition monitoring is typically done by comparing the actual
measured variables (such as output power, temperature, and
pressure) with the ones expected based on a physical model
of the GT. Such physical models serve primarily for design
purposes or performance evaluations during machine design
and commissioning [13].

The main disadvantage of using a first-principle physical
model is that it usually fails to capture the unit-to-unit vari-
ability arising from differences in sensor calibration, settings,
and history of operation and maintenance [13]. In this way,
discrepancies between the expected and actual behavior are
not easily interpretable and thus cannot be clearly assigned to
specific failure or degradation modes.

Here we describe a hybrid approach, combining a physical
model of GTs with data from individual units in order to
accurately monitor anomalies and degradation patterns and
deduce their root cause. The approach can be divided into
two steps as depicted in Figure 3:

1) A fleet-level digital twin (DT, green in Fig. 3). A
fully connected regression neural network is trained to
reproduce the outputs of a physical model. The inputs to
the model are the operative conditions of the GT (inlet
temperature, pressure, humidity, and guide vane). The
DT is trained to output 12 performance variables of the
GT (such as the power output, and various outlet values).
It is calibrated to reproduce the mean fleet values. The
advantages of the DT are its computational efficiency
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Evaluation of monitoring data 
The main goal of the hybrid model is to remove the variation 
caused by different operation conditions, and thus detect 
deviations earlier. Thus, the deviations are detected through 
residual evaluation. In the statistical field several different 
trending and failure decision algorithms are available, and in 
[19] the most practical algorithms are described in detail. When 
a batch of data from one day of operation is evaluated, one can 
expect to see a residual as illustrated in figure 10 (by the hybrid 
model residuals).  The residual is centred on 0, with a low 
variance, when the GT is performing as expected. However, 
several different mechanisms will affect the residuals, such as 
degradation, sensor faults and hardware failure. In many 
situations, time-based progressions of the deviations are of 
interest, especially when diagnosing any potential failures.   
 
To illustrate the hybrid model response for a failing sensor, a 
sensor slow degradation rate is superimposed on unseen TAT 
data collected after the hybrid corrector development. The 
superimposed trend is shown in Figure 11. Without knowing 
the true value for the correct sensor reading, this sensor failure 
would be difficult to detect at an early stage.  
 
The sensor degradation is imposed on the operational data is a 
linear trend with a degradation rate of: 
 

dayC
dt

dT
/18.0 °°°°====  

 
To illustrate the impact of this degradation rate on fault free 
measurement, figure 11 shows the both the operational fault 
free data as well as the data with superimposed degradation 
trend.  
 

 
Figure 11: Sensor failure superimposed on fault free 

operational data 
 

To provide an example of how this degradation trend is 
revealed and detected by the hybrid model, figure 12 shows the 
hybrid model residual as well as the superimposed degradation 

trend in time frame of 14 days. In addition, the surrogate model 
residual is shown. Without focusing on optimal detection time, 
it can be recognized that when the sensor has drifted circa 1°C, 
the residual passes the uncertainty of band of ±1°C that was 
seen in the model development error. The hybrid residual 
follows the superimposed degradation trend rather well. The 
difference between the two can be attributed to model error, as 
well as missing parameters affecting the performance and 
sensor noise. The surrogate model error fluctuates rather much 
around the superimposed degradation trend; this is basically the 
high variance error as seen in figure 9. In a practical 
application, this would lead to a prolonged time for detection of 
the degraded sensor.  

 

 
 
Figure 12: Residual evaluation of 1st principle model 

and hybrid model 

CONCLUSIONS 
Monitoring today is carried out in centralized M&D centres 
where experts analyse data from multiple plants. Efficient 
monitoring tools are needed to support the personnel in the 
evaluation of incoming data and flagging potential problems 
requiring detailed assessment. These tools need to be robust and 
efficient, both in their application as well as in their 
development. A hybrid model combines the in-house expert 
knowledge of GT operation, as well as taking individual 
settings and characteristics, to enable accurate monitoring of 
the unit’s measured data from the unit. A pure data-driven 
modeling of the GT performance requires complex statistical 
models, while on the other hand day- to- day monitoring  using 
complex 1st principle models of the GT is not efficient. By 
combining the two sources of information, we can have the 
“best of both worlds”. The main reasons to generate a surrogate 
model of a 1st principle performance tool are: 

 

• Faster than a 1st principle model, since there is no 
complex iterative solver once it is developed 

• The data validation functionality is not constrained by 
model equations 

• Can be applied to new plants with limited operating 
history, with increased allowable residual thresholds 

• Ease of integrating together different systems 
independently of the first principle model which 
generated the surrogate. Modular construction 

Fig. 4. Degradation monitoring of a GT using the prediction residuals. The
hybrid PIML approach (orange) captures the true degradation (black) much
more accurately than the pure physical model (blue).

and numerical stability compared to the original physical
model.

2) A fine-tuning unit-specific transfer model (blue). The
output of the DT is used together with field condition
monitoring (CM) data from a specific unit, in order to
train a discrepancy transfer learning (TL) model based
on Gaussian kernel regression (AAKR) [14]. The TL
model is aimed at correcting the fleet-based physical
output and adapting it to produce accurate predictions
for the specific unit.

For a more detailed description of the hybrid method, we refer
the reader to [15].

in Figure 4 we show an example of the application of the
method for monitoring the condition of a GT. The data in
the plot was generated as follows: field data from a healthy
operational GT was recorded. Then, a degradation trend was
mathematically added to performance data in order to emulate
a failure and have a clear ground truth for the model validation.
The Figure compares the prediction residuals of the physical
model (blue) with those of the hybrid PIML approach (orange),
and the ground truth degradation trend (black). The hybrid
model is capable of detecting the degradation faster, more
accurately and with a high degree of certainty compared to
a purely physical model. A reliable degradation monitoring,
in turn, is a key condition to diagnosing the root cause of the
failure by monitoring all output variables simultaneously.

Some aspects of this approach are universal and may be
relevant irrespective of the application:

• For many complex industrial systems there exists a rich
domain knowledge in-house that can and should be taken
advantage of, not only in the design stages, but also for
condition monitoring purposes. A PIML approach allows
to exploit this knowledge. This, in turn, is expected to
increase the trust and acceptance of the local domain
experts in the predictions of the model, which is familiar
to them.

• A generic physical model is often unable to account for
the unit-to-unit variability. Field data from the specific
unit enhances the predictive power of the model for
this very unit. The advantage of the hybridization of the
physical model with the data-driven model is that even
very little data can significantly improve the accuracy.



This allows for deployment at early stages, with the
possibility to improve the accuracy with additional field
data.

• A data-driven TL method to adapt the physical model
for a specific unit increases the interpretability of the
fault mechanism. In addition, it allows to understand
the natural variability within the fleet, and thus supports
design improvements.

IV. USE CASE III: PIML FOR FAULT PROGNOSTICS IN
TURBOFAN ENGINES

In this section, we describe the application of PIML for
the robust prognostics of the remaining useful life (RUL) of
a small fleet of turbofan engines.

Some of the most common long-term deterioration mecha-
nisms in aircraft engines are erosion, corrosion, fouling, and
tip-clearance increases on rotating components [12]. These
deterioration mechanisms have an impact on engine perfor-
mance indicators like the thrust, the operating temperatures,
and the fuel consumption, which in turn affect the lifetime,
the operational cost, and even safety [7].

One of the main challenges for reliable diagnostics stems
from the fact that the degradation mechanisms are only in-
directly measurable or detectable through an in-depth engine
inspection, with no possibility to monitor effects like fouling
or erosion directly. Therefore, early detection and isolation
of the degradation source (diagnostics) and the prediction of
the failure time (prognostics) must be inferred from indirect
measurements or, alternatively, from physical models of the
engine [12].

In this work, we follow the design principle of the early
work [8] and suggest a new algorithm combining physics-
based and deep-learning models that enable accurate, robust,
and simultaneous diagnostics and prognostics of turbofan
engines. The proposed algorithm is depicted in Figure 5. Some
of its building blocks are similar to the ones in the GT use
case described above. The first building block is a digital
twin (green) trained to emulate an existing physics-based
performance model of the engine. The DT takes CM variables
(i.e., throttle position, altitude, and ambient temperature) as
inputs and provides measured variables as outputs, such as
pressure and temperature in various locations on the engine.
As a major difference to use-case II above but similarly to
use-case I, the DT also takes as input health parameters that
account for the performance impact of degradation at the sub-
component level. In other words, the DT is aimed at modeling
not only healthy conditions but also degraded ones. Similar to
the GT use-case II, a discrepancy term (blue) is also computed
to compensate for errors of the DT resulting from factors
that are unaccounted for by the physical model (these can
be unit-to-unit variations). But, contrary to use-case II, no
modeling is involved for the discrepancy. The discrepancy-
aware calibrated DT (blue) is able to provide accurate sensor
readings estimations of degrading systems given the operative
conditions and the discrepancy.

System

RUL Network

Digital Twin

Inference 
Network

Calibrated 
Digital Twin-

Discrepancy

Fig. 5. Overview of the proposed PIML framework for fault prognostics
and diagnostics in turbofan engines. Given a DT of the engine (green) and
CM data, engine health parameters capturing the performance impact of the
degradation on the engine components are obtained with an inference network
(orange). To compensate for a possible incomplete physical representation of
the DT, the discrepancy-aware model (blue) is incorporated to provide accurate
sensor reading estimations of degrading systems. The DL-based RUL network
(black) receives an augmented input space of CM features, model discrepancy,
and known engine health parameters and provides a RUL prediction as its
output.

In addition to the DT and the discrepancy blocks, here,
there are two building blocks that allow for simultaneous RUL
prediction and root-cause identification: the inference network
(IN) (orange) and the RUL network (black). The IN is aimed
at inferring the hidden internal variables (health parameters)
that account for the performance impact of degradation on
the engine components. In this way, degradation can be not
only monitored but also accurately quantified and assigned
to a specific root cause. The RUL network model receives
as inputs the run-to-failure CM data, the inferred health (or
degradation) parameters from the IN unit as well as the
observed discrepancy of the DT to provide a prediction of
the RUL.

The inference, the discrepancy, and the RUL networks are
trained simultaneously in an end-to-end fashion using full run-
to-failure degradation CM data from a small fleet of three
turbofan engines [16]. For simplicity, fully connected layers
were considered in this case study for all the networks.

The performance of the proposed method is compared with
the one of a purely data-driven prognostic method. Figure
6 shows the error between the true and predicted RUL for
a purely data-driven approach (left) and the proposed PI
approach (right) on the test data, containing three turbofan
engines sharing the same failure mode. The average root mean
squared error (RMSE) in engine cycles is given in brackets.
Under this metric, the proposed hybrid approach provides an
average increase of 15% in RUL prediction accuracy. It is
important to highlight that in addition to a RUL estimation,
the PIML method provides early detection of the degradation



(RMSE [cycles] = 6.79)  (RMSE [cycles] = 5.74)  

Data-Driven Physics-Informed (PI)

Fig. 6. physics-informed vs. a pure data-driven model. The RUL prediction
performance of the two models is evaluated in terms of their prediction errors
versus time along with their confidence bounds. The overall RMSE [cycles]
is given in brackets.

along with the diagnostic information, which engine compo-
nent is involved in the degradation.

There are several motivations to take the described hybrid
approach for this use case: i) for safety-critical systems such
as aircraft engines, a physics-based performance model or a
surrogate model is generally available for control and per-
formance evaluation from different stakeholders (e.g., OEM
and O&M), ii) on the other hand, a lower-level representation
of the physical process and, in particular, accurate damage
models with a reasonable computation cost are not available,
iii) the failure modes of interest result in a degraded per-
formance which in turn produces discernible signatures on
sensor readings, iv) the performance impact on the system
components resulting from degradation of the system can be
roughly represented by a set of known model parameters called
’health parameters.’ v) the functional failure of interest has
been observed and recorded for a small fleet of engines, i.e.,
run-to-failure trajectories in the form of time series sensor
readings along with the corresponding time-to-failure labels
are available.

Also here there are universal aspects of the approach, that
may be relevant for other applications:

• The PIML approach provides accurate predictions of the
RUL, even when available data sets to train data-driven
models are sparse.

• Using physics-based performance models to enhance the
interpretability of the degradation process in terms of
physically meaningful features is recommended for the
diagnosis and prognostics of safety-critical systems such
as turbofan engines. This means that degradation can
not only be interpreted in terms of its effect on the
sensor readings but also in terms of known engine health
parameters.

• The fidelity of the performance model in approximating
the real process is not a prerequisite. It is assumed that
complex physical processes cannot be modeled in full
detail with reasonable computational cost. Therefore, the
discrepancy term allows for the compensation of the
unknown physics.

V. GUIDELINES FOR THE APPLICATION OF
PHYSICS-INFORMED DATA AUGMENTATION

Sections II to IV demonstrated three applications of PIML
for the purpose of machine health monitoring and manage-
ment. In all three examples, physical knowledge was exploited
in order to augment the available data used as input to the
model. However, each example took a different approach to
data augmentation, selected according to the task, the data
availability and the access to physics-based models. A sum-
mary of the comparison between the approaches is displayed in
Table 1. Below we elucidate the advantages and prerequisites
for the implementation of each approach.

A. Synthetic Fault Generation from Healthy Field Data

In use case I, the synthetic generation of faults requires
rich and representative data from healthy regimes, but no
labeled faults or anomalies. On the other hand, it requires
a relatively basic physical model of the fault mechanism that
serves to synthesize faults from field healthy data, thereby
augmenting the healthy data and allowing to train a supervised
classification model. The synthetic faults were found to be
representative enough of the real faults, such that a DL model
trained with the augmented data reached excellent performance
on field data with real faults, outperforming pure data-driven
models. This approach could be used ideally for anomaly
detection or diagnostics, in cases of abundance of healthy data,
when no labeled faults are available.

B. Transfer Learning for Data-Driven Calibration of a Digital
Twin

In use case II, in contrast to the previous example, a high
fidelity physical model was available and had been deployed in
the past for design purposes. This is often the case for complex
industrial machines, for which extensive domain knowledge
has been accumulated over the years. The physical model is
used for the development of a digital twin, which models the
system behaviour under healthy conditions. In order to adapt
the model to reproduce the behaviour of specific individual
units, healthy data from these units must be collected and
fed into a transfer learning discrepancy model. The resulting
unit-specific model is used for monitoring degradation trends
in the model residuals, thus allowing for interpretable fault
detection and identification of anomalous sensor readings. This
hybrid approach is suitable for degradation monitoring and
diagnostics in case a well established physical model as well
as healthy historical data from some fleet units is available.
It can then be used in conjunction with relatively little field
data from the individual units for which condition monitoring
is needed.

C. Performance Model Interpretation using Degradation Data

Similarly to the previous case, in use case III, the availability
of a physics-based performance model is a prerequisite. The
main difference to use case II is that the training is done
with full degradation trajectories and that machine health



System Solar power plants Gas turbines Aircraft engines

Main idea Synthetic fault generation from healthy field data Transfer learning for data-driven calibration of 
a digital twin

Performance model interpretation 
using degradation data

Task Anomaly detection •Degradation trending
•Fault detection and localization

RUL prediction with diagnostics

Data used for •Healthy training data 
•Baseline for fault generation

•Calibration of fleet-based digital twin
•Model transfer from fleet to individual units

•RUL Modelling
•Identifying the root-cause of
degradation

Physics used for Synthetic fault generation from healthy data A fleet–based digital twin A digital twin, including a 
degradation model

Prerequisites of 
the approach

•Representative healthy field data
•Simple approximate model of fault mechanism

•Physics based performance model
•Small amount of healthy data from each unit

•Physics based performance model
•Run-to-failure data of several units

Benefits of 
hybrid approach

•High accuracy with no fault data
•Natural extension from detection to diagnostics 
•No need for high modelling accuracy of the 
physical model (complexity covered by the data)

•Early deployment with little field data
•High acceptance of in-house domain experts
•Interpretability
•Support for design improvements

•Accurate RUL prediction with sparse 
training data

•Interpretability of the degradation 
root-cause

Hybridization 
level physicsdata physicsdata physicsdata

Table 1: comparison of PIML use-cases

parameters capturing the performance impact of the degra-
dation on the machine components are inferred. The inferred
parameters are used to predict the RUL of new units and, at the
same time, provide insights into the root cause of degradation
by identifying the faulty component. The hybridization of a
physical performance model with a data-driven DL model
allows for enhanced interpretability of the degradation process
and requires significantly less training data than a purely data-
driven approach. This approach is suitable for RUL prediction
and diagnostics in setups for which a physics-based perfor-
mance model, as well as run-to-failure data from some units,
are available.

VI. SUMMARY

In this paper we described three application cases of PIML
for condition-based maintenance tasks, based on augmenting
and supplementing the condition monitoring data. As shown in
Table 1, the use cases differ not only in their application fields,
but also in their tasks, their benefits and the level of data-
physics hybridization (indicated by the small triangles along
the data/physics scale). It thus becomes evident that physics-
informed data augmentation for ML algorithms has a broad
range of applications and can be used for one or more of the
following purposes: (i) enhancing prediction accuracy despite
data scarcity (ii) enhancing accuracy compared to incomplete
physical models by using the data variability (iii) gaining
interpretability compared to a pure data-driven approach (iv)
enhancing the acceptance of the local domain experts (v) sup-
porting improvements in the design and operation of machines.

We believe that the universal aspects of the described
methods are relevant and applicable for condition-based and
predictive maintenance purposes in various systems and appli-
cation fields, for which both data and physical knowledge are
available.
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